Zum Hauptinhalt springen

PotsdamPero Publications since 2017

Please see Pero News for more details!

2022

  • Robert DJ Oliver, Pietro Caprioglio, Francisco Peña-Camargo, Leonardo RV Buizza, Fengshuo Zu, Alexandra J Ramadan, Silvia G Motti, Suhas Mahesh, Melissa M McCarthy, Jonathan H Warby, Yen-Hung Lin, Norbert Koch, Steve Albrecht, Laura M Herz, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry J Snaith, Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells, : Energy Environ. Sci., 2022, 15, 714 : DOI: 10.1039/d1ee02650j
  • Stefan Zeiske, Oskar J. Sandberg*, Nasim Zarrabi, Christian M. Wolff, Meysam Raoufi, Francisco Peña-Camargo, Emilio Gutierrez-Partida, Paul Meredith, Martin Stolterfoht, and Ardalan Armin*, Static Disorder in Lead Halide Perovskites, J. Phys. Chem. Lett. 2022, 13, 31, 7280–7285, https://doi.org/10.1021/acs.jpclett.2c01652
  • Stolterfoht, M., Lang, F. All-perovskite tandems get flexible. Nat Energy 7, 688–689 (2022). https://doi.org/10.1038/s41560-022-01087-6
  • Jarla Thiesbrummel, Francisco Peña-Camargo, Kai Oliver Brinkmann, Emilio Gutierrez-Partida, Fengjiu Yang, Jonathan Warby, Steve Albrecht, Dieter Neher, Thomas Riedl, Henry J Snaith, Martin Stolterfoht, Felix Lang, Understanding and Minimizing VOC Losses in All-Perovskite Tandem Photovoltaics, https://doi.org/10.48550/arXiv.2207.09863
  • Francisco Peña-Camargo, Jarla Thiesbrummel, Hannes Hempel, Artem Musiienko, Vincent M Le Corre, Jonas Diekmann, Jonathan Warby, Thomas Unold, Felix Lang, Dieter Neher, Martin Stolterfoht, Revealing the doping density in perovskite solar cells and its impact on device performance, Applied Physics Reviews 9, 021409 (2022); https://doi.org/10.1063/5.0085286
  • Felix Lang a, Jarla Jarla Thiesbrummel1 b, Francisco Peña-Camargo1 a, Eike Köhnen c, Giles Eperon d, Steve Albrecht c, Samuel Stranks e, Dieter Neher a, Martin Stolterfoht a , Identifying radiation damage, non-radiative losses, and efficiency potentials of perovskite based tandem PV via subcell characterization, DOI: https://doi.org/10.29363/nanoge.pvspace.2022.005
  • Brinkmann, K.O., Becker, T., Zimmermann, F. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022). doi.org/10.1038/s41586-022-04455-0
  • Hempel, H., Savenjie, T. J., Stolterfoht, M., Neu, J., Failla, M., Paingad, V. C., Kužel, P., Heilweil, E. J., Spies, J. A., Schleuning, M., Zhao, J., Friedrich, D., Schwarzburg, K., Siebbeles, L. D. A., Dörflinger, P., Dyakonov, V., Katoh, R., Hong, M. J., Labram, J. G., Monti, M., Butler-Caddle, E., Lloyd-Hughes, J., Taheri, M. M., Baxter, J. B., Magnanelli, T. J., Luo, S., Cardon, J. M., Ardo, S., Unold, T., Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy. Adv. Energy Mater. 2022, 12, 2102776. https://doi.org/10.1002/aenm.202102776
  • Le Corre, V.M., Diekmann, J., Peña-Camargo, F., Thiesbrummel, J., Tokmoldin, N., Gutierrez-Partida, E., Peters, K.P., Perdigón-Toro, L., Futscher, M.H., Lang, F., Warby, J., Snaith, H.J., Neher, D. and Stolterfoht, M. (2022), Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurements. Sol. RRL, 6: 2100772. https://doi.org/10.1002/solr.202100772
  • Nano-optical designs enhance monolithic perovskite/silicon tandem solar cells toward 29.8% efficiency, doi.org/10.21203/rs.3.rs-1439562/v1
  • Warby, J., Zu, F., Zeiske, S., Gutierrez-Partida, E., Frohloff, L., Kahmann, S., Frohna, K., Mosconi, E., Radicchi, E., Lang, F., Shah, S., Peña-Camargo, F., Hempel, H., Unold, T., Koch, N., Armin, A., De, F., Stranks, S. D., Neher, D., Stolterfoht, M., Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2103567. https://doi.org/10.1002/aenm.202103567

