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Abstract

Traditional probabilistic seismic hazard analysis (PSHA), as well es the estimation of

ground-motion models (GMMs), is based on the ergodic assumption, which means that

the distribution of ground motions over time at given site is the same as their spatial dis-

tribution over all sites for the same magnitude, distance, and site condition. With a large

increase in the number of recorded ground-motion data, there are now repeated observa-

tions at given sites and from multiple earthquakes in small regions, so that assumption

can be relaxed. We use a novel approach to develop a non-ergodic GMM, which is cast as

a varying coefficients model (VCM). In this model, the coefficients are allowed to vary by

geographical location, which makes it possible to incorporate effects of spatially varying
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source, path and site conditions. Hence, a separate set of coefficients is estimated for each

source and site coordinate in the data set. The coefficients are constrained to be simi-

lar for spatially nearby locations. This is achieved by placing a Gaussian process prior

on the coefficients. The amount of correlation is determined by the data. The spatial

correlation structure of the model allows one to extrapolate the varying coefficients to a

new location and trace the corresponding uncertainties. The approach is illustrated with

the NGA West2 data set, using only Californian records. The VCM outperforms a tradi-

tionally estimated GMM in terms of generalization error, and leads to a reduction in the

aleatory standard deviation by about 40%, which has important implications for seismic

hazard calculations. The scaling of the model with respect to its predictor variables, such

as magnitude and distance, is physically plausible. The epistemic uncertainty associated

with the predicted ground motions is small in places where events or stations are close

and large where data are sparse.

Introduction

Probabilistic seismic hazard analysis (PSHA) estimates the expected future distribution of a

ground-motion parameter of interest at a specific site. To this end, it is important to have a

model that accurately predicts ground motion given source, path, and site related parameters

such as magnitude and distance. This is usually done by a ground-motion model (GMM),

which is an estimate of the conditional distribution of the ground-motion parameter of interest

given magnitude, distance, and other parameters.

On the other hand, there are also GMMs that are developed on smaller, regional data sets

(e.g., for Greece (Danciu and Tselentis, 2007), Italy (Bindi et al., 2011), the Eastern Alps

(Bragato and Slejko, 2005), and Turkey (Akkar and Cagnan, 2010)), though these suffer from

smaller numbers of data points. Remedies have been proposed that attempt to directly estimate

regionally-varying GMMs from a larger data set by constraining the coefficients to be similar

across regions (Gianniotis et al., 2014; Stafford, 2014).

A GMM with different coefficients for different regions is a first step in removing the assump-

tion of ergodicity from PSHA (Stafford, 2014), which states that the conditional distribution

of the ground-motion parameter of interest at a given site is identical to the conditional dis-
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tribution at any other site, given the same magnitude, distance, and site conditions (Anderson

and Brune, 1999). For a fully non-ergodic PSHA, regional adjustments are broken down into

smaller and smaller geographical units, assuming that there are repeatable source, path, and

site effects for different locations, which, in principle, can be known and estimated. This re-

duces the overall value of aleatory variability (Al-Atik et al., 2010; Lin et al., 2011). Basically,

one trades apparent aleatory variability against epistemic uncertainty, which has large effects

on the resulting hazard curve distribution (Kuehn and Abrahamson, 2015). Typically, these

repeatable effects are estimated from residuals and then added to the median GMM predic-

tion as adjustment terms (Anderson and Uchiyama, 2011; Douglas and Aochi, 2016; Villani

and Abrahamson, 2015). The repeatable effects are spatially correlated (Jayaram and Baker,

2009; Lin et al., 2011; Walling, 2009), which makes it possible to estimate them from a limited

amount of data.

