
Noname manuscript No.
(will be inserted by the editor)

Joint Detection of Malicious Domains and Infected Clients

Paul Prasse1 · René Knaebel1 · Lukáš

Machlica2 · Tomáš Pevný2,3 · Tobias

Scheffer1

the date of receipt and acceptance should be inserted later

Abstract Detection of malware-infected computers and detection of malicious web
domains based on their encrypted HTTPS traffic are challenging problems, because
only addresses, timestamps, and data volumes are observable. The detection
problems are coupled, because infected clients tend to interact with malicious
domains. Traffic data can be collected at a large scale, and antivirus tools can be
used to identify infected clients in retrospect. Domains, by contrast, have to be
labeled individually after forensic analysis. We explore transfer learning based on
sluice networks; this allows the detection models to bootstrap each other. In a
large-scale experimental study, we find that the model outperforms known reference
models and detects previously unknown malware, previously unknown malware
families, and previously unknown malicious domains.

1 Introduction

Malware violates users’ privacy, harvests passwords and personal information, can
encrypt users’ files for ransom, is used to commit click-fraud, and to promote
political agendas by popularizing specific content in social media (Kogan, 2015).
Client-based antivirus tools use vendor-specific blends of signature-based analysis,
static analysis of portable-executable files, emulation (partial execution without
access to actual system resources prior to execution in the actual operating system)
and dynamic, behavior-based analysis to detect malware (Swinnen and Mesbahi,
2014). Network-traffic analysis complements antivirus software and is widely used in
corporate networks. Traffic analysis allows organizations to enforce acceptable-use
and security policies consistently throughout the network and minimize management
overhead. Traffic analysis makes it possible to encapsulate malware detection into
network devices or cloud services that can detect polymorphic malware (Karim et al.,

1University of Potsdam, Department of Computer Science, Potsdam, Germany, {prasse,
knaebel, scheffer}@cs.uni-potsdam.de · 2Cisco R&D, Prague, Czech Republic, {lumachli,
tpevny}@cisco.com · 3Czech Technical University in Prague, Department of Computer Science



2 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

2005) as well as yet-unknown malware based on, for instance, URL patterns (Bartos
and Sofka, 2015).

However, malware can easily prevent the analysis of its HTTP payload by using
the encrypted HTTPS protocol. The use of HTTPS by itself is not conspicuous
because Google, Facebook, LinkedIn, and many other popular sites encrypt their
network traffic by default and the global data volume of HTTPS has surpassed
that of HTTP (Finley, 2017). In order to subject HTTPS traffic to network-traffic
analysis, organizations today have to configure their network such that all web
traffic is routed via a web-security server. This server’s root certificate has to be
installed as a trusted certificate on all client computers, which allows the service to
act as a man-in-the-middle between client and host. It can decrypt, inspect, and
re-encrypt HTTPS requests. This approach scales poorly to large networks because
the cryptographic operations are computationally expensive, and it introduces a
potential vulnerability into the network.

Without breaking the encryption, an observer of HTTPS traffic can only see the
client and host IP addresses and ports, and the timestamps and data volumes of
packets. Network devices aggregate TCP/IP packets exchanged between a pair of IP
addresses and ports into a network flow for which address, timing, and data-volume
information are saved to a log file. Most of the time, an observer can also see the
unencrypted host domain name. The HTTP payload, including the HTTP header
fields and the URL, are encrypted.

Web hosts are involved in a wide range of illegitimate activities, and blacklisting
traffic to and from known malicious domains and IP addresses is an effective
mechanism against malware. Malicious domains can host back-ends for banking
trojans and financial scams, click-fraud servers, or distribution hubs for malicious
content. Identifying a domain as malicious requires a complex forensic analysis.
An analyst has to collect information about the server that hosts the domain,
software and employed technologies, and can research ownership of the domain
and co-hosted domains as well as observe the host’s behavior.

Since many types of malicious activities involve interaction with client-based
malware, the detection of malicious hosts and infected clients are coupled prob-
lems. In the context of neural networks, labeled data for related tasks are often
exploited by designing coupled networks that share part of the parameters. In
sluice networks (Ruder et al., 2017), the extent to which parameters are shared is
itself controlled by parameters, which allows auxiliary data to serve as a flexible
prior for the task at hand.

The rest of this paper is structured as follows. Section 2 reviews related work.
We describe our operating environment and our data in Section 3 and the problem
setting in Section 4. In Section 5, we derive a model for joint detection for mal-
ware and malicious domains and describe reference methods. Section 6 presents
experiments; Section 7 concludes.

2 Related Work

Prior work on the analysis of HTTP logs (Nguyen and Armitage, 2008) has addressed
the problems of identifying command-and-control servers (Nelms et al., 2013),
unsupervised detection of malware (Kohout and Pevny, 2015b; Bartos et al., 2016),
and supervised detection of malware using domain blacklists as labels (Franc et al.,



Joint Detection of Malicious Domains and Infected Clients 3

2015; Bartos and Sofka, 2015). HTTP log files contain the full URL string, from
which a wide array of informative features can be extracted (Bartos and Sofka,
2015).

