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Abstract. We study the problem of detecting malware on client com-
puters based on the analysis of HTTPS traffic. Here, malware has to be
detected based on the host address, timestamps, and data volume infor-
mation of the computer’s network traffic. We develop a scalable protocol
that allows us to collect network flows of known malicious and benign ap-
plications as training data and derive a malware-detection method based
on a neural embedding of domain names and a long short-term memory
network that processes network flows. We study the method’s ability to
detect new malware in a large-scale empirical study.

1 Introduction

Malware violates users’ privacy, harvests passwords, can encrypt users’ files for
ransom, is used to commit click-fraud, and to promote political agendas by
popularizing specific content in social media [1]. Several different types of analysis
are being used to detect malware.

The analysis of an organization’s network traffic complements decentralized
antivirus software that runs on client computers. It allows organizations to en-
force a security policy consistently throughout an entire network and to minimize
the management overhead. This approach makes it possible to encapsulate mal-
ware detection into network devices or cloud services. Network-traffic analysis
can help to detect polymorphic malware [2] as well as new and as-yet unknown
malware based on network-traffic patterns [3, 4].

When the URL string of HTTP requests is not encrypted, one can extract a
wide range of features from it on which the detection of malicious traffic can be
based [5]. However, the analysis of the HTTP payload can easily be prevented by
using the encrypted HTTPS protocol. Google, Facebook, LinkedIn, and many
other popular sites encrypt their network traffic by default. In June 2016, an
estimated 45% (and growing) fraction of all browser page loads use HTTPS [6].
In order to continue to have an impact, traffic analysis has to work with HTTPS
traffic.

On the application layer, HTTPS uses the HTTP protocol, but all messages
are encrypted via the Transport Layer Security (TLS) protocol or its predecessor,



the Secure Sockets Layer (SSL) protocol. An observer can see the client and host
IP addresses and ports, and the timestamps and data volume of packets. Network
devices aggregate TCP/IP packets exchanged between a pair of IP addresses and
ports into a network flow for which address, timing, and data-volume information
are saved to a log file. Most of the time, an observer can also see the unencrypted
host domain name; we will discuss the underlying mechanisms in Section 3. The
HTTP payload, including the HTTP header fields and the URL, are encrypted.
Therefore, malware detection has to be based on properties of the host-domain
names that a client contacts, and on statistical patterns in the timing and data-
volumes of the sequence of network flows from and to that client. We will pursue
this goal in this paper.

In order to extract features from the domain name, we explore a low-
dimensional neural embedding [7] of the domain-name string. As a baseline,
we will study manually-engineered domain features [5]. In order to model statis-
tical patterns in the sequence of network flows, we will employ long short-term
memory (LSTM) networks [8]. LSTMs are a neural model for sequential data
that account for long-term dependencies in information sequences. As reference
method, we will explore random forests.

The effectiveness of any machine-learning approach crucially depends on the
availability of large amounts of labeled training data. However, obtaining ground-
truth class labels for HTTPS traffic is a difficult problem—when the HTTP
payload is encrypted, one generally cannot determine whether it originates from
malware by analyzing the network traffic in isolation. We will make use of a VPN
client that is able to observe the executable files that use the network interface
to send TCP/IP packets. We deploy this VPN client to a large number of client
computers. This allows us to observe the associations between executable files
and network flows on a large number of client computers. We use antivirus tools
to determine, in retrospect, which network flows in our training and evaluation
data originate from malware.

This paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 describes our application environment and our data collection. Section
4 describes the problem setting and Section 5 describes our method. Section 6
presents experiments; Section 7 concludes.

2 Related Work

Prior work on the analysis of HTTP logs [9] has addressed the problems of identi-
fying command-and-control servers [10], unsupervised detection of malware [11],
and supervised detection of malware using domain blacklists as labels [12, 5].
HTTP log files contain the full URL string, from which a wide array of informa-
tive features can be extracted [5]. In addition, each HTTP log file entry corre-
sponds to a single HTTP request which also makes the timing and data volume
information more informative than in the case of HTTPS, where the networking
equipment cannot identify the boundaries between requests that pass through
the same TLS/SSL tunnel.



