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ABSTRACT

This publication-based thesis represents a contribution to the active research field of ultra-
fast structural dynamics in laser-excited nanostructures. The investigation of such dynam-
ics is mandatory for the understanding of the various physical processes on microscopic
scales in complex materials which have great potentials for advances in many technologi-
cal applications. I theoretically and experimentally examine the coherent, incoherent and
anharmonic lattice dynamics of epitaxial metal-insulator heterostructures on timescales
ranging from femtoseconds up to nanoseconds. To infer information on the transient dy-
namics in the photoexcited crystal lattices experimental techniques using ultrashort optical
and x-ray pulses are employed. The experimental setups include table-top sources as well
as large-scale facilities such as synchrotron sources.

At the core of my work lies the development of a linear-chain model to simulate and
analyze the photoexcited atomic-scale dynamics. The calculated strain fields are then used
to simulate the optical and x-ray response of the considered thin films and multilayers in
order to relate the experimental signatures to particular structural processes. This way one
obtains insight into the rich lattice dynamics exhibiting coherent transport of vibrational
energy from local excitations via delocalized phonon modes of the samples. The complex
deformations in tailored multilayers are identified to give rise to highly nonlinear x-ray
diffraction responses due to transient interference effects. The understanding of such effects
and the ability to precisely calculate those are exploited for the design of novel ultrafast
x-ray optics. In particular, I present several Phonon Bragg Switch concepts to efficiently
generate ultrashort x-ray pulses for time-resolved structural investigations.

By extension of the numerical models to include incoherent phonon propagation and
anharmonic lattice potentials I present a new view on the fundamental research topics of
nanoscale thermal transport and anharmonic phonon-phonon interactions such as nonlinear
sound propagation and phonon damping. The former issue is exemplified by the time-
resolved heat conduction from thin SrRuOj films into a SrTiOs substrate which exhibits
an unexpectedly slow heat conductivity. Furthermore, I discuss various experiments which
can be well reproduced by the versatile numerical models and thus evidence strong lattice
anharmonicities in the perovskite oxide Sr'TiOj.

The thesis also presents several advances of experimental techniques such as time-
resolved phonon spectroscopy with optical and x-ray photons as well as concepts for the
implementation of x-ray diffraction setups at standard synchrotron beamlines with largely
improved time-resolution for investigations of ultrafast structural processes.

This work forms the basis for ongoing research topics in complex oxide materials in-
cluding electronic correlations and phase transitions related to the elastic, magnetic and
polarization degrees of freedom.






KURZDARSTELLUNG

Diese publikationsbasierte Dissertation ist ein Beitrag zu dem aktuellen Forschungsgebiet
der ultraschnellen Strukturdynamik in laserangeregten Nanostrukturen. Die Erforschung
solcher Vorginge ist unabdingbar fiir ein Verstédndnis der vielseitigen physikalischen Pro-
zesse auf mikroskopischen Léangenskalen in komplexen Materialien, welche enorme Weiter-
entwicklungen fiir technologische Anwendungen versprechen. Meine theoretischen und ex-
perimentellen Untersuchungen betrachten kohérente, inkohérente und anharmonische Git-
terdynamiken in epitaktischen Metal-Isolator-Heterostrukturen auf Zeitskalen von Femto-
sekunden bis Nanosekunden. Um Einsichten in solche transienten Prozesse in laserangereg-
ten Kristallen zu erhalten, werden experimentelle Techniken herangezogen, die ultrakurze
Pulse von sichtbarem Licht und Rontgenstrahlung verwenden.

Ein zentraler Bestandteil meiner Arbeit ist die Entwicklung eines Linearkettenmodells
zur Simulation und Analyse der laserinitiierten Atombewegungen. Die damit errechneten
Verzerrungsfelder werden anschlieBend verwendet, um die Anderung der optischen und
Rontgeneigenschaften der betrachteten Diinnfilm- und Vielschichtsysteme zu simulieren.
Diese Rechnungen werden dann mit den experimentellen Daten verglichen, um die expe-
rimentellen Signaturen mit errechneten strukturellen Prozessen zu identifizieren. Dadurch
erhélt man Einsicht in die vielseitige Gitterdynamiken, was z.B. einen kohérenten Trans-
port der Vibrationsenergie von lokal angeregten Bereichen durch delokalisierte Phononen-
moden offenbart. Es wird gezeigt, dass die komplexen Deformationen in mafigeschneider-
ten Vielschichtsystemen hochgradig nichtlineare Rontgenbeugungseffekte auf Grund von
transienten Interferenzerscheinungen verursachen. Das Verstandnis dieser Prozesse und die
Moglichkeit, diese préazise zu simulieren, werden dazu verwendet, neuartige ultraschnelle
Rontgenoptiken zu entwerfen. Insbesondere erldutere ich mehrere Phonon-Bragg-Schalter-
Konzepte fiir die effiziente Erzeugung ultrakurzer Rontgenpulse, die in zeitaufgelosten
Strukturanalysen Anwendung finden.

Auf Grund der Erweiterung der numerischen Modelle zur Beschreibung von inkohéren-
ter Phononenausbreitung und anharmonischer Gitterpotentiale decken diese ebenfalls
die aktuellen Themengebiete von Warmetransport auf Nanoskalen und anharmonischer
Phonon-Phonon-Wechselwirkung (z.B. nichtlineare Schallausbreitung und Phononendamp-
fung) ab. Die erstere Thematik wird am Beispiel der zeitaufgelosten Wirmeleitung von
einem diinnen SrRuOjs-Film in ein SrTiO3-Substrat behandelt, wobei ein unerwartet lang-
samer Warmetransport zu Tage tritt. Aulerdem diskutiere ich mehrere Experimente, die
auf Grund der sehr guten Reproduzierbarkeit durch die numerischen Modelle starke Git-
teranharmonizitdten in dem oxidischen Perowskit Sr'TiO3 bezeugen.

Diese Dissertation erarbeitet zusétzlich verschiedene Weiterentwicklungen von experi-
mentellen Methoden, wie z.B. die zeitaufgeloste Phononenspektroskopie mittels optischer
Photonen und Rontgenphotonen, sowie Konzepte fiir die Umsetzung von Rontgenbeu-
gungsexperimenten an Standard-Synchrotronquellen mit stark verbesserter Zeitauflosung
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Kurzdarstellung

fiir weitere Studien von ultraschnellen Strukturvorgingen.
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Here,

I give a brief summary of the papers listed in the previous section by presenting the

respective key statement(s) and outline my contributions to each of the papers.
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IT

Analysis of ultrafast x-ray diffraction data in a linear-chain model of the
lattice dynamics

The paper presents the concept and implications of a one-dimensional linear-chain
model (LCM) for the simulation and analysis of coherent lattice dynamics in nanolay-
ered crystalline heterostructures after photoexcitation by ultrafast laser pulses. In
addition to theoretical discussion, we compare the LCM results to previous and new
UXRD studies on a metal-insulator superlattice (SL) and found the apparent damp-
ing of the characteristic SL eigenmode to arise from the mechanical coupling to the
substrate. Moreover, we discovered a Bragg peak splitting instead of continuous
shifting for strongly excited SLs.

This publication forms the basis of the numerical simulations employed in this thesis.
After adaption of the LCM from Ref. 1 and further developments (especially combin-
ing the LCM with dynamical x-ray diffraction (XRD) calculations) I performed most
of the analysis and calculations presented in this paper. Furthermore, the presented
UXRD experiments were partly conducted by myself.

Tailoring interference and nonlinear manipulation of femtosecond x-rays

In this paper we present the modulations of SL. Bragg peaks after photoexcitation
with ultrashort laser pulses. The dynamical XRD simulations using the lattice dy-
namics calculated by the LCM reproduce the various UXRD measurements very
accurately. The mechanisms responsible for the observed linear and nonlinear x-ray
responses including constructive and destructive x-ray interference effects are ex-
plained by a simple envelope model.