A body of recent work has aimed at detecting Android malware by network-
traffic analysis. Arora et al. (2014) use the average packet size, average flow duration,
and a small set of other features to identify a small set of 48 malicious Android apps
with some accuracy. Lashkari et al. (2015) collect 1,500 benign and 400 malicious
Android apps, extract flow duration and volume feature, and apply several several
machine-learning algorithms from the Weka library. They observe high accuracy
values on the level of individual flows. Demontis et al. (2018) model different
types of attacks against such detection mechanisms and devise a feature-learning
paradigm that mitigates these attacks. Malik and Kaushal (2016) aggregate the
VirusTotal ranking of an app with a crowd-sourced domain-reputation service (Web
of Trust) and the app’s resource permission to arrive at a ranking.

Prior work on HTTPS logs has aimed at identifying the application layer proto-
col (Wright et al., 2006; Crotti et al., 2007; Dusi et al., 2009). In order to cluster web
servers that host similar applications, Kohout and Pevny (2015a) develop features
that are derived from a histogram of observable time intervals and data volumes
of connections. Using this feature representation, Lokoč et al. (2016) develop an
approximate k-NN classifier that identifies servers which are contacted by malware.
Hosts that are contacted by malware are by no means necessarily malicious. Mal-
ware uses URL forwarding and other techniques to route its traffic via legitimate
hosts, and may contact legitimate services just to dilute its network traffic. We
will nevertheless use the histogram features as a reference feature representation.

Graph-based classification methods (e.g., Anderson et al., 2011) have been
explored but cannot be applied in our operating environment. In our operating
environment, a Cloud Web Security server observes only the network traffic within
an organization. In order to perceive a significant portion of the network graph,
companies would have to exchange their network-traffic data which is impractical
for logistic and privacy reasons.

Prior work on neural networks for network-flow analysis (Pevny and Somol, 2016)
has worked with labels for client computers (infected and not infected)—which leads
to a multi-instance learning problem. By contrast, our operating environment allows
us to observe the association between flows and executable files. Malware detection
from HTTPS traffic has been studied using a combination of word2vec embeddings
of domain names and long short term memory networks (LSTMs) (Prasse et al.,
2017). We will use this method as a reference in our experiments. Recent findings
suggest that the greater robustness of convolutional neural networks (CNNs)
outweights the ability of LSTMs to account for long-term dependencies (Gehring
et al., 2017). This motivates us to explore convolutional architectures. Neural
networks have also been applied to static malware analysis (Pascanu et al., 2015).

In the context of deep learning, multi-task learning is most often implemented
via hard or soft parameter sharing of hidden layers. In hard parameter sharing,
models for all task can share the convolutional layers (Long and Wang, 2015) or
even all hidden layers (Caruana, 1993), which can dramatically increase the sample
size used to optimize most of the parameters (Baxter, 1997). Soft parameter sharing,
by contrast, can be realized as a direct application of hierarchical Bayesian modeling
to neural network: each parameter is regularized towards its mean value across all
tasks (Duong et al., 2015; Yang and Hospedales, 2016). Cross-stitch (Misra et al.,



4 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

2016) and sluice networks (Ruder et al., 2017) allow the extent of task coupling
for separate parts of the network to be controlled by parameters. Sluice networks
have a slightly more general form than cross-stitch networks because they have
additional parameters that allow a task-specific weighting of network layers.

Alternative transfer-learning approaches for neural networks enforce an inter-
mediate representation that is invariant across tasks (Ganin et al., 2016). Outside
of deep learning, the group lasso regularizer enforces subspace sharing, and wide
range of approaches to multi-task learning have been studied, based on hierarchical
Bayesian models (e.g., Finkel and Manning, 2009), learning task-invariant features
(e.g., Argyriou et al., 2007), task-similarity kernels (Evgeniou et al., 2005), and
learning instance-specific weights (e.g., Bickel et al., 2008).

3 Operating Environment

This section describes our application environment. In order to protect all computers
of an organization, a Cloud Web Security (CWS) service provides an interface
between the organization’s private network and the internet. Client computers
establish a VPN connection to the CWS service, and all external HTTP and
HTTPS connections from any client within the organization is then routed via
this service. The service can block HTTP and HTTPS requests based on the host
domain and on the organization’s acceptable-use policy. The CWS service blocks all
traffic to and from all malicious domains on a curated blacklist. It issues warnings
when it has detected malware on a client. Since security analysts have to process
the malware warnings, the proportion of false alarms among all issued warnings
has to be small.