In this paper, we develop a GMM in which the coefficients of the model can vary smoothly

with geographical location. Hence, an individual model for each location is estimated, but the

coefficients are enforced to be similar for nearby locations. The model is cast as a varying-

coefficient model (Bussas et al., 2015; Gelfand et al., 2003), which places a Gaussian-process

(GP) prior (Rasmussen and Williams, 2006) over the coefficients. Since there is not enough

data to estimate independent models for each location, the GP prior is used to constrain the

coefficients based on their spatial correlation. In the varying-coefficient model, the spatial

correlation structure of the coefficients also introduces spatial random effects for both events

and stations; the amount of smoothing and variability in the coefficients is determined by the

data.

The model is developed and evaluated on a subset of the NGA West 2 dataset (Ancheta

et al., 2014), based on Californian data used by Abrahamson et al. (Abrahamson et al., 2014).

In California, regional differences between Northern California and Southern California have

been found previously (Atkinson and Morrison, 2009; Chiou et al., 2010), though the recent

NGA West 2 models treat California as a whole.
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Non-Ergodic Seismic Hazard

Traditionally, GMMs are developed under the assumption of ergodicity, which means that

the conditional distribution of the ground-motion parameter of interest at any site, given the

predictor variables, is the same as the conditional ground-motion distribution at any other site

(Anderson and Brune, 1999). Typically, the distribution is assumed to be log-normal, and

functions for both the median and the variance of this distribution are estimated, depending

on predictor variables such as magnitude, distance, and other parameters. The variance is

typically partitioned into a between-event and within-event term. Hence, the typical form of a

GMM is

y = f(x) + ηeτ + εesφ (1)

where y is the ground-motion parameter of interest from event e recorded at station s, x

is a vector of predictor variables, τ and φ are the between-event and within-event standard

deviation, respectively, and η and ε are normally distributed with mean zero and standard

deviation one. It has been recognized that the variance can be further partitioned, to account

for repeatable source, path, and site effects (Al-Atik et al., 2010; Anderson and Brune, 1999).

In particular, the use of single-station sigma (Atkinson, 2006; Rodriguez-Marek et al., 2011)

has been used in hazard studies for critical facilities in recent years.

Hence, a GMM becomes

y = f(x) + ηeτ0 + εesφ0 + λsφS2S + δeτS + ξesφP (2)

where τS, φS2S and φP are the standard deviations of repeatable source, site and path effects,

respectively (e.g., Al-Atik et al. (2010); Villani and Abrahamson (2015)). The adjustment

terms, λsφS2S, δeτS, and ξesφP , can be estimated from observed residuals or simulations (An-

derson and Uchiyama, 2011; Douglas and Aochi, 2016; Villani and Abrahamson, 2015). In

Equation (2), only τ0 and φ0 describe aleatory variability, while the other variance components

are part of epistemic uncertainty. In the absence of information about the repeatable effects,

their uncertainty needs to be taken into account. The resulting mean hazard curve is the same

as when calculating hazard with the ergodic assumption; however, the fractiles of the hazard
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curve distribution are different. If some of the repeatable effects are known, this reduces their

respective uncertainty but changes the median prediction. Removing the ergodic assumption

from calculating seismic hazard may have a large impact on hazard results because the reduc-

tion in the aleatory variability is about 50% (see Table 5 of Lin et al. (2011)), which has large

effects on the resulting hazard calculations (Bommer and Abrahamson, 2006). See Villani and

Abrahamson (2015) for an example calculation of non-ergodic seismic hazard.

The repeatable source, path, and site effects δeτS, ξesφP , and λsφS2S are different for different

locations. Hence, the median predictions of a non-ergodic GMM vary spatially, because they

are obtained by incorporating the epistemic terms according to Equation (2). The repeatable

effects are spatially correlated (Jayaram and Baker, 2009; Lin et al., 2011; Walling, 2009).

In the present work, we take a slightly different approach on the estimation of a GMM

suitable for non-ergodic seismic hazard. We estimate a model where the coefficients vary

smoothly with geographical location. Thus, we put the repeatable source, path, and site effects

into the coefficients, not into an adjustment term to a “global” model (here, global means

a model that has constant coefficients over the underlying data set). The model is cast as a

varying coefficient model (VCM) (Gelfand et al., 2003). To be able to constrain the coefficients,

these are assumed to be spatially correlated, which is achieved by placing a Gaussian process

prior over them (Bussas et al., 2015). This basically smoothes the coefficients spatially, where

the amount of smoothing is determined by the data. The model is explained in more detail

later.

