Erosion and Sediment Transport – Measurement and Modelling from Headwaters to large Catchments: A Research Project to reduce Reservoir Sedimentation in semi-arid Environments

A. Bronstert (1), E.N. Müller (1), J.C. de Araujo (2), R.J. Batalla (3,4), T. Francke (1), A. Güntner (5), G. Mamede (1,2)

GeoForschungsZentrum Potsdam, Germany (enmue@uni-potsdam.de / Phone: 0049-331-977-2975)

In dryland environments, the water supply depends strongly on the study areas.

Study Areas

Name: Esla/Isábena catchment
Catchment area: 1231 km²
Climate: Mediterranean-mountainous
Precipitation: 600 - 1200 mm

Name: Ribera Salada catchment
Catchment area: 225 km²
Climate: Mediterranean-mountainous
Precipitation: 700 - 800 mm

Name: Bengue catchment
Catchment area: 933 km²
Climate: Semiarid
Precipitation: 430 mm, highly variable and seasonal

Bedload Modelling in the Ribera Salada

3 bedload models

1. Riverbed gradiation at Ribera Salada

- Methods:
 - Water routing
 - Sediment transport

2. Middle-term sediment yield of badlands

- Motivation: Investigation of the sediment transfer and storage processes by quantifying the total amount and its spatial distribution of fine sediments in the Isabena riverbed.
- Methods:
 - Survey of colluvium
 - Monitoring of hillside erosion

3. Temporal estimation of sediment storage at specific cross-sections in the Isabena River

- Methods:
 - Complete WASA update
 - Analysis of temporary sediment storage (Esla/Isábena River)
 - Analysis of measured bedload data (Ribera Salada)
 - Testing / Scenario studies (Esla/Ribera Salada, Bengue)
 - Assesment of vertical distribution of suspended sediment concentration close to the dam (Barasona Reservoir)
 - Analysis of the effects of small reservoirs on water and sediment budget in semiarid areas (Bengue)

Bedload transport in reservoirs

- Motivation: The water level in reservoirs is the output of the hydrological system and the input of the sediment transport pathways.
- Methods:
 - Water routing
 - Sediment transport

- Water routing:
 - Reservoir routing: weighting factor calculated from the elevation of the cross section
 - River routing: based on the standard step method for a gradually varied flow

- Sediment transport:
 - Non-equilibrium sediment transport equation as proposed by Han (1980)
 - Sediment carrying capacity computed by four different equations

- Formulas:
 - 0.004 to 100
 - 0.001 to 100
 - 0.001 to 100
 - 0.040 to 100

- d) Bed elevation changes
 - Deposition: used of a weighting factor, computed as a ratio between the water depth represented by each point and the maximum water depth at the cross section
 - Erosion: symmetric distribution of bed thickness at the active layer is assumed adapted from the equilibrium channel width model proposed by Futter & Lane (1983)

Water and sediment transport in reservoirs

Bathymetric Surveys of Barasona Reservoir

- Motivation: Analysis of sediment deposition in Barasona reservoir
- Method:
 - Bathymetric survey

Bathymetric surveys of the Barasona reservoir (a) In 1996; (b) In 1993; (c) In 1998; and (d) In 2006

OUTLOOK

- Complete WASA update
- Analysis of temporary sediment storage (Esla/Isábena River)
- Analysis of measured bedload data (Ribera Salada)
- Testing / Scenario studies (Esla/Ribera Salada, Bengue)
- Assessment of vertical distribution of suspended sediment concentration close to the dam (Barasona Reservoir)
- Analysis of the effects of small reservoirs on water and sediment budget in semiarid areas (Bengue)

RELATED PUBLICATIONS

Acknowledgements: This research was carried out within the DFG priority research project "Sediment Storage from headwaters to large catchments: Measurement and Modelling" funded by the Deutsche Forschungsgemeinschaft (2004).