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Abstract. Diagnosing autism spectrum conditions takes several hours
by well-trained practitioners; therefore, standardized questionnaires are
widely used for first-level screening. Questionnaires as a diagnostic tool,
however, rely on self-reflection—which is typically impaired in individu-
als with autism spectrum condition. We develop an alternative screening
mechanism in which subjects engage in a simulated social interaction.
During this interaction, the subjects’ voice, eye gaze, and facial expres-
sion are tracked, and features are extracted that serve as input to a
predictive model. We find that a random-forest classifier on these fea-
tures can detect autism spectrum condition accurately and functionally
independently of diagnostic questionnaires. We also find that a regres-
sion model estimates the severity of the condition more accurately than
the reference screening method.

1 Introduction

Autism spectrum conditions (ASC) encompass a range of neurodevelopmental
conditions that affect how an individual perceives the world and interacts with
others. Around 1 in every 100 individuals has some form of autism [30] and
shows the characteristic impairments in social communication and interaction
as well as restricted interests and repetitive behaviors [4].

Autism is nowadays seen as a spectrum of conditions: its severity and impact
on the individual’s life vary [40]. Mild autism conditions with normal intelligence
levels have been described as high-functioning autism and Asperger syndrome.
Although symptoms of autism are already occurring early in life, individuals
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with high-functioning autism are often diagnosed later [8], due to compensation
strategies [19] or the subtlety of the autistic symptoms. A study with college stu-
dents points to a substantial proportion of individuals with normal intelligence
and autism that are undiagnosed [50]. Despite the higher social-functional level,
their lifetime rate of psychiatric consultations is high, reflecting a need of earlier
support and diagnosis [24].

Existing diagnostic tools for adults with autism examine the altered social
communication and interaction patterns in semi-structured activities with the
individual (Autism Diagnostic Observation Schedule, ADOS [26]) as well as in
diagnostic interviews with the parents (Autism Diagnostic Interview-Revised,
ADI-R [27]). These diagnostic processes are considered to establish a “gold-
standard” diagnosis and concentrate on diagnostic criteria defined by DSM-V [4]
and ICD-10 [41]. But they take several hours of time and have to be carried out by
well-trained practitioners. Thus, they cannot be administered to any significant
share of the population to screen for high-functioning autism.

Therefore, standardized questionnaires are often used for screening. One of
the most widely applied ones is the Autism-Spectrum Quotient (AQ) [9], a brief
self-administered questionnaire that measures traits associated with the autistic
spectrum in adults with normal intelligence. In a clinical study in which both an
AQ screening and a diagnosis by a medical practitioner have been observed for
adults who sought out a diagnostic clinic, the AQ screening has shown an AUC
of 0.78 [54]. One general concern about the AQ screening and other self-reports is
the universal bias towards giving socially desirable answers [37]. In autism diag-
nosis, another aspect may affect the results of self-reports even more: individuals
with autism spectrum condition often have an impaired introspection [18] and
problems in abstract reasoning [35]. Therefore, an easy but still precise screening
mechanism for autism that does not rely on self-reflection would be beneficial.

Deficits in social interaction that are part of the diagnostic criteria [4, 41]
include a lack of social-emotional reciprocity, lack of facial expressions, and ab-
normalities in eye contact and voice modulation. In this paper, we develop and
evaluate a screening approach for high-functioning adults of both genders that
automatically analyzes these criteria in a simulated social interaction. Section 2
presents related work to autism detection via machine learning. Section 3 de-
scribes the Simulated Interaction screening method. Section 4 presents empirical
results and Section 5 concludes.