Data

We use the same subset of the NGA West 2 data set as Abrahamson et al. (2014), who also

describe the selection process in more detail. We use only the data from California and Nevada,

since data from other regions will be spatially uncorrelated to this region. Figure 1 shows a

map of California, together with the event and station locations in the data set. In total, there

are 10,692 records from 221 earthquakes, recorded at 1425 stations. The magnitude/distance

distribution is shown in Figure 2. The ground motion parameter of interest is logarithmic

horizontal peak ground acceleration (PGA, equal to spectral acceleration at a period T =

0.01s) and logarithmic spectral acceleration at periods T = 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 4s
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Figure 1: Map of earthquakes and seismograph stations. Stars show event locations, and
triangles the station locations. The color version of this figure is available only in the electronic
edition.

in units of g.

Model

As discussed in Sections Introduction and Non-Ergodic Seismic Hazard, it can be useful to view a

GMM as a model that varies continuously on a spatial scale. Building on techniques presented

by Bussas et al. (2015), this section presents a model in which the coefficients are spatially

dependent, but also spatially correlated, corresponding to the assumption that coefficient values

change smoothly in space.

We have a data set of N pairs (x1, y1), . . . , (xN , yN) of inputs xi and outputs yi, where the

outputs yi are measurements of the ground-motion parameter of interest; in our case, response

spectral ordinates at different periods. Each input xi is a vector xi = [M , RJB, VS30, F ],

comprising the magnitude, Joyner-Boore distance, time-averaged shear wave velocity in the

upper 30ms, and the style of faulting for the i-th recording. We model the dependency of the
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Figure 2: Magnitude and RJB-distance scatterplot of the data used in this study.

outputs yi on the inputs as

y = f(β;x) + ε (3)

= β0 + β1M + β2M
2 + (β3 + β4M ) ln

√
R2
JB + h2 + β5RJB

+ β6 lnVS30 + β7FR + β8FNM + ε (4)

where FNM and FR are indicator variables that take the value of one for normal and reverse

faulting, respectively, and zero otherwise; ε denotes the overall residual. Equation (4) is a

simple functional form, but can nevertheless capture the main characteristics of ground-motion

scaling with the predictor variables.

In Section Non-Ergodic Seismic Hazard, we have seen that by means of the adjustment

terms that account for repeatable source, path, and site effects (cf. Equation (2)), ground-

motion predictions used in PSHA become essentially spatially dependent. In our model, the

spatial dependency is expressed by assuming that the coefficients β of the model in Equation

(4) are a function of spatial location. For each ground-motion record, there are two coordinates

available: the event latitude and longitude, and the station latitude and longitude. We denote

these by te ∈ R2 and ts ∈ R2, respectively. For event coordinates te, we use the horizontal

projection of the (geographical) center of the rupture, estimated from the NGA West 2 source

flatfile (Ancheta et al., 2014). The coefficients of Equation (4) are now modeled as (partially)
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depending on the coordinates te and ts. Specifically, we revise Equation (4) to

y = β−1(te) + β0(ts) + β1M + β2M
2 + (β3(te) + β4M) ln

√
R2
JB + h2 + β5(te)RJB

+ β6(ts) lnVS30 + β7FR + β8FNM + ε, (5)

where βj(te) denotes a coefficient varying with event location, βj(ts) denotes a coefficient vary-

ing with station location, and βj denotes a coefficient which does not vary spatially, that is,

which is modeled as identical for all locations. The term ε is the remaining residual, after all

spatial correlations are taken into account, and is distributed normally with mean zero and

standard deviation σ0. Random effects corresponding to event and site terms are modeled via

the constant coefficients β−1(te) and β0(ts).