On the application layer, HTTPS uses the HTTP protocol, but all messages
are encrypted via the Transport Layer Security (TLS) protocol or its predecessor,
the Secure Sockets Layer (SSL) protocol. The CWS service aggregates all TCP/IP
packets between a single client computer, client port, host IP address, and host
port that result from a single HTTP request or from the TLS/SSL tunnel of an
HTTPS request into a network flow. For each network flow, a line is written into
the log file that includes data volume, timestamp, client and host address, and
duration information. For unencrypted HTTP traffic, this line also contains the
full URL string. For HTTPS traffic, it includes the domain name—if that name
can be observed via one of the following mechanisms.

Clients that use the Server Name Indication protocol extension (SNI) publish
the unencrypted host-domain name when they establish the connection. SNI is
widely used because it is necessary to verify certificates of servers that host multiple
domains, as most web servers do. When the network uses a transparent DNS
proxy (Blum and Lueker, 2001), this server caches DNS request-response pairs and
can map IP addresses to previously resolved domain names. The resulting sequence
of log-file lines serves as input to the detection models for malware and malicious
domains.



Joint Detection of Malicious Domains and Infected Clients 5

3.1 Data Collection

For our experiments, we combine a large collection of HTTPS network flows (Prasse
et al., 2017) that have been labeled by whether they originate from a malicious
or legitimate application with a domain blacklist that is maintained by forensics
experts at Cisco.

Prasse et al. (2017) have collected the HTTPS network flows that pass CWS
servers in 340 corporate networks. The client computers in these networks run a
VPN client that monitors the process table and network interface, and keeps a record
of which executable file creates each network flow. In retrospect, the executable
files have been analyzed with a multitude of antivirus tools. The resulting data
set consists of network flows between known clients (identified by organization
and VPN account), domains (fully qualified domain names), data volumes and
timestamps, and a label that indicates whether the application that generated the
traffic is recognized as malware by antivirus tools. We stratify training and test data
in chronological order. The training data contains the complete HTTPS traffic of 171
small to large computer networks for a period of 5 days in July 2016. The test data

contains the complete HTTPS traffic of 169 different computer networks for a period
of 8 days in September 2016. Forensics experts at Cisco continuously investigate
suspicious host names, second-level domain names, and server IP addresses that
have been flagged by a wide range of mechanisms. This includes an analysis of the
hosted software and employed technologies, of registry records, URL and traffic
patterns, and any additional information that may be available for a particular
domain. We believe that domains are almost never erroneously rated as malicious,
but due to the expensive analytic process, the blacklist of malicious domains is
necessarily incomplete. All traffic from and to malicious serves can easily be blocked
by the CWS service. The network traffic does not contain any flows to domains
that had been on our blacklist at the time when the traffic data were collected.
The traffic data set contains network flows to and from 4,340 malicious host names,
second-level domains, and server IP addresses that have been added to the blacklist
after the data were collected.

3.2 Quantitative Analysis of the Data

Table 1 and Table 2 summarizes the number of benign and malicious network
flows, client computers, infected computers, applications with unique hashes, and
organizations.

Table 3 gives statistics about the most frequent malware families. It enumer-
ates the number of variations that occur, the number of infected clients, and, in
parentheses, the number of infected clients in the training data.

In total, just below 18,000 computers are malware-infected and communicate
with domains that had not been blacklisted at the time, which corresponds to
almost 0.6%.

In the traffic data, 4,340 domains occur that have been added to the blacklist
after the traffic data were recorded. Table 4 details the types of malicious host
names, second-level domains, and server IP addresses that occur in all data and in
the training data.



6 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

Table 1 Key statistics of the HTTPS network-traffic data sets.

data set flows malicious benign users infected organizations
training 44,348,879 350,220 43,150,605 133,437 8,944 171
test 149,005,149 955,037 142,592,850 177,738 8,971 169

Table 2 Number of applications in HTTPS network-traffic data sets.

data set applications malicious
training 20,169 1,168
test 27,264 1,237

Table 3 Malware families and malware types.

malware family variations clients
dealply 506 1,385 (516)
softcnapp 119 797 (250)
crossrider 98 274 (102)
elex 86 779 (316)
opencandy 57 164 (126)
conduit 56 314 (103)
browsefox 52 78 (34)
speedingupmypc 29 224 (63)
kraddare 28 33 (26)
installcore 27 49 (19)
mobogenie 26 467 (184)
pullupdate 25 99 (25)
iobit downloader 24 38 (15)
asparnet 24 5,267 (5,128)

Table 4 Domain-label statistics

type total training
malware-distribution 2730 478
ad-injector 961 576
malicious-content-distribution 276 171
potentially unwanted application 97 75
click-fraud 65 50
spam-tracking 61 51
information-stealer 52 22
scareware 30 23
money-scam 22 9
banking-trojan 19 10
malicious-advertising 13 10
cryptocurrency-miner 9 0
ransomware 3 3
anonymization-software 2 1

4 Problem Setting

We will now establish the problem setting. Our goal is to flag client computers
that are hosting malware, and to flag malicious web domains. Client computers are
identified by a (local) IP address and a VPN user name; web domains are identified



Joint Detection of Malicious Domains and Infected Clients 7

by a fully qualified domain name or, when no domain name can be observed, an
IP address.