All the UXRD measurements (Swiss Light Source) and simulations presented in this

paper were performed by myself. Moreover, I executed almost the entire analysis
and developed the presented interpretations.
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Bragg Switch for the shortening of synchrotron x-ray pulses.

For this publication I carried out the shown UXRD measurements at the Swiss Light
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CHAPTER 1

INTRODUCTION

This work presents the most important theoretical and experimental results of my graduate
studies in the ultrafast dynamics group of Prof. Matias Bargheer at the University of
Potsdam in form of a cumulative dissertation. That is, this thesis is based on twelve
published and unpublished manuscripts containing the major results of my work. These
manuscripts and papers are appended to the end of the thesis and are referred to in the
text by their roman numerals as given in the List of Papers.

The thesis addresses the rapidly growing topic of structural dynamics in nanostruc-
tured condensed matter triggered by optical excitation with ultrashort laser pulses. The
employed experimental methods to investigate these photoinduced structural dynamics
use ultrashort optical and x-ray pulses. The experimental results are analyzed by com-
parison to numerical models which are developed in this thesis in order to investigate
the rich laser-induced coherent, incoherent and anharmonic lattice dynamics. The results
discovered during my graduate studies (in collaboration with the Potsdam group as well
as international research groups) reveal very interesting and important physical effects in
photoexcited nanostructures, e.g.,

e decay of localized vibrational states due to coherent energy transport via delocalized
eigenmodes (Paper I)

e transient nonlinear x-ray interference effects in tailored epitaxial multilayers (Pa-
per II)

e optical synthesis and x-ray detection of quasi-monochromatic phonon wavepackets
(Paper VIII)

e nonlinear propagation and attenuation of acoustic phonons due to the anharmonic
lattice potential in SrTiO3 (Papers VII and VIII)

e several realizations of efficient Phonon Bragg Switches for the generation of ultrashort
x-ray pulses (Papers III TV IX and X)

Since the space in publications is usually limited the appended papers focus on the main
experimental and numerical results. Also the theory is usually discussed in a very compact
form. Therefore, this thesis does not only summarize but also extends the content of
the papers. In addition, I partly present recent unpublished experimental results, further
theoretical calculations and a more in-depth analysis of recently published results in the
field of linear and nonlinear structural dynamics in photoexcited nanostructures.



1.1 Topical introduction

1.1 Topical introduction

In general, the atomistic nature of matter implies that all macroscopic dynamics are gov-
erned by microscopic processes and interactions. If we consider matter—in particular
solids—to be built up from atoms which are connected by covalent and/or ionic bonds
the fundamental microscopic processes are the motion of electrons and atoms. The elec-
trons can either be bound to the atoms/ions (dielectrics) or they are allowed to more or
less freely move around within the solid (metals) by ballistic or diffusive propagation and,
moreover, the spin state of the electronic system determines the magnetic properties of the
material. The atoms, however, are elastically bound around their equilibrium positions
within the framework of the solid. Here, the fundamental lengthscale is on the order of
1 A =107 m. The fundamental timescale of microscopic processes is two-fold. Electronic
motion usually takes place on a sub-femtosecond (fs) to 10 fs timescale whereas the atomic
motion has a lower bound on the order of 10 fs. The motions of atoms within a solid
can in principle be divided into coherent and incoherent (statistical) motion, i.e., wave-like
phonon propagation and heat transport, respectively.

In addition to the fundamental interest in such microscopic physical processes, the
understanding of those is essential for various technological advances in the fields of signal
processing, data storage and sensors exploiting the materials’ elastic, magnetic and/or
electric degrees of freedom [2, 3]. The couplings and correlations between these subsystems
in so-called multiferroics which are often mediated by the crystal lattice promise novel high-
performance devices [4, 5]. The demand for the ever increasing speed of such technologies
triggered attempts to control and switch the state of matter exploiting optical pulses
[2, 4, 6-8]. Moreover, the miniaturization of electronic devices in the past inevitably
brought up the issue of nanoscale thermal transport [9]. The full control not only of
the macroscopic but also the microscopic quantum state of many-body systems by, e.g.,
light-matter interactions, may open the gate to novel and efficient quantum information
processing devices [10].

If one desires to understand and experimentally investigate such processes, the fun-
damental length and timescales call for sophisticated experimental techniques. Possible
methods to resolve the small lengthscales are scattering techniques using neutrons, elec-
trons or x-rays [11-14]. For structural dynamics on larger lengthscales scattering of optical
photons may also be employed. If one additionally wants to follow the dynamics in time,
one standard technique is the pump-probe method [15, 16]. The sample of interest is
excited by an external stimulus (such as a laser pulse or an electric/magnetic pulse) and
subsequently probed by a suitably chosen ultrashort probe pulse (e.g. optical light, x-rays,
neutrons, electrons or an electric current) which is influenced by the triggered dynamics
of the sample. The controlled variation of the time delay ¢ between the pump and the
probe pulse yields snapshots of the sample dynamics which are encoded in the change of
the measured probe signal S(¢). The time-resolution of the pump-probe method crucially
depends on the pulse durations of the pump and probe pulses which therefore select the
dynamics that can be accessed by the particular experiment. For instance, neutron pulses
are only available at pulse durations down to milliseconds [17, 18] which currently rules
out such particles as a good probe for atomic/lattice dynamics in the time domain. The
kind of dynamics accessible by a particular experiment is also selected by the nature of
the probe pulse. For instance, the limited penetration depth of electrons (~ 10 — 100 nm)
gives a more surface-sensitive probe [19] whereas (non-resonant) x-ray diffraction (XRD)
yields structural information up to a probe depth of 1 — 100 um [20]. Both techniques
experienced a rapid development in recent years [13, 14, 21, 22].



Introduction

1.2 The scope and structure of this work

As indicated above, one promising perspective for controlling the state of matter is its ma-
nipulation by light, in particular, by ultrashort optical laser pulses. In this work I consider
numerical models and experiments based on pump-probe techniques for the investigation
of photoinduced structural dynamics of crystalline solids. The materials are typically ex-
cited by ultrashort laser pulses of 800 nm wavelength and probed by either visible laser or
x-ray pulses. The main focus in this thesis, however, is put on ultrafast x-ray diffraction
(UXRD). Over the past two decades UXRD has proven to be a versatile experimental
method to unambiguously infer structural dynamics of laser-excited materials [14, 23-31].

My investigations are focussed on materials with perovskite crystal structure. These
oxides are of cubic or pseudocubic ABOs-type structure where A and B are different cations
[32]. Since lots of combinations of A and B cations can be practically realized, perovskites
offer a broad spectrum of physical properties interesting for fundamental research as well as
technological applications. For instance, perovskites exhibit different phases including in-
sulating dielectrics, metals, ferro- /antiferroelectrics, ferro-/antiferromagnets, multiferroics,
superconductors or thermoelectrics [32-34] and phase transitions can often be triggered by
optical excitation [15, 35, 36]. The samples discussed in this work are restricted to a few
representatives of perovskites, namely, the insulator SrTiO3z and the ferroelectric metals
SrRuO3 and Lag7Srg3MnO3. Moreover, I focus on epitaxial nanolayers grown on a sup-
porting substrate by pulsed laser deposition at the Max-Planck-Institute for Microstructure
Physics in Halle, Germany [37]. The sample geometries range from thin films, bilayers and
multilayers to superlattices.