2 Related Work

To date, there have been only a few studies using automatic behavioral analy-
sis to detect autism. Crippa et al. [12] monitor upper-limb movements during a
specifically designed manual task with an optoelectronic system, and use features
extracted from these kinematics data to detect children with autism spectrum
condition. They observe a maximum accuracy of 96.7% (with a maximum pre-
cision of 93.8% and a maximum recall of 100%) on a small sample of 15 children
with ASC and 15 neurotypical children. However, as the method is developed for
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this very specific task and is applicable only for optoelectronic systems, it pro-
vides no scalable screening mechanism. Furthermore, it focuses on a behavioral
feature that is not very tightly linked to ASC.

Hashemi et al. [20] use a computer vision approach to analyze activities that
are assessed by the Autism Observation Scale for Infants [10] in video recordings.
In a small sample of three infants with and three without indication of ASC risk
they find differences between the groups in head motion and gait. However, the
paper makes no attempt to classify the children based on the video analysis.

Liu et al. [25] observe eye movements during a face-recognition task; such
face scanning patterns have been reported to differ in autism [42]. Based on the
gaze patterns of all participants, they are able to discriminate between autistic
and neurotypical children with accuracy of 88.5%. Since this process involves a
high-acuity eye tracker, it does not suggest itself as a scalable screening process.
Another study points at the potential of eye gaze as a feature for detection of
autism: Gliga et al. [16] found that eye movements of nine-month-old infants
significantly predict a higher level of autism symptoms at two years of age.

A recent study [38] used machine-learning-based voice analysis to classify
word utterances of children with autism spectrum condition and children with
typical development. The study focuses on the classification at the level of word
utterances and not individuals. Therefore, the value of this approach for diag-
nostic purposes remains unclear.

Beyond autism, there has been remarkable progress in using machine learn-
ing technologies to infer underlying medical and psychological conditions from
behavior or appearance. Some promising results could be achieved in learning
to detect depression [39], predict suicidal ideation [23] or recognize schizophre-
nia [48]. Using audio and video recordings of the participants, some studies
focused on speech and vocal cues [36]. Other studies investigated the predictive
value of facial expressions [11], gaze direction or head pose [1].

3 Simulated Interaction

In this section, we develop the Simulated Interaction screening method. The aim
of this procedure is to detect autism via a simulated social interaction, using
only a screen, a webcam, and a microphone. This problem can be divided into
two subproblems: The first is to predict whether a practitioner will diagnose
the individual as on the autism spectrum condition (binary classification). The
second is an assessment of the degree of autism, conceptualized as the indi-
vidual’s value of the ADI-R, a diagnostic clinical interview with their parents
(regression). Specifically, we focus on the score for the reciprocal social interac-
tion subdomain of the ADI-R (social subscale), as we expect this score to be
most sensitive to high-functioning individuals and closely corresponding to the
naturalistic setting of a simulated social interaction.

The core symptoms of autism are deficits in social communication and inter-
actions [2]. These deficits manifest themselves in a number of nuances that guide
the design of the screening method. First, in a social interaction, individuals
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tend to involuntarily mimic facial expressions of their conversation partner [43].
Individuals with autism spectrum condition are less likely to mimic the facial
expressions of others spontaneously [33]. Similarly, a reduced intensity [46] or
at least qualitative differences [17] of facial expressions in natural conversations
have been observed for autism conditions.

Secondly, autism spectrum condition typically manifests itself in altered gaze
patterns in complex environments [58] or in emotion recognition paradigms [51].
Madipakkam et al. [28] observe that patients have a tendency to avoid eye con-
tact and instead let their gaze stray over a wider range of angles than neurotyp-
ical subjects. Thirdly, effects of autism spectrum condition on individual’s voice
have been reported; e.g., for prosody [45] or pitch [44]—not in all studies, but
especially in naturalistic settings [13].

Motivated by these findings, we design Simulated Interaction as a “dialog”
between the recording of an actress and the participant about positive and neg-
ative food experiences. The actress addresses the participant directly and asks
simple questions. The participant listens to the actress and answers her question
while the actress nods and appears to listen. The first two parts are emotionally
neutral. The third part is about the participant’s favorite food and addresses a
joyful topic. The final part about the participant’s least favorite food raises an
emotional response of disgust. The exact schedule is described in Table 1.