We have two types of classification instances. For each interval of 24 hours, we
count every client computer that establishes at least one network connection as
a separate classification instance of the malware-detection problem. A client that
is active on multiple days constitutes multiple classification instances; this allows
us to issue daily infection warnings for clients. Equivalently, for each interval of
24 hours, we model each observed fully qualified domain name as a classification
instance. This allows us to make daily blacklisting decisions, and to disregard traffic
after 24 hours in the deployed system.

Our training data are labeled at the granularity of a network flow between a
client and a host. This allows us to train classification models at the granularity
of network flows. Learning a network-flows classifier from labeled flows is an
intrinsically easier problem than learning a detection model from labels at the
granularity level of clients or domains. While a detection model that is trained from
labeled clients or domains has to figure out which flows pertain to the malicious
activity, the network-flow classification model is handed that information during
training.

Since a client is infected if it is running at least one malicious application
and a domain is malicious if it engages in at least one malicious activity, it is
natural to aggregate the classification results for network flows into detection
results for clients and domains by max-pooling the decision-function values over
all flows for that client or domain, respectively, throughout the period of 24 hours.
The flow classifiers are thereby applied as one-dimensional convolutions over time;
max-pooling the outcome yields detection models for infected clients and malicious
domains. Since an application generally generates multiple network flows, it may
be helpful to take the context into account when classifying each flow. Our input
representation therefore includes a window of the client’s flows that is centered
over the flow to be classified. The width of this window is a model parameter.
This window always contains the context of network flows for a client, both for
detection of malware and of malicious domains. While the CWS server can observe
the complete traffic of each client in the network, it will generally only observe a
small fraction of traffic to and from a domain outside the network.

We will measure precision-recall curves because they are most directly linked to
the merit of a detection method from an application point of view. Precision—the
fraction of alarms that are not false alarms—is directly linked to unnecessary
workload imposed on security analysts, while recall quantifies the detection rate.
However, since precision-recall curves are not invariant in the class ratio, we will
additionally use ROC curves to compare the performance of classifiers on data sets
with varying class ratios. Note that the relationship between false-positive rate and
precision depends on the class ratio. For instance, at a false-positive rate of 10%,
the expected number of false alarms equals 10% of the number of benign instances;
hence, false alarms would by far outnumber actual detections. By contrast, at a
precision of 90%, only 10% of all alarms would be false alarms.



8 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

Flow i-k, 
numeric 

Domain-name CNN

...

α1,d 

Flow i-k, 

domain

Flow i+k, 

domain

α1,c 

Domain-name CNN

...
Flow i-k, 

domain

Flow i+k, 

domain

Dense Dense

α2,d α2,c βc βd 

Client dense output Domain dense output

Client classification Domain classification

Flow i+k, 
numeric 

...
Flow i-k, 
numeric 

Flow i+k, 
numeric 

...

Fig. 1 Sluice Dense on Domain CNN

Character 1
(one-hot)

...

Character 40
(one-hot)

Embedding
[embedding size] MaxPooling

Dense
[number of 

units]

Convolution
[1D, kernel size, 

number of filters]

...

Fig. 2 Domain CNN architecture

5 Network-Flow Analysis

This section presents our architecture that jointly detects infected clients and
malicious domains, as well as reference models that we will compare against.

5.1 Sluice Network

Figure 1 shows the sluice network architecture for joint flow classification with soft
parameter sharing. The left-hand part of the network classifies flows by whether
they originate from infected clients, the right-hand part classifies flows by whether
they are between a client and a malicious domain. The input features are derived
from a window of 2k+ 1 flows for a given client that is centered around the flow to
be classified. The first stage of the network—the domain-name CNNs—receives
the domain names of the host domains within that window as input.

Figure 2 shows this domain-name CNN in more detail. It has a standard convo-
lutional architecture with convolutional, max-pooling, and dense layers. Domain



Joint Detection of Malicious Domains and Infected Clients 9

names are first represented as one-hot-encoded character sequences of the up to
40 last characters of a domain name. We selected the value of 40 because further
increasing this parameter does not change the experimental results. In the next
step, an embedding layer reduces this dimensionality; weights are shared for the
embedding of each character. This is followed by a one-dimensional convolutional
layer, a max-pooling layer, and a dense layer that constitutes the final encoding of
the domain name.

The following dense layers receive the window of 2k+1 domain-name embeddings.
Additionally, they receive a vector of numeric features for each of the 2k+1 flows in
the input window. The numeric attributes consist of the log-transformed duration,
log-transformed numbers of sent and received bytes, duration, and the time gap
from the preceding flow. These dense layers are followed by softmax output layers.