2021

 

  • Wolff, C. M., Bourelle, S. A., Phuong, L. Q., Kurpiers, J., Feldmann, S., Caprioglio, P., Marquez, J. A., Wolansky, J., Unold, T., Stolterfoht, M., Shoaee, S., Deschler, F. & Neher, D. Orders of Recombination in Complete Perovskite Solar Cells – Linking Time‐Resolved and Steady‐State Measurements. Adv. Energy Mater. 2101823 (2021). doi:10.1002/aenm.202101823
  • Fengshuo Zu, Jonathan H. Warby, Martin Stolterfoht, Jinzhao Li, Dongguen Shin, Eva Unger, and Norbert Koch, Photoinduced Energy-Level Realignment at Interfaces between Organic Semiconductors and Metal-Halide Perovskites Phys. Rev. Lett. 127, 246401 – Published 8 December 2021
  • Lang, F., Köhnen, E., Warby, J., Xu, K., Grischek, M., Wagner, P., Neher, D., Korte, L., Albrecht, S. & Stolterfoht, M. Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization. ACS Energy Lett. 3982–3991 (2021). doi:10.1021/acsenergylett.1c01783
  • Thiesbrummel, J.; Corre, V. M. Le; Peña-Camargo, F.; Perdigón-Toro, L.; Lang, F.; Yang, F.; Grischek, M.; Gutierrez-Partida, E.; Warby, J.; Farrar, M. D.; et al. Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions. Adv. Energy 2021 (accepted, DOI: 10.1002/aenm.202101447).
  • Caprioglio, P.; Cruz, D. S.; Caicedo-Dávila, S.; Zu, F.; Sutanto, A. A.; Peña-Camargo, F.; Kegelmann, L.; Meggiolaro, D.; Gregori, L.; Wolff, C. M.; et al. Bi-Functional Interfaces by Poly(Ionic Liquid) Treatment in Efficient Pin and Nip Perovskite Solar Cells. Energy Environ. Sci. 2021 (accepted, DOI: 10.1039/D1EE00869B).
  • Diekmann, J.; Caprioglio, P.; Futscher, M. H.; Le Corre, V. M.; Reichert, S.; Jaiser, F.; Arvind, M.; Toro, L. P.; Gutierrez-Partida, E.; Peña-Camargo, F.; et al. Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions. Sol. RRL  2021, 2100219, 2100219.
  • Köhnen, E.; Wagner, P.; Lang, F.; Cruz, A.; Li, B.; Roß, M.; Jošt, M.; Morales-Vilches, A. B.; Topič, M.; Stolterfoht, M.; et al. 27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Sol. RRL  2021, 2100244.
  • Sutanto, A. A.; Caprioglio, P.; Drigo, N.; Hofstetter, Y. J.; Garcia-Benito, I.; Queloz, V. I. E.; Neher, D.; Nazeeruddin, M. K.; Stolterfoht, M.; Vaynzof, Y.; et al. 2D/3D Perovskite Engineering Eliminates Interfacial Recombination Losses in Hybrid Perovskite Solar Cells. Chem  2021, 7 (7), 1903–1916.
  • Caprioglio, P.; Caicedo-Dávila, S.; Yang, T. C. J.; Wolff, C. M.; Peña-Camargo, F.; Fiala, P.; Rech, B.; Ballif, C.; Abou-Ras, D.; Stolterfoht, M.; et al. Nano-Emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Lett. 2021, 419–428.
  • Gutierrez-Partida, E.; Hempel, H.; Caicedo-Dávila, S.; Raoufi, M.; Peña-Camargo, F.; Grischek, M.; Gunder, R.; Diekmann, J.; Caprioglio, P.; Brinkmann, K. O.; et al. Large-Grain Double Cation Perovskites with 18  μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells. ACS Energy Lett. 2021, 6 (3), 1045–1054.
  • Schmidt-Mende, L. et al. Roadmap on Organic-inorganic hybrid perovskite semiconductors and devices. APL Mater. (2021). doi:APM21-RM-00121R1.