Table 1. Simulated Interaction schedule

Speaker Topic Time (s)

Actress introduces herself, asks “what is your name?” 4
Participant answers. 2
Actress describes her way to the institute, asks “how did you get to the

institute today?”
90

Participant answers. 20
Actress thanks the participant, switches the topic towards dining and

describes how she sets the table for dinner; asks “How do you
prepare a table for dinner?”

40

Participant answers. 25
Actress describes her favorite food, asks “what is your favorite food?” 25
Participant answers. 25
Actress describes her least favorite food, asks “which food do you dis-

like?”
25

Participant answers. 25
Actress thanks the participant and concludes the conversation. 8

3.1 Feature Extraction

Based on the described phenomenology of autism condition, we concentrate our
feature on gaze, voice, and facial expressions. Facial expressions can be bro-
ken down into facial action units according to the facial action coding system
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developed by [14]—each action unit is comprised of visually detectable muscle
movements in the face. A major advantage of this sign-based over message-
based approaches is its objectivity as it does not require any interpretation [15].
Moreover, it does not reduce the facial expression to a small set of prototypical
emotional expressions [47].

We employ the OpenFace library 1.0.0 [7] to extract the occurrence and in-
tensity of 18 facial action units as well as gaze angles for both eyes from each
frame. OpenFace is an open-source tool that is capable of facial-landmark detec-
tion, head-pose estimation, facial-action-unit recognition and eye-gaze estima-
tion. OpenFace detects and tracks facial landmarks with conditional local neural
fields [6], and aligns the face.

In order to detect emotions, OpenFace extracts HOG features, and reduces
the HOG features space by principal component analysis. To correct for person-
specific neutral expressions, OpenFace subtracts the median value of each of the
remaining features over the entire observation sequence. Finally, the activation
of each action unit is determined by a support-vector classifier and its intensity
by support-vector regression. OpenFace has been tested on the SEMAINE [34],
DISFA [31] and BP4D-Spontaneous [56] datasets and demonstrated state-of-
the-art results [5] as well as outperformed the baselines of the FERA 2015 chal-
lenge [49].

OpenFace performs appearance-based gaze estimation. On the MPIIGaze
data set [57], it achieves a mean absolute error of under 10 degrees which exceeds
the performance of other tools (e.g., EyeTab [53]). OpenFace detects eye-region
landmarks including the eyelids, iris, and pupil with conditional local neural
fields, trained on the SynthesEyes dataset [52]. Based on the location of the eye
and pupil, it estimates the center of the eyeball and infers the gaze vector from
this center through the pupil.

To extract features of the audio recording of the participant’s voice, we use
the librosa library [32]. For each frame, we extract prosodic (root-mean-square
energy) as well as spectral features (forty mel-frequency cepstral coefficients,
MMCC). Both are standard features in speech recognition [22] and have shown
to be altered under autism condition [29].

From these primary features, we extract secondary features that aggregate
the values for each feature. For action units’ intensity and gaze angle, we calculate
arithmetic mean, standard deviation, skewness, kurtosis, the maximum and the
time point of the maximum. For action unit’s occurrence and the voice features,
we calculate the mean values. All aggregated values are calculated for seven parts
of the conversation.

3.2 Machine Learning Methods

We use SVMs and random forests as base machine-learning methods. For the
SVM we use a radial basial function kernel and tune the regularization param-
eters in a nested cross-validation with grid search. For the random forest we
use an ensemble of 1,000 different trees on different subsets of data and input
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variables. We tune the maximal depth of the trees and the minimum number of
samples per leaf with a nested grid-search.