After each stage, the output from either side of the network is combined into a
weighted average controlled by coupling coefficients α. Values of α·,· = 0 correspond
to independent networks. In addition, the output layer is allowed to draw on all
intermediate layers. The output of each hidden layer is weighted by a coefficient
β and all weighted outputs are concatenated. Setting all the β· values associated
with the first hidden layer to zero and all values associated with the second hidden
layer to one correspond to the standard layered feed-forward architecture. We use
the ReLU activation function for hidden layers.

The model is trained by using backpropagation on labeled network flows. At
application time, detection results at the level of clients and domains are derived
by maximizing the output scores of the positive class “infected client” over all
network flows between the given client and any domain over an interval of 24 hours.
A client is flagged as soon at this maximum exceeds a threshold value. Likewise,
the output scores of the positive class “malicious domain” on the right-hand side
is maximized over all flows between any client and the domain to be classified for
24 hours.

5.2 Independent Models and Hard Sharing

Separating the left- and right-hand side of the sluice architecture constitutes the
first natural baseline. We will refer to these models as independent models. This
is equivalent to setting α·,· = 0, setting all the β· values associated with the first
hidden layer to zero and all values associated with the second hidden layer to one.
The next natural baseline is hard parameter sharing. Here, only the output layers
of the client- and domain-classification models have independent parameters while
the domain CNN and the following dense layer exist only once.

5.3 LSTM on Word2vec

This baseline model (Prasse et al., 2017) uses the word2vec continuous bag-of-
words model (Mikolov et al., 2013) to embed domain names, and processes the flow
sequence with an LSTM. The input to the network consists of character n-grams
that are one-hot coded as a binary vector in which each dimension represents an
n-gram. The input layer is fully connected to a hidden layer that implements the
embedding. The same weight matrix is applied to all input character n-grams.



10 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

The activation of the hidden units is the vector-space representation of the input
n-gram of characters. In order to infer the vector-space representation of an entire
domain-name, an “averaging layer” averages the hidden-unit activations of all its
character n-grams.

We use the weight matrix and configuration of Prasse et al. (2017) and refer to
this model as LSTM on word2vec. This model uses character 2-grams, resulting in
1,583 character 2-grams. Prasse et al. (2017) have found the LSTM on word2vec

model to outperform a random-forest model. We therefore consider LSTM on

word2vec to be our reference and do not include random forests in our experiments.

5.4 Metric Space Learning

Lokoč et al. (2016) extract a vector of soft histogram features for the flows between
any client and a given domain. They apply a k-NN classifier in order to identify
domains that are contacted by malware. We apply this approach to our problem of
detecting malicious domains. We use exact inference instead of the approximate
inference proposed by Lokoč et al. (2016). We prop this baseline up by additionally
providing a list of engineered domain features described by Franc et al. (2015) as
input to the classifier; we refer to this method as 4-NN soft histograms.

6 Experiments

This section reports on malware-detection and malicious-domain-detection accuracy.
We train all models on a single server with 40-core Intel(R) Xeon(R) CPU E5-
2640 processor and 128 GB of memory. We train all neural networks using the
Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015) libraries on a
GeForce GTX TITAN X GPU using the NVidia CUDA platform. We implement
the evaluation framework using the scikit-learn (Pedregosa et al., 2011) machine
learning package.

6.1 Parameter Optimization

We optimize the hyperparameters of all networks on the training data using the
hyperband algorithm (Li et al., 2016). For the domain CNN, we vary the embedding
size between 25 and 27, the kernel size between 2 and 24, the number of filters
between 2 and 29, and the number of dense units between 25 and 29. For the sluice

network, the independent models and hard parameter sharing, we vary the number
of dense units between 25 and 211, and the window size between 1 and 15 flows.
Table 5 and Table 6 shows the hyperparameter values after optimization.

6.2 Infected Clients: Performance

We train the models on the training data and evaluate them on test data that was
recorded after the training data. Figure 3 compares precision-recall and ROC



Joint Detection of Malicious Domains and Infected Clients 11

Table 5 Best hyperparameters found using hyperband for models with shared blocks.

Sluice Hard parameter sharing
hyperparameter value hyperparameter value

D
o
m

a
in

C
N

N

embedding size 128 embedding size 64
kernel size 16 kernel size 16
filters 512 filters 512
dense units 256 dense units 64

F
lo

w
c
la

ss
. dense units 512 dense units 512

window size 11 window size 7

Table 6 Best hyperparameters found using hyperband for independent models.