Prior work on HTTPS logs has aimed at identifying the application layer pro-
tocol [13–15], identifying applications that are hosted by web servers [16], and
identifying servers that are contacted by malware [17]. Some methods process
the complete sequence of TCP packets which is not usually recorded by avail-
able network devices. Lokoč et al. [17] use similar features to the ones that we
use—that can easily be recorded for HTTPS traffic—and a similar method for
generating labeled data based on a multitude of antivirus tools. However, they
focus on the problem of identifying servers that are contacted by malware.

Prior work on neural networks for network-flow analysis [18] has worked with
labels for client computers (infected and not infected)—which leads to a multi-
instance learning problem. By contrast, our operating environment allows us to
observe the association between flows and executable files. Prasse et al. [19] have
explored HTTPS analysis using random forests in a preliminary report. We have
presented some of the results of this paper to a computer-security audience in a
prior workshop paper [20].

LSTM networks [8] are widely used for translation, speech recognition and
other natural-language processing tasks. Their ability to process sequential input
and to account for long-term dependencies makes them appealing for the analysis
of network flows. In computer security, their use has previously been explored
for intrusion detection [21].

3 Operating Environment

This section describes our application and data-collection environment. In or-
der to protect all computers of an organization, a Cloud Web Security (CWS)
service provides an interface between the organization’s private network and
the internet. Client computers establish a VPN connection to the CWS service.
The service enforces the organization’s security policy; it can block HTTP and
HTTPS requests based on the host domain and on the organization’s acceptable-
use policy. The CWS service can issue warnings when it has detected malware
on a client. Since administrators have to process the malware warnings, the
proportion of false alarms among all issued warnings has to be small.

The CWS service aggregates all TCP/IP packets between a single client com-
puter, client port, host IP address, and host port that result from a single HTTP
request or from the TLS/SSL tunnel of an HTTPS request into a network flow.
This information is available for network devices that support the IPFIX [22]
and NetFlow [23] formats. For each network flow, a line is written into the log file
that includes data volume, timestamp, domain name, and duration information.
For unencrypted HTTP traffic, this line also contains the full URL string. For
HTTPS traffic, it includes the domain name—if that name can be observed via
one of the following mechanisms.

Clients that use the Server Name Indication protocol extension (SNI) pub-
lish the unencrypted host-domain name when they establish the connection. SNI
is widely used because it is necessary to verify certificates of servers that host
multiple domains, as most web servers do. When the network uses a transparent



DNS proxy [24], this server caches DNS request-response pairs and can map IP
addresses to previously resolved domain names. To further improve the avail-
ability of host-domain names the CWS could—but does not currently—employ
passive DNS replication [25] and build a look-up table of observed DNS request-
response pairs. The resulting sequence of log-file lines serves as input to the
malware-detection model.

3.1 Data Collection

Since the proportion of HTTP versus HTTPS traffic declines continuously, we
want to study malware detection in encrypted traffic. In our data collection, we
therefore discard the URLs of HTTP requests from the log files, which leaves us
only with information that would still be visible if all traffic were encrypted.

In order to obtain training and evaluation data, we have to label network
traffic by whether it originated from malicious or benign applications. The CWS
service can be configured to inspect HTTPS connections, provided that the ser-
vice’s root certificate has been installed as a trusted certificate on all client
computers. This allows the CWS service to act as a man-in-the-middle between
client and host, where it can decrypt, inspect, and re-encrypt HTTPS requests.
This inspection can only be carried out for a small proportion of clients; we rely
on it to collect training data. However, the deployed malware-detection model
only uses observable features of HTTPS traffic and therefore does not require
this interception. The VPN client that runs on the client computer has access to
the process table and the network interface. The VPN client identifies applica-
tions by means of a SHA hash code of their executable file, and can be configured
to communicate the association between HTTP/HTTPS traffic and applications
to the CWS server. This allows us to augment all network flows of clients that
operate with this configuration with a hash key of the application that has sent
and received the network traffic. It also allows us to observe host-domain names
even when SNI and transparent DNS proxy servers are not used. We configure
all VPN clients of a number of participating organizations accordingly.

