
Learning Explainable Representations of
Malware Behavior ?

Paul Prasse1, Jan Brabec2, Jan Kohout2,
Martin Kopp2, Lukas Bajer2, and Tobias Scheffer1

1 University of Potsdam, Department of Computer Science, Germany
{prasse,scheffer}@uni-potsdam.de

2 Cisco Systems, Cognitive Intelligence, Prague, Czech Republic
{janbrabe,jkohout,markopp,lubajer}@cisco.com

Abstract. We address the problems of identifying malware in network
telemetry logs and providing indicators of compromise—comprehensible
explanations of behavioral patterns that identify the threat. In our sys-
tem, an array of specialized detectors abstracts network-flow data into
comprehensible network events in a first step. We develop a neural net-
work that processes this sequence of events and identifies specific threats,
malware families and broad categories of malware. We then use the
integrated-gradients method to highlight events that jointly constitute
the characteristic behavioral pattern of the threat. We compare network
architectures based on CNNs, LSTMs, and transformers, and explore
the efficacy of unsupervised pre-training experimentally on large-scale
telemetry data. We demonstrate how this system detects njRAT and
other malware based on behavioral patterns.

Keywords: neural networks · malware detection · sequence models ·
unsupervised pre-training

1 Introduction

Toady’s malware can exhibit different kinds of malicious behaviour. Malware col-
lects personal and financial data, can encrypt users’ files for ransom, is used to
commit click-fraud, or promotes financial scams by intrusive advertising. Client-
based antivirus tools employ signature-based analysis, static analysis of portable-
executable files, emulation, and dynamic, behavior-based analysis to detect mal-
ware [34]. Systems that analyze network telemetry data complement antivirus
software and are widely used in corporate networks. They allow organizations to
enforce acceptable-use and security policies throughout the network and mini-
mize management overhead. Telemetry analysis makes it possible to encapsulate
malware detection into network devices or cloud services [17,6].

Research on applying machine learning to malware detection is abundant.
However, the principal obstacle that impedes the deployment of machine-learning

? This is a pre-print of an article to appear in Machine Learning and Knowledge
Discovery in Databases. ECML PKDD 2021.

2 P. Prasse et al.

solutions in practice is that computer-security analysts need to be able to val-
idate and confirm—or overturn—decisions to block software as malware. How-
ever, machine-learning models usually work as black boxes and do not provide a
decision rationale that analysts can understand and verify. In computer security,
indicators of compromise refer to specific, observable evidence that indicates,
with high confidence, malicious behavior. Security analysts consider indicators
of compromise to be grounds for the classification of software as malware. For
instance, indicators of compromise that identify software as variants of the Wan-
naCry malware family include the presence of the WannaCry ransom note in the
executable file and communication patterns to specific URLs that are used ex-
clusively by a kill-switch mechanism of the virus [3].

In recent years, machine-learning models have been developed that empha-
size explainability of the decisions and underlying representations. For instance,
Shapley values [22], and the DeepLift [32] and integrated gradients methods [33]
quantify the contribution of input attributes to the model decision. However,
in order to be part of a comprehensible explanation of why software is in fact
malicious, the importance weights would have to refer to events that analysts
can relate to specific behavior of malicious software.

In this paper, we first discuss a framework of classifiers that detect a wide
range of intuitively meaningful network events. We then develop neural networks
that detect malware based on behavioral patterns composed of these behaviors.
We compare network architectures based on CNNs, LSTMs, and transformers.
In order to address the relative scarcity of labeled data, we investigate whether
initializing the models by unsupervised pre-training improves their performance.
We review how the model detects the njRAT and other malware families based
on behavioral indicators of compromise.

2 Related Work

Prior work on the analysis of HTTP logs [25] has addressed the problems of
identifying command-and-control servers [24], unsupervised detection of mal-
ware [19,7], and supervised detection of malware using domain blacklists as la-
bels [13,6,8]. HTTP log files contain the full URL string, from which a wide
array of informative features can be extracted [6].