Independent client Independent domain
hyperparameter value hyperparameter value

D
o
m

a
in

C
N

N

embedding size 64 embedding size 64
kernel size 16 kernel size 16
filters 128 filters 128
dense units 32 dense units 32

F
lo

w
c
la

ss
. dense units 512 dense units 512

window size 9 window size 9

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Sluice
Hard parameter sharing
Independent
LSTM on word2vec

(a) Precision-recall curves

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Sluice
Hard parameter sharing
Independent
random guessing
LSTM on word2vec

(b) ROC curves (log-scale for FPR)

Fig. 3 Detection of infected clients.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Sluice
Hard parameter sharing
Independent
4-nn soft histograms

(a) Precision-recall curves

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Sluice
Hard parameter sharing
Independent
random guessing
4-nn soft histograms

(b) ROC curves (log-scale for FPR)

Fig. 4 Detection of malicious domains.

curves; curves are averaged over 10 random restarts with Glorot initialization,
colored bands visualize plus and minus one standard error.



12 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

all data
unkn. mal. family
dealply
sogou
softcnapp
kn. malware
unkn. malware
random guessing

(a) Infected clients: different malware families.

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

all data
kn. domains
unkn. domains
malware
PUA
random guessing

(b) Infected clients: types of malware.

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

all data
ad-injector
malware-distribution
malicious-content-distribution
PUA
click-fraud
information-stealer
random guessing

(c) Malicious domains: subgroups of domains.

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

all data
scareware
banking-trojan
malicious-advertising
spam-tracking
money-scam
cryptocurrency-miner
random guessing

(d) Malicious domains: subgroups of domains.

Fig. 5 Sluice network on subgroups of instances, ROC curves for infected clients (left figure)
and malicious domains (right figures).

For malware detection, the sluice network, the independent models and hard

parameter sharing differ only marginally in performance. All three detect 40%
of malware with a precision of 80%. Based on Welch’s t-test with significance
level α = 0.05, at false-positive rates of 10−4 and 10−3, the sluice network is still
significantly better than the independent model (p = 0.021 for 10−4 and p = 0.008
for 10−3), but the difference between sluice and hard parameter sharing is not
significant. LSTM over word2vec clearly performs substantially worse.

6.3 Malicious Domains: Performance

Figure 4 compares the model’s performance for detection of malicious domains.
Here, the precision-recall and ROC curves of the sluice network look favorable
compared to the baselines. Intuitively, since there are fewer malicious domains
in the training data than there are infected clients, it is plausible that malicious-
domain detection benefits more strongly from transfer learning. The 4-NN soft

histogram baseline performs substantially worse. The precision-recall curve becomes
noisy near a recall of zero because for a low recall, the precision estimate is based
on a small number of positives, and the decision function assumes a high value for
several true and false positives.

Based on Welch’s t-test with significance level α = 0.05, at a false-positive rate
of 10−4, the sluice network performs significantly better than both the independent



Joint Detection of Malicious Domains and Infected Clients 13

model (p = 0.028) and hard parameter sharing. At 10−3, the sluice network outper-
forms the independent model (p = 0.001); it detects 40% of all malicious domains
almost without false alarms. The difference between sluice and hard parameter

sharing is not significant.

6.4 Detailed Analysis

In this section, we study how the detection models perform on specific subgroups
of clients and domains. We train a single model on all training data. In order
to determine the performance for specific types of instances, we skip all other
positive instances in the evaluation data. Since the class ratios vary widely between
subgroups, we compare ROC curves. Figure 5(a) shows that the most popular
malware families can be detected more easily, which corresponds to their high
prevalence in the training data. Perhaps surprisingly, we see that the model detects
unknown variations of known malware families as well as unknown malware families—
that is, malware families for which no representative is present in the training
data—almost as accurately as known malware. Figure 5(b) shows that the model’s
performance is just slightly better for the highly prevalent potentially unwanted
applications (“PUA”) than it is for malware. We also see that malware which
does not contact any domain that occurs in the training data (labeled “unknown
domains”) is detected with comparable accuracy to malware that contacts known
domains.

Figures 5(c and d) show how the sluice network performs on specific types of
malicious domains. Here, we see that the detection performance uniformly depends
on the prevalence of the domain type in the training data. Only 10 backends for
banking trojans are included in the training data, and no single cryptocurrency-
mining backend. Malware-distribution servers are almost impossible for the model
to detect, despite being the second-most frequent type of malicious domains in the
training data. But a detailed analysis shows that the training data contains only
1,447 flows (out of more than 44 million) from malware-distribution servers; so at
the level of flows, this class is actually rare.

6.5 Additional Experiments

We carry out additional experiments but omit the detailed results for brevity. The
independent models differ from LSTM on word2vec in two aspects: the use of the
domain-name CNN instead of a word2vec embedding, and the choice of processing
windows of network flows in a convolutional way with max-pooling over all window
positions instead of an LSTM. In order to explore whether performance differences
are due to the different domain-name embedding or the different handling of the
time-series input as additionally experiment with the intermediate form of dense

on word2vec. We find that while this architecture performs significantly better than
LSTM on word2vec, it still performs much worse than independent models.