The rationale for the chosen dependencies on te and ts are as follows. The coefficients that

control the scaling with distance, β3 and β5, vary with event location. This corresponds to an

average path attenuation for each event. This does not correspond to a single path attenuation,

as expressed by the adjustment term ξesφP in Equation (2). However, most of the records in

the data set have a Joyner-Boore distance that is smaller than 200km, so the variation in

the distance scaling coefficients corresponds to a small-scale variation in distance attenuation,

averaged over all directions. The near-source saturation term is fixed to a value h = 6. This

ensures that the model is linear in the coefficients. Since there are very few normal faulting

events, we fix the coefficient β8 = −0.1, as do Abrahamson et al. (2014). For periods T ≥ 1,

the coefficient corresponding to anelastic attenuation is set to zero, β5 = 0. Coefficient β6,

which controls the scaling with VS30, varies with station location because VS30 as a proxy for

site scaling is primarily correlated with local geology under the station. To avoid problems of

extrapolating the predictions to large magnitudes, and due to under-representation of different

styles of faulting in the data set, the coefficients associated with magnitude and style-of-faulting

(SOF) do not vary spatially.

Finally, the constant coefficient β0 in Equation (4) is split up into two constant coefficients

β−1(te) and β0(ts) that vary with event coordinates te and station coordinates ts, respectively.

Because these constant terms are different for different stations and events, they introduce ran-

dom effects for events and stations into the model. Due to the spatial correlation of coefficients,

the random effects are also spatially correlated such that, for example, the random effects of
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two stations that are very close to each other tend to be similar. Thus, β−1 and β0 capture the

repeatable, epistemic part of between-event and within-event variability.

The noise term of the VCM, as described in Equation (5) by the residual ε, contains all

parts of ground-motion generation that cannot be explained by systematic effects under the

parameterization of the model. Thus, it corresponds to the aleatory part, which is quantified

by the standard deviation σ0. Because we implicitly assume that the coefficients vary smoothly

between different location, abrupt changes in local geology are not modeled, but smoothed

through. Hence, the residual ε can still contain some potentially systematic parts.

In the following, we provide a brief, more technical discussion of how to mathematically

specify and estimate the varying-coefficient model. The model follows the formulation of a

varying-coefficient model by Bussas et al. (2015); here, we briefly restate their main results in the

context of the particular model that is given by Equation (5). More details and mathematical

background are included in Bussas et al. (2015). According to Equation (5), the model is given

by the values of the coefficients β−1, ..., β8 at all combinations of event and station coordinates

te and ts; however, in practice, we are only concerned with the values of the coefficients for

all coordinates that appear in the data. We denote by t = (te, ts) a combined station and

event coordinate, comprising two latitudes and two longitudes. Let t1, ..., tN ∈ R4 denote the

combined station and event coordinates of the N observed data points, and let β1, ...,βN ∈ Rd

denote the complete vectors of coefficients at these coordinates as needed for Equation (5),

where d = 10 is the number of coefficients in the model. The model as described in Equation (5)

defines the conditional distribution of an observed response spectral value yi given the inputs

xi and coefficients βi, by

yi ∼ p(y|xi,βi). (6)

The spatially varying coefficients are modeled as evaluations of a function ω : R4 → Rd that

specifies a coefficient vector β ∈ Rd for any combined event and station coordinate t ∈ R4. The

function ω associates any coordinate t with the corresponding values of the model coefficients

β; the model coefficients at the data points are obtained by evaluating this function at the

respective coordinates: that is, βi = ω(ti). To enforce a spatial correlation between the βi, we

require the function ω to be smooth; that is, ω(ti) should be close to ω(tl) if coordinates ti

are close to coordinates tl. Smoothness over ω is imposed by modeling ω as being drawn from
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a Gaussian-process prior (Rasmussen and Williams, 2006),

ω ∼ GP (0,κ). (7)