Additionally, we explore the use of two different convolutional neural net-
works all employing the 1-dimensional convolution operation. The convolution
uses a stride of one and zero padding. We tune the number of filters, size of con-
volution and pooling, dropout rate and number of units of the dense layer via a
nested grid search; Table 2 shows the search space for all hyperparameters. Both
CNNs use the rectified linear activation function for the hidden units, and have
one output unit with a logistic activation function. We use the cross-entropy loss
function and train the networks with the gradient descent algorithm Adam. To
avoid over-fitting, training is stopped when the validation-loss does not improve
for three epochs.

The StackedCNN contains four learned layers: Two 1D-convolutional layers,
one dense layer and one fully-connected output layer. Each convolutional layer
is followed by a max-pooling layer. One additional drop-out layer is followed by
a dense layer. The structure of the network can be seen in Figure 1. We tune
the hyperparameters via a full grid search, leading to a minimal number of 135
and a maximal number of 938,769 parameters.

1D-Convolution	
(number	of	filters,	kernel	size)	

…	

Maximum	Pooling	
(pool	size)	

Features	of	
Last	Frame	

Features	of	
First	Frame	

Dense	(size)	

Sigmoid	

1D-Convolution	
(number	of	filters,	kernel	size)	

Maximum	Pooling	
(pool	size)	

Dropout	(rate)	

Fig. 1. Architecture of the StackedCNN (tuned hyperparameters are printed in italics).

PooledCNN is a CNN with multiple inputs that incorporates some domain
knowledge into its structure. It contains seven learned convolutional layers—one
for each conversation part. The input is split into the conversation parts and
distributed accordingly into the seven convolutional layer. Thus, each convolu-
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tional layer receives only a part of the original input. Every convolutional layer
is followed by a pooling layer. The size of the pooling equals the number of units
of the previous convolutional layer leading to seven units as input for the fol-
lowing dense layer. The next and last layer is the fully-connected output layer.
The structure of the network can be seen in figure 2. The hyperparameters are
tuned via a random search with 20 iterations, leading to a minimal number of
618 parameters and a maximal number of 110,343 parameters.

…	 …	
Features	of	
Last	Frame	
of	Disgust	P.	

Features	of	
First	Frame	
of	Disgust	P.	

…	

…	

…	

…	

Sigmoid	

1D-Convolution	
(number	of	filters,	kernel	size)	

Intro	(1)	

Maximum	Pooling	

Features	of	
Last	Frame	
of	Intro	

Features	of	
First	Frame	
of	Intro	

1D-Convolution	
(number	of	filters,	kernel	size)	

Disgust	Participant	(7)	

Maximum	Pooling	

Dense	
	(size)	

Fig. 2. Architecture of the PooledCNN (tuned hyperparameters are printed in italics).

Table 2. Hyperparameter Space

Hyperparameter Stacked Pooled

number of filters {1, 2, 4, 8} {1, 2, 4, 8}
size of kernel {2, 4, 8, 16, 32} {2, 4, 8, 16, 32}
size of pooling {5, 25, 50} -
rate of dropout {0.25, 0.5} -
size of dense layer {4, 8, 16, 32, 64, 128, 256} {8, 16, 32, 64, 128}

4 Empirical Study

This section explores the effectiveness of the Simulated Interaction screening
method on a sample of patients that have been diagnosed with autism spectrum
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condition and a neurotypical control group. The AQ questionnaire will serve as
reference screening method.

4.1 Data Collection

We record the audio and webcam stream of 44 neurotypical participants and
37 participants with autism spectrum condition. The sample is balanced re-
garding gender. The neurotypical participants have been selected based on a
questionnaire that asks for a history of a wide range of neurological and psycho-
logical conditions; participants with any such history have been excluded from
the study. Each participant with autism spectrum condition been diagnosed by
a practitioner and scored according to ADOS and ADI-R. We measure autistic
traits of all participants via a German version of the AQ questionnaire [9].

