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Abstract We study prediction problems in which the conditional distribution of
the output given the input varies as a function of task variables which, in our ap-
plications, represent space and time. In varying-coefficient models, the coefficients
of this conditional are allowed to change smoothly in space and time; the strength
of the correlations between neighboring points is determined by the data. This is
achieved by placing a Gaussian process (GP) prior on the coefficients. Bayesian
inference in varying-coefficient models is generally intractable. We show that with
an isotropic GP prior, inference in varying-coefficient models resolves to standard
inference for a GP that can be solved efficiently. MAP inference in this model
resolves to multitask learning using task and instance kernels. We clarify the rela-
tionship between varying-coefficient models and the hierarchical Bayesian multi-
task model and show that inference for hierarchical Bayesian multitask models can
be carried out efficiently using graph-Laplacian kernels. We explore the model em-
pirically for the problems of predicting rent and real-estate prices, and predicting
the ground motion during seismic events. We find that varying-coefficient models
with GP priors excel at predicting rents and real-estate prices. The ground-motion
model predicts seismic hazards in the State of California more accurately than the
previous state of the art.

1 Introduction

In standard settings of learning from independent and identically distributed (iid)

data, labels y of training and test instances x are drawn independently and are
governed by a fixed conditional distribution p(y|x). Problem settings that relax
this assumption are widely referred to as transfer learning. We study a transfer-
learning setting in which the conditional p(y|x) is assumed to vary as a function
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of additional observable variables t. The variables t can identify a specific domain
that an observation was drawn from (as in multitask learning), or can be continuous
attributes that describe, for instance, the time or location at which an observation
was made (sometimes called concept drift). We focus on applications in which t

represents a geographic location, or both a location and a point in time.
A natural model for this setting is to assume a conditional p(y|x; w) with pa-

rameters w that vary with t. Such models are known as varying-coefficient models

(e.g., Hastie and Tibshirani, 1993; Gelfand et al., 2003). In iid learning, it is com-
mon to assume an isotropic Gaussian prior p(w) over model parameters. When the
parameters vary as a function of a task variable t, it is natural to instead assume a
Gaussian-process (GP) prior over functions that map values of t to values of w. A
Gaussian process implements a prior p(ω) over functions ω : T → Rm that couple
parameters w ∈ Rm for different values of t ∈ T and make it possible to generalize
over different domains, time, or space. While this model allows to extend Bayesian
inference naturally to a variety of transfer-learning problems, inference in these
varying-coefficient models for large problems is often impractical: It involves Kro-
necker products that result in matrices of size nm × nm, with n the number of
instances and m the number of attributes of x (Gelfand et al., 2003; Wheeler and
Calder, 2006).

Alternatively, varying-coefficient models can be derived in a regularized risk-
minimization framework. Such models infer point estimates of parameters w for
different observed values of t under some model that expresses how w changes
smoothly with t. At test time, point estimates of w are required for all t observed
at the test data points. This is again computationally challenging because typically
a separate optimization problem needs to be solved for each test instance. Most
prominent are estimation techniques based on kernel-local smoothing (Fan and
Zhang, 2008; Wu and Chiang, 2000; Fan and Huang, 2005).

Logistic and ridge regression, among other discriminative models for iid data,
rely on an isotropic Gaussian prior p(w). By this assumption, p(w) is a product
of Gaussians; taking the logarithm results in the standard `2 regularization term
w>w. However, since discriminative models do not involve the likelihood p(x|y) of
the input variables, an isotropy assumption on w does not amount to the assump-
tion that the dimensions of x are independent. In analogy, we explore Bayesian
varying-coefficient models in conjunction with isotropic GP priors. Our main theo-
retical result is that Bayesian inference in varying-coefficient models with isotropic
GP priors is equal to Bayesian inference in a standard Gaussian process with a spe-
cific product kernel. The main practical implication of this result is that inference
for varying-coefficient models becomes practical by using standard GP tools.

Our theoretical result also leads to insights regarding existing transfer learning
methods: First, we identify the exact modeling assumptions under which Bayesian
inference amounts to multitask learning using a Gaussian process with task ker-
nels and instance kernels (Bonilla et al., 2007). Secondly, we show that hierar-
chical Bayesian multitask models (e.g., Gelman et al., 1995; Finkel and Manning,
2009) can be represented as Gaussian process priors; inference then resolves to
inference in standard Gaussian processes with multitask kernels based on graph
Laplacians (Evgeniou et al., 2005; Álvarez et al., 2011).

Predicting real-estate prices is an economically relevant problem that has pre-
viously been addressed using varying-coefficient models (Gelfand et al., 2003). Due
to both the limited scalability of known inference methods for varying-coefficient
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models and limited availability of real-estate transaction data, previous studies
have been carried out on small-scale data collections. Substantial amounts of real-
estate transactions have been disclosed in the course of recent open data initia-
tives. We compile a data set of real-estate transaction from the State of New York
and rent prices from the States of New York and California and explore varying-
coeffient models on this data set.

In probabilistic seismic-hazard analysis, a ground-motion model estimates the
expected future distribution of a ground-motion parameter of interest at a specific
site, depending on the event’s origin and site-related parameters such as magnitude
and distance. A typical ground-motion parameter is the peak ground acceleration

that a site experiences during a seismic event. Accurate ground-motion models
are important to establish building codes and determine insurance risks. Tradi-
tional ground-motion models are ergodic; that is, the conditional distribution of
the ground-motion parameter of interest at a given site is identical to the con-
ditional distribution at any other site, given the same magnitude, distance, and
site conditions (Anderson and Brune, 1999). These ergodic models compete with
specialized regional models—e.g., for Greece (Danciu and Tselentis, 2007), Italy
(Bindi et al., 2011), the Eastern Alps (Bragato and Slejko, 2005), and Turkey
(Akkar and Cagnan, 2010). These regional models suffer from smaller numbers of
data points.

In order to weaken the assumption of ergodicity in ground-motion models,
Gianniotis et al. (2014) and Stafford (2014) estimate ground-motion models from
a larger data set and constrain the coefficients to be similar across each region.
Regional adjustments can be broken down into smaller geographical units (Al-Atik
et al., 2010; Lin et al., 2011). This approach, however, relies on the availability of
sufficiently many observations in each geographical compartment.

Our theoretical findings allow us to derive a ground-motion model in which
the coefficients of the model can vary smoothly with geographical location and for
which inference is computationally tractable. The model is developed and eval-
uated on a subset of the NGA West 2 dataset (Ancheta et al., 2014), based on
Californian data used by Abrahamson et al. (2014). In California, regional dif-
ferences between Northern California and Southern California have been found
previously (Atkinson and Morrison, 2009; Chiou et al., 2010), though the recent
NGA West 2 models treat California as a whole.

The rest of this paper is structured as follows. Section 2 describes the problem
setting and the varying-coefficient model. Section 3 studies Bayesian inference
and presents our main results. Section 4 presents experiments on prediction of
real estate prices and seismic-hazard analysis; Section 5 discusses related work
and concludes.

2 Problem Setting and Model

In multi-task learning, one or several of the available observable variables are sin-
gled out and treated as task variables t—for instance, the identity of a speaker in
speech recognition or the location in a geospatial prediction problem. This mod-
eling decision reflects the assumption that p(y|x, t,w) is similar across the values
of t. If the underlying application satisfies this assumption, it allows for better
predictions; for instance, for values of t that are poorly covered by the training
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data. This section describes a stochastic process that models applications which
are characterized by a conditional distribution p(y|x,ω(t)) whose parameterization
ω(t) varies smoothly as a function of t.

