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Abstract

Distributional properties of fixations and saccades are known to constitute biometric characteristics. Additionally, high-frequency
micro-movements of the eyes have recently been found to constitute biometric characteristics that allow for faster and more robust
biometric identification than just macro-movements. Micro-movements of the eyes occur on scales that are very close to the
precision of currently available eye trackers. This study therefore characterizes the relationship between the temporal and spatial
resolution of eye tracking recordings on one hand and the performance of a biometric identification method that processes micro-
and macro-movements via a deep convolutional network. We find that that the deteriorating effects of decreasing both, the temporal
and spatial resolution are not cumulative. We observe that on low-resolution data, the network reaches performance levels above
chance and outperforms statistical approaches.
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1. Introduction

Eye movements exhibit strong individual characteristics that have been demonstrated to be relatively stable over
time [2]. Hence, Kasprowski and Ober [15] proposed to use eye movements for biometric identification. Since this
seminal work, eye tracking-based identification has been attracting increasing attention and several competitions [14,
13, 16] have shown the promise of eye movements as behavioral biometric characteristic. Until recently, the main
drawback was that the time-to-identification of oculomotoric identification was several orders of magnitude above the
time needed by competing biometric technologies such as face recognition, fingerprints, or iris recognition.

Recent work has shown that end-to-end trainable deep neural networks that process raw eye tracking signals can ex-
ploit micro-movements of the eyes; since these micro-movements occur at high frequency, using them accelerates the
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identification process by two orders of magnitude [12, 19]. A critical limitation of the DeepEYyedentification method is
that micro-movements are barely measurable even with high-frequency, high-precision eye tracking-systems. To as-
sess the applicability of high-frequency, low-amplitude micro-movements as a biometric characteristic in real-world
settings, this paper investigates the impact of the temporal and spatial resolution of the eye tracking signal on the
performance of oculomotoric biometric identification based on deep learning [12, 19].

Vision research distinguishes three major types of eye move-
ments. During fixations of around 250 ms, the eye is relatively still
and visual input is obtained. Saccades, whose average duration is
around 50 ms, are fast relocation movements from one fixation to
the next of up to 500 °/s. During a smooth pursuit, the eye gaze fol-
lows a slowly moving visual target. Besides these macroscopic eye
movements, three kinds of ocular micro-movements occur during a
fixation. Very slow ocular drift away from the intended center of
a fixation of around 0.1-0.4°/s is superimposed by high-frequency,
low-amplitude tremor of around 40-100 Hz and a velocity of up to
0.3°/s. Microsaccades are tiny saccades of up to 120°/s that occur
occasionally during intended fixation [21, 22, 23, 24, 11].

Prior work on oculomotoric biometric identification typically
preprocesses the eye tracking signal into saccades and fixations
and subsequently extracts explicit features, such as the duration of
fixations, or the amplitude, velocity, or acceleration of saccades.
Whereas earlier approaches compare eye movement sequences by
first aggregating the features over the relevant eye movement record-
ings [8, 3, 28], statistical approaches compare the distributions of
the features extracted from two eye gaze sequences [25, 7, 26]
and generative approaches simulate a user’s scanpath (i.e., a se-
quence of fixations and saccades) using Bayesian Graphical mod-
els [30, 29, 17, 1, 18]. DeepEyedentification, by contrast, does not
apply any preprocessing and feature extraction, but rather operates
directly on the raw signal recorded from an eye tracker [12, 19]. This
approach is summarized in Section 2.

Prior work on the relationship between the spatial and temporal
resolution of the eye tracking signal and the performance of ocu-
lomotoric biometric identification [9, 10] investigates the impact of
spatial noise and temporal resolution of the eye tracking signal on
the performance of the statistical approach proposed by Holland
and Komogortsev [7] that uses distributional attributes of saccades
and fixations. It is not clear—and does not even appear likely—that
this relationship between resolution and accuracy will be the same
for the DeepEyedentification method that exploits ocular micro-
movements. In our experiments, we use this statistical approach and
its successor method of Rigas et al. [26] as reference methods.

