Peer-reviewed publications
2025
(25) Pallab, N.; Sperlich, E.; Schenderlein, M.; Kruger‐Genge, A.; Li, J.; Zeininger, L.; Tosner, Z.; Uchman, M.; Reifarth, M.* Microscale Tattooing of Hydrogels and Cells: Benzoxaborole‐Driven Microcontact Printing (µCP) on Glycosylated Surfaces. Angew. Chem. Int. Ed.2025, 64, e202501759. https://doi.org/10.1002/anie.202501759.
(24) Pallab, N.; Sperlich, E.; Schenderlein, M.; Kruger‐Genge, A.; Li, J.; Zeininger, L.; Tosner, Z.; Uchman, M.; Reifarth,* M. Mikroskaliges Tätowieren von Hydrogelen Und Zellen: Benzoxaborolbasierter Mikrokontaktdruck (µCP) Auf Glykolisierte Oberflächen. Angew. Chem.2025, 137, e202501759 . https://doi.org/10.1002/ange.202501759.
(23) Leischner, U.; Reifarth, M.; Brill, M. S.; Schmitt, F.; Hoeppener, S.; Jess, D. U.; Brismar, H.; Schubert, U. S.; Heintzmann, R.* PRIAMOS: A Technique for Mixing Embedding Media for Freely Adjusting pH Value and Refractive Index (RI) for Optical Clearing (OC) of Whole Tissue Samples. J. Microsc. 2025, 300, 302–314. . https://doi.org/10.1111/jmi.70022.
(22) Reifarth, M.;* Sperling, M.; Grobe, R.; Akarsu, P.; Schmitt, F.; Schmette, M.; Tank, S.; Arndt, K. M.; Chiantia, S.; Hartlieb, M.; Böker, A.* Regioselective and Anisotropic Multi‐Patching of Small Microparticles via a Polymer Brush‐Assisted Microcontact Printing (µCP). Adv. Funct. Mater. 2025, 35, 2423495. https://doi.org/10.1002/adfm.202423495.
(21) Reifarth,* M. (Sub-)Microscale Patterning via Microcontact Printing (µCP): Recent Advances, Applications and Future Perspectives. Soft Matter2025, 21, 6658-6678.. https://doi.org/10.1039/D5SM00355E.
(20) Bekir, M.;* Schenderlein, M.; Ruickoldt, J.; Wendler, P.; Kohlbrecher, J.; Hoffmann, I.;* Reifarth, M.* A Photo-Switchable Surfactant Possessing a Spiropyran-Moiety in Its Backbone – Unravelling the Structure of Micelles with Small-Angle Neutron Scattering (SANS) and Transmission Electron Microscopy (TEM). Chem. Commun. 2025, 61, 5585-5588 . https://doi.org/10.1039/D5CC00577A.
2024
(19) Bekir, M.;* Gurke, J.; Reifarth, M.* Photoswitchable Surfactants–Are There Alternatives to Azobenzene‐Based Systems? ChemSystemsChem2024, 6, e202400026. https://doi.org/10.1002/syst.202400026.
(18) Müllers, Y.; Sadr, A. S.; Schenderlein, M.; Pallab, N.; Davari, M. D.;* Glebe, U.;* Reifarth, M.* Acrylate‐derived RAFT Polymers for Enzyme Hyperactivation – Boosting the Α‐Chymotrypsin Enzyme Activity Using Tailor‐Made Poly(2‐Carboxyethyl)Acrylate (PCEA). ChemCatChem2024, 16, e202301685.. https://doi.org/10.1002/cctc.202301685.
(17) Pallab, N.; Reinicke, S.; Gurke, J.; Rihm, R.; Kogikoski, S.; Hartlieb, M.; Reifarth, M.* Polymer Brush-Assisted Microcontact Printing: Using a Tailor-Made Polydimethylsiloxane (PDMS) Stamp for Precise Patterning of Rough Surfaces. Polym. Chem.2024, 15, 853-867. https://doi.org/10.1039/D3PY01036H.
2023
(16) Lehnen, A.; Hanke, S.; Schneider, M.; Radelof, C. M. L.; Perestrelo, J.; Reinicke, S.; Reifarth, M.; Taubert, A.; Arndt, K. M.; Hartlieb, M.* Modification of 3D‐Printed PLA Structures Using Photo‐Iniferter Polymerization: Toward On‐Demand Antimicrobial Water Filters. Macromol. Rapid Commun.2023, 44, 2300408. https://doi.org/10.1002/marc.202300408.
(15) Akarsu, P.; Reinicke, S.; Lehnen, A.-C.; Bekir, M.; Böker, A.;* Hartlieb, M.;* Reifarth, M.* Fabrication of Patchy Silica Microspheres with Tailor-Made Patch Functionality Using Photo-Iniferter Reversible-Addition-Fragmentation Chain-Transfer (PI-RAFT) Polymerization. Small2023. https://doi.org/10.1002/smll.202301761.
(14) Lehnen, A.-C.; Gurke, J.; Bapolisi, A. M.; Reifarth, M.; Bekir, M.; Hartlieb, M.* Xanthate-Supported Photo-Iniferter (XPI)-RAFT Polymerization: Facile and Rapid Access to Complex Macromolecules. Chem. Sci.2023, 14, 593–603. https://doi.org/10.1039/d2sc05197d.