A body of recent work has aimed at detecting Android malware by network-
traffic analysis. Arora et al. [5] use the average packet size, average flow duration,
and a small set of other features to identify 48 malicious Android apps. Lashkari
et al. [20] collect 1,500 benign and 400 malicious Android apps, extract flow du-
ration and volume feature, and apply several machine-learning algorithms from
the Weka library. They observe high accuracy values on the level of individual
flows. Demontie et al. [10] model different types of attacks against such detec-
tion mechanisms and devise a feature-learning paradigm that mitigates these
attacks. Malik and Kaushal [23] aggregate the VirusTotal ranking of an app
with a crowd-sourced domain-reputation service (Web of Trust) and the app’s
resource permission to arrive at a ranking.

Learning Explainable Representations of Malware Behavior 3

Prior work on HTTPS logs has aimed at identifying the application layer
protocol [37,9,12]. In order to cluster web servers that host similar applications,
Kohout et al. [18] developed features that are derived from a histogram of ob-
servable time intervals and data volumes of connections. Using this feature rep-
resentation, Lokoč et al. [21] introduced an approximate k-NN classifier that
identifies servers which are contacted by malware.

Graph-based classification methods [4] have been explored, but they can
only be applied by an agent that is able to perceive a significant portion of the
global network graph—which raises substantial logistic and privacy challenges.
By contrast, this paper studies an approach that relies only on the agent’s ability
to observe the traffic of a single organization.

Prior work on neural networks for network-flow analysis [26] has worked with
labels for client computers (infected and not infected)—which leads to a multi-
instance learning problem. CNNs have also been applied to analyzing URLs
which are observable as long as clients use the HTTP instead of the encrypted
HTTPS protocol [30]. Malware detection from HTTPS traffic has been stud-
ied using a combination of word2vec embeddings of domain names and long
short term memory networks (LSTMs) [27] as well as convolutional neural net-
works [28]. Since the network-flow data only logs communication events between
clients and hosts, these models act as black boxes that do not provide security
analysts any verifiable decision rationale. Since we collected data containing only
specific network events without the information of the used domain names, we
are not able to apply these models to our data.

Recent findings suggest that the greater robustness of convolutional neu-
ral networks (CNNs) may outweight the ability of LSTMs to account for long-
term dependencies [14]. This motivates us to explore convolutional architectures.
Transformer networks [36] are encoder-decoder architectures using multi-head
self-attention layers and positional encodings widely used for NLP tasks. GPT-
2 [29] and BERT [11] show that transformers pre-trained on a large corpus learn
representations that can be fine-tuned for classification problems.

3 Problem Setting and Operating Environment

This section first describes the operating environment and the first stage of the
Cisco Cognitive Intelligence system that abstracts network traffic into network
events. Section 3.2 proceeds to define the threat taxonomy and to lay out the
problem setting. Section 3.3 describes the data set that we collect for the exper-
iments described in this paper.

3.1 Network Events

The Cisco Cognitive Intelligence (CI) [35] intrusion detection system monitors
the network traffic of the customer organization for which it is deployed. Initially,
the traffic is captured in the form of web proxy logs that enumerate which
users connect to which servers on the internet, and include timestamps and the

4 P. Prasse et al.

data volume sent and received. The CI engine then abstracts log entries into a
set of network events—high-level behavioral indicators that can be interpreted
by security analysts. Individual network events are not generally suspicious by
themselves, but specific patterns of network events can constitute indicators of
compromise that identify threats. In total, CI distinguishes hundreds of events;
their detection mechanisms fall into four main categories.

{ Signature-based events are detected by matching behavioral signatures that
have been created manually by a domain expert. This includes detection
based on known URL patterns or known host names.

{ Classi�er-based events are detected by special-purpose classifiers that have
been trained on historical proxy logs. These classifiers included models that
identify specific popular applications.

{ Anomaly-based events are detected by a multitude of statistical, volumetric,
proximity-based, targeted, and domain-specific anomaly detectors. Events in
this category include, for example, contacting a server which is unlikely for
the given user, or communication patterns that are too regular to be caused
by a human user using a web browser.

{ Contextual events capture various network behaviors to provide additional
context; for instance, file downloads, direct access of a raw IP address without
specified host name, or software updates.

For purposes of the work, each interval of five minutes in which at least one
network flow is detected, the set of network events is timestamped and logged.
Events are indexed by the users who sent or received the traffic. No data are
logged for intervals in which no event occurs. The resulting data structure for
each organization is a sparse sequence of sets of network events for each user
within the organization.