A fixed set of instances x1, . . . ,xn with xi ∈ X ⊆ Rm is observable, along with
values t1, . . . , tn ∈ T of a task variable. The stochastic process starts by drawing
a function ω : T → Rm according to a prior p(ω). The function ω associates any
task variable t ∈ T with a corresponding parameter vector ω(t) ∈ Rm that defines
the conditional distribution p(y|x,ω(t)) for task t ∈ T . The domain T of the
task variable depends on the application at hand. In the case of multitask learning,
T = {1, . . . , k} is a set of task identifiers. In hierarchical Bayesian multitask models,
a tree G = (T ,A) over the tasks T = {1, . . . , k} reflects how tasks are related;
we represent this tree by its adjacency matrix A ∈ Rk×k. We focus on geospatial
transfer-learning problems in which the conditional distribution of y given x varies
smoothly in the task variables t that represent spatial coordinates, or both space
and time. In this case, T ⊂ Rd is a continuous-valued space.

We model p(ω) using a zero-mean Gaussian process

ω ∼ GP(0,κ) (1)

that generates vector-valued functions ω : T → Rm. The process is specified by
a matrix-valued kernel function κ : T × T → Rm×m that reflects closeness in T .
Here, κ(t, t′) ∈ Rm×m is the matrix of covariances between dimensions of the
vectors ω(t) and ω(t′).

In discriminative machine-learning models, one usually assumes that the di-
mensions of model-parameter vector w are generated independently of one an-
other. For instance, one often assumes an isotropic Gaussian prior p(w) =∏m
j=1N [0, σ2](wj); the negative log-posterior then resolves to an `2-regularized

loss function. In analogy, we assume that the dimensions of ω are generated by
independent Gaussian processes; that is, ωj ∼ GP(0, kj), where kj(t, t

′) is the co-
variance between coefficients ωj(t) and ωj(t

′). A special case of this is an isotropic
GP; here, kernel functions kj(t, t

′) are identical for all dimensions j. Therefore, for
all t, t′ ∈ T , covariance matrix κ(t, t′) is a diagonal matrix with diagonal elements
kj(t, t

′), where the kj : T × T → R are scalar-valued, positive semidefinite ker-
nel functions. Note that we do not make any assumptions about p(x|y,ω(t)), and
the independence of the dimensions of ω does not imply that the dimensions of
the input vector x are independent. Also note that isotropy of p(ω(t)) is different
from the assumption of an isotropic kernel, meaning a kernel that is uniform in all
directions of the input space.

The process evaluates function ω for all ti to create parameter vectors w1 =
ω(t1), . . . ,wn = ω(tn). The process concludes by generating labels yi from an
observation model,

yi ∼ p(y|xi,wi); (2)

for instance, a standard linear model with Gaussian noise for regression or a logistic
function of the inner product of wi and xi for classification.

The prediction problem is to infer the distribution of the label y? for a new
observation x? with task variable t?. For notational convenience, we aggregate the
training instances into matrix X ∈ Rn×m, task variables into matrix T ∈ Rn×d, the
parameter vectors associated with training observations into matrix W ∈ Rn×m
with row vectors wT

1 , . . . ,w
T
n, and the labels y1, . . . , yn into vector y ∈ Yn.
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In this model, the GP prior p(ω) over functions ω : T → Rm couples parameter
vectors ω(t) for different values t of the task variable. The hierarchical Bayesian
model of multitask learning assumes a coupling of parameters based on a hierar-
chical Bayesian prior (e.g., Gelman et al., 1995; Finkel and Manning, 2009). We
will now show that the varying-coefficient model with isotropic GP prior subsumes
hierarchical Bayesian multitask models by choice of an appropriate kernel function
κ of the Gaussian process that defines p(ω). Together with results on inference
presented in Section 3, this result shows how inference for hierarchical Bayesian
multitask models can be carried out using a Gaussian process. The following def-
inition formalizes the hierarchical Bayesian multitask model.

Definition 1 (Hierarchical Bayesian Multitask Model) Let G = (T ,A) denote
a tree structure over a set of tasks T = {1, . . . , k} given by an adjacency matrix
A, with 1 ∈ T the root node. Let σ ∈ Rk denote a vector with entries σ1, . . . , σk.
The following process generates the distribution p(y|X,T;G,σ) over labels y ∈ Yn
given instances X, task variables T, the task hierarchy G, and variances σ: The
process first samples parameter vectors w̄1, . . . , w̄k ∈ Rm according to

w̄1 ∼ N (w̄|0, σ21Im×m) (3)

w̄l ∼ N (w̄|w̄pa(l), σ
2
l Im×m) 2 ≤ l ≤ k (4)

where pa(l) ∈ T is a unique node with Apa(l),l = 1 for each l ∈ T . Then, the
process generates labels yi ∼ p(y|xi, w̄i), where p(y|xi, w̄i) is the same conditional
distribution over labels given an instance and a parameter vector as was chosen for
the varying-coefficient model in Equation 2. This process defines the hierarchical

Bayesian multitask model.

The following proposition shows that the varying-coefficient model presented in
Section 2 subsumes the hierarchical Bayesian multitask model.

Proposition 1 Let G = (T ,A) denote a tree structure over a set of T = {1, . . . , k}
given by an adjacency matrix A. Let σ ∈ Rk be a vector with entries σ1, . . . , σk. Let

kA,σ : T × T → R be given by kA,σ(t, t′) = Gt,t′ , with Gi,j the entry at row i and

column j of the matrix

G = (Ik×k −A)−1S
(
Ik×k −AT

)−1

,

and S ∈ Rk×k denotes the diagonal matrix with entries σ21 , . . . , σ
2
k. Let κ :

T × T → Rm×m be given by κ(t, t′) = kA,σ(t, t′)Im×m and let p(y|X,T;κ) =∫
p(y|W,X)p(W|T;κ)dW be the marginal distribution over labels given instances

and task variables defined by the varying-coefficient model. Then it holds that

p(y|X,T;κ) = p(y|X,T;G,σ).

Proposition 1 implies that Bayesian prediction in the varying-coefficient model
with the specified kernel function is identical to Bayesian inference in the hi-
erarchical Bayesian multitask model. The proof is included in the appendix. In
Proposition 1, entries Gt,t′ of G represent a task similarity derived from the tree
structure G. Instead of a tree structure over tasks, feature vectors describing indi-
vidual tasks may also be given (Bonilla et al., 2007; Yan and Zhang, 2009). In this
case, κ(t, t′) can be computed from the task features; the varying-coefficient model
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then subsumes existing approaches for multitask learning with task features (see
Section 3.4).

Note that Equation 3 of Daumé III (2009) is a special case of our model for
learning with two tasks and a task kernel κ that is κ(t, t) = 2Im×m for identical
tasks and κ(t, t′) = Im×m for differing tasks t 6= t′.

3 Inference

We now address the problem of inferring predictions y? for instances x? and
task variables t?. Section 3.1 presents exact Bayesian solutions for regression;
Section 3.2 discusses approximate inference for classification. Section 3.4 derives
existing multitask models as special cases.