We label the traffic in retrospect, after the malware status of the files has been
established by signature-based antivirus tools. Virustotal.com is a web service
that allows users to upload executable files or hash keys of executable files. The
files are run through 60 antivirus solutions, and the results of this analysis are
returned. We upload the hash keys of all executable files that have generated
HTTP/HTTPS traffic to Virustotal; we label files as benign when the hash is
known—that is, when the file has been run through the scanning tools—and
none of the 60 scanning tools recognize the file as malicious. When three or
more tools recognize the file as malicious, we label it as malicious. When only
one or two virus scanners recognize the file as a virus, we consider the malware
status of the file uncertain; we do not use uncertain files for training and skip
them during evaluation. In order to limit its memory use, Virustotal removes
hashes of benign files from its database after some time. Therefore, we label all
files whose hashes are unknown to Virustotal as benign. We then label all traffic



that has been generated by malicious executables as malicious, and all traffic of
benign files as benign.

We collect three different data sets; we will refer to them as current data,
future data, and an independent set of training data for domain-name features,
based on the roles which these data sets will play in our experiments. The current
data contains the complete HTTP and HTTPS traffic of 171 small to large
computer networks that use the Cisco AnyConnect Secure Mobility Solution
for a period of 5 days in July 2016. This data set contains 44,348,879 flows
of 133,437 distinct clients. The future data contains the complete HTTP and
HTTPS traffic of 169 small to large different computer networks that use the
Cisco AnyConnect Secure Mobility Solution for a period of 8 days in September
2016. The data set contains 149,005,149 flows of 177,738 distinct clients. The
training data for domain-name features contains the HTTPS traffic of 21 small
to large computer networks, collected over 14 days between February and April
2016. All data sets have been anonymized—information about organizations
and user names have been replaced by random keys—and full URLs of HTTP
requests have been removed.

3.2 Quantitative Analysis of the Data

We query the malware status of all observed hash keys in the current and future
data sets from Virustotal after the collection of the respective data set has been
completed, and reiterate the queries to Virustotal in February 2017. We study
the stability of this labeling procedure. Table 1 shows that over this period of
five months for the future data and seven months for the current data, 10% of all
previously uncertain files (classified as malware by one or two antivirus tools)
change their status to benign, while 3.5% change their status to malicious. From
all initially unknown files, 2.3% become known as benign while 0.2% become
known as malicious. From the files initially labeled as benign, 1.5% become
uncertain and only 0.07% become known as malicious. Likewise, only 0.16%
of all initially malicious files change their label to benign. We use the labels
obtained in February 2017 in the following. We can conclude that once a file
has been labeled as benign or malicious by at least 3 antivirus tools, it is very
unlikely that this classification will later be reversed.

The current data contains 20,130 unique hashes, 350,220 malicious and
43,150,605 benign flows; the future data 27,263 unique hashes, 955,037 mali-
cious and 142,592,850 benign flows. Table 2 enumerates the types and frequency
of different types of malware families, according to the public classification of
antivirus vendors. A large proportion of malware files is classified as potentially
unwanted applications (PUAs). PUAs are usually bundled to freeware or share-
ware applications; depending on how a distributor chooses to employ these pro-
grams, they can change the browser settings and starting page, install tools bars
and browser extensions, display advertisements, and can also reveal passwords
to the attacker. They typically cannot be uninstalled without a virus removal
tool or detailed technical background knowledge.



Table 1. Virustotal malware status confusion matrix

Status July/September 2016

uncertain 6,507 8 746 260
unknown 61 17,371 411 38
benign 949 38 58,899 40
malicious 150 0 8 4,781

uncertain unknown benign malicious
Status February 2017

Table 2. Malware families

Malware family Type Variations

dealply adware 506

softcnapp adware, PUA 119

crossrider adware, PUA 98

elex adware, PUA 86

opencandy adware, PUA 57

conduit adware, spyware, PUA 56

browsefox PUA 52

speedingupmypc PUA 29

kraddare adware, PUA 28

installcore adware, PUA 27

mobogenie PUA 26

pullupdate PUA 25

iobit downloader adware, PUA 24

asparnet trojan, ransomware 24

4 Client Malware Detection Problem

We will now establish the malware-detection problem setting. Our goal is to flag
client computers that are hosting malware. Client computers are identified by a
(local) IP address and a VPN user name.