3.2 Identi�cation of Threats

We use a malware taxonomy with three levels: threat ID, malware family, and
malware category. The threat ID identifies a particular version of a malware
product, or versions that are so similar that a security analyst cannot distin-
guish them. For instance, a threat ID can correspond to a particular version
of the njRAT malware [1], all instances of which use the same user-agent and
URL pattern for communication. The malware family entails all versions of a
malware product—for instance, WannaCry is a malware family of which multi-
ple versions are known to differ in their communication behavior. Finally, the
malware category broadly characterizes the monetization scheme or harmful be-
havior of a wide range of malware products. For instance, advertisement injector,
information stealer, and cryptocurrency miner are malware categories.

Labeled training and evaluation data consist of sets of network events of five-
minute intervals associated with a particular user in which threats have been
identified by security analysts. In order to determine threat IDs, malware fam-
ilies, and categories, security analysts inspect network events and any available

Learning Explainable Representations of Malware Behavior 5

Table 1. Data set statistics for malware category evaluation.

Malware category Training instances Test instances

Potentially unwanted application 14,675 10,026

Ad injector 14,434 17,174

Malicious advertising 3,287 1,354

Malicious content distribution 2,232 9,088

Cryptocurrency miner 1,114 1,857

Scareware 198 398

Information stealer 128 131

external sources of information about contacted servers. In some cases, hash keys
of the executable files are also available and can be matched against databases
of known malware to determine the ground truth. Due to this involvement of
qualified experts, labeled data are valuable and relatively scarce.

The problem setting for the malware-detection model is to detect for each
organization, user, and each five-minute interval in which at least one network
event has occurred, which threat ID, malware family, and malware category the
user has been exposed to. That is, each instance is a combination of an organi-
zation, a user and a five-minute time interval. Threats are presented to security
analysts on the most specific level on which they can be detected. Specific threat
IDs provide the most concrete actionable information for analysts. However, for
unknown or unidentifiable threats, the malware family or category provides a
lead which an analyst can follow up on. In addition to the threat, indicators of
compromise in the form of the relevant network events that identify the threat
have to be presented to the analysts for review.

The analysis of this paper focuses on distinguishing between different threat
IDs, malware families, and categories, and offering comprehensive indicators of
compromise. The equally important problem of distinguishing between malware
and benign activities has, for instance, been studied by Prasse et al. [28]. The
majority of benign network traffic is not included in our data because only time
intervals in which network events occur are logged.

We will measure precision-recall curves, the multi-class accuracy, and the
macro-averaged AUC to evaluate the models under investigation. The average
AUC is calculated as the mean of the AUC values of the individual classes.
Precision—the fraction of alarms that are not false alarms—directly measures
the amount of unnecessary workload imposed on security analysts, while recall
quantifies the detection rate. We also compare the models in terms of ROC cuves
because these curves are invariant to class ratios.

3.3 Data Collection and Quantitative Analysis

We collected the entire network traffic of 348 companies for one day in June
2020 as training data, and for one day in July 2020 as evaluation data. The
training data contain the network traffic of 1,506,105 users while the evaluation

6 P. Prasse et al.

Table 2. Data set statistics for malware family evaluation.

Malware family Training Test Malware category

ArcadeYum 12,051 6,231 Potentially unwanted application

Malicious Android firmware 38 30 Information stealer

njRAT 15 37 Information stealer

WannaCry 4 7 Ransomware

Table 3. Data set statistics for threat ID evaluation.

Threat ID Training instances Test instances Malware category

Threat ID 1 8,900 9,710 Ad injector

Threat ID 2 900 924 Potentially unwanted application

Threat ID 3 11,894 6,075 Potentially unwanted application

Threat ID 4 641 783 Potentially unwanted application

Threat ID 5 606 425 Ad injector

Threat ID 6 392 567 Malicious advertising

Threat ID 7 2,099 9,027 Malicious content distribution

Threat ID 8 119 54 Typosquatting

Threat ID 9 282 193 Phishing

data contain the traffic of 1,402,554 unique users. In total, the data set consists
of 9,776,911 training instances and 9,970,560 test instances, where each instance
is a combination of an organization, a user, and a five-minute interval in which
at least one network event was observed. In total, 216 distinct network events
occur at least once in training and evaluation data—most of these events occur
frequently. On average, 2.69 network events are observed in each five-minute
interval in the training data and 2.73 events in the test data.