3.1 Regression

This subsection studies linear regression models of the form p(y|x,w) =
N (y|xTw, τ2). Note that by substituting for the slightly heavier notation
p(y|x,w) = N (y|Φ(x)Tw, τ2), this treatment also covers finite-dimensional fea-
ture maps. The predictive distribution for test instance x? with task variable t? is
obtained by integrating over the possible parameter values w? of the conditional
distribution that has generated value y?:

p(y?|X,y,T,x?, t?) =

∫
p(y?|x?,w?)p(w?|X,y,T, t?)dw?, (5)

where the posterior over w? is obtained by integrating over the joint parameter
values W that have generated the labels y for instances X and task variables T:

p(w?|X,y,T, t?) =

∫
p(w?|W,T, t?)p(W|X,y,T)dW. (6)

Posterior distribution p(W|X,y,T) in Equation 6 depends on the likelihood
function—the linear model—and the GP prior p(ω). The extrapolated posterior
p(w?|W,T, t?) for test instance x? with task variable t? depends on the Gaussian
process. The following theorem states how the predictive distribution given by
Equation 5 can be computed.

Theorem 1 (Bayesian Predictive Distribution) Let Y = R and p(y|x,w) =
N (y|xTw, τ2). For all attributes j ∈ {1, . . . ,m}, let kj(t, t

′) a positive definite kernel

function and let the task-kernel function κ(t, t′) return a diagonal matrix with diagonal

elements kj(t, t
′). Let K ∈ Rn×n be a matrix with components kij = xT

i κ(ti, tj)xj
and k ∈ Rn be a vector with components ki = xT

i κ(ti, t?)x?. Then, the predictive

distribution for the varying-coefficient model defined in Section 2 is given by

p(y?|X,y,T,x?, t?) = p(y?|K,k,y,x?, t?) = N (y?|µ, σ2 + τ2) (7)

with µ = kT(K + τ2In×n)−1y,

σ2 = xT
?κ(t?, t?)x? − kT(K + τ2In×n)−1k.
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Before we prove Theorem 1, we highlight three observations about this result. First,
the distribution p(y?|X,y,T,x?, t?) has a surprisingly simple form. It is identical to
the predictive distribution of a standard Gaussian process that uses concatenated
vectors (x1, t1), . . . , (xn, tn) ∈ X × T as training instances, labels y1, . . . , yn, and
the kernel function k((xi, ti), (xj , tj)) = xT

i κ(ti, tj)xj . Covariance matrix κ(ti, tj)
is diagonal; when the GP prior is isotropic, then all diagonal elements are identical
and we refer to their value as k(ti, tj). We can see that in this case, the predictive
distribution of Equation 7 is identical to the predictive distribution of a standard
Gaussian process with concatenated vectors (xi, ti) and product kernel function
k((xi, ti), (xj , tj)) = xT

i xjk(ti, tj).

Secondly, when the GP is isotropic, then instances x1, . . . ,xn,x? ∈ X only en-
ter Equation 7 in the form of inner products. The model can therefore directly
be kernelized by defining the kernel matrix as Kij = kX (xi,xj)k(ti, tj) with ker-

nel function kX (xi,xj) = Φ(xi)
TΦ(xj) where Φ maps to a reproducing kernel

Hilbert space. When the feature space is finite, then ω maps the ti to a finite-
dimensional wi and Theorem 1 implies a Bayesian predictive distribution derived
from the generative process that Section 2 specifies. When the reproducing kernel
Hilbert space does not have a finite dimension, Section 2 does no longer specify
a corresponding proper stochastic process because p(w1, . . . ,wn|T) would become
infinite-dimensionally normally distributed. However, given the finite sample X

and T, a Mercer map (see, e.g., Schölkopf and Smola, 2002, Section 2.2.4) con-
stitutes a finite-dimensional space Rn for which Section 2 again characterizes a
corresponding stochastic process.

Thirdly and finally, Theorem 1 shows how Bayesian inference in varying-
coefficient models with isotropic priors can be implemented efficiently. For general
varying-coefficient models, the most expensive step of inference is to perform, for
each sample generated by Gibbs sampling, a Cholesky decomposition of a ma-
trix of size mn × mn (discussed above Equation 17 of Gelfand et al., 2003). A
sampled parameter vector ω̂(t1) . . . ω̂(tn) is of size nm. In each sampling step, a
Cholesky decomposition of the covariance matrix (which then has size nm× nm)
of parameter vectors has to be performed. This makes inference impractical for
large-scale problems. Theorem 1 shows that under the assumption of an isotropic
prior—or at least an independent prior distribution for each dimension—the la-
tent parameter vectors w1, . . . ,wn can be integrated out, which results in a GP
formulation in which the covariance structure over parameter vectors resolves to
an n× n product-kernel matrix.

Proof (Proof of Theorem 1) Let wir and w?r denote the r-th elements of vectors wi

and w?, and let xir and x?r denote the r-th elements of vectors xi and x?. Let z? =
(z1, . . . , zn, z?)

T ∈ Rn+1 with zi = xT
i wi and z? = xT

?w?. Because w1, . . . ,wn,w? are
evaluations of the function ω drawn from a Gaussian process (Equation 1), they are
jointly Gaussian distributed and thus z1, . . . , zn, z? are also jointly Gaussian (e.g.,

Murphy, 2012, Chapter 10.2.5). Because ω is drawn from a zero-mean process, it
holds that E[zi] = E[

∑m
r=1 xirwir] =

∑m
r=1 xirE[wir] = 0 as well as E[z?] = 0 and

therefore

p(z?|X,T,x?, t?) = N (z?|0,C)

where C ∈ R(n+1)×(n+1) denotes the covariance matrix.
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For the covariances E[zizj ] it holds that

E [zizj ] = E
[
xT
i wix

T
j wj

]
= E

[(
m∑
s=1

xiswis

)(
m∑
r=1

xjrwjr

)]

=
m∑
s=1

m∑
r=1

xisxjrE [wiswjr]

=
m∑
s=1

xisxjsE [wiswjs] (8)

= xT
i κ(ti, tj)xj . (9)

In Equations 8 and 9 we exploit the independence of the Gaussian process pri-
ors for all dimensions: the covariance E[wiswjr] is the element in row s and col-
umn r of the matrix κ(ti, tj) ∈ Rm×m obtained by evaluating the kernel function
κ : T × T → Rm×m at (ti, tj); by the independence assumption, κ(ti, tj) is a di-
agonal matrix and E[wiswjr] = 0 for s 6= r (see Section 2). We analogously derive

E[ziz?] = xT
i κ(ti, t?)x?, (10)

E[z?z?] = xT
?κ(t?, t?)x?. (11)

Equations 9, 10 and 11 define the covariance matrix C, yielding

p(z?|X,T,x?, t?) = N
(

z?|0,
(

K k

kT k?

))
where k? = xT

?κ(t?, t?)x?. For y? = (y1, . . . , yn, y?) it now follows that

p(y?|X,T,x?, t?) = N
(

y?|0,
(

K + τ2In×n k

kT k? + τ2

))
. (12)

The claim now follows by applying standard Gaussian identities to compute the
conditional distribution p(y?|X,y,T,x?, t?) from Equation 12.

3.2 Classification

The result given by Theorem 1 can be extended to classification settings with
Y = {0, 1} by using non-Gaussian likelihoods p(y|z) that generate labels y ∈ Y
given outputs z ∈ R of the linear model.

