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Auffrischung Theoretische Chemie I

Aufgabe 1: Teilchen im Kasten

Ein Elektron bewege sich in einem eindimensionalen, unendlich hohen Potentialtopf der
Länge L = 1 nm:

V (x) =

{
0, falls 0 ≤ x ≤ L

∞, sonst

1. Stellen Sie die nichtrelativistische, zeitunabhängige Schrödingergleichung auf und
formulieren Sie die Randbedingungen.

2. Berechnen Sie die diskreten Energieeigenwerte und die zugehörigen Eigenfunktionen.

a) Zeichnen Sie die Eigenfunktionen für n = 1− 4.

b) Wie groß ist die Energie des niedrigsten Eigenzustands (in eV), den das Elek-
tron besetzen kann? Warum ist die Quantenzahl n = 0 nicht erlaubt?

c) Wie groß ist die Wellenlänge λ der zugehörigen Wellenfunktion? Welche Ge-
schwindigkeit müsste ein freies Elektron besitzen, um eine de Broglie Wellen-
länge von gleicher Größe zu haben?

d) Durch Absorption von Licht werde ein elektronischer Übergang vom Grund-
in den ersten angeregten Zustand erzwungen. Welche Wellenlänge hat das
absorbierte Licht?

3. Das Elektron befinde sich im Zustand mit der Quantenzahl n = 4. Wie groß ist die
Wahrscheinlichkeit es zwischen x = 0 und x = L/2 zu finden?

(Elektronenmasse:me = 9.11×10−31 kg, Planck Konstante: ~ = h/2π = 1.055×10−34 Js,
Lichtgeschwindigkeit c = 2.997× 108 m/s,

∫
sin2(αx)dx = 1

2
x− 1

4α
sin(2αx))

Aufgabe 2: Harmonischer Oszillator

Ein schwingendes CO-Molekül kann als harmonischer Oszillator mit der reduzierten Mas-
se µ = mCmO

mC+mO
idealisiert werden.

1. Stellen Sie die nichtrelativistische, zeitunabhängige Schrödingergleichung für den
eindimensionalen harmonischen Oszillator auf.

2. Worin unterscheidet sich die quantenmechanische Beschreibung der Energie des
harmonischen Oszillators von der klassischen?

3. Die harmonische Kraftkonstante von CO sei D = 1870 N/m. Wie groß ist die
Energie des niedrigsten Schwingungszustandes v = 0 (in eV)?

4. Berechnen Sie die harmonische Schwingungsfrequenz (in s−1) und die Wellenzahl
(in cm−1) für den in einem Infrarotspektrum messbaren Übergang von v = 0 nach
v = 1.



5. Der Wirklichkeit etwas näher kommt die Beschreibung des CO-Moleküls als anhar-
monischer Oszillator, z.B. durch das Morse-Potential. Welche Auswirkungen hat
die Anharmonizität auf die Frequenz des Übergangs von v nach v + 1?

(Atommassen: mC = 19.93× 10−27 kg, mO = 26.56× 10−27 kg)

Aufgabe 3: Bohr’sches Atommodell, Wasserstoffatom

Das Wasserstoffatom ist das einzige chemisch relevante System, für welches eine exakte,
analytische Lösung der nicht-relativistischen Schrödingergleichung existiert.

1. Stellen Sie die nichtrelativistische, zeitunabhängige Schrödingergleichung für das
Wasserstoffatom in sphärischen Koordinaten auf und skizzieren Sie kurz den Lö-
sungsansatz.

2. Geben Sie die Energien der im H-Atom erlaubten Eigenzustände des Elektrons an.
Wie ist die Rydberg-Energie definiert und wie groß ist sie (in eV)?

3. Berechnen Sie die Frequenz eines emitierten Lichtquants beim Übergang vom Ei-
genzustand m in den Eigenzustand n. Was sind die Lyman- und Balmer-Serie?

4. Wie ändern sich die Energien wenn man statt dem H-Atom das das Li2+-Ion be-
trachtet?

5. Was ist ein Rydberg-Zustand?

6. Wieviele radiale Knoten besitzen die folgenden Orbitale des H-Atoms:
(a) 2px

(b) 3pz

(c) 3dxy

(d) 5dx2−y2?

Aufgabe 4: Operatoren und Kommutatoren

1. Definieren Sie den Begriff “Observable” und zeigen Sie, dass Observablen durch
Erwartungswerte hermitescher Operatoren (Â = Â†) dargestellt werden.

2. Beweisen Sie die folgende Kommutatorrelation:

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ

3. Berechnen Sie [x̂, p̂] für p̂ = ~
i
d
dx
. Sind die zu x̂ und p̂ gehörigen Observablen

gleichzeitig scharf messbar?

4. Der lineare Operator Â erfülle die Eigenwertgleichung

Â|a〉 = a|a〉 .

Der inverse Operator Â−1 existiere. Zeigen Sie, dass er denselben Eigenzustand
besitzt und berechnen Sie den zugehörigen Eigenwert.

Hinweis: Das Skript zur Vorlesung Theoretische Chemie I könnte sich bei der Bearbei-
tung dieses Übungsblattes als sehr hilfreich erweisen.


