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Abstract

Patterns of micro- and macro-movements of the eyes are
highly individual and can serve as a biometric character-
istic. It is also known that both alcohol inebriation and
fatigue can reduce saccadic velocity and accuracy. This
prompts the question of whether changes of gaze patterns
caused by alcohol consumption and fatigue impact the ac-
curacy of oculomotoric biometric identification. We col-
lect an eye tracking data set from 66 participants in sober,
fatigued and alcohol-intoxicated states. We find that af-
ter enrollment in a rested and sober state, identity ver-
ification based on a deep neural embedding of gaze se-
quences is significantly less accurate when probe sequences
are taken in either an inebriated or a fatigued state. More-
over, we find that fatigue and intoxication appear to ran-
domize gaze patterns: when the model is fine-tuned for in-
variance with respect to inebriation and fatigue, and even
when it is trained exclusively on inebriated training person,
the model still performs significantly better for sober than
for sleep-deprived or intoxicated subjects.

1. Introduction
Human eye movements alternate between saccades—

fast relocation movements of around 50 ms—and fixations
of around 250 ms during which visual input is obtained.
Moreover, high-frequency involuntary micro-movements
occur during attempted fixations which, among other func-
tions, prevent visual fading of the fixated image; these fix-
ational micro-movements are termed drift, tremor, and mi-
crosaccades [15, 16, 17, 19, 8]. It has long been known
that patterns of eye movements are highly individual [18],
and psychological research has shown that these individual
characteristics are reliable over time [2]. Hence, it has been
proposed to use eye movements as a behavioral biometric

characteristic [10, 3].
Early work on oculomotoric biometric identification ex-

tracts fixations and saccades from an eye-tracking signal
and measures the values of engineered explicit features,
such as fixation durations and saccadic amplitudes and ve-
locities. Since these approaches only process information
contained in the low-frequency macro-movements, they re-
quire long eye gaze sequences of more than one minute [12]
for an identification.

The DeepEyedentification method [9, 13, 14] that uses
deep convolutional neural networks to process the raw an-
gular velocities, by contrast, is able to exploit patterns in
both micro- and macro-movement which reduces the time
to identification by an order of magnitude. Involuntary
eye movements can also be cross-checked against a con-
trolled stimulus, which is a major obstacle for any potential
presentation-attack instrument [14].

Psychological research has found that the saccadic accu-
racy and peak saccadic velocity can be negatively impacted
by fatigue [6, 7]. In a driving-simulator experiment, sac-
cadic duration has been found to increase, saccadic speed
to decrease, and their standard deviation to increase with
increasing fatigue [21]. Similarly, the acute consumption of
alcohol has been observed to impair saccadic latency, veloc-
ity, and accuracy [11, 20]. This raises the questions whether
fatigue or alcohol consumption would “break” oculomo-
toric biometric systems and, if this turns out to be the case,
if oculomotoric identification can be made robust against
the mental state of subjects.

This paper investigates the robustness of oculomotoric
biometric identification with respect to fatigue and acute al-
cohol consumption. To this end, we collect eye-gaze data
of users in sleep-deprived and intoxicated states, in addition
to the baseline state. We fine-tune the DeepEyedentifica-
tion model for invariance against fatigue and intoxication
on persons recorded in multiple states, and train a version



of the model exclusively using inebriated training persons.
We investigate the performance of all the models for probe
sequences recorded in a fatigued state and after alcohol con-
sumption and investigate the reasons for deviations from the
performance in the baseline state. As an additional contri-
bution, we release the new Potsdam Binge / JuDo data set
of gaze data of sleep-deprived and inebriated subjects to the
research community.

The rest of this paper is structured as follows. Section 2
lays out the problem setting, and Section 3 summarizes the
DeepEyedentification [14] network. Section 4 details our
data collection, experimental setting, and training and fine-
tuning procedures used. Section 5 presents our results, and
Section 6 concludes.