The remainder of this paper is structured as follows. Section 2 re-
views the state-of-the-art of deep learning-based oculomotoric bio-
metrics, Section 3 lays out the problem setting, Section 4 describes
the data sets used for the experiments presented in Section 5, Section
6 concludes.

Neural
embeddings of
enrolled users

Comparison of neural
embeddings

Identification /
verification

A

<
1
B ——)
-_

<
<

Enrollment

m = #ids

Identity output

Output layer is
only used during
network training

I fully connected,m = 128

Neural
embedding of

fully connected,m = 256

gaze pattern

concatenate

fully connected,m = 128

fully connected,m = 256

fully connected,m = 128

fully connected,m = 256

fully connected,m = 256

fully connected,m = 256

flatten

flatten

Conv, f =512,k =3

Conv, f =256,k =3

Cony, f =512,k =3

Conv, f =256,k =3

Conv, f =512,k =5

Cony, f =256,k =5

Conv, f =512,k =5

Conv, f =256,k =5

Conv, f =512,k =5

Cony, f =256,k =5

Conv, f =512,k =5

Conv, f =256,k =5

Conv, f =32,k=9

Conv, f =128,k =9

Conv, f =32,k=9

Conv, f =128,k =9

Conv, f =32,k=9

Conv, f =128,k =9

channel stack

>

channel stack

z-score normalize

| tanh transform, Equation 2

| clip transform, Equation 1 I

A

A|

z-score normalize

|

| velocity eye difference I

4 eye gaze channels

T

Remote eyetracker:
NIR camera and IR illuminators

.©.

Gaze patterns are
measured by eyetracker

Fig. 1. DeepEyedentificationLive architecture without
liveness detection. Figure adjusted from Makowski et

al. [19].



Prasse et al. / Procedia Computer Science 00 (2020) 000-000 3

2. Oculomotoric Biometrics Based on Deep Learning

This section summarizes the DeepEyedentificationLive architecture [19] which is a binocular extension of the
DeepEyedentification architecture [12]. DeepEyedentificationLive is also able to process the stimulus and detect
presentation attacks; however, we do not use this function in this paper.

2.1. Architecture of the DeepEyedentificationLive network

An eye tracker records binocular gaze sequences of absolute yaw x and pitch gaze angles y of the left / and right
eye r at a sampling frequency of p, measured in Hz. The binocular DeepEyedentificationLive network (see Figure 1)
receives yaw ¢; and pitch 6{ gaze velocities in °/s as input which are computed from the recorded gaze sequence as
oF = ’%(xm —Xx;_1) and 6; = ’%(ym —y;-1) for the left and the right eye, respectively. This results in a total of four input
channels, namely the sequence of yaw (6)1"1, e, 6ﬁ’] » and pitch angular velocities of the left eye (6””, . ,6f,"> and the
corresponding yaw (51", ..., 6,") and pitch angular velocities of the right eye (6,",...,8,").

The network processes input sequences of 1,000 time steps corresponding to 1 s of 1000 Hz eye tracking recording.
For our experiments, we adjust the length of the input layer such that the network always processes 1 s of eye tracking
recording, independently of the sampling frequency at which the data has been recorded.

The key feature of the network’s architecture is that the input channels are duplicated and directed into two sep-
arate convolutional subnets. The fast subnet is designed to process the high angular velocities of (micro-) saccadic
eye movements whereas the slow subnet is designed to process the slow fixational eye movements (drift and tremor).
Each of the subnets is preceded by a transformation layer that applies a transformation to the input to resolve the fast
saccadic and slow fixational eye movements, respectively. For the fast subnet, saccadic eye movements are resolved
by applying a clipping function that truncates velocities below a threshold v,,;, to zero and a subsequent z-score nor-
malization (see Equation 1). Based on hyperparameter tuning within a range of psychologically plausible parameters
on two independent data sets [12, 19], the velocity threshold v,,;, is set to 40°/s. The original DeepEyedentification-
Live network also processes the stimulus sequence and provides a liveness-detection output. We train a version of the
network without the stimulus input channels and liveness output.

v o _ )20 if \J6"2 + 67 < Vyuin
14(67,6)) = ( )X Ve i S 0
(2(61),2(67))  otherwise

The slow fixational eye movements are resolved by applying a sigmoidal function that stretches the slow velocities
of drift and tremor approximately within the interval between —0.5 and +0.5 and squashes the (micro-) saccadic veloc-
ities to the interval between —0.5 and —1 or +0.5 and +1, depending on their direction (see Equation 2). Independent
hyperparameter optimization on two data sets showed that an appropriate value for the scaling factor ¢ of Equation 2
is 0.02 [12, 19].