At the core of the current work lies the development and improvement of computational
models for the photoinduced lattice dynamics of the nanolayered heterostructures. The
first part of Chapter 2 presents a one-dimensional linear-chain model (LCM) of masses
and (harmonic) springs representing the relevant sample dimension perpendicular to the
layer interface(s). This LCM is used to simulate the coherent structural dynamics of
metallic thin films and metal-insulator superlattices after a quasi-instantaneous optical
excitation. I then discuss general features of these dynamics. This part of the thesis
is based on and extends the considerations in Paper I. The second part of Chapter 2 is
dedicated to the calculation and interpretation of UXRD signals from the lattice motions
obtained from the LCM. These combined calculations are compared to experimental UXRD
results for the chosen sample structures. The excellent agreement demonstrates that the
LCM correctly captures the essential photoinduced lattice dynamics in metal-insulator
nanolayered systems. Moreover, it is possible to relate the general UXRD features to
the corresponding structural changes as discussed in Paper II. Very recent experimental
results (Paper V) suggest fluence-dependent changes of the excitation mechanism possibly
related to impulsive stimulated Raman scattering (ISRS), electronic pressure or mode-
dependent Griineisen coefficients. These effects require modifications of the LCM (such as
non-instantaneous stress generation) in order to reproduce the experiments. This issue is
addressed in the final section of Chapter 2.

Considering the photoexcited lattice dynamics on larger timescales or in smaller sample
structures one can no longer neglect the effect of thermal transport. This issue is addressed
in Paper VI with very high experimental accuracy. Chapter 3 summarizes and continues
these investigations by including heat conduction in the LCM. The model is then tested by
comparison to UXRD experiments on a very thin laser-excited metal film. The calculations
reveal very good agreement thereby identifying thermal properties of the metal film which
deviate from the static bulk literature values.
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In Chapter 4 I discuss and further analyze time-resolved optical and XRD measurements
presented in Papers VIII and VII. These experimental results strongly indicate the effect
of lattice anharmonicities by significant deviation of the acoustic phonon propagation and
lifetime from the established theoretical models. Moreover, these quantities are found
to depend on the phonon amplitude. The LCM is extended to allow for an arbitrary
interatomic potential of the considered crystal lattice. Although the model is restricted
to merely include a cubic term in the potential (in addition to the harmonic quadratic
term) its calculated results exhibit very good agreement to the experimental data in terms
of lifetime, nonlinear propagation and modifications of the spectra of the photogenerated
coherent phonons.

The presented LCM and its variations which include physical effects of heat conduc-
tion and lattice anharmonicities prove to be valid by its very precise predictions of the
experimental signals. Slight deviations of the calculations from the experimental results,
however, carry the potential of indicating new physical aspects of the considered systems
as pointed out in this thesis. In addition to this great potential of the discussed models,
Chapter 5 presents other application-oriented benefits of the ability to precisely predict
the UXRD response of photoexcited nanolayered heterostructures. Our discovery of an
efficient Phonon Bragg Switch [38, 39] (discussed in detail in Papers IIT and IV) and the
understanding of the physical processes behind this behaviour by means of the LCM (Pa-
per II) exemplify the use of these calculations for the design of novel x-ray optics in the
field of time-resolved XRD. Since this first superlattice-based Phonon Bragg Switch we de-
veloped and tested several strategies for the efficient generation of ultrashort x-ray pulses.
Chapter 5 summarizes and unifies the related discussions presented in Papers II-IV, IX
and X.

Finally, Chapter 6 summarizes this thesis and gives an outlook to physical problems
which may be elucidated in the near future with the help of the models and the knowledge
presented in this thesis.



CHAPTER 2

SIMULATION OF PHOTOEXCITED LINEAR
LATTICE DYNAMICS OBSERVED BY
UXRD

This chapter is divided into two main parts. Section 2.1 addresses the crystal lattice
response of metal-insulator heterostructures after the excitation by ultrashort laser pulses
and how such lattice dynamics can be modeled. After a brief summary of the complex
relaxation dynamics of the optically excited electrons in metals in Section 2.1.1, I present
a simple linear-chain model (LCM) in Section 2.1.2 which summarizes the essential details
of the model reported in Paper I. The application of the LCM to two particular sample
geometries in Sections 2.1.3 and 2.1.4 demonstrates that this simple model is capable
of predicting the coherent lattice dynamics of an arbitrary nanolayered heterostructure
assuming an instantaneous onset of a photoinduced thermal stress and neglecting heat
diffusion.

Section 2.2 is dedicated to the numerical simulation of time-resolved dynamical x-
ray diffraction from the photoinduced lattice dynamics calculated by the LCM. The brief
introduction of dynamical x-ray diffraction and its extension by the integration of the
LCM results (Section 2.2.1) is followed by a comparison of the simulations to previously
published (Papers I-V) and unpublished UXRD experiments conducted by our research
group on epitaxial thin metallic films and metal-insulator superlattices (Sections 2.2.2
and 2.2.3). An excellent agreement of simulation and experiment is revealed and the
observed UXRD features can be uniquely related to the structure-dynamical features of
the respective samples obtained from the LCM. The validity of the assumptions entering
the LCM for the considered cases is thus verified. However, Section 2.2.4 presents UXRD
data which also indicate limitations of these basic assumptions and suggest more complex
mechanisms behind the laser-induced stress generation.

2.1 Linear-chain model (LCM) of coherent
photoexcited lattice dynamics

2.1.1 From photoexcitation to thermal expansion

In general, when irradiating condensed matter with intense and ultrashort laser pulses,
the light pulses directly interact with the charges present in the material. Depending
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2.1.1 From photoexcitation to thermal expansion

on the wavelength of the used laser light and the material under consideration, this can
trigger structural dynamics either directly via infrared absorption or indirectly via Ra-
man excitation and/or electron-phonon coupling processes. The indirect processes occur
via excitation of real or virtual electronic states. Raman excitation of coherent optical
phonons—which is a two-photon process involving virtual (non-resonant) or real (reso-
nant) electronic levels—is considered to be the dominant process in transparent media. In
opaque materials either conduction band electrons (metals) or electron-hole pairs (semi-
conductors) are excited or generated which subsequently couple their energy to the lattice
whereby coherent and incoherent phonons may be excited.

Within the course of this thesis I restrict my considerations to the excitation of metallic
solids by optical laser pulses with a wavelength of 800 nm, in particular I focus on the
perovskite oxides SrRuOjz (SRO) and Lag7Sro3MnO3 (LSMO). Moreover, this work is
exclusively dedicated to the photoexcitation of nanolayered sample structures, i.e., the
samples are supposed to consist of one or more (metal) slabs having a typical thickness
on the nanometer lengthscale which are epitaxially deposited on a single-crystal substrate.
Since the beam profile of the exciting laser on the sample typically has dimensions of several
100 pgm I can further restrict my considerations of the photoinduced structural dynamics
to the direction along the surface normal throughout this thesis [40]. I define this direction
as the z-axis.

During the photoexcitation the photons are predominantly absorbed by the conduction
band electrons of the metal which is represented by a large optical conductivity &(w) around
visible photon energies [41]. According to the Lambert-Beer law the intensity of the optical
light after passing through an absorbing material of length z is given by

[(2) = Lye™* (2.1)

where I, is the initial intensity of the light and the absorption coefficient a(w) =
Red(w)[n(w)egco) ™t is directly related to the real part of the optical conductivity [41].
The constants €y and ¢y are the vacuum permittivity and speed of light, respectively, and
n(w) is the frequency-dependent refractive index of the absorbing material. The optical
penetration depth into this material is given by & = a~!. Equation (2.1) directly implies
the density of deposited optical energy by its derivative pg(z) = dI(z)/dz which also has
an exponential spatial dependence.