In Equation (7), κ = κ(t, t′) is a kernel function that specifies the correlations between coeffi-

cients at the locations t = (te, ts) and t′ = (t′e, t
′
s). Because ω is a vector-valued function, the

covariance function is matrix-valued, that is, κ(t, t′) ∈ Rd×d; this matrix represents the prior

covariances between elements of the vectors ω(t) and ω(t′). Values κ(t, t′) are assumed to

be diagonal matrices with diagonal entries κ1(t, t
′), ..., κd(t, t

′), where κj(t, t
′) ∈ R is a scalar-

valued kernel function. This means that each dimension of ω(t)—corresponding to a particular

coefficient—is generated by an independent scalar-valued Gaussian process whose covariance is

given by κj(t, t
′) ∈ R, where j indexes the coefficients. The kernel functions κj(t, t

′) are given

by

κj(t, t
′) =


θj if j ∈ {1, 2, 4, 7, 8}

θj exp
(
−‖te−t

′
e‖

ρj

)
+ πj if j ∈ {−1, 3, 5}

θj exp
(
−‖ts−t

′
s‖

ρj

)
+ πj if j ∈ {0, 6}

(8)

where θj, ρj, and πj are kernel parameters—different for each coefficient—that are determined

from data. For coefficients that do not depend on either event or station coordinates (j ∈

{1, 2, 4, 7, 8}), the kernel function κj(t, t
′) is constant, which implies that any function ω drawn

from the GP prior (Equation (7)) is constant in its j-th dimension. For coefficients that

depend on event or station coordinates (j ∈ {−1, 3, 5} or j ∈ {0, 6}, respectively), kernel

function κj(t, t
′) is a Matérn kernel function of degree ν = 1/2 based on the Euclidian distance

between event or station coordinates, implying that the j-th dimension of ω varies with ts or

te. Parameter πj is a constant offset to the Matérn kernel. Parameter ρj can be understood

as a coefficient-specific length scale that determines how rapidly the coefficient changes with

location, and θj determines how much the coefficient can change. Note that the definition of the

VCM given above slightly extends the formulation by Bussas et al. (2015), in which the kernel

functions κj for the different dimensions are assumed to be identical: that is, κj(t, t
′) = κ(t, t′)

for some fixed scalar-valued kernel function κ(t, t′) ∈ R. We will discuss how this affects the

calculations when applying the model to data.
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Given a data set of ground-motion records at different locations with different predictor

variables, it is possible to estimate all parameters of the model. These comprise the parameters

of the GP (cf. Equation (8)) and the noise term σ0. The parameters are estimated by optimizing

the marginal likelihood (cf. Section 5.2 of Rasmussen and Williams (2006)). We present tables of

the parameters of the GP for the different response spectral periods in the electronic supplement.

When applying the model, a prediction of the ground-motion distribution for a new location

t? with predictor variables x? needs to be made. The Gaussian process prior over ω enables

us to derive fully Bayesian predictions from the model. Informally speaking, this works by

first computing the conditional distribution of the coefficients at the new location given the

data observed at the known locations, and afterwards calculating the median ground-motion

prediction using Equation (4) from the new coefficients. The uncertainty associated with the

coefficients is translated into additional epistemic uncertainty of the ground-motion predictions.

The full derivation of the predictive distribution at a new location t? is presented by

Bussas et al. (2015). The main insight from this work is that the VCM model is identi-

cal to a standard Gaussian process that uses concatenated inputs (xi, ti) and a product ker-

nel function κ̄((xi, ti), (xl, tl)) = xT
i xlκ(ti, tl) =

∑d
j=1 xijxljκ(ti, tl), as stated in Theorem 1

in Bussas et al. (2015). Here, xij and xlj denote the j-th component of the vectors xi and

xl. When using different kernel functions κj for the dimension of ω instead of a single ker-

nel function κ, the VCM is identical to a standard Gaussian process with kernel function

κ̄((xi, ti), (xl, tl)) =
∑d

j=1 xijxljκj(ti, tl), as is easily seen by retracing the derivation of the

product kernel in Theorem 1 of Bussas et al. (2015).