The 4-NN soft histogram model (Lokoč et al., 2016) originally does not use the
engineered domain features (Franc et al., 2015) that we provide it with. We find
that using the 4-NN model without the domain features (or using the domain
features without the histogram features) deteriorates the results. We also find



14 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

that combining the soft-histogram features and engineered domain features with
a random forest improves the result over the 4-NN classifier, but its performance
remains substantially below the performance of all neural networks. Finally, we find
that adding additional convolutional and max-pooling layers or replacing the dense
layer in the sluice network with convolutional and max-pooling layers deteriorates
its performance.

7 Conclusion

Detection of malware-infected clients and malicious domains allows organizations
to use a centralized security solution that establishes a uniform security level across
the organization with minimal administrative overhead. A specifically prepared
VPN client makes it possible to collect large amounts of HTTPS network traffic
and label network flows in retrospect by whether they originate from malware. This
makes it possible to employ relatively high-capacity prediction models. By contrast,
malicious domains have to be identified by means of an expensive forensic analysis.
We have developed a method that jointly detects infected clients and malicious
domains from encrypted network traffic without compromising the encryption.

We can draw a number of conclusions. All network architectures that we study
improve on the previous state of the art by a large margin. We find that transfer
learning using a sluice network improves malware-detection—for which we have a
large body of training data—slightly over learning independent networks. Transfer
learning allows us to leverage the large body of malware training data to improve
the detection of malicious domains. The sluice network detects 40% of all malware
with a precision of 80% using only encrypted HTTPS network traffic—at this
threshold level, 20% of all alarms are false alarms. In practice, each alarm triggers
the notification of a security analyst; if 80% of the notifications indicate an actual
security breach, an analyst will not get the impression that the notification system
can be ignored. The sluice network detects new variants of known malware families
and malware of families that have not yet been known at training time with nearly
the same accuracy. This finding is remarkable because signature-based antivirus
tools cannot detect such malware. The network also detects 40% of all malicious
domains with a precision of nearly 1. Given the high costs of a manual analysis of
domains, this result has a potentially high impact for network security in practice.

Acknowledgment

The work of Tomáš Pevný has been partially funded by Czech Ministry of education
under the GACR project 18-21409S. We would like to thank Virustotal.com for
their kind support.

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael



Joint Detection of Malicious Domains and Infected Clients 15

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane. Graph-
based malware detection using dynamic analysis. Journal of Computer Virology,
7(4):247–258, 2011.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task
feature learning. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances

in Neural Information Processing Systems 19, pages 41–48. MIT Press, 2007. URL
http://papers.nips.cc/paper/3143-multi-task-feature-learning.pdf.

Anshul Arora, Shree Garg, and Sateesh K Peddoju. Malware detection using net-
work traffic analysis in android based mobile devices. In International Conference

on Next Generation Mobile Apps, Services and Technologies, pages 66–71, 2014.
Karel Bartos and Michal Sofka. Robust representation for domain adaptation in

network security. In European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases, pages 116–132. Springer, 2015.
Karel Bartos, Michal Sofka, and Vojtech Franc. Optimized invariant representation

of network traffic for detecting unseen malware variants. In USENIX Security

Symposium, pages 807–822, 2016.
Jonathan Baxter. A bayesian/information theoretic model of learning to learn via

multiple task sampling. Machine Learning, 28(1):7–39, 1997.
Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, and Tobias Scheffer. Multi-

task learning for hiv therapy screening. In Proceedings of the International Con-

ference on Machine learning, pages 56–63. ACM, 2008.
Scott B Blum and Jonathan Lueker. Transparent proxy server, January 30 2001.

US Patent 6,182,141.
R. Caruana. Multitask learning: A knowledge-based source of inductive bias. In

Proceedings of the International Conference on Machine Learning, 1993.
François Chollet et al. Keras. https://keras.io, 2015.
Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Traffic

classification through simple statistical fingerprinting. ACM SIGCOMM Computer

Communication Review, 37(1):5–16, 2007.
A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona,

G. Giacinto, and F. Roli. Yes, machine learning can be more secure! a case
study on android malware detection. IEEE Transactions on Dependable and Secure

Computing, pages 1–1, 2018. ISSN 1545-5971. doi: 10.1109/TDSC.2017.2700270.
Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. A neural network model

for low-resource universal dependency parsing. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, pages 339–348, 2015.
Maurizio Dusi, Manuel Crotti, Francesco Gringoli, and Luca Salgarelli. Tun-

nel hunter: Detecting application-layer tunnels with statistical fingerprinting.
Computer Networks, 53(1):81–97, 2009.