Table 1 shows the seven malware categories that occur in the data at least 100
times. Potentially unwanted applications (PUAs) are the most frequent class of
malware; these free applications are mostly installed voluntarily for some adver-
tised functionality, but then cannot be uninstalled without expert knowledge and
expose the user to intrusive advertisements or steal user data. Table 2 shows all
malware families that analysts have identified in our data. Most malware fam-
ilies fall into the category of PUA, but analysts have been able to identify a
number of high-risk viruses. Comparing Tables 1 and 2 shows that for many
threats, analysts are able to determine the malware category, but not the specific
malware family.

Finally, Table 3 shows those threat IDs for which at least 100 instances occur
in our data. In many cases, analysts identify a specific threat which is assigned
a threat ID based on the malware’s behavior, without being able to ultimately
determine which malware family it has been derived from.

Learning Explainable Representations of Malware Behavior 7

Fig. 1. Model architecture.

4 Models

This section develops the neural network architectures that we will explore in the
experimental part of this paper. All networks process the sequence of network
events provided by the detector array. In one version of the networks, we employ
unsupervised pre-training of the models|see Figure 1. We will compare the
pre-trained models to reference versions without pre-training.

4.1 Architectures

Here we develop three di�erent model architectures: anLSTM model using sever-
eral bidirectional LSTM layers [16], a CNN model using stacked one-dimensional
CNN layers [14], and atransformer model that uses multiple multi-head atten-
tion blocks [36]. We also implement a random forest baseline.

The input to the di�erent model architectures consists of a window of w
�ve-minute intervals, each of which is represented by a set of network events,
a timestamp, and the numbers of bytes sent and received. The widthw of the
window is a tunable hyperparameter. The set of network events for each time
step are processed by an embedding layer followed by an averaging layer that
computes the mean embedding for all the network events for the current �ve-
minute interval (see Figure 2a). The mean embedding is than concatenated with
the log transformed time di�erences between subsequent elements in the window
and the log-transformed number of bytes sent and received.

The LSTM model consists of multiple layers of bidirectional LSTM units,
followed by a number of dense layers with a dropout rate of 0.1. The number of
layers of each type and the number of units per layer for each of the models are

8 P. Prasse et al.

(a) Model input for a single �ve-
minute interval.

(b) LSTM model architecture.

(c) CNN model architecture. (d) Transformer model architecture.

Fig. 2. Model input and models.

hyperparameters that we will tune in Section 5; see Table 4. The output layer
consists of a softmax layer with the number of units equal to the number of
di�erent classes (see Figure 2b). The CNN model starts o� with a concatenation
layer that combines the elements in the input window. The next layers are mul-
tiple pairs of a one-dimensional convolutional layer followed by a max-pooling
layer. The last CNN layer is connected to an average-pooling layer and a number
of dense layers on top of it. The last layer is a softmax layer with one unit per
output classes (see Figure 2c).

The transformer model consists of an absolute positional encoding layer that
outputs the sum of the positional encoding and the concatenated input se-
quence [31]. The output of the positional encoding layer is fed into multiple
attention layers [36]. The output of the last multi-head attention layer is fed

Learning Explainable Representations of Malware Behavior 9

into a sequence of dense layers. The last layer consists of a softmax layer with
one unit per output class (see Figure 2d).

The random forest (RF), which serves as natural baseline, consumes the one-
hot encodings of all network events within the window and the concatenated list
of all log transformed bytes sent, log-transformed bytes received, and the time
di�erences between susequent elements within the window.

4.2 Unsupervised Pre-training

Since labeling training data requires highly-trained analysts to identify and an-
alyze threats, labeled data are relatively scarce. While the number of labels is in
the tens of thousands in our study, the number of unlabeled instances collected
over two days is around 20 millions. Unsupervised pre-training o�ers the poten-
tial for the network to learn a low-level representation that structures the data
in such a way that the subsequent supervised learning problem becomes easier
to solve with limited labeled data.

To pre-train the models, we use all 9,776,911 training instances. The training
objective is to predict the set of network events present at time steptw+1 given
the sets of events of previous time stepst1; : : : tw (see Figure 1). This is a multi-
label classi�cation problem, since we want to predict all present network events
at time step tw+1 . This model serves as a \language model" [29,11] for network
events that learns an internal representation which is able to predict the next
network events given their context. For the pre-training step, we add a fully
connected dense layer with sigmoid activation function to the models. We train
these models using the binary cross entropy loss function. We will compare the
pre-trained models to their counterparts that have been trained from scratch
with Glorot initialization [15].