We film the faces of the participants in experiment rooms with constant
lighting conditions and no disturbing background. The participants are recorded
with the internal microphone and a webcam with a rate of 30 frames per second
and a resolution of 640 x 480 pixels, leading to a total number of 11,340 frames.
These video and audio recordings of each participant during the conversation
are the raw input to detect participant’s autism. OpenFace provides a success
value (0/1) for the face tracking of each frame. Participants with a success rate
of less than 90% of the frames are excluded from the experiment.

4.2 Evaluation Protocol

To validate the results, we use a nested cross-validation strategy with an outer
leave-one-out cross-validation loop and an inner 3-fold cross-validation loop in
which we tune all hyperparameters. The hyperparameters of the neural networks
are listed in Table 1.

4.3 Prediction of the Clinical Diagnosis

We will first study the ability of Simulated Interaction to predict the clinical
diagnosis of an autism condition.

Comparison of base machine-learning methods. We first compare the dif-
ferent machine learning methods under investigation. Figure 3 compares ROC
curves for the base learning methods using the full set of features. The random
forest and SVM achieve the best detection using all features. The random forest
achieves an area under the curve of 0.84 and the SVM an AUC of 0.81. The SVM
(p < 0.01 according to a sign test) and the random forest (p < 0.01 according to
a sign test) perform significantly better than the majority baseline. Their predic-
tions correlate strongly with the autism diagnosis of the participants: the class
probabilities predicted by the random forest reach a point-biserial correlation
with the diagnosis of r = 0.53 (p < 0.0001).
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Both neural network models perform worse than the random forest and SVM.
The CNN without knowledge about the interaction parts, performs close to
chance level with an AUC of 0.53 (stacked). The PooledCNN produces a better
result with an AUC of 0.64. However, with a set threshold of 0.5, none of the
CNNs achieves a higher accuracy than the naive baseline, which always predicts
the majority class. The class probabilities predicted by the PooledCNN correlate
positively with the autism diagnosis at trend-level (r = 0.21, p < 0.1).
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Pooled CNN: AUC = 0.64
Support Vector Machine: AUC = 0.81
Random Forest: AUC = 0.84
Stacked CNN: AUC = 0.53

Fig. 3. ROC Curves for the Different Classifiers

Comparison of feature subsets. We now explore the relative contributions
of the different types of features; Figure 4 compares the ROC curves of various
feature subsets. As on the complete feature set the random forest performs best,
we concentrate on this classifier for the next steps.

We compare the performance of different groups of features: the occurrence
of action units, the intensity of action units, the gaze angles, all video features
and the vocal features. The best prediction of the autism diagnosis is achieved
with the combination of all features, as Figure 4 shows. Statistical testing re-
veals that a significantly better detection is possible with the vocal features, the
intensity of action units, all video features, or all features together than with the
baseline (p < 0.05 for all). There was no evidence that the performance differs
significantly between these three feature groups (p > 0.05 for all). The predic-
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Fig. 4. ROC Curves for the Different Features

tion based on gaze was significantly worse (p < 0.05 for all of them). Comparing
the facial features revealed that on a trend-level the prediction was significantly
worse for the occurrence than for the intensity (p < 0.05).

Comparison to AQ. We compare the Simulated Interaction screening method
to the AQ questionnaire. Using the AQ score as decision-function value we obtain
an AUC of 0.99 whereas Simulated Interaction using random forests and the full
feature set attains an AUC of 0.84. This difference is significant (p < 0.001)
according to a sign test.

In previous studies using a clinical sample of patients, the AQ has shown an
AUC of 0.78 [54] which starkly contrasts our observation of 0.99. This difference
can be explained by the selection criteria for our neurotypical sample. Subjects
with any history of psychological, psychiatric, and neurological treatments have
been excluded from the neurotypical sample. This results in a much easier classi-
fication problem than can be expected in any clinical or broad screening setting.