Theodoros Evgeniou, Charles A Micchelli, and Massimiliano Pontil. Learning
multiple tasks with kernel methods. Journal of Machine Learning Research, 6

https://www.tensorflow.org/
http://papers.nips.cc/paper/3143-multi-task-feature-learning.pdf
https://keras.io


16 P. Prasse, R. Knaebel, L. Machlika, T. Pevný, T. Scheffer

(Apr):615–637, 2005.
Jenny Rose Finkel and Christopher D Manning. Hierarchical bayesian domain

adaptation. In Proceedings of ACL Human Language Technologies, pages 602–610,
2009.

Klint Finley. Half the web is now encrypted. That makes every-
one safer. Wired, Jan 2017. URL https://www.wired.com/2017/01/

half-web-now-encrypted-makes-everyone-safer/.
Vojtech Franc, Michal Sofka, and Karel Bartos. Learning detector of malicious

network traffic from weak labels. In Albert Bifet, Michael May, Bianca Zadrozny,
Ricard Gavalda, Dino Pedreschi, Francesco Bonchi, Jaime Cardoso, and Myra
Spiliopoulou, editors, Machine Learning and Knowledge Discovery in Databases,
pages 85–99. Springer International Publishing, Cham, 2015. ISBN 978-3-319-
23461-8.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. Journal of Machine Learning Research, 17(59):1–35,
2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122,
2017.

Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. Mal-
ware phylogeny generation using permutations of code. Journal in Computer

Virology, 1(1-2):13–23, 2005.
R. Kogan. Bedep trojan malware spread by the angler exploit kit gets political. Spi-

der Labs Blog, April 2015. https://www.trustwave.com/Resources/SpiderLabs-
Blog/Bedep-trojan-malware-spread-by-the-Angler-exploit-kit-gets-political/.

Jan Kohout and Tomas Pevny. Automatic discovery of web servers hosting sim-
ilar applications. In Proceedings of the IFIP/IEEE International Symposium on

Integrated Network Management, 2015a.
Jan Kohout and Tomas Pevny. Unsupervised detection of malware in persistent web

traffic. In Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing, 2015b.
A. Lashkari, A. Kadir, H. Gonzalez, K. Mbah, and A. Ghorbani. Towards a

network-based framework for android malware detection and characterization.
In Proceedings International Conference on Privacy, Security, and Trust, 2015.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Efficient hyperparameter optimization and infinitely many armed
bandits. CoRR, abs/1603.06560, 2016. URL http://arxiv.org/abs/1603.06560.

Jakub Lokoč, Jan Kohout, Přemysl Čech, Tomáš Skopal, and Tomáš Pevný. k-nn
classification of malware in https traffic using the metric space approach. In
Michael Chau, G. Alan Wang, and Hsinchun Chen, editors, Intelligence and

Security Informatics, pages 131–145. Springer International Publishing, Cham,
2016. ISBN 978-3-319-31863-9.

Mingsheng Long and Jianmin Wang. Learning multiple tasks with deep relationship
networks. In arXiv:1506.02117, 2015.

J. Malik and R. Kaushal. CREDROID: Android malware detection by network
traffic analysis. In Proceedings of the First ACM Workshop on Privacy-Aware

Mobile Computing, pages 28–36. ACM, 2016.

https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
http://arxiv.org/abs/1603.06560


Joint Detection of Malicious Domains and Infected Clients 17

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
3111–3119. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf.
Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-

stitch networks for multi-task learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3994–4003, 2016.
Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. Execscent: Mining for

new C&C domains in live networks with adaptive control protocol templates. In
Proceedings of the USENIX Security Symposium, 2013.

T. Nguyen and G. Armitage. A survey of techniques for internet traffic classification
using machine learning. IEEE Communications Surveys, Tutorials, 10(4):56–76,
2008.

Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil
Thomas. Malware classification with recurrent networks. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing, pages
1916–1920. IEEE, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

T. Pevny and P. Somol. Discriminative models for multi-instance problems with tree
structure. In Proceedings of the International Workshop on Artificial Intelligence

for Computer Security, 2016.
P. Prasse, L. Machlica, T. Pevný, J. Havelka, and T. Scheffer. Malware detection

by analysing network traffic with neural networks. In Proceedings of the European

Conference on Machine Learning, 2017.
S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard. Sluice networks: learning what

to share between loosely related tasks. arXiv:1705.08142v1 [stat.ML], 2017.
Arne Swinnen and Alaeddine Mesbahi. One packer to rule them all: Empirical

identification, comparison and circumvention of current antivirus detection
techniques. BlackHat USA, 2014. URL https://www.blackhat.com/docs/us-14/

materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf.
Charles V. Wright, Fabian Monrose, and Gerald M. Masson. On inferring application

protocol behaviors in encrypted network traffic. Journal of Machine Learning

Research, 7:2745–2769, 2006.
Yongxin Yang and Timothy M Hospedales. Trace norm regularised deep multi-task

learning. arXiv:1606.04038, 2016.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf

	Introduction
	Related Work
	Operating Environment
	Problem Setting
	Network-Flow Analysis
	Experiments
	Conclusion