5 Experiments

This section reports on malware-detection performance of the models under in-
vestigation, and on the interpretability of the indicators of compromise. We split
the data into a training part that we acquired in June 2020 and an evaluation
part acquired in July 2020.

5.1 Hyperparameter Optimization

We optimize the width of the window of �ve-minute time intervals w used to
train the models by evaluating values from 3 to 41 with a nested training-test
split on the training part of the data using the threat-ID classi�cation task. In
the following experiments, we �x the number of used �ve-minute intervals w to
21 (see Figure 2). That is, each training and test instance is a sequence of 21 �ve-
minute intervals; training and test sequences are split into overlapping sequences
of that length. We tune the number of layers of each type, and the number of
units per layer for all models using a 5-fold cross-validation on the training part

10 P. Prasse et al.

Table 4. Best hyperparameters found using grid search.

hyperparameter parameter range best value

LS
T

M

embedding size f 26 ; : : : ; 28 g 128
LSTM layers f 1; � � � ; 4g 1
LSTM units f 23 ; : : : ; 211 g 1024
Dense layers f 1; : : : ; 3g 2
Dense units f 26 ; : : : ; 210 g 256

C
N

N

embedding size f 26 ; : : : ; 28 g 128
CNN layers f 1; � � � ; 4g 3
kernel size f 21 ; : : : ; 23 g 4
�lters f 22 ; : : : ; 27 g 32
Dense layers f 1; : : : ; 3g 2
Dense units f 26 ; : : : ; 210 g 256

Tr
an

sf
or

m
er

embedding size f 26 ; : : : ; 28 g 128
attention blocks f 1; � � � ; 4g 2
attention heads f 22 ; : : : ; 27 g 8
Dense attention units f 22 ; : : : ; 27 g 512
Dense layers f 1; : : : ; 3g 2
Dense units f 26 ; : : : ; 210 g 512

R
F # trees f 10; 100; 1000g 100

max depth f 2; 10; 100; None g 10

of the data using the threat-ID classi�cation task. The grid of parameters and the
best hyperparameters can be found in Table 4. The optimal parameters for the
random forest baseline are found using a 5-fold cross-validation on the training
data of the given task.

We train all models on a single server with 40-core Intel(R) Xeon(R) CPU
E5-2640 processor and 512 GB of memory. We train all neural networks using
the Keras and Tensor
ow libraries on a GeForce GTX TITAN X GPU using
the NVidia CUDA platform. We implement the evaluation framework using the
scikit-learn machine learning package. The code can be found online3.

5.2 Malware-Classi�cation Performance

In the following we compare the classi�cation performance of the di�erent mod-
els for the tasks of detecting threat IDs, malware categories, and malware fam-
ilies. We compare neural networks that are trained from scratch using Glorot
initialization and models initialized with pre-trained weights as described in Sec-
tion 4.2. We also investigate how the number of training data points per class
e�ects the performance. To do so, we measure the accuracy acc@n and average
AUC@n after the models have been trained onn instances per class. Since ob-
taining malware labels is time consuming and costly, this gives us an estimation
of how the models behave in a few-shot learning scenario.

Table 5 shows the overall results for all described models and all the di�erent
levels of the threat taxonomy on the evaluation data. We see that the transformer
outperforms CNN and LSTM most of the time, and that the pre-trained models
almost always signi�cantly outperform their counterparts that have been trained

3 https://github.com/prassepaul/Learning-Explainable-Representations-of-Malware-Behavior

Learning Explainable Representations of Malware Behavior 11

from scratch, based on a two-sided, pairedt test with p < 0:05. Only the LSTM
models are in some cases not able to bene�t from pre-training. We also see
that the neural network architectures outperform the random forest baseline in
all settings, so we conclude that using the sequential information and sequential
patterns can be exploited to classify di�erent malware types. Using more training
instances nearly always boosts the overall performance. Only for the detection
of di�erent malware families the performance in terms of the average AUC is
lower when training with the full data set. We think this is caused by highly
imbalanced class distribution pushing the models to favor for speci�c classes.