Corollary 1 (Bayesian predictive distribution for non-Gaussian likelihoods)

Let Y = {0, 1}. Let p(yi|xi,wi) be given by a generalized linear model, de-

fined by zi ∼ N (z|wT
i xi, τ

2) and yi ∼ p(y|zi). Let p(y?|x?,w?) be given by

z? ∼ N (z|wT
? x?, τ

2) and y? ∼ p(y|z?). Let furthermore z = (z1, . . . , zn)T ∈ Rn. For

all attributes j ∈ {1, . . . ,m}, let kj(t, t
′) a positive definite kernel function and let the

task-kernel function κ(t, t′) return a diagonal matrix with diagonal elements kj(t, t
′).
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Let K ∈ Rn×n be a matrix with components kij = xT
i κ(ti, tj)xj and k ∈ Rn a vec-

tor with components ki = xT
i κ(ti, t?)x?. Then, the predictive distribution for the GP

model defined in Section 2 is given by

p(y?|X,y,T,x?, t?) = p(y?|K,k,y,x?, t?)

∝
∫∫

p(y?|z?)N (z?|µz, σ2z)p(y|z)N (z|0,K + τ2In×n)dzdz? (13)

with

µz = kT(K + τ2In×n)−1z,

σ2z = xT
?κ(t?, t?)x? − kT(K + τ2In×n)−1k + τ2.

A straightforward calculation shows that Equation 13 is identical to the predic-
tive distribution of a standard Gaussian process that uses concatenated vectors
(x1, t1), . . . , (xn, tn) ∈ X × T as training instances, labels y1, . . . , yn, the kernel
k((xi, ti), (xj , tj)) = xT

i κ(ti, tj)xj , and likelihood function p(y|z). For isotropic GP

priors, the kernel function is the product kernel k((xi, ti), (xj , tj)) = xT
i xjk(ti, tj).

For non-Gaussian likelihoods, exact inference in Gaussian processes is generally
intractable, but approximate inference methods based on, e.g., Laplace approxi-
mation, variational inference or expectation propagation are available. The proof
is included in the appendix.

3.3 Algorithm

We are now ready to summarize the inference procedure in Algorithm 1. The
isoVCM algorithm summarizes two cases. In the primal case, instances x are repre-
sented by explicit features. In this case, task-kernel function κ(t, t′) maps a pair of
tasks to a diagonal covariance matrix whose diagonal elements kj(t, t

′) may differ
over the features. This allows us to express background knowledge about differing
variances of features. In the dual case, a kernel function kX (x,x′) is provided. In
this case, an explicit feature representation could be constructed for any finite data
set using a Mercer map. However, one then has no background knowledge about
the variance of these artificially constructed features and the covariance matrices
κ(t, t′) are isotropic with diagonal elements k(t, t′). Algorithm 1 combines input
matrix X and task variables T into an overall kernel matrix K, and infers the
distribution of target variable y? for test input x? by standard inference in a GP
with kernel matrix K.

To implement Algorithm 1, we use the Gaussian Processes for Machine Learn-

ing (GPML) toolbox (Rasmussen and Nickisch, 2010). We use a normal likelihood
function for regression. For classification experiments, we use the logistic like-
lihood function, and the Laplace approximation. To further speed up inference
calculations for large data sets, we use the FITC approximation (Snelson and
Ghahramani, 2005) as implemented in GPML with 1,000 randomly sampled in-
ducing points. FITC approximates the overall kernel matrix K by the covariances
between instances and a set of inducing points, and the covariances between the in-
ducing points. This reduces the costs of handling the kernel matrix from quadratic
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in the number of instances, to linear in the number of instances and quadratic in
the (constant) number of inducing points.

Hyper-parameters of isoVCM are the observation noise parameter and the ker-
nel parameters; these are always tuned on the respective training set using gradient
ascent in the marginal likelihood (again implemented through GPML).

Algorithm 1 Geospatial Transfer with isoVCM

Input: training instances X ∈ Rn×m, task variables T ∈ Rn×d, target variables y ∈ Rn; task
kernel function κ(·, ·); optionally (“dual case”) input kernel function kX (·, ·); test instance x?,
t?.

1: primal case: let Kij = x>i κ(ti, tj)xj and ki = x>i κ(ti, t?)x?.
2: dual case: let Kij = kX (xi,xj)k(ti, tj) and ki = kX (xi,x?)k(ti, t?).
3: tune all kernel parameters and the observation noise hyper-parameter using marginal like-

lihood on the training data.
4: regression: infer p(y?|K,y,k) with a standard GP toolbox using the FITC approximation.
5: classification: infer p(y?|K,y,k) with a standard GP toolbox using the FITC and Laplace

approximations.

Return p(y?|K,y,k)

3.4 Product Kernels in Transfer Learning

Sections 3.1 and 3.2 have shown that inference in the varying-coefficient model
with isotropic GP priors is equivalent to inference in standard Gaussian processes
with products of task kernels and instance kernels. Similar product kernels are
used in several existing transfer learning models. Our results identify the generative
assumptions that underlie these models by showing that the product kernels which
they employ can be derived from the assumption of a varying-coefficient model
with isotropic GP prior and an appropriate kernel function.

Bonilla et al. (2007) study a setting in which there is a discrete set of k tasks,
which are described by task-specific attribute vectors t1, . . . , tk. They study a
Gaussian process model based on concatenated feature vectors (x, t) and a prod-
uct kernel k((x, t), (x′, t′)) = kX (x,x′)kT (t, t′), where kX (x,x′) reflects instance
similarity and kT (t, t′) reflects task similarity. Theorem 1 and Corollary 1 identify
the generative assumptions underlying this model: a varying-coefficient model with
isotropic Gaussian process prior and kernel kT generates task-specific parameter
vectors in a reproducing Hilbert space of the instance kernel kX ; a linear model in
that Hilbert space generates the observed labels.

Evgeniou et al. (2005) and Álvarez et al. (2011) study multitask-learning prob-
lems in which task similarities are given in terms of a task graph. Their method
uses the product of an instance kernel and the graph-Laplacian kernel of the task
graph. We will now show that, when the task graph is a tree, that kernel emerges
from Proposition 1. This signifies that, when the task graph is a tree, the graph
regularization method of Evgeniou et al. (2005) is the dual formulation of hierarchi-
cal Bayesian multitask learning, and therefore Bayesian inference for hierarchical
Bayesian models can be carried out efficiently using a standard Gaussian process
with a graph-Laplacian kernel.
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Definition 2 (Graph-Laplacian Multitask Kernel) Let G = (T ,M) denote a
weighted undirected graph structure over tasks T = {1, . . . , k} given by a sym-
metric adjacency matrix M ∈ Rk×k, where Mi,j is the positive weight of the edge
between tasks i and j or Mi,j = 0 if no such edge exists. Let D denote the weighted
degree matrix of the graph, and L = D + R −M the graph Laplacian, where a
diagonal matrix R that acts as a regularizer has been added to the degree ma-
trix (Álvarez et al., 2011). The kernel function kM,R : (X × T ) × (X × T ) → R
given by

kM,R((x, t), (x′, t′)) = L†t,t′x
Tx′,

where L† is the pseudoinverse of L, will be referred to as the graph-Laplacian

multitask kernel.

Proposition 2 states that the graph-Laplacian multitask kernel emerges as ker-
nel function of the dual formulation of hierarchical Bayesian multitask learning
(Definition 1).