(67, )) = (tanh(c5}), tanh(c?)) .

Since binocular alignment is an informative individual characteristics, the four untransformed input velocity chan-
nels are also fed into a subtraction layer which computes the yaw ((57”—6)1"1 o, 0 —=82"y and pitch velocity differences

between the two eyes (5, — 6{’], ..., 60" — 80"y, After each of the transformation layers, a stacking layer is inserted
which stacks these additional two channels with the input of each of the two subnets.

The two subnets share the same number and type of layers. Each of the subnets consists of a series of one-
dimensional convolutional layers, where the convolutions are applied to the six input channels over the temporal
axis. The number of filters and kernel size of the convolutional layers (f and k in Figure 1), as well as the number
of units of the subsequent fully connected layers (m in Figure 1), are allowed to differ between the two subnets. For
our experiments, we use the same hyperparameter values as Makowski et al. [19] (see Figure 1). After each of the
convolutional and fully connected layers, batch normalization and ReLU activation is applied. An average pooling
layer with pooling size 2 and stride size 1 is inserted after each convolutional layer.

For training, a softmax output layer with one unit for each user in the training data is added. Using categorical
cross-entropy as loss function, the network is trained to predict a viewer’s identity from an eye tracking sequence.
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Once training is completed, the softmax output layer is removed and the activation of the last fully connected layer
(highlighted in blue in Figure 1) is used as neural feature embedding of an input gaze sequence. At application time, the
similarity between an enrolment and a test sequence is computed as the cosine similarity of their neural embeddings,
averaged over all input windows of 1,000 ms.

2.2. Performance of the DeepEyedentificationLive network

Makowski et al. compared the performance of the DeepEyedentification network [12] and its binocular extension
DeepEyedentificationLive [19] with the statistical approaches by Holland and Komogortsev (2013) [7] and Rigas et al.
(2016) on the JuDol000 data set (see Section 4). Figure 2 shows the results for the identification of 20 enrolled users
in the presence of five impostors after seeing 1, 5, and 10 seconds of eye tracking recording at test time. The deep
learning-based methods outperform the statistical state-of-the-art approaches. Moreover, the DeepEyedentification
network is outperformed by its binocular extension.
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Fig. 2. Performance of state-of-the-art methods for oculomotoric identification on the Judol000 data set. False-Negative Identification-Error Rate
(FNIR) over False-Positive Identification-Error (FPIR). Colored bands show the standard error. Figure adapted from Makowski et al. [19].

3. Problem setting

We study the influence of spatial and temporal resolution on the performance of the oculomotoric biometric sys-
tem described in Section 2. At test time, the model observes a sequence of yaw and pitch gaze angles of the left
eye ((xll, y’l), s (xﬁl, yi)) and the right eye ((x},y}), ..., (x;,, y,,)) recorded by an eye tracker. The spatial resolution, or
precision, of the eye tracker quantifies the reliability of the eye tracker; i.e., how well it is able to reproduce its mea-
surements. It can be estimated by the standard deviation of a set of n samples x; and sample average X with a constant
true gaze direction as in Equation 3. It is usually measured with an artificial eye.

3)

precision =

We study the influence of precision on the system performance by adding Gaussian noise with increasing standard
deviation to the input signal. Temporal resolution is varied by downsampling the input signal at different levels.
Figure 3 shows an eye trace at different levels of precision and temporal resolution.