From Table 5, we conclude that in almost all cases the transformer model with
unsupervised pre-training is the overall best model. Because of that, the following
detailed analysis is performed using only the transformer model architecture.

Additional experiments in which we determine the ROC and precision-recall
curves that the transformer with pre-training achieves for individual threats,
malware families, and malware categories can be found in Appendix A. From
these experiments, we can furthermore conclude that threat IDs that have a
one-to-one relationship with a malware family are the easiest ones to identify,
and that broad categories such as PUA that include a wide range of di�erent
threats are the most di�cult to pin down.

5.3 Indicators of Compromise

This section explores the interpretablility of the indicators of compromise in-
ferred from the transformer model. We use theintegrated gradients method to
highlight the most important features for a given input sequence [33]. Integrated
gradients can compute the contribution of each network event when classifying
a given input sequence. We calculate the impact of all input features using

IG i (x) = (x i � x0
i) �

Z 1

� =0

@F(x0+ � � (x � x0))
@xi

d�; (1)

where i denotes thei -th feature, x the input to the model, x0 the baseline, and�
the interpolation constant for the perturbation of the features. The term (x i � x0

i)
denotes the di�erence between original input and \baseline". Similar to the all-
zeros baseline that is used for input images, we set the baseline to the instance
with all zero-embeddings and original numerical features. The baseline input is
needed to scale the integrated gradients. In practice we approximate this integral
by the numerical approximation

IG approx
i (x) = (x i � x0

i) �
mX

k=1

@F(x0+ k
m � (x � x0))
@xi

�
1
m

; (2)

where k is the number of approximation steps.

Single-Instance Evaluation Using the Integrated Gradients from Equation 2,
we determine which input time steps contributed to which extend to the overall

12 P. Prasse et al.

Table 5. Accuracy and AUC for the detection of threat IDs, malware families, and
categories, after training on some or all training data, with and without pre-training.
Acc@n and AUC@n refer to the accuracy and AUC, respectively, after training on up
to n instances per class. For results marked *", the accuracy of pre-trained models
is signi�cantly better (p < 0:05) compared to the same model trained from scratch.
Results marked \ y" are signi�cantly better (p < 0:05) than the next-best model.

CNN LSTM Transformer Random Forest
Scratch Pre-tr. Scratch Pre-tr. Scratch Pre-tr. Scratch

th
re

at
ID

acc@10 0.394 0.437* 0.314 0.375* 0.352 0.559* y 0.413
acc@50 0.618 0.648* 0.567 0.478 0.612 0.731* y 0.57
acc@100 0.666 0.689* 0.624 0.54 0.685 0.759* y 0.614
acc 0.785 0.799 0.806 0.843* y 0.769 0.776 0.809
AUC@10 0.794 0.773 0.75 0.698 0.748 0.848* 0.832
AUC@50 0.889 0.893 0.874 0.807 0.893 0.941* y 0.902
AUC@100 0.906 0.914* 0.897 0.829 0.902 0.948* y 0.912
AUC 0.937 0.952* 0.935 0.942 0.915 0.95* 0.925

m
al

w
ar

e
ca

te
go

ry

acc@10 0.23 0.396* 0.196 0.312* 0.228 0.456* y 0.338
acc@50 0.524 0.598* 0.515 0.485 0.575 0.652* y 0.54
acc@100 0.618 0.669* 0.597 0.539 0.652 0.703* y 0.606
acc 0.77 0.785* 0.769 0.772 0.771 0.802* y 0.73
AUC@10 0.752 0.813* 0.73 0.728 0.747 0.821* 0.819
AUC@50 0.86 0.901* 0.861 0.808 0.879 0.924* y 0.889
AUC@100 0.881 0.91* 0.877 0.831 0.914 0.938* y 0.907
AUC 0.917 0.937* 0.908 0.902 0.912 0.96* y 0.916

m
al

w
ar

e
fa

m
ily

acc@10 0.439 0.91* 0.01 0.894* 0.322 0.893* 0.846
acc@50 0.839 0.939* 0.592 0.923* 0.808 0.946* 0.923
acc@100 0.87 0.959 0.875 0.952 0.866 0.977* y 0.962
acc 0.929 0.993* 0.889 0.995* y 0.954 0.992 0.994
AUC@10 0.886 0.985* 0.785 0.964* 0.855 0.983* 0.106
AUC@50 0.96 0.992* 0.832 0.982* 0.967 0.993* 0.199
AUC@100 0.96 0.993* 0.922 0.983 0.969 0.995* 0.199
AUC 0.921 0.983* 0.923 0.983* 0.486 0.947* 0.322