2020

  • Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J. A.; Morales Vilches, A. B.; Kasparavicius, E.; Smith, J. A.; et al. Monolithic Perovskite/Silicon Tandem Solar Cell with over 29% Efficiency by Enhanced Hole Extraction. Science  2020, 370 (6522), 1300–1309.
  • Sandberg, O. J.; Kurpiers, J.; Stolterfoht, M.; Neher, D.; Meredith, P.; Shoaee, S.; Armin, A. On the Question of the Need for a Built-In Potential in Perovskite Solar Cells. Adv. Mater. Interfaces  2020, 2000041, 2000041.
  • Brauer, J. C.; Tsokkou, D.; Sanchez, S.; Droseros, N.; Roose, B.; Mosconi, E.; Hua, X.; Stolterfoht, M.; Neher, D.; Steiner, U.; et al. Comparing the Excited-State Properties of a Mixed-Cation–Mixed-Halide Perovskite to Methylammonium Lead Iodide. J. Chem. Phys.  2020, 152 (10), 104703.
  • Stolterfoht, M.; Grischek, M.; Caprioglio, P.; Wolff, C. M.; Gutierrez‐Partida, E.; Peña‐Camargo, F.; Rothhardt, D.; Zhang, S.; Raoufi, M.; Wolansky, J.; et al. How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%. Adv. Mater.  2020, 32 (17), 2000080.
  • Perdigón-Toro, L.; Zhang, H.; Markina, A.; Yuan, J.; Hosseini, S. M.; Wolff, C. M.; Zuo, G.; Stolterfoht, M.; Zou, Y.; Gao, F.; et al. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell. Adv. Mater.  2020, 32 (9).
  • Wolff, C. M.; Canil, L.; Rehermann, C.; Ngoc Linh, N.; Zu, F.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S.; et al. Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. ACS Nano  2020, 14 (2), 1445–1456.
  • Krückemeier, L.; Rau, U.; Stolterfoht, M.; Kirchartz, T. How to Report Record Open‐Circuit Voltages in Lead‐Halide Perovskite Solar Cells. Adv. Energy Mater. 2020, 10 (1), 1902573.
  • Kirchartz, T.; Márquez, J. A.; Stolterfoht, M.; Unold, T. Photoluminescence‐Based Characterization of Halide Perovskites for Photovoltaics. Adv. Energy Mater.  2020, 10 (26), 1904134.
  • Jiang, W.; Stolterfoht, M.; Jin, H.; Burn, P. L. Hole-Transporting Poly(Dendrimer)s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport. Macromolecules  2020, acs.macromol.0c00520.
  • Caprioglio, P.; Wolff, C. M.; Sandberg, O. J.; Armin, A.; Rech, B.; Albrecht, S.; Neher, D.; Stolterfoht, M. On the Origin of the Ideality Factor in Perovskite Solar Cells. Adv. Energy Mater.  2020, 10 (27), 2000502.