2. Problem Setting

We will study the problem of oculomotoric biometric
identity verification. The input to each system is given as
a sequence of eye gaze yaw and pitch angles of the left and
right eye over an observation period.

In a biometric identity verification scenario, each user
first enrolls with one or more enrollment gaze sequences. In
this study, we assume that users are enrolled in a baseline
state—neither fatigued nor under the influence of alcohol.
At application time, a probe sequence is compared to the
enrollment sequences of the presumed enrolled identity by
means of a parametric similarity metric. In case the simi-
larity exceeds a decision threshold, the claimed identity is
verified; otherwise, the user is classified as impostor.

The performance of identity verification models can be
characterized by a false-match rate (FMR, fraction of im-
postors among all accepted users) and a false non-match
rate (FNMR, fraction of falsely rejected users among all re-
jected users). By changing the decision threshold, one can
observe a detection error trade-off curve (DET curve). The
equal error rate (EER) is the point on this curve for which
FMR equals FNMR.

In this study, we use a state-of-the-art neural-network
model [14] in which the similarity metric is the cosine sim-
ilarity between neural embeddings of gaze sequences. The
embedding function is trained on a separate set of training
users which is disjoint from the users that are encountered
at application time. The neural network is trained such that
the embedding is similar for all gaze sequences of a partic-
ular user but different for gaze sequences of distinct users.

We will compare the cases of a probe sequence that is
observed (a) in the baseline state, (b) in a state of fatigue
induced by prolonged sleep deprivation, and (c) under the
influence of alcohol.
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Figure 1: Binocular version of the DeepEyedentification ar-
chitecture. Figure adapted from [13].

3. System and Network Architecture

This section provides an overview of the binocular ver-
sion of the DeepEyedentification architecture [14]. An eye



tracker records binocular gaze sequences of absolute yaw
x and pitch gaze angles y of the left l and right eye r at
a sampling frequency of ρ, measured in Hz. The binocu-
lar DeepEyedentification network (see Figure 1) receives
yaw and pitch gaze velocities δxi and δyi in ◦/s as input
which are computed from the recorded gaze sequence as
δxi = ρ

2 (xi+1 − xi−1) and δyi = ρ
2 (yi+1 − yi−1) for the left

and the right eye, respectively. This results in a total of four
input channels, namely the sequence of yaw 〈δx,l1 , . . . , δx,ln 〉
and pitch angular velocities of the left eye 〈δy,l1 , . . . , δy,ln 〉
and the corresponding yaw 〈δx,r1 , . . . , δx,rn 〉 and pitch angu-
lar velocities of the right eye 〈δy,r1 , . . . , δy,rn 〉. The network
processes input sequences of 1,000 time steps correspond-
ing to 1 s of 1000 Hz eye tracking recording.

The key feature of the network’s architecture is that the
input channels are duplicated and directed into two sepa-
rate convolutional subnets. The fast subnet is designed to
process the high angular velocities of (micro-) saccadic eye
movements whereas the slow subnet is designed to process
the slow fixational eye movements (drift and tremor). Each
of the subnets is preceded by a transformation layer that
applies a transformation to the input to resolve the fast sac-
cadic and slow fixational eye movements, respectively. For
the fast subnet, saccadic eye movements are resolved by ap-
plying a clipping function that truncates velocities below a
threshold νmin to zero and a subsequent z-score normal-
ization (see Equation 1). Based on hyperparameter tuning
within a range of psychologically plausible parameters on
two independent data sets [9, 13], the velocity threshold
νmin is set to 40◦/s.

tf (δ
x
i , δ

y
i ) =

{
z(0) if

√
δxi

2 + δyi
2
< νmin

(z(δxi ), z(δ
y
i )) otherwise

(1)

The slow fixational eye movements are resolved by ap-
plying a sigmoidal function that stretches the slow veloc-
ities of drift and tremor approximately within the interval
between −0.5 and +0.5 and squashes the (micro-) saccadic
velocities to the interval between −0.5 and −1 or +0.5 and
+1, depending on their direction (see Equation 2). Indepen-
dent hyperparameter optimization on two data sets showed
that an appropriate value for the scaling factor c of Equa-
tion 2 is 0.02 [9, 13].