We evaluate system performance for biometric identification. The system decides whether or not an observed
sequence matches the identity of one out of a set of enrolled users. The input sequence is compared to enrollment
sequences of all enrolled users. In the case of a match, the system returns the identity and otherwise classifies the user
as an impostor. Varying the decision threshold gives a DET curve of false-negative identification-error rate (FNIR)
over false-positive identification-error rate (FPIR). The equal error rate (EER) is the point in the DET curve for which
FNIR equals FPIR.

The similarity of two gaze sequences is computed by the cosine similarity of their neural network embeddings.
The network is trained on a separate set of training users and is optimized to create similar embeddings for sequences
from the same user and dissimilar embeddings for sequences from different users.
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4. Data sets

For our experiments, we used the following four eye-tracking data sets (see Table 1). The JuDol000 data set [19,
20] consists of binocular eye tracking data (horizontal and vertical gaze coordinates) recorded with an Eyelink Portable
Duo eye tracker with a vendor-reported spatial precision of 0.01° at a sampling frequency of 1,000 Hz using a chin
rest to stabilize the participant’s head. Each of 150 subjects participated in four experimental sessions with a temporal
lag of at least one week between any two sessions. In each session, participants viewed a total of 108 trials in each of
which a black dot jumped to five random locations. The duration for which the dot remained in one location varied
between different trials (250, 500, and 1000 ms). The JuDo1000 data set can be downloaded from the Open Science
framework database .

The CEM-I data set [9] consists of binocular eye-tracking data recorded with a Tobii TX300 eye tracker with a
vendor-reported spatial precision of 0.09° at a sampling frequency of 300 Hz. A set of 22 participants were presented
with up to 8 trials of different kinds of visual stimuli, namely a simple pattern (SIM), a complex pattern (COM), a
cognitive pattern (COG) and a textual pattern (TEX)—see Holland and Komogortsev [9] for details.

The CEM-II data set [9] consists of right-eye monocular data recorded at 1,000 Hz using an Eyelink 1000 tracker,
which has a vendor-reported spatial precision of 0.01°. A population of 32 participants were presented with four
experimental trials in which they read the same textual pattern that was used for the CEM-I data set.

The CEM-III data set [9] was recorded with a PlayStation Eye camera at 75 Hz. A total of 173 participants were
presented with two trials of the same visual stimuli used for CEM-I, except for the cognitive pattern which has been
replaced by a random pattern (RAN).

Table 1. Summary of the data sets showing the eye tracking device, its vendor-reported spatial precision in degrees of visual angle, the sampling
frequency of the recording in Hz, whether the data is binocular or monocular, whether participants’ heads were stabilized with a chin rest, the
number of subjects, the number of experimental sessions, the number of trials per subject, the average trial duration with standard deviation in
seconds, and the recording time per subject with standard deviation in seconds.

Data set Device Prec. Freq. Eye(s) Chinrest #subj. #sess. #trials  Trial dur Rec./subj.
JuDo1000 EyeLink Portable Duo 0.01 1000 both yes 150 4 432 3+1.6 1260 + 0
CEM-I (SIM) Tobii TX300 0.09 300 both yes 22 1 8 64 +£47 465 + 288
CEM-1 (COM) Tobii TX300 0.09 300 both yes 22 1 2 20717 386 +75
CEM-I (COG) Tobii TX300 0.09 300 both yes 22 1 2 99 + 51 180 £ 95
CEM-I (TEX) Tobii TX300 0.09 300 both yes 22 1 4 40 + 20 148 + 71
CEM-II (TEX) EyeLink 1000 0.01 1000 right yes 32 1 4 51+10 192 + 38
CEM-I11I (SIM) PlayStation Eye N/A 75 right yes 173 1 2 89 +8 177 + 18
CEM-III (COM)  PlayStation Eye N/A 75 right yes 173 1 2 133x16 264 + 32
CEM-I1II (RAN)  PlayStation Eye N/A 75 right yes 164 1 2 77 +7 154 + 13
CEM-III (TEX) PlayStation Eye N/A 75 right yes 172 1 2 46 £5 91+ 10

5. Experiments

This section presents the results of our experiments with varied spatial and temporal resolution and varied eye
tracking hardware using the data sets described in Section 4 for DeepEyedentificationLive and reference methods.