At this stage, the electronic subsystem is in a state far from equilibrium as is depicted
in Fig. 2.1(a) by the non-Fermi-Dirac distribution of the electron energies just after laser
excitation. After an initial coherent (ballistic) electron transport the strong electron-
electron interaction rapidly restores an incoherent thermal equilibrium [42]. In the case
of SRO, Kostic and co-workers deduced a low-frequency electron scattering rate I'._. &
2.3 x 10" s™! corresponding to a mean scattering time 7,_, = .1, ~ 4.2 fs at 145 K [44].
Invoking typical Fermi velocities in SRO of vp ~ 107 cm/s [45-47] one obtains a mean free
path of about 0.5 nm which in fact poses an upper limit due to the increasing scattering
rate as one approaches room temperature. Therefore, the spatial energy density profile in
SRO is effectively not altered by ballistic electron propagation®.

The established thermal equilibrium of the electron gas now allows the definition of
temperature. First of all, the final temperature T.(z) of the electrons depends on the

'The velocity of the conduction band electrons gained by the absorption of photons is up to one
order of magnitude larger than vp. However, within Landau’s Fermi liquid theory, the scattering rate is
proportional to T? which suggests that the estimated free mean path also holds for the excited electrons
[48-50].
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Figure 2.1: Schematic of the optical excitation of electrons and the subsequent relaxation processes
in a metal from Ref. 42. (a) The absorbed photon energy promotes conduction band electrons into
states of higher energy giving rise to a non-equilibrium state. The increased kinetic energy of the excited
electrons results in ballistic electron motion into deeper parts of the metal. (b) Incoherent electron-
electron scattering restores a thermal equilibrium (Fermi-Dirac distribution) at an elevated temperature
of the electronic system after the thermalization time 7¢,. Now the energy transport is of diffusive nature
within the electron gas. (¢) Finally, an equilibrium between the electrons and the lattice is established on
a timescale given by the electron-phonon relaxation time 7._pn. Energy transport now proceeds by lattice
thermal diffusion according to the Fourier law [43].

amount of deposited energy, i.e. on pg(z). For laser fluences? on the order of 1-100 mJ/cm?
typically used in our experiments the electron temperature easily increases up to thousands
of Kelvin as the electronic heat capacity is small compared to the phononic heat capacity
of the solid [43]. Moreover, the heat capacity of a free-electron gas is not independent of
its temperature but is given by

Ce(Te) = ASTe (22)

where Ag is the constant Sommerfeld parameter [43]. In many metals (at least elemental
metals) this approximation holds up to several thousand Kelvin [51]. In materials exhibit-
ing strong electron correlations (e.g. SRO and LSMO) this approximation might not hold
up to such high temperatures. Altogether, this means that the spatial temperature profile
T.(z) may not be simply proportional to the energy density pg(2).

The subsequent process of electron diffusion which is furthermore capable of redis-
tributing the heat within the sample is typically orders of magnitudes slower compared to
the ballistic transport as is indicated in Fig. 2.1(b) [42]. Depending on the material under
investigation the heated electronic system more or less rapidly (7._,, =~ 100 fs to 10 ps) cou-
ples to the lattice degrees of freedom (electron-phonon coupling) leading to equilibration of
these two subsystems (Fig. 2.1(c))?. The metals considered in the current work (SRO and

2The physical quantity fluence is the energy flux through a given area integrated over a certain time
interval. In the particular context of laser pulse irradiation, it is given by the ratio of the pulse energy and
the irradiated area usually defined by the full width at half maximum (FWHM) of the laser beam profile
on the sample surface.

3A more general and rigorous treatment of the electron-phonon equilibration leads to the so-called
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LSMO) have a very efficient electron-phonon coupling resulting in very fast equilibration
times on the order of a few hundred femtoseconds [53]. In Paper V we were able to narrow
this time scale down to < 200 fs in case of SRO. Continuing the above discussion, this
implies that after thermalization the hot electrons have virtually no time to diffuse across
the metal layer before the electronic and phononic subsystems are equilibrated and the
spatial energy density profile pg(z) thus retains its shape. The final lattice temperature
profile Tj(z) then essentially depends only on the lattice heat capacity C; since the electron
heat capacity is negligible after equilibration. The lattice heat capacity C; is only constant
if the solid is initially above its Debye temperature ©p [43]. Similar to the electron gas,
the temperature dependence of the lattice heat capacity may result in a modified spatial
lattice temperature profile deviating from the initial energy density pg(z).

Due to the generally anharmonic nature of interatomic potentials the lattice tempera-
ture increase ATj(z) gives rise to the thermal stress

o(2) = —3Ba(T)ATi(2) (2.3)

where B and «(7}) are the bulk modulus and the linear thermal expansion coefficient of
the solid, respectively. As already discussed by Thomsen et al. this expression is valid
for isotropic media [40] which is a good approximation for SRO and LSMO. Due to the
fast electron-phonon coupling time of these materials, the photoinduced thermal stress
o(z) builds up within a few hundred femtoseconds which launches coherent longitudinal
acoustic (LA) phonons in form of sharp strain wave fronts [40]. Since the timescale of the
build-up of ¢(z) is much shorter than any structural dynamics of interest in this thesis it
can be effectively considered as instantaneous.

As a first approximation, one may assume the lattice heat capacity C; to be constant
which holds for a sufficiently small temperature rise AT(z). Then (2.3) becomes

_3Ba(Ty)
pC

o(z) = pe(2) = —1pE(2) (2.4)
where I introduced the mass density p and the averaged Griineisen parameter v. In fact, v
is only weakly changing over a wide temperature range for nearly any material since a and
C) have a very similar temperature-dependence [54, 55]. That is, relation (2.4) also holds
to a good approximation for an arbitrary photoinduced temperature rise AT'(z). After the
coherent strain waves have left the excited layer, a quasi-static expansion field €(z) o o(z)
due to the incoherently excited phonon population remains. The proportionality reflects
Hooke’s law of elasticity. In this context quasi-static means that the timescale of the
subsequent heat diffusion dynamics is orders of magnitude larger. The influence of heat
diffusion is discussed in Chapter 3.

In conclusion, as a first approximation the photoinduced thermal expansion of metallic
layers by sufficiently short laser pulses can be considered to be the result of an instantaneous
force or stress o(z) being proportional to the deposited energy density pg(z). Thus, o(2)
has a depth profile that is defined by the exponential penetration depth £ of the optical
pump light. The impulsive heating of the absorbing layers in the heterostructures triggers
longitudinal sound waves which start to propagate across the sample, eventually travel into
the substrate and leave behind thermally expanded layers. The details of these processes
are discussed in the following.

two-temperature model [42, 52]
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Figure 2.2: This figure is adapted from Paper I. (a) Schematic of the linear chain where the empty
and solid balls represent one unit cell of different materials, respectively, and the zigzag lines represent
the springs (interatomic forces). (b) The instantaneous insertion of incompressible spacer sticks at ¢ = 0
according to the photoinduced stress profile o(z). The stress generation shifts the equilibration positions of
the masses (dashed lines). (c) After the coherent strain waves have entirely propagated into the substrate
all masses have reached their equilibrium positions, i.e., the expansion field £(z) & o(z) remains.

2.1.2 The linear-chain model (LCM)

The current section gives a brief summary of Paper I where all the technical details of the
model are presented and its implications in particular for SLs are extensively discussed.