Patients in a clinical environment usually seek out medical treatment because
of an impaired quality of life. The AQ questionnaire has a known propensity to
higher scores for individuals with obsessive-compulsive disorder, social-anxiety
[21] or schizophrenia [55]. Furthermore, individuals with suspected ASD typi-
cally enter the diagnostic process at a specialized center as in the study men-
tioned above [54]. Despite signs of autism and self-diagnosis, only around 73%
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[3, 54] receive an official diagnosis. In such a difficult setting, the AQ’s low AUC
of 0.78 and high false-positive rate of 64% [3] are unsatisfactory.

Thus, it is natural to ask whether a combination of the AQ questionnaire and
the Simulated Interaction screening method is more accurate than just the AQ.
This would be the case if the error cases of AQ and Simulated Interaction were
independent of one another. Unfortunately, our limited sample does not allow
us to answer this question. The AQ questionnaire misclassifies only one single
patient in our sample, which makes it impossible to draw any conclusions about
the independence of error cases or the accuracy of a combined detection model.
However, since the AQ and Simulated Interaction are based on fundamentally
different functional principles, our results motivate a follow-up study in with a
larger clinical sample from a clinical distribution of patients.

4.4 Estimation of the Autism Degree

We will now evaluate Simulated Interactions’ ability to estimate the severity
of the autism condition, measured by the score of the clinical interview of the
parents, ADI-R (social subscale). We use a random forest regression model; in
order to further reduce the dimensionality of the feature space, we aggregate
each of the secondary features over the seven parts of the interview into a single
value. Figure 5 plots the gold-standard ADI-R social subscale score over the
score of the regression model. For the individuals with ASC, it is possible to
estimate the ADI-R social subscale with a random forest better than a mean
baseline, according to a paired t-test (p < 0.05).

Comparison to AQ. The root mean squared error of the tree is 5.40, while the
baseline produces an error of 6.42. The ADI-R social subscale values predicted
by the random forest correlate positively with the true values at trend-level
(p < 0.1). By contrast, the values of the AQ and the ADI-R social subscale are
not significantly positively correlated (trend towards a negative correlation: r =
−0.42, p < 0.1) and a prediction with a random forest regressor on the autism
questionnaire score lead to a mean absolute error of 8.02, which is significantly
worse than the prediction with the Simulated Interaction (p < 0.05).

5 Conclusion

Diagnosing autism spectrum condition and quantifying the severity of the con-
dition require time and well-trained practitioners. Quantifying the severity accu-
rately also requires access to the individual’s parents. In this paper, we presented
and evaluated the Simulated Interaction screening method for autism spectrum
condition of high-functioning individuals. We find that it is possible to predict
the binary diagnosis of autism spectrum condition with high accuracy from the
facial expressions, vocal features, and gaze patterns of the individuals.

The intensity of the facial expressions and the vocal features turned out to be
more informative than the occurrence of facial expressions and the gaze patterns.
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The webcam might not be capable to track the gaze behavior sensitively enough
to detect individual differences. The results concerning the facial expressions fit
the literature about qualitative differences in facial expressions.

For the prediction of the binary diagnosis, the Simulated Interaction screen-
ing method did not outperform the AQ questionnaire. However, Simulated In-
teraction is functionally independent of a self-assessment because it is based on
fundamentally different features. While our limited sample does not allow us to
draw any conclusions on the accuracy of a combination of AQ and Simulated In-
teraction, our findings motivate a follow-up study on a larger and more difficult
clinical sample consisting of subjects with a suspected ASD.

Regarding the estimation of the severity, we can conclude that Simulated
Interaction estimates the ADI-R values significantly better than a mean baseline
and the AQ questionnaire.

The Simulated Interaction screening method has two principal advantages
over questionnaires: first, it is not as easily biased by social desirability tenden-
cies as a questionnaire. Secondly, it is independent of introspection—which is
typically impaired in subjects with autism spectrum condition. Simulated Inter-
action could potentially be used as an online self-test, possibly in combination
with a questionnaire.
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