For each interval of 24 hours, we count every client computer that establishes
at least one network connection as a separate classification instance; a client
that is active on multiple days constitutes multiple classification instances. Each
classification instance has the shape of a sequence x1, . . . , xT of network flows
from and to a particular client on a particular day. This sequence generally blends
the network flows of multiple applications that run on the client computer. When
at least one malicious application generates any network traffic throughout a day,
we label that instance as positive; when at least one benign application but no
malicious application generates traffic, the instance is negative.

For each classification instance, malware detection model f has to decide
whether to raise an alarm. The model processes a sequence x1, . . . , xT of network
flows from and to a particular client in an online fashion and raises an alarm if
the malware-detection score f(x1, . . . , xt) exceeds some threshold τ at any time



t during the day; in this case, the instance counts as a (true or false) positive.
In each 24-hour interval, model f with threshold τ will detect some proportion
of malware-infected clients, and may raise some false alarms. The trade-off be-
tween the number of detections and false alarms can be controlled by adjusting
threshold τ . Increasing the threshold decreases the number of detections as well
as the number of false alarms.

We will measure precision-recall curves because they are most directly linked
to the merit of a malware detection method from an application point of view.
However, since precision recall curves are not invariant in the class ratio, we will
additionally use ROC curves to compare the performance of classifiers on data
sets with varying class ratios.

We will measure the following performance indicators.

1. Recall R = nTP

nTP+nFN
is the proportion of malicious instances that have been

detected, relative to all (detected and undetected) malicious instances.
2. Precision P = nTP

nTP+nFP
is the proportion of malicious instances that have

been detected, relative to all (malicious and benign) instances that have been
flagged. Note that the absolute number of false alarms equals (1− P ) times
the absolute number of alarms; a high precision implies that the number of
false alarms is small and the detection method is practical.

3. The recall at a specific precision, R@x%P , quantifies the proportion of ma-
licious instances that are detected when the threshold is adjusted such that
at most 1− x% of all alarms are false alarms.

4. The precision-recall curve of decision function f shows the possible trade-offs
that can be achieved by varying decision threshold τ . The precision recall
curve of a fixed decision function will deteriorate if the class ratio shifts
further toward the negative class.

5. The false-positive rate RFP = nFP

nFP+nTN
is the proportion of benign software

that is classified as malicious. Note that the absolute number of alarms equals
RFP times the number of benign instances. Since the number of benign
instances is typically huge, a seemingly small false-positive rate does not
necessarily imply that a detection method is practical.

6. The ROC curve displays the possible tradeoffs between false-positive rate and
recall that can be achieved by varying decision threshold τ . It is invariant in
the class ratio but it conveys no information about the proportion of alarms
that are in fact false alarms. To visualize the decision function behavior for
small false-positive rates, we use a logarithmic x-axis.

7. The time to detection measures the interval from the first network flow sent
by a malicious application on a given day to its detection.

Note the difference between precision and the false-positive rate—the risk that
a benign file is mistakenly classified as malware. For instance, at a false-positive
rate of 10%, the expected number of false alarms equals 10% of the number of
benign instances; hence, false alarms would by far outnumber actual malware
detections. By contrast, at a precision of 90%, only 10% of all alarms would be
false alarms.
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Fig. 1. Continuous bag-of-words architecture

Training data for model f consists of labeled sequences S =⋃n
i=1{((xi1, yi1), . . . , (xiTi

, yiTi
)} in which each flow xit is labeled by whether

it has been sent or received by a malicious (yit = +1) or benign (yit = −1)
application.

5 Network-Flow Analysis

This section presents our method that flags malware-infected client computers
based on their network traffic.

5.1 Flow Features

The detection model processes sequences of flows x1, . . . , xT sent to or received
by one particular client computer. This sequence is a blend of the network traffic
of multiple applications. When a computer hosts malware, benign applications
will generally interfere with any patterns in the malware’s communication. For
each flow, a client identifier (IP address and VPN user name), host address, ports,
a timestamp, inbound and outbound data volume, and a duration are observable.
From each flow xt, we extract a vector φ(xt) that includes the log-transformed
duration, log-transformed numbers of sent and received bytes, duration, and the
time gap from the preceding flows.