5.1. Varying the Resolution of the Eye Tracking Data
For these experiments, we use the evaluation protocol of Makowski et al. [19]: We resample 20 times from the data
set, each time selecting 125 users to train an embedding and a disjoint set of 25 users (20 enrolled users, 5 impostors)

to evaluate the system. As enrollment data, we randomly select three trials from each of the first three recording
sessions. For testing, we use 1, 5, or 10 seconds of eye tracking recording from the fourth session.

! https://osf.io/5zpvk/
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Fig. 3. Exemplary eye trace and its velocity profile of one trial taken from the JuDo1000 data set for three different configurations: 1000 Hz original
data (a,d), 125 Hz downsampled data (b,e), and the sequence with Gaussian noise added for a resulting precision of 0.1° (c,f). The fixation cross in
the center of the screen is displayed before the onset of the trial.

5.1.1. Varied Temporal Resolution

We downsample the JuDol000 data to produce data sets of 1000, 500, 250, 125, 62, and 31 Hz. We evaluate
the performance of the DeepEyedentificationLive network on these data sets according to the protocol defined in
Section 5.1. Figure 4 and Table 2 show the results for one, five and ten seconds of eye tracking recording used for
testing. We observe that the EER approximately triples when the sampling rate degrades from 1,000 Hz to 31 Hz.
Identification rates for 31 Hz are still above chance level for 20 enrolled individuals and 5 impostors.

Table 2. Varying temporal resolution. Performance of the DeepEyedentificationLive network on the (downsampled) JuDo1000 data set with original
precision (0.01°). EER with standard error for different sampling frequencies and different durations of the input used for testing.

Test recording 1000 Hz 500 Hz 250 Hz 125 Hz 62 Hz 31 Hz
Is 0.112 + 0.0043 0.13 + 0.0042 0.132 + 0.0041 0.1566 + 0.0043 0.231 + 0.0047 0.313 + 0.0060

5s 0.073 +0.0031 0.091 + 0.0033 0.082 + 0.0035 0.09 + 0.0034 0.138 + 0.0041 0.211 + 0.0055

10s 0.067 + 0.0029 0.085 + 0.0032 0.074 + 0.0035 0.076 + 0.0032 0.113 + 0.0039 0.178 + 0.0050

5.1.2. Varied Spatial Resolution

We vary the precision of the data by adding normally distributed noise with standard deviation s;5. 0.0, 0.028,
0.05, 0.1, 0.3 and 0.5°. Given a vendor-reported precision of the eye tracker (measured with an artificial eye) s, of
0.01°, Equation 4 yields a resulting precision of 0.01, 0.03, 0.05, 0.1, 0.3 and 0.5°, respectively:

precision’ = \/ precision? + s> @

noise*

The DeepEyedentificationLive network is evaluated according to the evaluation protocol detailed in Section 5.1
using data with the same precision for training and testing. Figure 5 and Table 3 show the results for one to ten
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Fig. 4. Varying levels of temporal resolution. Performance of the DeepEyedentificationLive network on the (downsampled) Judol000 data set.
False-Negative Identification-Error Rate (FNIR) over False-Positive Identification-Error Rate (FPIR). Colored bands show the standard error.

seconds of input data available at test time. The EER less than triples when the precision increases by one order of
magnitude and remains above chance level for 20 enrolled individuals at 0.5°.

Table 3. Varying spatial resolution. Performance of the DeepEyedentificationLive network on the JuDol000 data set with original sampling fre-
quency (1000 Hz) added spatial noise. EER with standard error for different levels of precision in degrees of visual angle and different durations of
the input used for testing in seconds.

Test recording 0.01° 0.03° 0.05° 0.1° 0.3° 0.5°
Is 0.112 + 0.0043 0.15 + 0.005 0.12 + 0.0051 0.287 + 0.0075 0.433 + 0.004 0.481 + 0.0036

5s 0.073 = 0.003 0.094 + 0.0039 0.121 = 0.004 0.186 + 0.0075 0.365 + 0.0074 0.46 + 0.0076

10s 0.067 + 0.0029 0.083 + 0.0037 0.101 + 0.0038 0.153 + 0.0072 0.327 + 0.009 0.446 + 0.0102
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Fig. 5. Varying levels of spatial resolution. Performance of the DeepEyedentificationLive network on the Judol000 data set with added spatial
noise. Colored bands show the standard error.