ts(δ
x
i , δ

y
i ) = (tanh(cδxi ), tanh(cδ

y
i )) (2)

Since binocular alignment is an informative individual
characteristics, the four untransformed input velocity chan-
nels are also fed into a subtraction layer which computes
the yaw 〈δx,r1 − δ

x,l
1 , . . . , δx,rn − δx,ln 〉 and pitch velocity dif-

ferences between the two eyes 〈δy,r1 − δ
y,l
1 , . . . , δy,rn − δy,ln 〉.

After each of the transformation layers, a stacking layer is

inserted which stacks these additional two channels with the
input of each of the two subnets.

The two subnets share the same number and type of
layers. Each of the subnets consists of a series of one-
dimensional convolutional layers, where the convolutions
are applied to the six input channels over the temporal axis.
The number of filters and kernel size of the convolutional
layers (f and k in Figure 1), as well as the number of units
of the subsequent fully connected layers (m in Figure 1), are
allowed to differ between the two subnets. For our exper-
iments, we use established hyperparameter [13] (see Fig-
ure 1). After each of the convolutional and fully connected
layers, batch normalization and ReLU activation is applied.
An average pooling layer with pooling size 2 and stride size
1 is inserted after each convolutional layer.

For training, a softmax output layer with one unit for
each user in the training data is added. Using categori-
cal cross-entropy as loss function, the network is trained to
predict a viewer’s identity from an eye tracking sequence.
Once training is completed, the softmax output layer is re-
moved and the activation of the last fully connected layer
(highlighted in blue in Figure 1) is used as neural feature
embedding of an input gaze sequence. At application time,
the similarity between an enrolment and a test sequence is
computed as the cosine similarity of their neural embed-
dings, averaged over all input windows of 1,000 ms.

4. Methods
This section reports on data collection, training and fine-

tuning of the models, and experiments.

4.1. Data Collection

We collect the Potsdam Binge / JuDo data set1 of binoc-
ular eye movement data (horizontal and vertical gaze coor-
dinates) from 66 subjects, aged 18 to 48 years, with a mean
age of 24. Participants have given their written informed
consent and the study has been approved by the ethics com-
mittee of the University of Potsdam.

4.1.1 Experimental Design

Participants are recorded over four experimental sessions.
We ensure that any two consecutive sessions are separated
by a time lag of at least one week and we randomly vary the
order of experimental conditions across participants.

1. For a sleep-deprived session, we ask participants to re-
frain from sleeping within 24 hours prior the starting
time. We do not monitor participants for compliance.

2. In an alcohol session, participants imbibe a beverage
with 26 ml of alcohol at the start of the session; this

1https://osf.io/drn4x/

https://osf.io/drn4x/
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Figure 2: Descriptive statistics for the Potsdam Binge / JuDo data set.

dose results in a blood alcohol concentration of below
0.05% for most individuals.

3. For each of two baseline sessions, participants are
asked to appear well rested and sober before the ses-
sion.

We adopt the same experimental design that was used by
Makowski et al. [14] to collect the JuDo1000 data set: In
each session, participants are presented with a total of 144
experimental trials in which a black dot with a diameter of
0.59 cm (20 px) appears consecutively at 5 random posi-
tions on a white background. The duration for which the
dot is displayed is varied between 250 ms, 500 ms, 1,000 ms
and 1,500 ms with a fixed value within each trial; the size
of the screen area in which the dot appears is varied be-
tween 76 by 140 mm, 114 by 170 mm, and 190 by 230 mm
around the center of the monitor with a fixed area within
each trial. The combination of display duration and areas
results in twelve trial configurations.

Eye movements are recorded using a tripod-mounted
Eyelink Portable Duo eye tracker at a sampling frequency
of 1,000 Hz. Participants are seated in front of a 380 by
300 mm (1280 by 1024 px) computer monitor at a height
adjustable table with their head stabilized by a chin- and
forehead rest.