5.2 Domain-Name Features

Each flow contains an unencrypted host IP address. For most HTTPS connection
requests, the host-domain name is visible. Otherwise, the host domain name
string consists of a numeric IP address. We explore several types of features that
can be extracted from the host-domain name.



Engineered features Franc et al. [12] develop a comprehensive set of 60 fea-
tures of URL strings for malware detection in unencrypted HTTP traffic—here,
the entire URL is visible to third parties. Their features include the ratio of
vowel changes, the maximum occurrence ratio of individual characters for the
domain and subdomain, the maximum length of substrings without vowels, the
presence of non-base-64 characters, the ratio of non-letter characters, and many
other characteristics. We extract the vector of these engineered domain-name
features for all domains.

Character n-gram features Character n-gram features decompose the do-
main string into sets of overlapping substrings; for instance, “example.com” is
composed of the 3-grams “exa”, “xam”, “amp”, . . . , “.co”, and “com”. The
number of n-grams that occur in URLs grows almost exponentially in n; in our
data, there are 1,583 character 2-grams, 54,436 character 3-grams, and 1,243,285
character 4-grams. If we added all character 3-gram features to the feature repre-
sentation φ(xt) of a flow, then the total number of features of an entire sequence
of T flows would impose a heavy computational burden, and cause overfitting of
the malware-detection model. In our experiments, we therefore explore character
2-gram features.

Neural domain-name features We condense the character n-grams by means
of a neural embedding. Neural language models [7] derive low-dimensional,
continuous-state representations of words which have the property that words
which tend to appear in similar contexts have similar representations. Here,
“words” are the overlapping character n-grams that constitute a domain name.
We apply neural embeddings with the goal of finding a representation such that
substrings that tend to co-occur in URL strings have a similar representation.

We use the continuous bag-of-words architecture illustrated in Figure 1. The
input to the network consists of character n-grams that are one-hot coded as a
binary vector in which each dimension represents an n-gram; Figure 1 illustrates
the case of n = 3. The input layer is fully connected to a hidden layer; we find
that 100 hidden units give the best experimental results. The same weight matrix
is applied to all input character n-grams. The activation of the hidden units is
the vector-space representation of the input n-gram of characters. In order to
infer the vector-space representation of an entire domain-name, an “averaging
layer” averages the hidden-unit activations of all its character n-grams.

Neural language models are trained to complete an initial part of a sentence,
which forces the network to find a vector-space representation that allows to
“guess” a word’s context from its vector-space representation. The “natural”
reading order of a domain string is from the right to the left, because the domain
ends with the most general part and starts with the most specific subdomain.
Therefore, we use the preceding character n-gram, one-hot coded, as training
target.

We train the neural language model using all domain names in our training
data for domain-name features, and the 500,000 domains that have the highest



web traffic according to alexa.com. For each URL and each position of the sliding
window, we perform a back-propagation update step using the character n-gram
that immediately precedes the input window as prediction target. We use the
word2vec software package [26].

5.3 Client Classifier

We develop a client classifier based on long-short term memory networks
(LSTMs) and, as reference method, a classifier based on random forests. LSTMs
process input sequences iteratively. Each LSTM unit has a memory cell which
allows it to store results of inferences; the unit may refer to this memory cell in
later time steps. This allows LSTMs to account for long-term dependencies in
sequential input.

Both classifiers split each client’s traffic into sequences of 10 flows—for the
LSTM, a fixed upper-bound on the sequence length is not necessary in theory,
but it allows for more efficient training. In preliminary experiments, we have
observed the performance of both LSTMs and random forests to deteriorate
with longer sequences. After 10 flows x1, . . . , x10 have been observed for a client,
the sequence is processed by the neural network. The feature representation of
each flow (duration, bytes sent and received, and the neural host domain-name
representation) is processed sequentially by a layer of 32 LSTM units. After
processing the input sequence, the LSTM layer passes its output to a layer of
128 cells with ReLU activation function, which is connected to two softmax cells
whose activation represents the decision-function scores of the classes malicious
and benign. The softmax layer is trained with 50% dropout regularization.