We now reproduce this main result of Bussas et al. (2015), taking into account the modifi-

cation of using dimension-specific kernel functions κj. The full ground-motion distribution at a

new location t?, with predictor variables x?, given the observed data set y = (y1, . . . , yN) and

X = (x1, . . . ,xN) at locations T = (t1, . . . , tN), is calculated by

p(y?|X,y, T, x?, t?) = N (µ, ψ2 + σ2
0) (9)

where ψ2 + σ2
0 is the full predictive variance. It is the sum of two terms, the noise variance σ2

0

that represents aleatory variability, and ψ2 which is a measure of epistemic uncertainty due to

uncertainty in the coefficients at the new coordinates. In PSHA calculations, σ2
0 and ψ2 are
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generally treated differently—the former is integrated out, while the latter is sampled using

logic trees and leads to a distribution of hazard curves.

The mean µ and the epistemic variance ψ2 can be calculated as

µ = kT(K + τ 2Ix×n)−1y (10)

ψ2 = k? − kT(K + σ2
0Ix×n)−1k. (11)

Here, K is a matrix with components Ki,l =
∑d

j=1 xijxljκj(ti, tl) ∈ RN×N . The variable k is

a vector with components ki =
∑d

j=1 xijx?jκj(ti, t?), where x?j denotes the j-th component

of x?. The variable k? is given by k? =
∑d

j=1 x?jx?jκj(t?, t?). One interesting point to note

about Equations (10) and (11) is that coefficients β are integrated out in the predictions, and

therefore do not have to be explicitly computed in order to calculate µ and ψ.

As one can see in Equation (11), the epistemic variance is the difference between two terms.

The first term is the “prior” variance, which represents the epistemic uncertainty of a new

prediction at a new location, for a new set of predictor variables. It is reduced by a positive

term which depends on the distance of the new location, t?, to the existing locations, T , in the

data set. Hence, the epistemic variance becomes small for a prediction at a new location which

is close to an observed station or earthquake location, whereas it remains large in regions where

no data are available.

As the model is equivalent to a standard Gaussian process with an appropriate kernel

function, it is straightforward to implement using standard toolboxes for Gaussian processes.

We have used the GPML (Gaussian Processes for Machine Learning) toolbox (Rasmussen and

Nickisch, 2010).

Results

In this section, we evaluate the presented VCM regarding its capability to predict logarithmic

spectral acceleration at periods T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 4s. For reference,

we compare the model against an ergodic model with (spatially) fixed coefficients, which we

call a “global” model—global in the sense that it is estimated for the entire data set. Figure 3

shows the root-mean-squared prediction error (RMSE), estimated by 10-fold cross-validation.
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Figure 3: Prediction of logarithmic spectral acceleration: RMSE for the VCM and the ergodic
global model, estimated by 10-fold cross validation.

Table 1: Non-spatially varying coefficients for spectral accelerations at different periods.

coefficient T = 0.01s T = 0.02s T = 0.05s T = 0.10s T = 0.20s T = 0.50s T = 1.00s T = 4.00s
β1 2.4228 2.3162 1.9596 2.5858 3.3492 4.3298 4.9558 3.4599
β2 -0.17267 -0.16278 -0.14328 -0.18871 -0.22996 -0.28533 -0.31213 -0.13699
β4 0.1983 0.1991 0.22429 0.16462 0.11759 0.098985 0.089561 0.1238
β7 0.074761 0.073866 0.11079 0.11489 0.058449 0.056953 0.10464 0.057233
β8 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
σ0 0.5219 0.5255 0.5387 0.5292 0.5392 0.5034 0.4690 0.4588
σT 0.8127 0.8176 0.8741 0.8733 0.8433 0.7534 0.7056 0.6848

