BLATT 5 HF-RECHNUNGEN IN DER PRAXIS

AUFGABE 1: Der LCAO-MO-Ansatz

In der Praxis werden die elektronischen Wellenfunktionen $\psi_n(\underline{r})$ (Molekülorbitale) in einer endlichen Basis aus Funktionen $\{\phi_\mu(\underline{r})\}$ (Atomorbitale) entwickelt (entspricht dem LCAO-MO-Ansatz). Betrachten Sie hier nur den Raumanteil $\psi_n(\underline{r})$ eines Spinorbitals $\chi_n(\underline{r})$.

- (a) Geben Sie die Basisentwicklung des MOs $\psi_n(\underline{r})$ explizit im Bezug auf die orthonormale AO-Basis $\{\phi_n(\underline{r})\}$ an.
- (b) Berechnen Sie die Koeffizienten $\{c_{\mu n}\}$ der Basisentwicklung aus (a). Nutzen Sie dazu die Orthonormalität der AO-Basis.
- (c) Geben Sie den Erwartungswert des Einelektronenoperators \hat{h}

$$\langle \psi_n | \hat{h} | \psi_n \rangle = \int \psi_n^{\star}(\underline{r}) \, \hat{h} \, \psi_n(\underline{r}) d\underline{r} \tag{1}$$

in der AO-Basis $\{\phi_{\mu}(\underline{r})\}$ an.

(Hinweis: Verwenden Sie die Entwicklung $\psi_n^{\star}(\underline{r}) = \sum_{\nu} c_{\nu n}^{\star} \phi_{\nu}^{\star}(\underline{r})$)

AUFGABE 2: Hartree-Fock Roothaan-Gleichungen I (Orthogonalisierung)

Die Darstellung der Hartree-Fock-Gleichungen in einer endlichen Basis führt zu einem verallgemeinerten Eigenwertproblem der Form

$$FC = SC\epsilon. (2)$$

Dieses lässt sich in ein normales Eigenwertproblem transformieren, indem man die Basis mit einer geeigneten unitären Transformationsmatrix \mathbf{X} orthogonalisiert, d.h., indem man die hermitesche Überlappmatrix \mathbf{S} diagonalisiert.

$$\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X} = 1\tag{3}$$

- (a) Zeigen Sie, dass die inverse Überlappmatrix S^{-1} ebenfalls hermitesch ist.
- (b) Zeigen Sie, dass die hermitesche Matrix $\mathbf{X} = \mathbf{S}^{-1/2}$ Gl.(2) erfüllt.
- (c) Zeigen Sie, dass die Transformation der Koeffizientenmatrix ${\bf C}$ mit ${\bf X}^\dagger$ zu einem Standard-Eigenwertproblem der Form

$$\tilde{\mathbf{F}}\tilde{\mathbf{C}} = \tilde{\mathbf{C}}\boldsymbol{\epsilon}. \tag{4}$$

führt. Welchen Einfluß hat die Diagonalisierung der Basis auf die HF-Eigenwerte?

AUFGABE 3: Hartree-Fock Roothaan-Gleichungen II (Basissätze)

Betrachtet sei das H_2O -Molekül, berechnet mit Hilfe des LCAO-MO-Restricted-Hartree-Fock-Modells (Hartree-Fock-Roothaan-Gleichungen).

- (a) Wie groß ist K (Anzahl der kontrahierten Basisfunktionen) bei Verwendung der folgenden Basissätze: (i) STO-3G, (ii) STO-6G, (iii) 6-31G, (iv) 6-311G**?
- (b) Wie groß ist P (Anzahl der primitiven Basisfunktionen) bei Verwendung der obigen Basissätze?
- (c) Wie viele besetzte und wie viele unbesetzte Molekülorbitale erhält man jeweils?
- (d) Was sind "diffuse" Basisfunktionen, was "Polarisationsfunktionen"? Wofür braucht man diese?
- (e) Was versteht man unter dem Basissatzfehler? Was unter Korrelationsenergie?