Proposition 2 Let G = (T ,A) denote a directed tree structure given by an adjacency

matrix A. Let σ ∈ Rk be a vector with entries σ1, . . . , σk. Let B ∈ Rk×k denote the

diagonal matrix with entries 0, σ−2
2 , . . . , σ−2

k , let R ∈ Rk×k denote the diagonal matrix

with entries σ−2
1 , 0, . . . , 0, let M = BA + (BA)T, and let kA,σ(t, t′) be defined as in

Proposition 1. Then

kM,R((x, t), (x′, t′)) = kA,σ(t, t′)xTx′.

Note that in Proposition 2, BA is an adjacency matrix in which an edge from
node i to node j is weighted by the respective precision σ−2

j of the conditional

distribution (Equation 4); adding the transpose yields a symmetric matrix M of
task relationship weights. The precision σ−2

1 of the root node prior is subsumed in
the regularizer R. The proof is included in the appendix.

4 Empirical Study

The main application areas of varying-coefficient models are prediction problems
with underlying spatial or temporal dynamics (Gelfand et al., 2003; Fan and
Zhang, 2008; Zhu et al., 2014; Estes et al., 2014). In this section, we will explore
housing-price prediction and seismic-hazard analysis empirically.

4.1 Housing Prices

A typical instance of this class of problems is housing-price prediction. Theo-
rem 1 and Corollary 1 show how Bayesian inference for varying-coefficient models
can be carried out efficiently for regression and classification problems. We will
therefore study varying-coefficient models and reference methods for larger-scale
real-estate-price and monthly-rent prediction problems. These applications do not
only represent the class of geospatial prediction problems, but are economically
relevant problems in their own right.

Propositions 1 and 2 explain how hierarchical Bayesian multitask-learning
models can be derived as varying-coefficient models with a hierarchy of tasks.
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They reveal previously unknown relationships between known models which have
been studied extensively, but do not lead to new learning techniques. These theo-
retical findings do not raise any questions that require empirical investigation.

4.1.1 Models under Investigation

We study isoVCM, as shown in Algorithm 1 (dual case). As kernel function
k(ti, tj) we always employ a Matérn kernel of degree ν = 1/2, that is, k(ti, tj) =
θt exp(−‖ti− tj‖/ρt). As kernel function kX (xi,xj), we study both a linear kernel

kX (xi,xj) = θxxT
i xj and a Matérn kernel kX (xi,xj) = θx exp(−‖xi − xj‖/ρx) of

degree ν = 1/2. Here, θt, θx, ρt, and ρx are hyperparameters of the kernel func-
tions that are tuned according to marginal likelihood. The two resulting versions
of our model are denoted by isoVCM lin and isoVCMmat, respectively.

We compare Algorithm 1 to the varying-coefficient model with nonisotropic
GP prior by Gelfand et al. (2003), in which the covariances are inferred from data
(denoted Gelfand). We also compare against the kernel-local smoothing varying-
coefficient model of Fan and Zhang (2008) that infers point estimates of model
parameters. We study this model using a linear feature map for instances x ∈ X
(Fan & Zhanglin) and a nonlinear feature map constructed from the same Matérn
kernel as used for isoVCMmat (Fan & Zhangmat). We add an `2 regularizer to the
models of Fan and Zhang (2008), because this improves their prediction accuracy.
Hyper-parameters of the model of Fan and Zhang (2008) are the regularization
parameter and a bandwidth parameter in the smoothing kernel employed by their
model. As the model only infers point estimates, hyper-parameters cannot be tuned
by marginal likelihood; instead, optimal values of these parameters are inferred by
cross-validation grid search on the training data.

We finally compare against iid models that assume that p(y|x) is constant in
t, and models that treat the variables in t as additional features by appending
them to the feature vector x. Specifically, we study standard Gaussian processes
on the original features x, with a linear kernel k(xi,xj) = θxT

i xj and a Matérn

kernel k(xi,xj) = θ exp(−‖xi − xj‖/ρ) of degree ν = 1/2, denoted as GPlin
x and

GPmat
x . We also study standard Gaussian processes on a concatenated feature rep-

resentation (x, t), again using a linear kernel k((xi, ti), (xj , tj)) = θ(xi, ti)
T(xj , tj)

and a Matérn kernel k((xi, ti), (xj , tj)) = θ exp(−‖(xi, ti) − (xj , tj)‖/ρ) of degree

ν = 1/2. These baselines are denoted as GPlin
x,t and GPmat

x,t . The standard Gaussian
process baselines are also implemented using GPML and use the same likelihood
functions and inference methods (including FITC) as isoVCM . Hyper-parameters
of the baselines (observation noise parameter and kernel parameters θ, ρ) are also
tuned using gradient ascent in the marginal likelihood on the training data.

4.1.2 Experimental Setting

We acquire records of real-estate sales in New York City (City of New York, 2013).
The data set and our preprocessing are detailed in the appendix. For regression,
the sales price serves as target variable y; for classification, y is a binary indi-
cator that distinguishes between transactions with a price above the median of
450,000 dollars from transactions below it. After preprocessing, the data set con-
tains 231,708 sales records with 94 attributes such as the the floor space, plot area,
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Fig. 1 Execution time over training set size n.

property class (e.g., family home, condominium, office, or store), and the date of
construction. We transform addresses into geographical latitude and longitude. We
encode the sales date and geographical latitude and longitude of the property as
task variable t ∈ R3. This reflects the assumption that the relationship between
property features and sales price vary smoothly in geographical location and time.
We divide the records, which span dates from January 2003 to December 2009,
into 25 consecutive blocks. Models are trained on a set of n instances sampled
randomly from a window of five blocks of historical data and evaluated on the
subsequent block; results are averaged over all blocks.

For rent prediction, we acquire records on the monthly rent for apartments
and houses in the states of California and New York (US Census Bureau, 2013).
Again, data set and preprocessing are detailed in the appendix. For regression, the
target variable y is the monthly rent; for classification, y is a binary indicator that
distinguishes contracts with a monthly rent above the median from those with a
rent below. The preprocessed data sets contain 36,785 records (state of California)
and 17,944 records (state of New York) with 24 input variables. Geographical
latitude and longitude constitute the task variable t ∈ R2. Models are evaluated
using 20-fold cross validation; in each iteration, a random subset of n training
instances is sampled randomly from the training part of the data.

4.1.3 Execution Time

We compare the execution times of isoVCM lin, Gelfand, and Fan & Zhanglin. Fig-
ure 1 shows the execution time for training and prediction on one block of test
instances in the sales-price prediction task over the training sample size n.

For Gelfand, the most expensive step during inference is computation of the
inverse of a Cholesky decomposition of an nm × nm matrix, which needs to be
performed within each Gibbs sampling iteration. Figure 1 shows the execution
time of 5000 iterations of this step (3,000 burn-in and 2,000 sampling iterations,
according to Gelfand et al., 2003) which is a lower bound on the overall execution
time. Bayesian inference in isoVCM lin is between 6 and 7 orders of magnitude
faster than in the Gelfand model. isoVCM lin uses the FITC approximation; but
since we use 1,000 inducing points and the sample size n stays below that in this
experiment, FITC does not accelerate the inference. We conclude that Gelfand
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is impractical for this application and exclude this method from the remaining
experiments.