  • Jiang, W.; Tao, C.; Stolterfoht, M.; Jin, H.; Stephen, M.; Lin, Q.; Nagiri, R. C. R.; Burn, P. L.; Gentle, I. R. Hole-Transporting Materials for Low Donor Content Organic Solar Cells: Charge Transport and Device Performance. Org. Electron.  2020, 76, 105480.
  • Schulze, P. S. C.; Bett, A. J.; Bivour, M.; Caprioglio, P.; Fabian, M.; Kabaklı, Ö. Ş.; Richter, A.; Stolterfoht, M.; Zhang, Q.; Neher, D.; et al. 25.1% High-Efficient Monolithic Perovskite Silicon Tandem Solar Cell with a High Band Gap Perovskite Absorber. Sol. RRL  2020.
  • Qiong, W.; Smith, J. A.; Skroblin, D.; Wolff, C. M.; Caprioglio, P.; Stolterfoht, M.; Köbler, Hans; Meng, L.; Turren-Cruz, S.-H.; Gollwitzer, C.; et al. Managing Phase Purities and Crystal Orientation for High Performance and Photo-Stable Caesium Lead Halide Perovskite Solar Cells. Sol. RRL  2020.
  • Peña-Camargo, F.; Caprioglio, P.; Zu, F.; Gutierrez-Partida, E.; Wolff, C. M.; Brinkmann, K.; Albrecht, S.; Riedl, T.; Koch, N.; Neher, D.; et al. Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells. ACS Energy Lett.  2020, 5 (8), 2728–2736.
  • Wang, Q.; Zu, F.; Caprioglio, P.; Wolff, C. M.; Stolterfoht, M.; Li, M.; Turren-Cruz, S.-H.; Koch, N.; Neher, D.; Abate, A. Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar Cells. ACS Energy Lett.  2020, 2343–2348.
  • Zhang, S.; Shaw, P. E.; Zhang, G.; Jin, H.; Tai, M.; Lin, H.; Meredith, P.; Burn, P. L.; Neher, D.; Stolterfoht, M. Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Appl. Mater. Interfaces  2020, 12 (33), 37647–37656.
  • García-Benito, I.; Quarti, C.; Queloz, V. I. E.; Hofstetter, Y. J.; Becker-Koch, D.; Caprioglio, P.; Neher, D.; Orlandi, S.; Cavazzini, M.; Pozzi, G.; et al. Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Front. Chem.  2020, 7 (January), 1–11.
  • Zu, F.; Schultz, T.; Shin, D.; Frohloff, L.; Amsalem, P.; Koch, N.; Wolff, C. M.; Neher, D.; Schultz, T.; Koch, N. Position-Locking of Volatile Reaction Products by Atmosphere and Capping Layers Slows down Photodecomposition of Methylammonium Lead Triiodide Perovskite. RSC Adv.  2020, 10 (30), 17534–17542.
  • Samson, S.; Rech, J.; Perdigón-Toro, L.; Peng, Z.; Shoaee, S.; Ade, H.; Neher, D.; Stolterfoht, M.; You, W. Organic Solar Cells with Large Insensitivity to Donor Polymer Molar Mass across All Acceptor Classes. ACS Appl. Polym. Mater.  2020, 2 (11), 5300–5308.