In 10-fold cross-validation, the data set is split into 10 subsets. In each of ten iterations, the

model is estimated based on 9 subsets while one subset is set aside for evaluation. All data

associated to any single earthquake event are joined into the same subset; therefore, the model

is always evaluated on events that have not been used for parameter estimation. On this

tenth subset, the RMSE between the predicted ground motion and the actual ground motion

documented in the data is calculated. After 10 iterations, the mean RMSE over is determined

by averaging the 10 measurements. The RMSE, as determined by 10-fold cross validation, is

an indicator of whether the model is able to generalize well: that is, predict ground motion

for new, previously unobserved values of the predictor variables. Figure 3 shows that the

VCM has consistently lower RMSE than the global model. This indicates that incorporating

spatial differences improves ground-motion prediction, even for a relatively small region such

as California.

The spatially varying coefficients for PGA (that is, T = 0.01s) are shown as a color-coded

plot in Figure 4. As stated in Equation (5), the constant β0 and the coefficient that controls
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Figure 4: Spatial variation of coefficients for PGA. The color version of this figure is available
only in the electronic edition.
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version of this figure is available only in the electronic edition.

scaling with VS30 (β6) vary with the station location, while the coefficients that control geo-

metrical spreading (β3) and anelastic attenuation (β5) as well as β−1 vary with source location.

The other coefficients, which do not vary by location, are displayed in Table 1. This table also

shows the estimated noise term (non-ergodic standard deviation σ0). Its value is drastically

reduced compared to the global, ergodic standard deviation (σ0 = 0.52 versus σT = 0.81 for

PGA). As stated in the previous section, the values of the median and epistemic uncertainty,

µ and ψ, are calculated using only the parameters of the correlation functions and the data.

These are presented in the electronic supplement.

Figure 5 shows the scaling of the model with magnitude and distance. Because the model

is location dependent, we show the scaling for each event location (thin gray lines in Figure 5).

For simplicity, when evaluating the coefficients, we set the station location to the be identical to

the event location in Equation (10); this does not affect the distance scaling, whose coefficients

depend on event location. The predictor variables x? are set independently to the values in

Figure 5. In a real application, one needs to use coordinates that correspond to the problem at

hand: in particular, the station/event locations need to be consistent with the distance metrics.

For comparison, Figure 5 also shows the California models BSSA14 (Boore et al., 2014) and

ASK14 (Abrahamson et al., 2014). For the ASK14 model, the values of the depth to the top

of the rupture are calculated using the model presented in Chiou and Youngs (2014). As one

can see, the overall behavior of the global ergodic model and the California GMMs is similar:

differences at small distances are due to the VCM having a constant, magnitude-independent
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Figure 6: Left: Map of ln PGA predictions, coded by ground-motion value. Right: Epistemic
predictive uncertainty ψ associated with ln PGA predictions. For simplicity, in both plots the
same event/station coordinate is used for the coefficients. Predictor variables are set to M = 6,
RJB = 10 km, SOF = 0, VS30 = 760 m/s. The color version of this figure is available only in
the electronic edition.

h-term. The individual VCM models scatter around the global model, with some variation

in scaling. They all exhibit a reasonable physical scaling with both magnitude and distance.

The variation seen in the gray lines in Figure 5 illustrates the trade-off between apparent

aleatory variability and epistemic uncertainty. The decrease in the standard deviation leads to

an increase in variation of median predictions between different locations.

The left part of Figure 6 shows the spatial variation of median ground-motion predictions

for PGA. Specifically, we calculate the median prediction for a set of predictor variables M = 6,

RJB = 10km, VS30 = 760m/s and FN = FR = 0, for a location grid across California. As for

Figure 5, for simplicity we use same coefficients at the same coordinates for station and event.

Similar maps can be found for other periods in the electronic supplement. As one can see,

there is some spatial variation in the median predictions over California, but this variation is

constrained to locations where data are available: that is, close to stations or observed events

(cf. Figure 1).