For Fan & Zhanglin, separate point estimates of model parameters have to
be inferred for each test instance, which involves solving a separate optimiza-
tion problem. For regression, efficient closed-form solutions for parameter esti-
mates are available. For classification, more expensive numerical optimization is
required (Fan and Zhang, 2008); this results in a higher execution time

4.1.4 Prediction Accuracy

In all subsequent experiments, each method is given 30 CPU core days of execution
time; experiments are run sequentially for increasing number n of training instances
until the cumulative execution time reaches this limit.

Figure 2 shows the mean absolute error for real-estate sales-price predictions
(left) and the mean zero-one loss for classifying sales transactions (right) as a
function of training set size n. For regression, Fan & Zhanglin and Fan & Zhangmat

partially completed the experiments; for classification, both methods did not com-
plete the experiment for the smallest value of n. All other methods completed the
experiments within the time limit. For regression, we observe that isoVCM lin is
substantially more accurate than GPlin

x , GPlin
x,t, and Fan & Zhanglin; isoVCMmat is

more accurate than GPmat
x and GPmat

x,t with p < 0.01 for all training set sizes accord-

ing to a paired t-test. Significance values of paired t-test comparing isoVCMmat and
Fan & Zhangmat fluctuate between p < 0.01 and p < 0.2 for different n, indicating
that isoVCMmat is likely more accurate than Fan & Zhangmat. For classification,
isoVCM lin substantially outperforms GPlin

x and GPlin
x,t; isoVCMmat outperforms

GPmat
x and GPmat

x,t (p < 0.01 for n > 125).

Figure 3 shows the mean absolute error for predicting the monthly rent (left)
and the mean zero-one loss for classifying rental contracts (right) for the states of
California (upper row) and New York (lower row) as a function of training set size
n. Fan & Zhanglin completed the regression experiments within the time limit and
partially completed the classification experiment; Fan & Zhangmat partially com-
pleted the regression experiment but did not complete the classification experiment
for the smallest value of n. We again observe that isoVCMmat yields the most accu-
rate predictions for both classification and regression problems; isoVCM lin always
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and New York (lower row).

yields more accurate predictions than Fan & Zhanglin and more accurate predic-
tions than GPlin

x,t for training set sizes larger than n = 1000.

4.2 Seismic-Hazard Analysis

In this section, we study the model’s ability to predict ground motion during
seismic events in the State of California. Here, we focus on evaluating the model
and exploring its versatility; an extended description of this study that focuses on
the seismological findings has been published by Landwehr et al. (2016).

In this application, instances xi = [M,RJB , VS30, FNM , FR] are seismic read-
ings that consist of the magnitude of an earthquake, the Joyner-Boore distance
(the distance to the vertical projection of the fault to the earth’s surface), the
time-averaged shear-wave velocity in the upper 30ms, and the style (normal or re-
verse) of faulting. This representation is commonly used in current ground-motion
models. Target values yi are the logarithmic peak ground acceleration—the highest
acceleration which the ground at the given location will experience—and logarith-
mic spectral accelerations at time periods of 0.02, 0.05, 0.1,, 0.2, 0.5, 1, and 4s,
in units of the earth gravity g. Spectral accelerations indicate resonance that may
occur in buildings.

For each ground-motion record, latitude and longitude for both the seismic
event, te, and the station, ts, are available. The event coordinates are given by
the horizontal projection of the geographical center of the rupture, estimated from
the NGA West 2 source flatfile (Ancheta et al., 2014).
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4.2.1 Models under Investigation

The structure of a ground-motion model is strongly guided by the underlying basic
physical processes. An ergodic ground-motion model has the form

y = w1 + w2M + w3M
2 + (w4 + w5M)

√
R2
JB + h2

+ w6RJB + w7 log Vs30 + w8FR + w9FNM (14)

Since h is a constant, Equation 14 can be phrased as a linear model y = w>x by

including the compound terms M2,
√
R2
JB + h2, and M

√
R2
JB + h2 in the input

vector x. Based on our understanding of the seismic process, we now allow some of
these coefficients to vary with te and ts by imposing a GP prior on them. For the
remaining parameters, which by the nature of the underlying physical processes
cannot depend on te or ts, the GP prior resolves to a standard Gaussian prior.
Hence, the ground-motion model with varying coefficients has the form

y = ω0(te) + ω1(ts) + ω2M + ω3M
2 + (ω4(te) + ω5M)

√
R2
JB + h2

+ ω6(te)RJB + ω7(ts) log Vs30 + ω8FR + ω9FNM (15)

This model is implemented using Algorithm 1 (primal case). Values of κ(t, t′) are
diagonal matrices with entries k1(t, t′), ..., kd(t, t

′). This means that each dimension
of ω(t)—corresponding to a particular coefficient—is generated by an independent
scalar-valued Gaussian process whose covariance is given by kj(t, t

′) ∈ R. The
kernel functions kj(t, t

′) are given by

kj(t, t
′) =


θj if j ∈ {2, 3, 5, 8, 9}
θj exp

(
−‖te−t

′
e‖

ρj

)
+ πj if j ∈ {0, 4, 6}

θj exp
(
−‖ts−t

′
s‖

ρj

)
+ πj if j ∈ {1, 7}

(16)

where θj , ρj and πj are kernel parameters. For coefficients that do not depend on
either event or station coordinates (j ∈ {2, 3, 5, 8, 9}), the kernel function kj(t, t

′) is
constant, which implies that any function ω drawn from the GP prior (Equation 1)
is constant in its j-th dimension. For coefficients that depend on event or station
coordinates (j ∈ {0, 4, 6} or j ∈ {1, 7}, respectively), kernel function kj(t, t

′) is a
Matérn kernel function of degree ν = 1/2 based on the Euclidian distance between
event or station coordinates, implying that the j-th dimension of ω varies with ts
or te. Parameter πj is a constant offset to the Matérn kernel.

We compare against a global GP model of the form stated in Equation 14 that
does not assume that any parameter varies with geographical latitude or longitude.
Both models are implemented in GPML, using FITC inference and tuning all
hyper-parameters according to marginal likelihood on the training data.

4.2.2 Experimental Setting

We use the NGA West 2 data set (Abrahamson et al., 2014). We use only the
data from California and Nevada, since data from other regions will be spatially
uncorrelated to this region. In total, there are 10,692 records from 221 earthquakes,
recorded at 1425 stations. We run-10-fold cross validation on this data set.
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global model, estimated by 10-fold cross validation.

4.2.3 Results

Figure 4 shows the root-mean-squared prediction error (RMSE), estimated by 10-
fold cross-validation. The VCM has a consistently lower RMSE than the global
model. This indicates that incorporating spatial differences improves ground-
motion prediction, even for a relatively small region such as California.

5 Discussion and Related Work

Gaussian processes are used widely in geospatial analysis (e.g., Matheron, 1963).
The covariogram is a basic tool in spatial models (e.g., Cressie, 2015); it models
the covariance between the values of a quantity at different points in space as a
function of the distance between these points. Gaussian-process convolutions (Hig-
don, 2002) let an arbitrary kernel function induce a covariance function in (time
and) space. Gaussian-process convolutions can be applied to discrete multi-task
problems: multiple dependent output variables can share the same underlying
spatial covariance (Ver Hoef and Barry, 1998). For instance, this allows to build a
model for the concentration levels of multiple pollutants that share a joint spatial
covariance.