During training, the target label for a sequence of 10 flows is positive if at
least one of the 10 flows originates from a malicious application. At application
time, the overall decision-function value f(x1, . . . , xT ) for the client’s full traffic
over a 24-hour interval that is compared against threshold τ is the maximum
activation of the positive output cell over all adjacent sequences of 10 flows.

For the random-forest classifier, the feature representation of 10 flows is
stacked into a feature vector Φ(x1, . . . , x10) = [φ(x1) . . . φ(x10)]> which serves
as input to the random-forest classifier. At training time, the target label of
a sequence is positive if at least one flow originates from a malicious applica-
tion, and at application time the decision-function value of the random forest is
maximized over all 10-flow sequences.

6 Experiments

We will first study the capability of the neural domain-name features to dis-
criminate between benign and malicious domains. We will then explore the con-
tribution of different types of features to malware detection, and the relative
performance of LSTMs versus random forests. We will study the classifiers’ abil-
ity to detect malware in current and future data, and will investigate how this
performance varies across known and unknown malware families.



Table 3. Domain classification and feature types

Feature type R@70%P R@80%P R@90%P

neural 0.84 0.79 0.73

char 2-grams 0.83 0.76 0.62

engineered 0.68 0.36 0.0

neural+engineered 0.75 0.64 0.24

6.1 Classification of Host Domains

In our first experiment, we investigate the types of domain-name features with
respect to their ability to distinguish between domains that are contacted by
benign and domains that are contacted by malicious applications. In this ex-
periment, domains serve as classification instances; all domains that are con-
tacted more often by malicious than by benign software are positive instances,
and all other domains are negative instances. In our training data for domain
features, there are 860,268 negative (benign) and 1,927 positive (malicious)
domains. A total of 3,490 domains are contacted by both malware and be-
nign applications; many of them are likely used for malicious purposes (e.g.,
“https://r8—sn-4g57km7e.googlevideo.com/”, “https://s.xp1.ru4.com”), while
others are standard services (“maps.google.com”, “public-api.wordpress.com”).
Malware frequently sends requests to legitimate services and uses URL forward-
ing techniques to reach the actual recipient domain. For 90,445 of the domains,
only the IP address string is available.

We infer engineered domain-name features, character 2-grams, and the
vector-space representation of each domain string using the neural language
model, as described in Section 5.2. We use 75% of the domains for training and
25% of the domains for testing; no domain is in both the training and the test
data. We train a random forest classifier to discriminate positive from negative
instances. Table 3 shows precision-recall trade-offs for the different set of fea-
ture types. We find that a parameter combination of n = 6 (input character
6-grams), m = 4 (during training, the vector-space representation of 4 adjacent
character 6-grams is averaged) and k = 100 (the vector-space representation of
a domain name has 100 dimensions) works best. Comparing the neural domain
features to the raw character 2-gram and the 60 engineered features in Table 3,
we find that the neural features outperform both baselines. A combination of
neural and engineered features performs worse than the neural features alone,
which indicates that the engineered features inflate the feature space while not
adding a substantial amount of additional information.

In order to analyze the domain-name classifier in depth, we look at domain-
names that achieve the highest and lowest score from the random-forest classifier
that uses the neural domain features. We find that a wide range of domains re-
ceive a decision-function value of 0 (confidently benign). These lowest-scoring
domains include small and mid-size enterprises, blogs on various topics, univer-
sity department homepages, games websites, a number of Google subdomains,
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Fig. 2. Precision-recall curve for malware detection on current data. Error bars indicate
standard errors.

governmental agencies; sites that can perhaps best be described as “random
web sites”. Table 4 shows the highest-scoring domains. They include numeric
IP addresses, cloud services, subdomains of the YouTube and Facebook content
delivery networks, and domains that do not host visible content and have most
likely been registered for malicious purposes. Based on these findings, we con-
tinue to study the neural domain-name features and exclude the engineered and
character 2-gram features from the following experiments.