Participants self-report their perceived level of fatigue
before the recording, three times during the recording
and after the experiment on the Karolinska sleepiness
scale (KSS) [1] from being “1–extremely alert” to “9–very
sleepy, great effort to keep alert, fighting sleep”. This re-
sults in five KSS scores per session. In the alcohol session
the blood alcohol concentration (BAC) is estimated with
a breathalyzer (Dräger Alcotest 5820) before and after the
recording.

4.1.2 Quantitative Data Analysis

Figure 2a shows the mean KSS scores across the session and
Figure 2b the distribution of scores over subjects. We can
see that during the baseline and alcohol session the scores
are mostly in the medium range (“neither very alert nor fa-
tigued”) due to the repetitiveness of the task whereas the
sleep-deprived subjects are mostly drowsy or fighting sleep.
Figure 2c shows the distribution of BAC in the alcohol ses-
sion. Most probes are taken in the BAC range of up to
0.05% with some participants reaching up to 0.08%.

4.2. Model Training and Fine Tuning

We train several models on combinations of the
JuDo1000 data set [14] of 150 subjects recorded over four
experimental sessions in the baseline condition and the
Potsdam Binge / JuDo data set of sleep-deprived and intox-
icated subjects. In all cases, we use the hyper-parameters
reported by Makowski et al. [14].

We split the Potsdam Binge / JuDo data into 22 test per-
sons who have completed all four sessions, and 35 training
persons who have completed at least one baseline session
and the sleep-deprived session, the alcohol session, or both.
The resulting training portion of the Potsdam Binge / JuDo
data comprises 95 recording sessions: 27 sleep sessions, 25
alcohol sessions and 43 baseline sessions; 25 training per-
sons were recorded over three sessions, 10 training persons
were recorded over two sessions. The rationale of fine-
tuning on persons that have completed at least sessions in
two different states is that it forces the embedding layer to-
wards invariance with respect to these states, since these
training persons have to be recognized in either state.

Our first model is trained only on the JuDo1000 data set
of 150 subjects using the and training protocol of Makowski
et al. [14]. This model is trained with a softmax layer that
distinguishes between 150 training subjects which is dis-
carded after the training; the final embedding layer below
this softmax layer is used to calculate the cosine similarity.



Table 1: Comparison of EER between baseline, fatigued, and intoxicated probe sequences after enrollment on baseline
sequences from another session; verification with one enrolled user and 4 impostors. Mean EER ± standard deviation of 5
times resampling 5 users out of 22 users. A star (∗) indicates a significantly (p < 0.05) higher EER compared to the sober
probe. A cross (+) indicates a significantly (p < 0.05) higher EER compared to the sober probe without fine tuning. Bold
font indicates the lowest value in a column.

EER
Training data Fine-tuning Probe duration baseline sleep deprived intoxicated

JuDo (150 users;
600 sessions in total)

-

1 s 0.1148 ± 0.0377 0.157 ± 0.0397∗ 0.1563 ± 0.0557∗

5 s 0.0577± 0.0285 0.1026± 0.037∗ 0.121± 0.053∗

10 s 0.0451± 0.0272 0.0898± 0.0363∗ 0.1146± 0.0542∗

60 s 0.0266± 0.0272 0.066± 0.039∗ 0.109 ± 0.0569∗

JuDo (150 users;
600 sessions in total)

Embedding
layer
on Binge

1 s 0.1121± 0.0454 0.155± 0.0546∗+ 0.1509± 0.0622∗+

5 s 0.083 ± 0.0495+ 0.1291 ± 0.0573∗+ 0.1237 ± 0.0642∗+

10 s 0.0766 ± 0.0521+ 0.1252 ± 0.06∗+ 0.1172 ± 0.0645∗+

60 s 0.0686 ± 0.0588+ 0.1189 ± 0.0675∗+ 0.1083± 0.0685∗+

JuDo (150 users;
600 sessions in total)

