Nanostructure of silver and DNA
Image: Prof. Dr. Ilko Bald

Hybrid Nanostructures

The research of the working group Hybrid Nanostructures under the leadership of Prof. Ilko Bald combines different methods from DNA nanotechnology, optical spectroscopy and scanning probe microscopy in order to study physico-chemical processes at the single-molecule level. The aim is to develop novel analysis methods for their application in different fields, such as the precise with nanomaterials. Apart from methods diagnostics using optical fibers modified development, specific questions such as nucleotide sequence dependence of DNA radiation damage and the mode of action of radionsensitizers that are applied in tumor radiation therapy are being investigated. Furthermore, chemical processes on the surface of plasmonic nanostructures that are triggered by electron transfer are analysed.

Download Transfer Offer 21-03

Nanostructure of silver and DNA
Image: Prof. Dr. Ilko Bald

Image of nanomaterial from Dr. Pacholski
Photo: Dr. Claudia Pacholski

Chemical Strategies for Functional Nano- Structures

The research group Functional Materials of Dr Claudia Pacholski aims to fabricate materials with new and exciting properties, that can later be used as optical sensors. The scientists of the group synthesize nanomaterials and investigate their chemistry as well as their optical properties. A special focus is on the preparation and self-assembly of inorganic nanomaterials in combination with polymers.

The team uses various methods and is interested in different areas of application. For example, through the action of energy new nanomaterials or nanostructures with unusual structural, electrical, optical or magnetic properties and functionalities can be generated. These form the basis

for the development of new materials and sensors.

Download Transfer Offer 21-01

Image of nanomaterial from Dr. Pacholski
Photo: Dr. Claudia Pacholski

Gold-Nano star
Image: Prof. Dr. Joachim Koetz

Superstructures with nanoparticles of defined shape and size

The research group of Prof. Joachim Koetz is dealing with the synthesis of nanoparticles of different shape and size and their application as sensor materials and for the surface- enhanced Raman spectroscopy for the detection of molecules and reaction mechanisms. The important thing here is the separation and isolation of anisotropic nanoparticles (nanotriangles and nanostars) and their surface modification. In addition to the self- organization of gold and magnetite nanoparticles, the research is focused on the insertion of these particles into Janus emulsions. This makes it possible to adjust the droplet size of stimuli-sensitive Janus emulsions, and respectively the pore sizes of the resulting aerogels. The ultralight magnetic aerogels can be used for purifying liquids (dye and oil layer separation).

Download Transfer Offer 21-02

Gold-Nano star
Image: Prof. Dr. Joachim Koetz
Growth of Pb islands in Si-rich areas within the wetting layer. Right: SFM topographic image. Left: corresponding KPFM picture
Image: Prof. Dr. Regina Hoffmann-Vogel

Nanometer-scale imaging and measurements: Atomic Force Microscopy and Kelvin Probe Force Microscopy

The research team of Prof. Dr. Regina Hoffmann-Vogel, the Professor of Experimental physics of condensed matter at the University of Potsdam, aims to understand the relationship between atomic and mesocopic structures as well as electronic transport in nanostructures. To investigate these nanostructures, the research team uses atomic force microscopy and Kelvin probe force microscopy to conduct nanometer-scale imaging and measurements. To date, the group has successfully collaborated with several academic and industrial partners throughout Europe.

Download Transfer Offer 20-05

Growth of Pb islands in Si-rich areas within the wetting layer. Right: SFM topographic image. Left: corresponding KPFM picture
Image: Prof. Dr. Regina Hoffmann-Vogel