In the linear model of coregionalization, multiple output dimensions (or discrete
tasks) are coupled by scalar weights; the resulting kernel is a sum where each
summand is the product of a covariance functions describing the dependence of
output dimensions and a covariance function of the input coordinates. Gaussian-
process regression networks (Wilson et al., 2011) model the dependency of multiple
output variables (tasks) by an adaptive mixture of Gaussian processes, which
resembles the way in which neural networks couple multiple output units via shared
hidden variables. In all these models, time and space constitute the input or are
part of the input; the multi-task nature of the learning problems results from
multiple dependent output variables.

By contrast, varying-coefficient models reflect applications in which the con-
ditional distribution p(y|x, t,w) of a single output variable y shares much of its
structure across different values of task variables t; in our applications, these task
variables are continuous and reflect space, time, or both. That is, a geospatial
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correlation structure couples the parameters w of the relationship between x and
y, and input variables x are treated differently from time and/or space variables
t. In varying-coefficient models with GP priors, p(y|x,ω(t)) varies smoothly in t.
While ridge and logistic regression assume that parameters w are generated by an
isotropic Gaussian prior, we explore a model in which function ω is governed by
an independent GP prior for each dimension. Ridge regression, logistic regression,
and isoVCM are discriminative models—they do not model the likelihood p(x|y,w)
of the input variables. For discriminative models, the isotropy assumption on the
model parameters does not translate into an isotropy assumption on the input
attributes.

Propositions 1 and 2 shows that a GP with graph-Laplacian multi-task kernel
(Evgeniou et al., 2005) emerges as dual formulation of hierarchical Bayesian mul-
titask learning. The main motivation of varying-coefficient models, however, lies
in application domains in which p(y|x,ω(t)) varies in time, location, or both.

In varying-coefficient models, each output yi is generated by its own param-
eter vector wi = ω(ti). Inference therefore involves nm parameters; and without
an independence or isotropy assumption, nm × nm many covariances have to be
inferred. This makes GP priors with full covariance (Gelfand et al., 2003) impracti-
cal for all but the smallest samples. Theorem 1 shows that, for isotropic GP priors,
Bayesian inference in varying-coefficient models can be carried out efficiently with
a standard GP using the product of a task kernel and an instance kernel. This
clarifies the exact modeling assumptions required to derive the multitask kernel
of Bonilla et al. (2007), and also highlights that hierarchical Bayesian inference
can be carried out efficiently by using a standard GP with graph-Laplacian kernel
(Evgeniou et al., 2005).

Product kernels play a role in other multitask learning models. In the linear
coregionalization model, several related functions are modeled as linear combi-
nations of GPs; the covariance function then resolves to a product of a kernel
function on instances and a matrix of mixing coefficients (Journel and Huijbregts,
1978; Álvarez et al., 2011). A similar model is studied byWang et al. (2007); here
mixing coefficients are given by latent variables. Zhang and Yeung (2010) study a
model for learning task relationships, and show that under a matrix-normal reg-
ularizer the solution of a multitask-regularized risk minimization problem can be
expressed using a product kernel. Theorem 1 can be seen as a generalization of
their result in which the regularizer is replaced by a prior over functions, and the
regularized risk minimization perspective by a fully Bayesian analysis.

Non-stationarity can also be modeled in GPs by assuming that either the resid-
ual variance (Wang and Neal, 2012), the scale of the covariance function (Tolva-
nen et al., 2014), or the amplitude of the output (Adams and Stegle, 2008) are
input-dependent. The varying-coefficient model differs from these models in that
the source of nonstationarity is observed in the task variable.

The main application areas of varying-coefficient models are prediction prob-
lems with underlying spatial or temporal dynamics, such as real-estate pric-
ing (Gelfand et al., 2003; Fan and Zhang, 2008) neuroimaging (Zhu et al., 2014),
and modeling of time-varying medical risks (Estes et al., 2014). In the domain
of real estate price prediction, the dependency between property attributes and
the market price changes continuously with geographical coordinates and time.
Empirically, we observe that Bayesian inference in isoVCM is several orders of
magnitude faster than inference in varying-coefficient models with nonisotropic
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GP priors. We observe that the linear and kernelized isoVCM models predict real
estate prices and housing rents more accurately over time and space than kernel-
local smoothing varying-coefficient models, and are also more accurate than linear
and kernelized models that append the task variables to the attribute vector or
ignore the task variables.

In seismic hazard analysis, the model allows parameters of ground-motion mod-
els to vary smoothly in the location of seismic event and station. Today, seismic
hazards in the State of California are predicted with an ergodic model whose
parameters are fixed over all of California. We have derived a ground-motion
model that imposes a GP prior on some model parameters. We observe that the
varying-coefficient model consistently reduces the RMSE for predictions of the
peak-ground acceleration and spectral accelerations substantially compared to the
ergodic model.
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Appendix

A Proof of Proposition 1

The marginal p(y|X,T;κ) is defined by the generative process of drawing ω ∼ GP(0,κ),
evaluating ω for the k different tasks to create parameter vectors ω(1), . . . ,ω(k), and then
drawing yi ∼ p(y|xi,ω(ti)) for i = 1, . . . , n. The marginal p(y|X,T;G,σ) is defined by the
generative process of generating parameter vectors w̄1, . . . , w̄k according to Equations 3 and 4
in Definition 1, and then drawing yi ∼ p(y|xi, w̄ti ) for i = 1, . . . , n. Here, the observa-
tion models p(y|xi, w̄ti ) and p(y|xi,ω(ti)) are identical. It therefore suffices to show that
p(ω(1), . . . ,ω(k)|κ) = p(w̄1, . . . , w̄k|G,σ).

The distribution p(w̄1, . . . , w̄k|G,σ) can be derived from standard results for Gaussian
graphical models. Let W̄ ∈ Rk×m denote the matrix with row vectors w̄T

1 , . . . , w̄
T
k , and let

vec(W̄T) ∈ Rkm denote the vector of random variables obtained by stacking the vectors
w̄1, . . . , w̄k on top of another. According to Equations 3 and 4, the distribution over the
random variables within vec(W̄T) is given by a Gaussian graphical model (e.g., Murphy (2012),
Chapter 10.2.5) with weight matrix A ⊗ Im×m ∈ Rkm×km and standard deviations σ ⊗ 1m,
where 1m ∈ Rm is the all-one vector. It follows that the distribution over vec(W̄T) ∈ Rkm is
given by

p(vec(W̄T)|G,σ) = N (vec(W̄T)|0, Σ̄)

with

Σ̄ = (Ikm×km −A⊗ Im×m)−1 diag(σ ⊗ 1m)2(Ikm×km −AT ⊗ Im×m)−1,

where diag(σ ⊗ 1m) ∈ Rkm×km denotes the diagonal matrix with entries σ ⊗ 1m.
The distribution p(ω(1), . . . ,ω(k)|κ) is given directly by the Gaussian process defining the

prior over vector-valued functions ω : T → Rm (see Equation 1). Let Ω ∈ Rk×m denote the
matrix with row vectors ω(1)T, . . . ,ω(k)T, then the Gaussian process prior implies

p(vec(ΩT)|κ) = N (vec(ΩT)|0,G⊗ Im×m)

(see, e.g., Álvarez et al. (2011), Section 3.3). A straightforward calculation now shows G ⊗
Im×m = Σ̄ and thereby proves the claim. ut
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B Proof of Corollary 1

Rewriting p(y?|X,y,T,x?, t?) in terms of a marginalization over the variables z and z? leads
to:

p(y?|X,y,T,x?, t?)

=

∫
p(y?|z?)p(z?|X,y,T,x?, t?)dz?