All layers
on Binge

1 s 0.1503 ± 0.0441+ 0.2011 ± 0.0479+ 0.1949 ± 0.0661+

5 s 0.0987 ± 0.0437+ 0.1642 ± 0.0466∗+ 0.1448 ± 0.0709+

10 s 0.0881 ± 0.0437+ 0.1591 ± 0.0453∗+ 0.1356 ± 0.0693+

60 s 0.0746 ± 0.0428+ 0.1543 ± 0.0472∗+ 0.1212 ± 0.0637+

Binge (35 users;
95 sessions in total)

-

1 s 0.165 ± 0.0463+ 0.2081 ± 0.0594∗+ 0.2242 ± 0.0547∗+

5 s 0.119 ± 0.0478+ 0.1798 ± 0.0653∗+ 0.1842 ± 0.0576∗+

10 s 0.1096 ± 0.0496+ 0.1747 ± 0.0681∗+ 0.1766 ± 0.0581∗+

60 s 0.0969 ± 0.0531+ 0.1696 ± 0.0752∗+ 0.1598 ± 0.0636∗+

JuDo (35 users,
95 sessions in total)

-

1 s 0.155 ± 0.0473+ 0.204 ± 0.0572∗+ 0.1966 ± 0.0662∗+

5 s 0.1043 ± 0.0493+ 0.1638 ± 0.0589∗+ 0.1549 ± 0.0555∗+

10 s 0.0945 ± 0.0492+ 0.1581 ± 0.061∗+ 0.1474 ± 0.0535∗+

60s 0.0805 ± 0.0508+ 0.1518 ± 0.0667∗+ 0.1391 ± 0.0505∗+

We use a learning rate of 10−3 for both subnets and 10−4

for the remaining layers.
This first model also serves as starting point of a second

and third fine-tuned second model. For these models, the
softmax layer is replaced by a new softmax layer that dis-
tinguishes between the 35 training persons of the Potsdam
Binge / JuDo data. For the second model, only the em-
bedding and output layer are trained using a learning rate
that starts with the terminal learning rate of pre-training on
JuDo1000 whereas all weights on lower layers are frozen.

For the third model, all model parameters of the first
model are fine-tuned on the training persons of Potsdam
Binge / JuDo using the terminal learning rate of the pre-
training process as starting point. For retraining the archi-
tecture on the Binge / JuDo data set, we use a learning rate
of 0.001 to train the new softmax output layers of the sub-
nets and 10−4 for the output layer of the joint architecture,
whereas we use a learning rate of 10−5 for fine-tuning all
layers.

The fourth model is trained only on the 35 training per-
sons, with 95 sessions in total, of the Potsdam Binge / JuDo
data set. Since each training person has been observed in
the baseline state and in at least one of the sleep-deprived or

intoxicated state, this model should exhibit the most homo-
geneous performance across states. In this experiment, we
use a learning rate of 10−3 for both subnets and 10−4 for
the remaining layers.

Due to the much smaller training population, this fourth
model cannot be compared meaningfully to the model
trained on 150 training subjects of the JuDo set. Therefore,
we train a fifth and final model on a random subset of 35
JuDo training persons, 95 sessions in total. This model is
identical to the first model in all aspects other than the size
of the training population.

We use the Keras [4] and Tensorflow [5] libraries on
an NVIDIA A100-SXM4-40GB GPU using the NVIDIA
CUDA platform. All models are pre-trained and fine-tuned
using the Adam optimizer. For all models we use a batch
size of 64. For all models we use early stopping with a pa-
tience of 10 epochs for which we use 20% of each training
person’s data as validation data. All code can be found on-
line.2

2https://osf.io/brzfn/

https://osf.io/brzfn/
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Figure 3: Verification performance. False Non Match Rate (FNMR) over False Match Rate (FMR). Shaded bands show the
standard error.



