uni-potsdam.de

You are using an old browser with security vulnerabilities and can not use the features of this website.

Here you will see how you can easily upgrade your browser.

Selected Publications

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

  • Steffen Bickel, Michael Brückner, and Tobias Scheffer.
    Discriminative learning for differing training and test distributions.
    Proceedings of the International Conference on Machine Learning, 2007.
  • Laura Dietz, Steffen Bickel, and Tobias Scheffer.
    Unsupervised prediction of citation influences.
    Proceedings of the International Conference on Machine Learning, 2007.
  • Peter Haider, Ulf Brefeld, and Tobias Scheffer.
    Supervised clustering of streaming data for email batch detection.
    Proceedings of the International Conference on Machine Learning, 2007. Best Student Paper Award.
  • Alexander Zien, Ulf Brefeld, and Tobias Scheffer.
    Transductive Support Vector Machines for Structured Variables.
    Proceedings of the International Conference on Machine Learning, 2007.
  • David Vogel, Ognian Asparouhov, and Tobias Scheffer.
    Scalable look-ahead linear regression trees.
    Proceedings of the SIGKDD Conference of Knowledge Discovery and Data Mining, 2007.
  • Steffen Bickel, Peter Haider, Tobias Scheffer, Rene Wienholtz.
    A computer implemented system and a method for detecting abuse of an electronic mail infrastructure in a computer network.
    European Patent Application EP07004097, 2007.
  • Peter Haider, Arne Jansen, and Tobias Scheffer.
    A method of filtering electronic mail and an electronic mail system.
    European Patent Application EP07004098, 2007.
  • Michael Brückner, Peter Haider, and Tobias Scheffer.
    Highly scalable discriminative spam filtering.
    Proceedings of the Text Retrieval Conference (TREC), 2007.

2006

2005

2004

2003

2002

2001

2000

1999

1998

  • Tobias Scheffer and Thorsten Joachims.
    Estimating the expected error of empirical minimizers for model selection. Abstract.  Pre-print of full paper.
    in Proceedings of the National Conference on Artificial Intelligence (AAAI), 19998.

1997

1996

  • T. Scheffer, R. Herbrich, F. Wysotzki.
    Efficient theta-subsumption based on graph algorithms.
    ( revised version )
    Muggleton, editor, Inductive Logic Programming, 6th International Workshop, Selected Papers, LNAI 1314, pp. 212-228, Springer Verlag Berlin, 1996
  • T. Scheffer, R. Herbrich, F. Wysotzki.
    Efficient theta-subsumption based on graph algorithms.

    Proceedings of the International Workshop on Inductive Logic Programming . Stockholm, Sweden, 1996.
  • T. Scheffer, R. Herbrich, F. Wysotzki.
    Graph based subsumption algorithms for machine learning.
    Beiträge zum Fachgruppentreffen Maschinelles Lernen. Chemnitz, 1996.
  • M. Finke, G. Hommel, T. Scheffer and F. Wysotzki.
    Aerial robotics in computer science education.
    Computer Science Education
    . 7(2): 239-246, 1996.
  • Linda Briesemeister, Tobias Scheffer, and Fritz Wysotzki.
    A concept-formation based algorithmic model for skill-acquisition.
    Cognitive Modelling, 1996.
  • Tobias Scheffer.
    Algebraic foundation and improved methods of induction of ripple down rules.
    Proceedings of the Pacific Rim Workshop on Knowledge Acquisition
    . Sydney, Australia, 1996.

1995

  • Tobias Scheffer.
    Learning Rules with Nested Exceptions.
    Proceedings International Workshop on Artificial Intelligence Techniques , Brno, Czech Republic, 1995.
  • Tobias Scheffer
    Induktion Hierarchischer Regelsysteme.
    Master's Thesis, Technische Universität Berlin. 1995.
  • T. Scheffer.
    A Generic Algorithm for Learning Rules with Hierarchical Exceptions (extended abstract).
    KI-95 - Advances in Artificial Intelligence
    , Springer. Saarbrücken, 1995.

1994

  • Marek Musial, Tobias Scheffer.
    A Term-Based Genetic Code for ANNs.
    KI-94 Extended Abstracts, Springer-Verlag, Berlin etc, 1994.
  • Marek Musial, Tobias Scheffer.
    A Term-based genetic Code for Artificial Neural Networks.
    Genetic Algorithms within the Framework of Neural Computation, Procceedings of the KI-94 Workschop, Max-Planck-Institut für Informatik, Saarbrücken, 1994


(My Erdös number is at most 4 because Frank Stephan's Erdös number is 3 and we have co-authored a paper.)