Table 4. Domain-names most confidently classified as malicious

https://52.84.0.111/
https://139.150.3.78/
https://uswj208.appspot.com/
https://ci-e2f452ea1b-50fe9b43.http.atlas.cdn.yimg.com/
https://pub47.bravenet.com
https://service6.vb-xl.net/
https://sp-autoupdate.conduit-services.com
https://external-yyz1-1.xx.fbcdn.net/
https://doc-14-28-apps-viewer.googleusercontent.com/
https://239-trouter-weu-c.drip.trouter.io

6.2 Client Malware Detection

Learning methods and feature types. We will first report on experiments
in which we conduct 10-fold cross validation on the current data; we split the
data into partitions with disjoint sets of users. We tune the parameters of the
random forest using a grid search in an inner loop of two-fold cross validation
on the training part of the data. The number of LSTM units is optimized in the
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Fig. 3. Comparison between performance on current and on future data.

first fold of the 10-fold cross validation on the training part of the data and fixed
for the remaining folds.

Figure 2 compares the precision-recall curves of LSTMs and random forests
using neural domain-name, flow, and combined features. We conclude that
LSTMs outperform random forests for this problem, and that the combination of
neural domain-name features and numeric flow features outperforms either set of
features. We therefore exclude random forests from the remaining experiments.

Evolution of malware. We will now explore whether a model that has been
trained on the current data is able to detect malware in the future data. We train
the LSTM on the entire current data and evaluate it on the entire future data.
The number of LSTM units is left fixed. We compare the resulting model to the
LSTM trained by 10-fold cross validation on the current data. Figure 3 compares
precision-recall and ROC curves. Since the future data contains a smaller ratio
of malicious instances—the prevalence of malware changes over time and over
companies—the difference between the precision-recall curves is not necessarily
due to a deterioration of the decision function. But a comparison of the ROC
curves shows that the decision function does deteriorate to a small extent in the
two months that separate the training and test data.

Malware families. We will now study the detection performance on specific
malware families, on previously unseen malware, and on malware that does not
contact any previously known domain. We use an LSTM that has been trained
on all current data. We evaluate its performance on specific subsets of malware
in the future data. In each experiment, each user who is hosting a malicious
application from a selected malware family that has sent at least one network
flow within a 24-hours interval counts as a positive test instance, and each user
who has run at least one benign application with at least one network flow but no
malicious application within a 24-hours interval counts as negative classification
instance. Test users who are hosting malware of different families are skipped.



Table 5. Average time to detection

Data Set TTC@80%P TTC@70%P TTC@60%P

current 1.66 h 1.67 h 1.65 h

future 1.40 h 1.36 h 1.38 h

Figure 4 compares precision-recall and ROC curves. Since each specific sub-
group entails only few users, the class ratios are highly skewed towards the
negative class and the precision-recall curves cannot be directly compared. Com-
paring the ROC curves, we observe that the decision function performs similarly
well across the entire range of malware families, including malware that does
not belong to any known family, malware that does not occur in the training
data, and malware that does not contact any domain that has been contacted
by any application in the training data. The ROC curve for the malware family
asparnet is fairly ragged because only 7 users in the test data are infected with.

Average time to detection. Table 5 compares the average intervals between
the first flow sent by a malicious application and its detection for cross-validation
on the current data and for the model that has been trained on all of the current
data and is applied to the future data. Depending on the threshold, detection oc-
curs on average approximately 90 minutes after malware starts communicating.
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Fig. 4. Evaluation on user subgroups on future data.

7 Conclusion

We can draw a number of conclusions from our study. A neural language model
can transform a domain name into a low-dimensional feature representation



that provides more information about whether the site is malicious than a set of
carefully engineered features of domain-name characteristics. Our experimental
setting allows us to collect large volumes of malicious and benign network traffic
for model training and evaluation. The VPN client records the hash key of the
executable file that has generated each flow, and by using VirusTotal we are able
to determine, in retrospect, which flows originate from malware.

We have developed and studied a malware-detection model based on LSTMs
that uses only observable aspects of HTTPS traffic. We conclude that the LSTM-
based model outperforms random forests, and that the combination of neural
domain-name features and numeric flow features outperforms either of these fea-
ture sets. This mechanism is able to identify a substantial proportion of malware
in traffic that was recorded two months after the training data were recorded,
including previously unseen malware. Its average time to detection is approx-
imately 90 minutes after the first HTTPS request; its performance is uniform
over many different malware families, including previously unknown malware. It
complements signature-based and other behavior-based malware detection.
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