The right part of Figure 6 shows the epistemic uncertainty ψ associated with the predictions

across California, as calculated by Equation (11). The values of ψ are calculated using the same

settings as for the calculation of the median predictions. We can see that the predictive uncer-

tainty increases for regions where data are sparse. It is important to include this uncertainty in

hazard calculations. Currently, this uncertainty is included as part of aleatory variability, and

epistemic uncertainty of median predictions using alternative GMMs is modeled for example
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Figure 7: Residuals of the VCM, calculated as observed minus predicted PGA value.

by Al-Atik and Youngs (2014), which gives a value of the epistemic standard deviation of 0.083

for M = 6, RJB = 100 and PGA. By contrast, the standard deviation of median predictions of

the VCM at the event coordinates has a value of 0.45 for M = 6, RJB = 100 and PGA.

The spatial variation of median predictions seen in Figures 5 and 6 is an example of trading

epistemic uncertainty and apparent aleatory variability. In the global model, the spatial varia-

tion is accounted for by the estimated (ergodic) variance, which includes the repeatable source,

path, and site terms, whereas these are translated into the median predictions in the VCM

framework. For PGA, we see a reduction of about 35% in the value of the standard deviation

(from 0.81 to 0.52). This is comparable with results seen for Taiwan (cf. Table 5 of Lin et al.

(2011)), where approximately a 50% reduction going from full-ergodic to non-ergodic standard

deviation is estimated.

Figure 7 shows the residuals of the VCM, plotted against magnitude and distance. There

are no obvious trends with the predictor variables.

Discussion and Conclusions

We have presented a (relatively) simple GMM that can take into account regional differences

in ground-motion scaling. In contrast to other approaches to regionalizing GMMs (Gianniotis

et al., 2014; Stafford, 2014), which estimate separate GMMs for distinct regions, the presented

model works spatially on a continuous scale. Hence, the predictions of the model vary smoothly

across California. This is a next step to go from a partially non-ergodic PSHA (having separate

GMMs for small regions, as well as using single-station sigma) to an almost fully non-ergodic
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PSHA. The presented model does not take true 3D-path effects into account, because the

coefficients that account for scaling with distance describe an average distance attenuation for

each event in all directions. The next logical step in the development of a fully non-ergodic

GMM is to take such 3D-path effects into account.

The underlying assumption of the VCM is that some of its coefficients vary continuously

with station or event location, as shown in Figure 4. From Equations (9) to (11) we can see

that the predictive distribution for a new set of predictor variables at a new location can be

computed without explicitly computing the spatially varying coefficients, and is completely

determined by the parameters of the covariance function κ.

We have seen in Figure 3 that the presented VCM has a low average prediction RMSE on

unseen test data (that is, for events and data points that have not been used in estimating the

model parameters), which provides strong evidence that the VCM is a viable, even superior

alternative to a non-ergodic GMM. For the application of the VCM in seismic hazard analysis,

the following two points need to be taken into account. First, there are different coefficients

for different locations, and different subsets for station and earthquake locations. Hence, to

estimate seismic hazard at a particular site, the appropriate sets of coefficients need to be

applied for the site and the relevant sources. Second, it is important to keep track of the

(epistemic) predictive uncertainty of the model. The VCM has a much smaller value of the

aleatory variability than the global ergodic model. The reduction in aleatory variability is due to

including spatial variation of the coefficients, which results in the variation of median predictions

as seen in Figure 5 and in the left part of Figure 6. However, Figure 6 also shows that there is

less variation in the median predictions for locations that are far from observed data (stations

or earthquakes); here, the VCM predictions resort to mean predictions. Accordingly, this is

accommodated by a larger epistemic predictive uncertainty ψ. This increased uncertainty must

be incorporated into PSHA calculations, because just using a smaller value for the aleatory

variability, without any adjustment for median predictions, will lead to an underestimation of

the seismic hazard.
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Data and Resources

The data used in this study come from the PEER NGA West 2 data base (Ancheta et al., 2014)

(http://peer.berkeley.edu/ngawest2/databases/, last accessed 07/10/2015) and comprise

the Californian/Nevada data used for the model of Abrahamson et al. (2014).
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