In order to simulate the lattice dynamics of photoexcited epitaxial metal films, we set
up a linear-chain model (LCM) of masses and springs [1, 56, 57] which is schematically
shown in Fig. 2.2(a). Since we generally intend to describe arbitrarily nanolayered systems
and the photoexcited area of the samples is usually orders of magnitudes larger we are
faced with a one-dimensional (1D) physical problem. Thus, a 1D-LCM is sufficient to
capture the relevant physical processes. The masses of the linear chain represent a general
sub-volume of the crystal and the springs represent the forces acting between these sub-
volumes which microscopically originate from the interatomic forces of the lattice. In fact,
we focus on LA phonons and thus choose each unit cell of the lattice to be represented
by one mass unit. We assume the classic harmonic interaction which only acts between
nearest neighbours. This interaction is represented by the springs of the LCM. The spring
constant K quantifying the force amplitude between the neighbouring masses is defined
such that it gives rise to the literature value of the LA sound velocity of the respective
material(s), i.e., K = muv?,/c* where m and c are the mass and lattice parameter (the
size) of one unit cell along the surface normal and vy, is the velocity of LA phonons. The
spring constant has to be defined for each constituting material. In Chapter 4 I relax the
assumption of a harmonic interaction between the atoms of the crystal lattice and discuss
the influence of anharmonic interaction potentials.

Section 2.1.1 and Paper I motivate that as a first approximation the photoexcited stress
builds up quasi-instantaneously which shifts the equilibrium positions of the masses on the
linear chain without any motion of the masses and thus forces are exerted on the masses
(deformation potential). This process can be thought of as inserting incompressible spacer
sticks between masses and springs at ¢ = 0 [28] which is depicted in Fig. 2.2(b). The
length [; of each stick is proportional to the exponential stress profile o(z) evaluated at the
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position z; of the 7th unit cell. The dashed lines in Fig. 2.2 indicate the shifted equilibrium
positions. Mathematically, the instantaneous insertion of spacer sticks into the linear
chain can be done most conveniently in form of modified initial conditions at t = 0 of
the coupled harmonic oscillator differential equations. In Paper I, these equations are
then solved analytically by solving the related eigenvalue problem. The solution contains
the entire structural dynamics by giving the position and velocity of each mass at any
time. This method has the advantage to enable a normal-mode analysis of the lattice
dynamics, i.e., the solution directly yields the spectral amplitude and phase of each normal
mode defined on the linear chain (also known as phonon mode). As shown in Chapter 4,
this feature is particularly valuable if the UXRD diffraction curves resulting from such
structural dynamics need to be calculated.

After the build-up of the laser-induced stress and the launch of the coherent sound waves
the heat deposited in the metal layers starts to diffuse into colder regions of the sample.
The heat diffusion is a much slower process as indicated in Fig. 2.1. In fact, the timescale of
heat conduction in perovskite SLs has been previously studied and the findings suggested
that heat diffusion can be neglected on the timescale of the coherent lattice dynamics
[58-60]. This implies that the spatial stress profile o(z) (and hence the stick lengths) is
time-independent which will thus be the applied approximation throughout this chapter.
It is nevertheless straightforward to extend the presented LCM to additionally account
for heat diffusion. In combination with new experimental results, this will be discussed in
Chapter 3.

The presented LCM can be applied to any nanolayered sample structure in which
photoexcitation leads to a quasi-instantaneous local stress generation. In the following
sections I discuss the results for two special cases, namely, epitaxial thin films and epitaxial
superlattices on a single-crystalline substrate.

2.1.3 Photoexcited lattice dynamics of thin films

The present section discusses the application of the LCM to the simplest heterostructure
possible, that is, a thin metallic film which is deposited epitaxially on a transparent single-
crystalline substrate and is excited by an ultrashort laser pulse. Since this is a prototypical
scenario which is in this form not included in any of the attached papers, I will discuss
this case in more detail. The thin-film geometry nicely exemplifies the structure-dynamical
features occurring in impulsively photoexcited nanolayered systems and thus in particular
forms the basis for the related dynamics of SLs. The latter is addressed in Section 2.1.4.

As an example, I focus on a SRO thin film of thickness dsgro = 94.8 nm with an out-
of-plane lattice parameter cspo = 3.949 A epitaxially grown on a STO substrate by pulsed
laser deposition [37] which will be revisited in Section 2.2.2 concerning its theoretical and
experimental UXRD response. The structural parameters are derived by fitting static high-
resolution XRD curves presented in Section 2.2.2. The literature value of the penetration
depth of the 800 nm pump light into SRO is &Jyo &~ 52 nm [44, 61]. As explained in
Section 2.1.1, I apply the reasonable assumption that the spatial stress profile within the
SRO layer is proportional to the energy density profile pg defined by the Lambert-Beer
law in (2.1).

For such a sample structure the LCM yields a transient strain field presented in
Fig. 2.3(a). A more detailed view is given by lineouts at selected time delays in Fig. 2.3(b).
Generally, the instantaneously photoexcited stress in SRO launches strain waves (or coher-
ent LA phonon wavepackets) wherever the stress for an atom (or atomic layer) is unbal-
anced, i.e., where the spatial stress pattern has non-zero gradients [1, 62|. For thin films
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Figure 2.3: (a) Result of the LCM for a 94.8 nm thick SRO layer on a STO substrate. The surface
plot shows the spatiotemporal strain pattern after photoexcitation assuming 5§Ro = 52 nm. The dashed
line indicates the layer-substrate interface. (b),(d),(f) Transient strain patterns at selected time delays
for ésro = EdRos EsrO = 1006050 and Esro = 0.1€8R, respectively. The dashed lines indicate the layer-
substrate interface. (¢) Comparison of the normalized total SRO strain vs. time delay for different sro.

(e) Normalized potential and kinetic energies of the SRO layer and substrate, respectively. Note that
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with thickness d smaller than the optical penetration depth £ this essentially means that
sharp strain waves are launched from the sample surface and the layer-substrate interface,
respectively, since at these points the largest gradients are present. The blue curve in
Fig. 2.3(b) clearly reveals the coherent expansion wave originating from the sample sur-
face and although the considered SRO layer is rather thick compared to its penetration
depth the strain waves launched at the interface are still visible. Altogether, the impul-
sive heating of the SRO layer triggers coherent expansion waves starting from the surface
and interface, respectively, propagating into the SRO layer and a compression wave start-
ing from the interface propagating into the substrate. The interface strain waves are not
existent if d > &.

A closer look at the transient strain fields in Fig. 2.3(b) reveals that the strain waves
are superimposed by a peculiar fine structure which is most pronounced on the tensile
component launched at the sample surface. Since we solve the differential equations of the
linear chain analytically these features are no numerical artifacts. In fact, these oscilla-
tions are a characteristic feature of a discretized linear chain and do not occur in elastic
continuum models [40]. The high-frequency oscillations on top of the strain waves are a
result of the fact that the motion on the linear chain is essentially initiated at the surface
and interface due to the large gradients of the thermal stress o(z) at these points?. A
more detailed analysis (not shown) reveals that these very early motions of the surface and
interface atoms show an oscillatory bahaviour and in addition to the total expansion of the
layer thus represent an acoustic oscillation of the entire surface. This coherent acoustic
surface/interface mode is responsible for the observed high-frequency oscillations. Note,
that the frequency of these oscillations actually depends on the particular discretization of
the linear chain. If one defines one linear-chain mass per atom which means twice as many
masses as in the current consideration the frequency is twice as high. Moreover, the co-
herent surface/interface oscillations only occur if the assumption of a quasi-instantaneous
stress generation holds. If, e.g., the pump pulse duration or the electron-phonon relax-
ation time would be too large these features could not be excited. Nevertheless, it would
be very interesting—albeit challenging—to observe such features in experiments and to
investigate a possible coupling to optical phonons and the amplitude and lifetime of the
high-frequency acoustic phonons (which would be closely related to Chapter 4). In the
following, however, I focus on the main features of the photoinduced lattice dynamics and
do not further discuss the high-frequency oscillations.