2019

  • Stolterfoht, M.; Le Corre, V. M.; Feuerstein, M.; Caprioglio, P.; Koster, L. J. A.; Neher, D. Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells. ACS Energy Lett.  2019, 4 (12), 2887–2892.
  • Wolff, C. M.; Caprioglio, P.; Stolterfoht, M.; Neher, D. Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater.  2019, 31 (52), 1902762.
  • Shoaee, S.; Armin, A.; Stolterfoht, M.; Hosseini, S. M.; Kurpiers, J.; Neher, D. Decoding Charge Recombination through Charge Generation in Organic Solar Cells. Sol. RRL  2019, 3 (11), 1900184.
  • Le Corre, V. M.; Stolterfoht, M.; Perdigón Toro, L.; Feuerstein, M.; Wolff, C.; Gil-Escrig, L.; Bolink, H. J.; Neher, D.; Koster, L. J. A. Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Appl. Energy Mater.  2019, 2 (9), 6280–6287.
  • Pisoni, S.; Stolterfoht, M.; Löckinger, J.; Moser, T.; Jiang, Y.; Caprioglio, P.; Neher, D.; Buecheler, S.; Tiwari, A. N. On the Origin of Open-Circuit Voltage Losses in Flexible n-i-p Perovskite Solar Cells. Sci. Technol. Adv. Mater.  2019, 20 (1), 786–795.
  • Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A.; et al. The Impact of Energy Alignment and Interfacial Recombination on the Internal and External Open-Circuit Voltage of Perovskite Solar Cells. Energy Environ. Sci.  2019, 12 (9), 2778–2788.
  • Caprioglio, P.; Stolterfoht, M.; Wolff, C. M.; Unold, T.; Rech, B.; Albrecht, S.; Neher, D. On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells. Adv. Energy Mater.  2019, 9 (33), 1901631.
  • Würfel, U.; Perdigón-Toro, L.; Kurpiers, J.; Wolff, C. M.; Caprioglio, P.; Rech, J. J.; Zhu, J.; Zhan, X.; You, W.; Shoaee, S.; et al. Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells. J. Phys. Chem. Lett.  2019, 10 (12), 3473–3480.
  • Zhang, S.; Hosseini, S. M.; Gunder, R.; Petsiuk, A.; Caprioglio, P.; Wolff, C. M.; Shoaee, S.; Meredith, P.; Schorr, S.; Unold, T.; et al. The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells. Adv. Mater.  2019, 1901090.
  • Caprioglio, P.; Zu, F.; Wolff, C. M.; Márquez Prieto, J. A.; Stolterfoht, M.; Becker, P.; Koch, N.; Unold, T.; Rech, B.; Albrecht, S.; et al. High Open Circuit Voltages in Pin-Type Perovskite Solar Cells through Strontium Addition. Sustain. Energy Fuels  2019, 3 (2), 550–563.
  • Chandrasekharan, A.; Jin, H.; Stolterfoht, M.; Gann, E.; McNeill, C. R.; Hambsch, M.; Burn, P. L. 9,9′-Bifluorenylidene-Diketopyrrolopyrrole Donors for Non-Polymeric Solution Processed Solar Cells. Synth. Met.  2019, 250, 79–87.

2018

  • Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T.; et al. Visualization and Suppression of Interfacial Recombination for High-Efficiency Large-Area Pin Perovskite Solar Cells. Nat. Energy  2018, 3 (10), 847–854.
  • Shoaee, S.; Stolterfoht, M.; Neher, D. The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells. Adv. Energy Mater.  2018, 8 (28), 1–20.
  • Jiang, W.; Jin, H.; Stolterfoht, M.; Shaw, P. E.; Nagiri, R. C. R.; Kopidakis, N.; Burn, P. L. Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells. J. Phys. Chem. C  2018, 122 (36), 20611–20618.
  • Saliba, M.; Stolterfoht, M.; Wolff, C. M.; Neher, D.; Abate, A. Measuring Aging Stability of Perovskite Solar Cells. Joule  2018, 2 (6), 1019–1024.
  • Saliba, M.; Correa-Baena, J.-P.; Wolff, C. M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to Make over 20% Efficient Perovskite Solar Cells in Regular ( n–i–p ) and Inverted ( p–i–n ) Architectures. Chem. Mater.  2018, 30 (13), 4193–4201.
  • Zhang, S.; Stolterfoht, M.; Armin, A.; Lin, Q.; Zu, F.; Sobus, J.; Jin, H.; Koch, N.; Meredith, P.; Burn, P. L.; et al. Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Appl. Mater. Interfaces  2018, 10 (25), 21681–21687.
  • Yazmaciyan, A.; Stolterfoht, M.; Burn, P. L.; Lin, Q.; Meredith, P.; Armin, A. Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. Adv. Energy Mater.  2018, 8 (18), 1703339.

2017

  • Stolterfoht, M.; Wolff, C. M.; Amir, Y.; Paulke, A.; Perdigón-Toro, L.; Caprioglio, P.; Neher, D. Approaching the Fill Factor Shockley–Queisser Limit in Stable, Dopant-Free Triple Cation Perovskite Solar Cells. Energy Environ. Sci.  2017, 10 (6), 1530–1539.
  • Stolterfoht, M.; Shoaee, S.; Armin, A.; Jin, H.; Kassal, I.; Jiang, W.; Burn, P.; Meredith, P. Electric Field and Mobility Dependent First-Order Recombination Losses in Organic Solar Cells. Adv. Energy Mater.  2017, 7 (4), 1601379.