Table 2: Comparison of FNMR at a FMR of 10−3 between baseline, fatigued, and intoxicated probe sequences after en-
rollment on baseline sequences from another session; verification with one enrolled user and 4 impostors. Mean FNMR ±
standard deviation of 5 times resampling 5 users out of 22 users. A star (∗) indicates a significantly (p < 0.05) higher FNMR
compared to the sober probe. A cross (+) indicates a significantly (p < 0.05) higher FNMR compared to the sober probe
without fine tuning. Bold font indicates the lowest value in a column.

FNMR@FMR 10−3

Training data Fine-tuning Probe duration baseline sleep deprived intoxicated

JuDo (150 users;
600 sessions in total)

-

1 s 0.9422 ± 0.0448 0.9484 ± 0.0459 0.9635 ± 0.0453
5 s 0.5356 ± 0.2279 0.7033 ± 0.1591∗ 0.6263 ± 0.2144
10 s 0.3277± 0.203 0.5526± 0.1876∗ 0.4463± 0.246∗

60 s 0.4227± 0.409 0.2753± 0.1723 0.3818± 0.271

JuDo (150 users;
600 sessions in total)

Embedding
layer on
Binge

1 s 0.8776± 0.103 0.897± 0.0751 0.9027± 0.089
5 s 0.5131± 0.275 0.6441± 0.1988 0.5949± 0.260
10 s 0.3918 ± 0.2497 0.5554 ± 0.2147∗+ 0.5006 ± 0.2746+

60 s 0.4937 ± 0.3929 0.3947 ± 0.1987 0.4714 ± 0.2716

JuDo (150 users;
600 sessions in total)

All layers
on Binge

1 s 0.895 ± 0.0892 0.903 ± 0.0603 0.923 ± 0.054
5 s 0.6806 ± 0.2139 0.7438 ± 0.1176+ 0.6994 ± 0.2414+

10 s 0.5845 ± 0.2571 0.683 ± 0.1326 0.6189 ± 0.2914
60 s 0.7355 ± 0.2627 0.5553 ± 0.1309 0.4845 ± 0.3217

Binge (35 users;
95 sessions in total)

-

1 s 0.9227 ± 0.0618 0.8994 ± 0.0759 0.9445 ± 0.0503
5 s 0.7672 ± 0.2224+ 0.767 ± 0.1703+ 0.8108 ± 0.1739+

10 s 0.6807 ± 0.2967+ 0.716 ± 0.193+ 0.731 ± 0.2433+

60 s 0.6832 ± 0.3301+ 0.5797 ± 0.2558 0.6231 ± 0.312+

JuDo (35 users;
95 sessions in total)

-

1 s 0.9356 ± 0.0548 0.947 ± 0.035 0.9457 ± 0.0488
5 s 0.705 ± 0.2521+ 0.8158 ± 0.1144∗+ 0.7532 ± 0.2083+

10 s 0.5744 ± 0.2723+ 0.7327 ± 0.1592∗+ 0.6645 ± 0.2758+

60 s 0.3545 ± 0.2404 0.5609 ± 0.1791∗ 0.5994 ± 0.3511∗

5. Results

The embedding is evaluated on enrollment and probe se-
quences of 22 test subjects from the Potsdam Binge / JuDo
data set who have completed the full four sessions. Enroll-
ment is always performed on 20 randomly drawn trials from
one of the baseline sessions, where each trial consists of
gaze data for a stimulus of five random points. Depending
on the display duration of each point, a trial is between 1.25
and 5 seconds long. Probe sequences are taken from the
second baseline session, the alcohol session, or the sleep-
deprived session.

Table 1 shows the equal error rates, Table 2 the FNMR
at a FMR of 10−3 of all trained models. Figure 3 shows
the corresponding DET curves. For most probe durations
and probe session types, the model that was only trained
on JuDo1000 shows the lowest EER. This model has the
lowest FNMR at a FMR of 10−3 in half of the cases. Fine-
tuning of the embedding layer leads to slight, statistically
insignificant improvements in one third of the cases with
respect to EER and in half the cases with respect to FNMR
at FMR of 10−3.