The strain waves launched at the surface and interface travel through the materials at
their respective LA sound velocity vp,a. The literature value vPR° = 6.3 nm/ps [63] implies
a transit time of the sound through the SRO layer of T,,unqa = dsro/ UE%O ~ 15 ps which is
directly verified by the LCM results (see Fig. 2.3(a) and cyan curve in Fig. 2.3(b)). At t =
Tsound the total strain of the SRO layer reaches its maximum (cyan curve in Fig. 2.3(c)) since
both expansion wave fronts have traversed the layer and add up coherently. The expansion
wave from the surface then continues to propagate into the substrate and together with the
compression wave originating from the interface it forms a so-called bipolar strain pulse
(BSP) which continues to travel deeper into the substrate [40]. In the present case, the
reflection of the sound waves at the interface quantified by

P2U£213 _ /)1”82 :
Ll e (25)

P2V A T PIULA

4Since the largest gradient is present at the surface the high-frequency oscillations are most pronounced
on the expansion wave originating from there.
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is negligible since the acoustic impedance mismatch pwﬁi — plv&z is very small for the

combination of SRO and STO (p; and v&l are the mass density and the LA sound velocity of
the neighboring materials, respectively) [57, 64]. The expansion wave originating from the
interface is reflected from the surface at t = T,,unq and thereby converted into a compression
wave effectively truncating the expansion wave initially launched at the surface. In total,
the exit of the expansion part of the BSP from the SRO layer leads to a decrease of the total
SRO strain between Tyounq and 2T5ounq @s can be inferred from Fig. 2.3(c). For t > 2T ouna
a static expansion or dilation of the SRO layer remains which can be thought of as the
sum of all spacer sticks in SRO initiating the stress in the first place. This static expansion
of the layer represents the incoherently excited thermal phonon population, i.e., thermal
expansion. As we will see below, this behaviour for t > 27T,,.,q only holds due to the
negligible acoustic impedance mismatch of SRO and STO.

Apart from nonlinear effects at very high laser intensities [65], the penetration depth
¢ = a~! of light with a given wavelength into a particular medium is a constant quantity
and given by the material’s dielectric function (see Section 2.1.1). In the LCM one can,
however, easily vary £ in order to further investigate the photoexcited lattice dynamics
of thin films. Figures 2.3(d) and (f) present plots similar to Fig. 2.3(b), however, for the
limiting cases of {sro > dsro and {sro K dsro. All three simulations are chosen to have an
identical mean SRO expansion of 0.5% for ¢ — oo which is a realistic strain level in pump-
probe experiments®. At a first glance, the structural layer and substrate dynamics seem to
be rather different in the three cases. However, the general features of propagating sharp
coherent strain fronts are similar and for ¢ — oo one also observes a statically expanded
layer and a propagating wavepacket (the BSP) in the substrate in all cases. The normalized
transient strain of the entire SRO layer—which is related to the position of Bragg peaks in
UXRD experiments (see Section 2.2)—is shown in Fig. 2.3(c) for different values of {sro
and reveals even more similarities. Although the exact evolution of the total SRO strain
varies for different {sro (due to differing shapes of the wavepackets), the maximum SRO
strain is always reached at t = Ty, and, moreover, is in all cases 50% larger than the
stationary value for ¢ > 27T ,unq. The latter is merely given by the photoinduced thermal
(incoherent) expansion of SRO defined by the initial condition entering the LCM (see
Section 2.1.2). Note, that this stationary expansion is here already reached after 2T;,unq
due to the almost perfect acoustic impedance matching of SRO and STO. If there existed
a significant acoustic mismatch a decreasing portion of the acoustic phonon wavepackets
would coherently bounce back and forth several times within the layer until all their energy
would eventually be successively transmitted into the substrate as can be seen, e.g., in
UXRD experiments of Nicoul and co-workers on Gold layers on Mica substrates [66].
Moreover, the data shown by Nicoul et al. also roughly exhibit the apparently general
feature of the 50% increased strain maximum at Tyou,q relative to the final incoherent
strain.

The reason for this universal 50% increased coherent strain mazimum can be explained
by the following energy considerations. As explained above, for ¢t > 27T,,.,q the layer has
reached its stationary incoherent expansion and a coherent BSP is propagating through
the substrate (see Figs. 2.3(b), (d) and (f)). The latter has a net strain of zero since no
photoexcitation of the substrate is present. Therefore, the two parts of the strain pulse
(compressive and tensile) carry the same amount of integrated strain albeit with different
sign. The final potential energy stored in the BSP, E*"> (black solid line in Fig. 2.3(e)),

pot

5In the case of £&sro < dsro this results in huge strains at the layer surface which would most likely
yield irreversible damage in real experiments.
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2.1.4 Photoexcited lattice dynamics of superlattices

thus originates in equal parts from the compressive and the tensile component, respectively,
which is also visualized by the fact that E;‘;E reaches half of its final value at ¢t = Ty ung
where one of the two BSP components has entered the substrate. The potential energy of
the SRO layer, ES}}O, is maximal at ¢ = 0 due to the photoexcited thermal stress and the
related shift of equilibrium positions of the masses in the linear chain. One can think of
the layer as being compressed with respect to its stationary incoherent expansion at late
times. Eventually, ESRC vanishes for ¢ > 2T ,unq since all springs in the layer have relaxed,
i.e., the layer has reached its stationary expansion and no coherent dynamics are leftS. The
vibrational energy is carried away by the coherent BSP in form of potential and kinetic
energy. At t = Tyounq One finds that ES&O is 1/4 of its initial value. Due to the squared
dependence of potential energy on the strain amplitude this implies that relative to the
stationarily expanded state for ¢ > 2T;,unq the tensile strain amplitude at t = Tyounq is 1/2
of the compressive strain amplitude at ¢ = 0. In other words, relative to the final state the
maximum relative layer expansion amounts to 50% of the initial relative compression. The
preceding arguments hold independent of £sro, i.€., the values of the potential and kinetic
energy at t = Tyoung and t = 2Toung in Fig. 2.3(e) are invariant similar to Fig. 2.3(c) (not
shown). Hence, the 50% increased coherent strain maximum found in Fig. 2.3(c) is indeed
a general feature of a photoexcited thin film on an unexcited substrate.

As a side remark, if the film was free-standing, i.e., detached from the substrate, no
BSP could leave the layer which would result in a 100% increased coherent strain maxi-
mum as was theoretically discussed and experimentally observed by femtosecond electron

diffraction on a photoexcited Gold film in the work of Li et al. [67].

2.1.4 Photoexcited lattice dynamics of superlattices

In the following I consider the photoinduced structural dynamics of a more complex class
of heterostructures known as superlattice (SL) [57]. Since the essential details of the LCM
results on SLs are already explained in Paper I the current section represents a short
summary.

A SL is an epitaxial heterostructure realized by periodically stacking layers of differ-
ent materials. The simplest type of SL is formed by Ngp-fold repetition of an epitaxial
bilayer (basis) of thickness ds;, = dy + dy where d; and dy is the thickness of layer 1 and 2,
respectively. Within the current work I restrict my considerations on SLs which are com-
posed of a metallic and an insulating material with perovskite crystal structure. While the
metallic layers are impulsively heated by the absorption of the pump pulse which results
in the discussed coherent and incoherent expansion dynamics, the insulating layers remain
unexcited. Hence, such a SL can be considered as a repetitive arrangement of several thin
films generating lattice dynamics as discussed in Section 2.1.3. Due to the additional SL
periodicity dg;, the photogenerated stress pattern as well as the lattice distortions also
attain this periodicity which is reflected in, e.g., the backfolding of the phonon dispersion
relation into the mini-Brillouin zone [56, 57].

The details of the photoinduced structural dynamics of SLs are extensively discussed
in Papers I and IIT as well as in Refs. 1, 28, 30, 56, 57, 59, 60, 68. In particular, there
exist two distinct timescales which are discussed in the following.