2022
(13) Reifarth, M.;* Bekir, M.; Bapolisi, A. M.; Titov, E.; Nußhardt, F.; Nowaczyk, J.; Grigoriev, D.; Sharma, A.; Saalfrank, P.; Santer, S.; Hartlieb, M.; Böker, A.* A Dual pH- and Light-Responsive Spiropyran-Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angew. Chem. Int. Ed.2022, 61, e202114687. https://doi.org/10.1002/anie.202114687.
(12) Reifarth, M.;* Bekir, M.; Bapolisi, A. M.; Titov, E.; Nußhardt, F.; Nowaczyk, J.; Grigoriev, D.; Sharma, A.; Saalfrank, P.; Santer, S.; Hartlieb, M.; Böker, A.* Ein Dual-Responsives pH- Und Lichtschaltbares Tensid Mit Einer Spiropyran-Einheit: Untersuchungen Zum Schaltmechanismus Und Anwendung Zur Steuerung von Emulsionsstabilitaten. Angew. Chem. 2022, 134, e202114687. https://doi.org/10.1002/ange.202114687.
2021
(11) Akarsu, P.; Grobe, R.; Nowaczyk, J.; Hartlieb, M.; Reinicke, S.; Böker, A.;* Sperling, M.;* Reifarth, M.* Solid-Phase Microcontact Printing for Precise Patterning of Rough Surfaces: Using Polymer-Tethered Elastomeric Stamps for the Transfer of Reactive Silanes. ACS Appl. Polym. Mater.2021, 3, 2420–2431. https://doi.org/10.1021/acsapm.1c00024.
2020
(10) Laroque, S.; Reifarth, M.; Sperling, M.; Kersting, S.; Klopzig, S.; Budach, P.; Storsberg, J.; Hartlieb, M.* Impact of Multivalence and Self-Assembly in the Design of Polymeric Antimicrobial Peptide Mimics. ACS Appl. Mater. Interfaces2020, 12, 30052–30065. https://doi.org/10.1021/acsami.0c05944.
(9) Wang, X.; Sperling, M.; Reifarth, M.; Böker, A.* Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps. Small2020, 16, 1906721. https://doi.org/10.1002/smll.201906721.
2019
(8) Reifarth, M.; Müller, W.; Shkodra-Pula, B.; Gorls, H.; Schubert, U. S.; Heintzmann, R.;* Hoeppener, S.* Electron Density of Polymeric Nanoparticles Determined by Image Processing of Transmission Electron Micrographs: Insights into Heavy Metal Staining Processes. Part. Part. Syst. Charact.2019, 36, 1800324. https://doi.org/10.1002/ppsc.201800324.
(7) Sperling, M.; Reifarth, M.; Grobe, R.; Böker, A.* Tailoring Patches on Particles: A Modified Microcontact Printing Routine Using Polymer-Functionalised Stamps. Chem. Commun. 2019, 55, 10104–10107. https://doi.org/10.1039/c9cc03903a.
2018
(6) Reifarth, M.; Schubert, U. S.; Hoeppener, S.* Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. Adv. Biosyst. 2018, 2, 1700254. https://doi.org/10.1002/adbi.201700254.
(5) Trützschler, A.-K.; Bus, T.; Reifarth, M.; Brendel, J. C.; Hoeppener, S.; Traeger, A.;* Schubert, U. S.* Beyond Gene Transfection with Methacrylate-Based Polyplexes—The Influence of the Amino Substitution Pattern. Bioconjugate Chem. 2018, 29, 2181–2194. https://doi.org/10.1021/acs.bioconjchem.8b00074.
(4) Reifarth, M.; Hoeppener, S.;* Schubert, U. S. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymer-Based Nanoparticles. Adv. Mater. 2018, 30, 1703704. https://doi.org/10.1002/adma.201703704.
2017
(3) Reifarth, M.; Preußger, E.; Schubert, U. S.;* Heintzmann, R.;* Hoeppener, S.* Metal-Polymer Hybrid Nanoparticles for Correlative High-Resolution Light and Electron Microscopy. Part. Part. Syst. Charact. 2017, 34, 1700180. https://doi.org/10.1002/ppsc.201700180.
(2) Bus, T.; Englert, C.; Reifarth, M.; Borchers, P.; Hartlieb, M.; Vollrath, A.; Hoeppener, S.; Traeger, A.;* Schubert, U. S.* 3rd Generation Poly(Ethylene Imine)s for Gene Delivery. J. Mater. Chem. B2017, 5, 1258–1274. https://doi.org/10.1039/c6tb02592g.
2016
(1) Reifarth, M.; Pretzel, D.; Schubert, S.; Weber, C.; Heintzmann, R.;* Hoeppener, S.;* Schubert, U. S.* Cellular Uptake of PLA Nanoparticles Studied by Light and Electron Microscopy: Synthesis, Characterization and Biocompatibility Studies Using an Iridium(III) Complex as Correlative Label. Chem. Commun.2016, 52, 4361–4364. https://doi.org/10.1039/c5cc09884j.
Non peer-reviewed publications
2025
Pallab, N.; Schmette, M.; Jr., S. K.; Hettrich, K.; Schenderlein, M.; Reifarth, M.* Microscale Structuring of Cellulose Thin Films Using a Polymer Brush-Assisted Microcontact Printing (PolyBrushMiC) Routine, ChemRXiv 2025. https://doi.org/10.26434/chemrxiv-2025-qlvk4.