Fine-tuning all layers and training only on Binge leads to
higher EER and FNMR. For all probe durations and models,

probe sequences taken in both the sleep-deprived and the in-
toxicated condition result in higher EER values than probe
sequences in baseline conditions. Most differences are sig-
nificant (p < 0.05) for EER and some also for FNMR,
based on a two-tailed t-test.

Even the fourth model that was only trained on the 35
Binge training subjects performs significantly worse for
probe sequences in sleep-deprived and intoxicated states
than it does for sober probe sequences. Regarding the
FNMR at FMR of 10−3, the discrepancy between sober and
sleep-deprived or intoxicated probe sequences is noticeably
smaller for this fourth model, but only at the expense of
generally higher FNMR values. Surprisingly, this fourth
model does not show any advantage for probe sequences
in any condition over the fifth model that was trained on an
equally large population in only the sober state. EER and
FNMR values appear to be marginally higher for the fourth
than for the fifth model, but the differences are not signifi-
cant.

6. Discussion
Eye movements are a novel and innovative biometric

characteristic. Since eye movements are a response to a



stimulus that can be randomized, it would be extremely
challenging to devise a presentation-attack instrument. Eye
movements are also independent of other characteristics
such as facial features, iris, or fingerprints, and therefore
oculomotoric biometrics may prove to be a valuable fac-
tor in multi-modal biometric systems. Eye gaze is, for in-
stance, unaffected by subjects wearing masks. But in order
to gauge its potential for practical application, it is impor-
tant to understand what the limiting factors of oculomotoric
biometrics may be.

We find that a state-of-the-art oculomotoric biometric
model that has been trained on subjects in a sober state per-
forms significantly worse for probe sequences taken in a
fatigued or alcohol-inebriated state. Fine-tuning the em-
bedding layer on a small group of training subjects that
have been recorded both sober and in fatigued or intoxi-
cated states appears to result in (statistically insignificant)
performance improvements for short probe sequences.

Training the model only on a small group of subjects that
have been recorded in sober and fatigued or inebriated states
mitigates the performance gap between sober, fatigued, and
inebriated probe sequences somewhat, but only by deterio-
rating the performance for all probe conditions, compared
to training on equally many sober training subjects.

It is known that both fatigue and alcohol reduce sac-
cadic accuracy and peak saccadic velocity [6, 7, 11, 20].
Our interpretation of our experimental results therefore is
that fatigue and alcohol intoxication add noise to eye move-
ments that dilutes the generally highly individual gaze pat-
terns. A model that has been trained on the Binge training
users shows a small (statistically insignificant) performance
degradation for probe sequences in any condition compared
to a model that has been trained on an equally large pop-
ulation in a sober state only. This indicates that training
data recorded in a sober state are “more valuable” to the
network than training data recorded in a sleep-deprived or
intoxicated state.

Our findings suggest that fine-tuning much larger fine-
tuning population recorded in multiple states would some-
what narrow, but not close, the performance gap between
sober probe sequences and fatigued or inebriated probe se-
quences on the other hand.
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movements as a biometric. In SCIA 2005, pages 780–789,
2005.

[4] F. Chollet et al. Keras. https://keras.io, 2015.
[5] J. Dean, R. Monga, et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[6] N. Galley. Saccadic eye movement velocity as an indicator
of (de)activation. a review and some speculations. Journal
of Psychophysiology, 3:229–244, 1989.

[7] K. Hirvonen, S. Puttonen, K. Gould, J. Korpela, V. F. Koe-
foed, and K. Müller. Improving the saccade peak velocity
measurement for detecting fatigue. Journal of neuroscience
methods, 187(2):199–206, 2010.

[8] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst,
H. Jarodzka, and J. Van de Weijer. Eye tracking: A compre-
hensive guide to methods and measures. Oxford University
Press, Oxford, 2011.
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