classi�cation. Figure 3 shows an example output for an instance classi�ed as
njRAT . The njRAT malware family, also called Bladabindi, is a widespread re-
mote access trojan (RAT). It allows attackers to steal passwords, log keystrokes,
activate webcam and microphone, give access to the command line, and allows
attackers to remotely execute and manipulate �les and system registry.

It uses the HTTP user-agent �eld (this is re
ected in the event unexpected
application in Figure 3) to ex�ltrate sensitive information (event information
stealer in Figure 3) from the infected machine. The communication with C&C
server uses dynamic DNS with string patterns such asmaroco.dyndns.org/is-
rinoy or man2010.no-ip.org/is-ready and speci�cally crafted host names. This
usage of dynamic DNS is re
ected in eventsuspicious domain from dynamic DNS
in Figure 3, the speci�c host names as eventanomalous destination. These char-

Learning Explainable Representations of Malware Behavior 13

Fig. 3. Feature importance for detection of njRAT using integrated gradients for a
single instance. The intensity of the red hue indicates the importance of network events.

acteristic features of njRAT are also the most important features for the trans-
former. We conclude that this explanation matches known behavior of njRAT.

(a) ArcadeYum (b) Malicious Android �rmware

(c) WannaCry (d) njRAT

Fig. 4. Feature importances of the top 10 features for detection of di�erent malware
families. The width of the bar is computed by using the integrated gradients method
for each positively classi�ed instance and averaging the obtained values for all network
events. Error bars denote the standard deviation.

14 P. Prasse et al.

Feature Importance We add the feature importance values for all the in-
stances classi�ed as a particular malware family. Figure 4 shows the feature
importance for di�erent families. For njRAT , we see that the top four features
captured in Figure 4d matche the behavior of njRAT described above. TheAr-
cadeYum family is a typical example of the PUA/adware category. When in-
stalled, it starts to download large amounts of advertisement and present it as
additional banners rendered on top of legitimate websites or as pop-up windows.
The advertisement images are downloaded on the background without users
knowledge and often from hosts that may be a source of additional infections.
This behaviour is again captures by the most important features in Figure 4a.

Most of the WannaCry samples that we were able to detect are older ver-
sions that use DGA domains as a kill switch|see [3] for details. The behavioral
indicators dga, non-user activity, anomalous destination, inconsistent user time
activity in Figure 4c are related to the regular attempt to contact these DGA
domains. Some of the identi�ed samples are actuallyWannaMine [2], a crypto-
mining modi�cation of the original WannaCry malware. Their activity is cap-
tured by the cryptomining event as well as thehttp to IP address, which is the
mechanism through which WannaMine downloads additional modules.Malicious
Android �rmware , Figure 4b, is known for gathering and ex�ltrating sensitive
user information and using dynamic DNS to avoid blacklists. Both behaviors
are represented as the top two features. The further actions depend on the type
and version of the infected device. Usually, an advertisement auction service is
contacted and advertisement images or videos are being displayed (multimedia
streaming, repetitive requests, non-user activity, dga).

6 Conclusion

We have studied the problem of identifying threats based on sequences of sets
of human-comprehensible network events that are the output of a wide array of
specialized detectors. We can conclude that thetransformer architecture out-
performs both the CNN and LSTM models at identifying threat IDs, malware
families, and malware categories. Furthermore, unsupervised pre-training im-
proves the transformer's performance over supervised learning from scratch. We
use the integrated gradients method to determine the sequence of the most im-
portant network events that constitute indicators of compromise which can be
veri�ed by security analysts. Our detailed analysis of the njRAT malware shows
that the sequence of highly important events corresponds to the known behavior
of the virus. We can conclude that for the four most frequent malware families,
the network events that reach the highest aggregated feature importance across
all occurrences match known indicators of compromise.

A Appendix

This section reports on detailed analysis results by measuring precision-recall
curves for the detection of threat IDs, malware families, and malware categories.

	Learning Explainable Representations of Malware Behavior