=

∫∫
p(y?|z?)p(z?|X, z,T,x?, t?)p(z|X,y,T)dzdz?

∝
∫∫

p(y?|z?)p(z?|X, z,T,x?, t?)p(y|z)p(z|X,T)dzdz?.

The proof now quickly follows from Theorem 1 and derivations in the proof of The-
orem 1: Equation 7 implies p(z?|X, z,T,x?, t?) = N (z?|µz, σ2

z), Equation 12 implies
p(z|X,T) = N (z|0,K + τ2In×n). ut

C Proof of Proposition 2

In the following we use the notation that is introduced in Proposition 1 and Definition 2. We
first observe that by the definition of the graph Laplacian multitask kernel it is sufficient to
show that G = L†. Since the matrix G is invertible, this is equivalent to G−1 = L.

We prove the claim by induction over the number of nodes |T | in the tree G. If |T | = 1,

then we have A = 0, D = 0, R = σ−2
1 and M = 0. This leads to

G−1 = (I−AT)σ−2
1 (I−A) = σ−1

1 = D + R−M = L

and proves the base case. Let us now assume that we have a tree Gk with |T | = k > 1 nodes.
Let t be a leaf of this tree and t′ shall be its unique parent. Suppose we have t′ = i and w.l.o.g.
we assume that t = k. Let furthermore Gk−1 be the tree which we get by removing the node
k and its adjacent edge from the tree Gk. Let Ak and Ak−1 denote the adjacency matrices
and Dk and Dk−1 the degree matrices of Gk and Gk−1. Let σk ∈ Rk be the vector with
entries σ1, . . . , σk, and σk−1 ∈ Rk−1 be the vector with entries σ1, . . . , σk−1. Let Rk ∈ Rk×k

denote the diagonal matrix with entries σ−2
1 , 0, . . . , 0, and Rk−1 ∈ Rk−1×k−1 the diagonal

matrix with entries σ−2
1 , 0, . . . , 0. Let Bk ∈ Rk×k denote the diagonal matrix with entries

0, σ−2
2 , . . . , σ−2

k and Bk−1 ∈ Rk−1×k−1 the diagonal matrix with entries 0, σ−2
2 , . . . , σ−2

k−1. Let

Mk = BkAk +(BkAk)T and Mk−1 = Bk−1Ak−1 +(Bk−1Ak−1)T. Let Lk = Dk +Rk−Mk

and Lk−1 = Dk−1 + Rk−1 −Mk−1.

In the following, we write diag(v) to denote a diagonal matrix with entries v. We then
have

Ak =

(
Ak−1 e

0 0

)
, where e = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0)T

is the ith (n− 1)-dimensional unit vector. Using this notation we can write

G−1
k = (I−AT

k) diag(σk)−2(I−Ak)

=

(
I−AT

k−1 0

−eT 1

)(
diag(σk−1)−2 0

0 σ−2
k

)
·
(

I−Ak−1 −e
0 1

)
=

(
Lk−1 + σ−2

k eeT −σ−2
k e

−σ−2
k eT σ−2

k

)
.
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In the last line we applied the induction hypothesis to the tree Gk−1. Using the definitions of
L, D, R and M, we can easily finish the proof:

G−1
k =

(
Dk−1 + Rk−1 −Mk−1 + σ−2

k eeT −σ−2
k e

−σ−2
k eT σ−2

k

)
=

(
Dk−1 + σ−2

k eeT 0

0 σ−2
k

)
+

(
Rk−1 0

0 0

)
−
(

Mk−1 σ−2
k e

σ−2
k eT 0

)
= Dk + Rk −Mk

= Lk.

This proves the claim. ut

D Data-Set Preparation

We acquire records of real-estate sales in New York City for sales dating from January 2003
to December 2009 in June 2013 through the NYC Open Data initiative (City of New York,
2013).

Input variables include the floor space, plot area, property class (such as family home,
residential condominium, office, or store), date of construction of the building, and the num-
ber of residential and commercial units in the building. After binarization of multi-valued
attributes there are 94 numeric attributes in the data set. For regression, the sales price serves
as target variable y; we also study a classification problem in which y is a binary indicator
that distinguishes between transactions with a price above the median of 450,000 dollars from
transactions below it. Date and address for every sale are available; we transform addresses
into geographical latitude and longitude using an inverse geocoding service based on Open-
StreetMap data. We encode the sales date and geographical latitude and longitude of the
property as task variable t ∈ R3. This reflects the assumption that the relationship between
features of the property and its sales price vary smoothly in the geographical location and
time.

A substantial number of records contain either errors or document transactions in which
the valuations do not reflect the actual market values: for instance, several Manhattan condo-
miniums sold for one dollar, and one-square-foot lots sold for massive prices. In order to filter
most transactions with erroneous or artificial valuations by means of a simple policy, we only
include records of sales within a price range of 100,000 to 1,000,000 dollars, a property area
range of 500 to 5,000 square feet, and a land area range of 500 to 10,000 square feet. Approx-
imately 80% of all records fall into these brackets. Additionally, we remove all records with
missing values. After preprocessing, the data set contains 231,708 sales records. We divide the
records, which span dates from January 2003 to December 2009, into 25 consecutive blocks.
Models are trained on a set of n instances sampled randomly from a window of five blocks of
historical data and evaluated on the subsequent block; results are averaged over all blocks.

For rent prediction, we acquire records on the monthly rent paid for privately rented apart-
ments and houses in the states of California and New York from the 2013 American Community
Survey’s ASC public use microdata sample files (US Census Bureau, 2013). Input variables
include the number of rooms, number of bedrooms, contract duration, the construction year
of the building, the type of building (mobile home, trailer, or boat; attached or detached fam-
ily house; apartment building), and variables that describe technical facilities (e.g., variables
related to internet access, type of plumbing, and type of heating). After binarization of multi-
valued attributes there are 24 numerical attributes in the data. We study a regression problem
in which the target variable y is the monthly rent, and a classification problem in which y is
a binary indicator that distinguishes contracts with a monthly rent above the median of 1,200
dollars from those with a rent below the median. For each record, the geographical location is
available in the form of a public use microdata area (PUMA) codecode (US Census Bureau,
2010).

We translate PUMA codes to geographical latitude and longitude by associating each
record with the longitude-latitude-centroid of the corresponding public use microdata area;
these geographical latitudes and longitudes constitute the task variable t ∈ R2. We remove
all records with missing values. The preprocessed data sets contain 36,785 records (state of
California) and 17,944 records (state of New York).



22 M. Bussas, C. Sawade, N. Kühn, T. Scheffer, N. Landwehr

References

N. A. Abrahamson, W. J. Silva, and R. Kamai. Summary of the ASK14 ground motion relation
for active crustal regions. Earthquake Spectra, 30(3):1025–1055, 2014.

R. P. Adams and O. Stegle. Gaussian process product models for nonparametric nonstation-
arity. In Proceedings of the 25th International Conference on Machine Learning, 2008.

S. Akkar and Z. Cagnan. A local ground-motion predictive model for turkey, and its comparison
with other regional and global ground-motion models. Bulletin of the Seismological Society
of America, 100(6):2978–2995, 2010.

L. Al-Atik, N. Abrahamson, J. J. Bommer, F. Scherbaum, F. Cotton, and N. Kuehn. The
variability of ground-motion prediction models and its components. Seismological Research
Letters, 81(5):794–801, 2010.
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