6Note again that this only holds for negligible acoustic impedance mismatch. For a significant acoustic
mismatch the total strain of the layer will oscillate around the stationary value which will be reached at
later times.
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Simulation of photoexcited linear lattice dynamics observed by UXRD

Fast timescale in SLs — Folded Phonons

The fast lattice dynamics are governed by the so-called fundamental SL phonon mode (or
zone-folded longitudinal acoustic phonon (ZFLAP), see e.g. Refs. 28, 56). In a nutshell, the
spatial periodicity of a SL, dgy,, gives rise to the decrease of the Brillouin zone by backfolding
the phonon dispersion relation into the mini-Brillouin zone (—7/ds;, < Q < 7/dsp) [57]. In
particular, the backfolding maps LA phonons with a specific non-zero wavevector () onto
the Brillouin zone center” (Q = 0) which can then be considered as optical (SL) phonons
since they represent a deformation within one super unit cell and they become Raman or
infrared-active [69, 70]. In Section 2.1.3 T explain the basic lattice dynamics triggered by the
photoexcitation of a single metal film. As the SLs considered here are a periodic repetition
of metal films, coherent strain waves are launched from each metal film into both directions.
Due to the spatial SL period dgr,, the superposition of all waves in the SL then forms a
standing strain wave of spatial period ds;, which represents a temporally periodic expansion
and compression of the SRO and STO layers, respectively®. For acoustically matched
materials, these structural oscillations have a fundamental frequency wsy, = 27/Ts1, where
the oscillation period is defined by the transit time of the sound waves through one bilayer
(basis) of the SLY, i.e.,

d d
TSL:T1+T2:T1—|—TZ (26)
YA VLA

The result of the LCM for a particular SRO/STO SL is presented and discussed in detail in
Paper I (Fig. 5(a)). To emphasize and visualize the structural SL dynamics a little more,
Fig. 2.4 shows the individual transient strain averaged over all SRO and STO layers of
the SL. One clearly observes the periodic expansion and compression of the SRO and STO
layers, respectively, which is due to the standing strain wave (SL phonon mode) triggered by
the impulsive heating of the metallic SRO layers. One of the major conclusions in Paper I
is that the mechanical coupling of the SL to the substrate leads to the apparent damping of
the SL oscillations, however, the vibrational energy is in fact coherently transported into
the substrate. From the viewpoint of the employed normal-mode picture this coherent
energy transport is merely due to the superposition of the oscillating eigenmodes (phonon
modes) which extend throughout the SL and the substrate, i.e., the entire linear chain.
The decay of the SL oscillations in Fig. 2.4 which is also observed in UXRD studies
[1, 28, 53, 59, 60, 68, 71| is thus due to the fact that only the SL is monitored. Paper I
also explains that the coherent strain waves entering the substrate can be observed by
investigation of the substrate Bragg peak. This topic is also discussed in great detail in
Chapter 4.

In case of the considered particular SRO/STO SL, the SL oscillation period is Tgy, =
3.2 ps. On one hand, Ts, can be calculated by (2.6) given the layer thicknesses and
sound velocities are known. On the other hand, Tg;, can be inferred from experiments

"In general, SLs having an arbitrary acoustic impedance mismatch exhibit acoustic bandgaps in their
phonon dispersion relation which is in analogy to the nearly-free electron model giving rise to electronic
band structures [43]. The band edge states are symmetric and antisymmetric, respectively, with respect
to the atomic displacement.

8This corresponds to a mode which is symmetric with respect to strain but is antisymmetric with
respect to the atomic displacement since the former is the related to the latter by a spatial derivative.

9Equation (2.6) (and thus (2.7)) is only strictly valid in the limiting case of negligible acoustic
impedance mismatch. In that case there is no acoustic bandgap, the symmetric and antisymmetric modes
are degenerate and the sound velocity of acoustic waves through the SL is given by eq. (2.7). In the general
case of arbitrary acoustic impedance mismatch the badgaps lead to modified frequencies wgr, which are
determined by the SL phonon dispersion relation derived in Ref. 57.
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Figure 2.4: Transient average strain of the SRO (red line) and STO (blue line) layers of the SL after
photoexcitation. The black line shows the strain of the entire SL.

which in turn allows for the determination of layer thicknesses or sound velocities (of
course three of the four independent quantities have to be known). As Section 2.2 points
out, the most direct way to obtain detailed information on the structural dynamics is
UXRD. In fact, UXRD was successfully employed to reveal the SL oscillation of this
particular SRO/STO SL sample including its period and phase (see Papers II-V, XI,
XII and Refs. 53, 59, 60, 71, 72). If one is merely interested in the frequency of the
SL oscillation, it is usually sufficient to exploit the lattice-dynamics-induced modulation of
optical constants by experimentally simpler all-optical scattering or pump-probe techniques
[56, 69, 73]. In Paper V, we carefully compare the transient optical and UXRD response
of this SL both of which exhibit oscillations with 3.2 ps period.

Slow timescale in SLs — Expansion

The second, slower timescale of the structural SL dynamics is comparable to the discussions
in Section 2.1.3 as it represents an overall expansion of the SL. The black line in Fig. 2.4
shows how the SL strain evolves after the pump pulse has arrived. This behavior is
essentially identical to the one observed in thin films (Fig. 2.3(c)) and all conclusions
drawn for thin films hold. In particular, the 50% increased coherent strain maximum
can also be found in the SL as is partly discussed in Paper I. A closer look into Fig. 2.4
reveals a multiple step-like expansion of the SL. This is caused by the successive reflections
of the compression waves at the surface whereby they are converted into expansion waves
effectively increasing the expansion of the SL. The maximum expansion of the SL is reached
after Ty " = Ngpdsy,/vsy, which is the ratio of the total SL thickness and the average LA
sound velocity in the SL (in analogy to the thin film considerations). Note, that vgy, is not
simply given by the arithmetic mean of the sound velocities of the constituting materials
but instead reads
ds.  viaVPadsL

= 2.7
TSL dlvﬁA + dQ/UiA ( )

which is based on the transit time of the sound waves through one bilayer given by eq. (2.6).

In Figure 2.4 one can also see that STO indeed plays a passive role in the sense that
it merely guides the acoustic waves but it is not optically excited. Only SRO remains
expanded after the coherent sound waves have left the SL into the substrate. Again, within
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Simulation of photoexcited linear lattice dynamics observed by UXRD

the LCM, the absolute expansion of the SRO layers and hence the SL is given by the sum
of all inserted spacer sticks which represent the incoherently excited phonons giving rise
to the thermal expansion. As will be discussed in Chapter 3, the passive behavior of STO
will no longer hold if one allows for heat diffusion between the individual layers.

2.2 Calculation and interpretation of UXRD
response of photoexcited lattice dynamics using
the LCM

While the previous sections introduced the LCM to model the structural dynamics of
nanolayered metal-insulator heterostructures after optical excitation, the aim of the cur-
rent section is to employ the LCM output in order to simulate the resulting transient signals
recorded in UXRD experiments. First, I introduce dynamical XRD and its calculation us-
ing the results of the LCM. Second, I discuss the implications of the particular sample
structures considered in the previous sections and how the various features of the com-
plex UXRD signals can be related to the general features of the structure dynamics. This
emphasizes the great potential of UXRD experiments and their analysis by the presented
numerical models in order to infer the laser-induced lattice dynamics of nanolayered het-
erostructures. Finally, I mention the limitations of the assumption of instantaneous stress
generation which have very recently been elucidated in a fluence-dependent UXRD study

on a SRO/STO SL.