5.1.3. Reduced Temporal and Varied Spatial Resolution

We downsample the JuDol00 data to 250 Hz and add varying levels of spatial noise to the data as for the ex-
periments described in Section 5.1.2. We evaluate the performance of the DeepEyedentificationLive network on the
resulting data sets according to the protocol described in Section 5.1 for varied spatial resolution of the data. Figure 6
and Table 4 show the results for one to ten seconds of test data. We observe that the impact of degraded temporal and
spatial resolution are not cumulative; for a precision of 0.5°, the EER at 31 Hz is even lower than at 1,000 Hz.

5.2. Varied Eye Tracking Hardware

We compare the performance of the DeepEyedentificationLive network on the JuDo1000 data with its performance
on the three CEM data sets, which were recorded using different eye tracking hardware (see Section 4). As reference
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Table 4. Reduced temporal and varying spatial resolution. Performance of the DeepEyedentificationLive network on the JuDol000 data set down-
sampled to 250 Hz with added spatial noise. EER with standard error for different levels of precision in degrees of visual angle and different
durations of the input used for testing in seconds.

Test recording 0.01° 0.03° 0.05° 0.1° 0.3° 0.5°
ls 0.132 +0.0041 0.156 + 0.0039 0.192 + 0.0054 0.271 = 0.0074 0.411 +0.0051 0.451 +0.0042

5s 0.082 + 0.003 0.0952 + 0.0032 0.116 + 0.0044 0.175 + 0.006 0.331 + 0.0083 0.399 + 0.0083

10s 0.074 + 0.0035 0.083 + 0.0031 0.098 + 0.0043 0.146 + 0.0055 0.292 + 0.0094 0.369 + 0.0106

FNIR
FNIR
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-~ random guessing
0.4 { — Precision: 0.01°
Precision: 0.03"
—— Precision: 0.05
0.2 4 — Precision: 0.1°
—— Precision: 0.3"
—— Precision: 0.5
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FPIR FPIR FPIR

(a) 1 s of test recording (b) 5 s of test recording (c) 10 s of test recording

Fig. 6. Reduced temporal and varying spatial resolution. Performance of the DeepEyedentificationLive network on the Judol000 data set down-
sampled to 250 Hz with added spatial noise. False-Negative Identification-Error Rate (FNIR) over False-Positive Identification-Error Rate (FPIR).
Colored bands show the standard error.

methods, we re-implement a binocular version of the statistical approaches by Holland and Komogortsev [7] and Rigas
et al. [26]. We use the same evaluation protocol as Holland and Komogortsev [10]: For each stimulus type separately,
we perform 20 iterations of random resampling in each of which we use half of the participants for training and the
other half for testing. At application time, we iterate over all trials in the test set, using this trial as actual test instance
and all remaining data from the test set for enrollment. Instances for which the similarity between the test trial and
enrollment data of the correct identity subject exceeds both the threshold and the similarity between the test trial and
all enrolment data from any other subject count as correct identification.

The methods of Holland and Komogortsev and Rigas require the input data to be pre-processed into saccades and
fixations. For the data sets collected at 300 Hz or higher, we use a velocity-based saccade detection algorithm [5, 6, 4]
with a minimal fixation duration of 20 ms and a minimal (micro-)saccade duration of 6 ms; whereas for the CEM-III
data set collected at 75 Hz, we use a dispersion-threshold algorithm for fixation detection [27]. Following Holmqvist
et al., we set the dispersion threshold to 2° and the duration threshold to 80 ms [11]. Holland and Komogortsev use a
velocity-based algorithm for all three data sets with the minimal fixation duration set to 100 ms [10].

Table 5 shows the identification accuracy of the different methods for each of the CEM data sets. The diverging
results of our own evaluation and the one reported by Holland and Komogortsev [10] might be due to differences in
the preprocessing algorithms and the threshold parameters (see above). The main difference is that we label micro-
saccades as saccades, whereas Holland and Komogortsev treat them as part of a fixation. Besides the preprocessing
and possible differences in the implementational details, the fusion metrics used to combine the different fixational
and saccadic features differs between our implementation and the one used by Holland and Komogortsev for the
evaluation of their model [7] on the CEM data sets [10]: Whereas the latter train a linear model to weight the different
features, we apply the simple mean metrics as used by Rigas et al. [26] in their main evaluation of their model and the
method of Holland and Komogortsev [7].

Second, we evaluate DeepEyedentifcationLive network on the CEM-III data (75 Hz). Since the CEM-III data is
monocular, we duplicate the data from the right eye as input for the left-eye channels. Note that it is not possible to
apply this evaluation setting on the CEM-I and CEM-II data sets because of their limited number of subjects.

Figure 7 shows the false-negative identification rate over the false-positive identification rate for one to ten seconds
of eye tracking recording available at test time. The EER is 0.289, 0.249 and 0.24 for one, five and ten seconds of test
recording, respectively.
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Table 5. Identification accuracies + standard error (in %) on the CEM data sets with different stimulus types. The first row presents the average
duration of one subject’s recorded data. Whereas the third and fourth rows present our re-implementation of Rigas et al. (2016) and Holland and
Komogortsev (2013), the bottom row shows the numbers reported by Holland and Komogortsev [10, Table 4].

Experiment / Stimulus Combination
Method CEM-1 CEM-II CEM-III
300 Hz, N=22 1 kHz, N=32 75 Hz, N=173

SIM COM COG TEX TEX SIM COM | RAN TEX
Avg. recording/subj. in s 465 386 180 148 192 177 264 154 91
DeepEyedentificationLive 63+2 | 673 | 562 | 752 80 +2 34+1 | 37+1 | 43+1 | 351
Rigas et al., 2016 [26] (ours) | 67 +15 | 378 | 55+12 | 419 78 £ 17 8§+2 8+2 | 51 6+
H & K, 2013 [7] (ours) 68+15 | 31+7 | 48+ 11 | 337 71 + 16 8+2 | 7+2 | 5=x1 5+1
H &K, 2013 [7] 53 22 19 31 38 7 5 5 4
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Fig. 7. Performance of the DeepEyedentificationLive network on the CEM-III data set (75 Hz) for 1, 5 and 10 seconds of eye tracking recording
available at test time. Colored bands show the standard error.

6. Conclusion

We observe that the performance of oculomotoric biometric identification based on deep learning depends on the
temporal and spatial resolution at which the eye-gaze is tracked. The performance degrades remarkably gently with
decreasing sampling rate and decreasing precision: For 5 seconds of test data, the EER increases from 0.073 at 1,000
Hz to 0.082 at 250 Hz and 0.09 at 125 Hz. Even at only 31 Hz, the EER of 0.211 has less than tripled. The EER
decreases from 0.073 for 0.01° to 0.121 for 0.05°, and still remains above chance for 0.5°.

Moreover, we can conclude that decreasing both, the temporal and spatial resolution, does not have additive dete-
riorating effects—on data with lower sampling frequency, the model even appears to be more robust against spatial
noise. For example, at 250 Hz, the network still reaches an EER smaller than 0.1 at a spatial precision of 0.03°.

The experiments on the CEM data sets show that deep learning-based oculomotoric identification outperforms
statistical approaches independently of the specific hardware used and for various kinds of visual stimuli. The ex-
periments on the CEM data sets furthermore show that the DeepEyedentificationLive network benefits from larger
amounts of training data. The comparatively good results on the CEM-III data set, which has a large number of partic-
ipants but very few data per participant, indicates that the number of training users is critical for the network to learn
an informative feature embedding.

We conclude that deep-learning-based oculomotoric biometric identification is most accurate when high-resolution
data is available, but even on low-resolution data, it still reaches accuracy levels far beyond chance. This opens the
possibility to integrate oculomotoric biometrics into face recognition or iris scanning systems with relatively low-
grade cameras, such as cameras of mobile devices.
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