2.2.1 Dynamical x-ray diffraction in combination with the LCM

The key aspect and the heart of XRD is the fact that the x-ray waves partially diffracted by
atomic planes have a specific phase relation due to the periodic repetition of these planes
in a crystal lattice and that therefore x-rays are essentially only diffracted by a crystal as
very distinct reflections. This is encoded in Laue’s famous diffraction condition

q= kout - kin =G (28)

where the wavevector transfer q given by the vectorial difference of the diffracted and
incident x-ray wavevector k., and k;,, respectively, has to be equal to a reciprocal lattice
vector G [20]. As the vector G is the normal to a set of lattice planes and its magnitude is
inversely proportional to the distance between the lattice planes, XRD is one of the best
methods to uniquely determine the structure of a given crystal.

Throughout the current work I restrict the considerations to the case of symmetric
XRD (also known as ©-20 scans), i.e., the wavevector transfer q is orthogonal to the
sample surface which allows for the extraction of structural information only along the
surface normal. As motivated in Section 2.1.2, the structural dynamics of interest here
are confined to this dimension which implies that symmetric XRD contains the entire
structural information and antisymmetric XRD is redundant. Therefore, also the probe
process of XRD is reduced to only one dimension.

XRD can often be considered in the context of kinematical diffraction theory which
assumes the scattering effects to be comparatively weak [20]. If one, however, considers
XRD from highly perfect and quasi-infinite crystals where scattering effects are no longer
small and multiple scattering events play an important role, one has to employ the more
complex theory of dynamical XRD. Although the samples considered here usually have
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dimensions around ten to a few hundred nanometers where kinematical theory would
suffice, our partial interest in structural dynamics near or at the substrate Bragg peaks (e.g.
in Papers I, VI and VIII) demands the use of the dynamical theory. The mathematical
description of dynamical diffraction initially developed for symmetric XRD'? by Darwin in
1914 [75] has been discussed in detail, e.g., in Refs. 1, 20, 74, 76. In particular, T adopt the
method described in Ref. 1. Here, the reflection and transmission of the x-ray waves at each
lattice plane due to the a given electron density and the phase obtained by propagation
between the atomic layers are represented by respective matrices within a transfer matrix
approach. The phase between the waves reflected from adjacent lattice planes depends
explicitly on the distance between them. That is where the spatiotemporal strain field
from the LCM calculations which defines the deformation of each unit cell enters the XRD
calculations. The XRD response of the sample of interest is thus evaluated at each time
step of the LCM calculation which yields the transient signals usually recorded in UXRD
experiments.

In the following I summarize the predictions of the calculations combining the LCM
and dynamical XRD (also referred to as LCDX in Paper II and below) for the previously
discussed cases of photoexcited thin films and superlattices.

2.2.2 Transient splitting of Bragg peaks

In this section I reconsider the simplest sample structure of a thin epitaxial metallic film
on a bulk substrate. I again focus on the special case of a 94.8 nm SRO thin film on a
STO substrate which was already used in Section 2.1.3 to exemplify the theoretical lattice
dynamics of photoexcited thin films. I present unpublished UXRD data and compare these
to LCDX simulations. Similar to Section 2.1.3, the present section is therefore discussed
in more detail.

The static rocking curve of the SRO thin film on STO measured at the EDR beamline
at BESSY II is shown by the symbols in panel (a) of Figure 2.5. The dynamical XRD
calculation (red line) which includes the instrumental function of the experiment allows for
the precise determination of the thickness (dsgro = 94.8 nm) and the out-of-plane lattice
parameter (csgo = 3.949 A) of the SRO layer by matching the position and the width (and
also the period of the Laue oscillations) of the SRO Bragg peak, respectively. The UXRD
response of the (002) SRO Bragg reflection upon optical pumping was measured in a pump-
probe scheme at the laser-based Plasma X-ray Source (PXS) at the University of Potsdam
which is described in detail in Paper XI. The results are presented in Figure 2.5(b). The
incident excitation fluence of the 800 nm pump pulses, i.e., the optical energy per unit
area impinging on the sample surface, was ~ 30 mJ/cm?. The transit time Tioung & 15 ps
of LA sound waves through the SRO layer was already introduced in Section 2.1.3. At
that time delay the stationary SRO Bragg peak (initially around ©g = 23.0°) is shifted by
~ 0.2° towards lower angles indicating an expansion by = 0.8%. Recall, that this does not
correspond to the final incoherent thermal expansion since the coherent lattice dynamics
result in the 50% increased coherent strain maximum at Ty,.,q. The Bragg peak will thus
shift back by 1/3 within another 15 ps.

The transient average SRO strain extracted from LCM calculations presented in Fig. 2.3
revealed a continuous rise of the SRO strain for 0 < ¢t < Tyounq. In contrast, the SRO
Bragg peak in Fig. 2.5(b) does not simply shift continuously. Instead, the initial SRO

0For an arbitrary XRD geometry, e.g., asymmetric Bragg reflections, the very general Takagi-Taupin
equation has to be solved [74].
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Figure 2.5: (a) Stationary (002) rocking curve of a 94.8 nm thick SRO thin film on a STO substrate
measured at BESSY II. The solid line is the result of a dynamical XRD simulation from which the
structural parameters of the layer given in the text are deduced. The simulation accounts for the finite
instrumental resolution. (b) Transient rocking curves after excitation by 800 nm pump pulses with an
incident fluence of ~ 30 mJ/cm? measured with a PXS at the University of Potsdam. The SRO peak does
not shift continuously but instead a new peak appears at lower angles. Note, that the stationary rocking
curve in panel (a) was actually measured at a photon energy of Feyx, = 8.662 keV. In order to compare
the data to the transient rocking curves in panel (b) the experimental ©-axis is converted to an artificial
photon energy of Epiot = 8.048 keV corresponding to the Cu K, radiation generated by the PXS.

peak disappears while a strongly shifted new peak arises at lower angles. Moreover, as
time goes on, one observes that the initial peak as well as the new peak shift to higher
angles and both follow a bent “trajectory”.

Figure 2.6(a) shows a close-up view for the relevant timescale of the LCM results
similar to Fig. 2.3(a). As explained above, this spatiotemporal strain field now serves as an
input for the dynamical XRD simulation which then yields the solid lines in Fig. 2.6(b)!!.
Comparing the LCDX simulations to the UXRD data, we find perfect agreement. In
particular, the transient splitting of the Bragg peak as well as the individual Bragg angle
changes are accurately reproduced.

The physical origin of the particular features in the UXRD response (Fig. 2.6(b)) is
directly related to the lattice dynamics (Fig. 2.6(a)). The instantaneous stress generation
assumed in the LCM (see Section 2.1.3) launches a sharp tensile strain wave starting at
the surface which is represented in Fig. 2.6(a) by the red color code. In particular, at
t = Tsouna/2 this creates a state where half of the layer is expanded (red) and the other
half remains mainly unstrained (white) which then gives rise to two distinct Bragg peaks
(cf. green line in Fig. 2.3(b)). In other words, the transient splitting of the SRO Bragg
peak is due to and in turn proves the quasi-instantaneous build-up of the photogenerated
stress. In the picture of two differently strained portions of SRO, Fig. 2.6(a) implies an
expanded layer which is growing in thickness and a more or less unstrained layer whose
thickness gradually reduces as time goes on. In reciprocal space, this translates into Bragg
peaks of decreasing and increasing width, respectively, which can indeed be inferred from
the UXRD data in Fig. 2.6(b). Similar splittings of Bragg peaks have been observed before
in bulk LuMnOg3 by Lee et al. on much longer timescales although the particular lattice
dynamics are not explained in detail [77]. The authors claim that the anisotropic nature of
the thermal expansion of LuMnOj3 (hexagonal lattice) had to be accounted for in order to

HThe XRD simulations include the instrumental function of the PXS (angular resolution, Cu Koy and
Kas radiation) to obtain perfect agreement with the data.
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Figure 2.6: (a) Transient strain from LCM calculations assuming {sro = 44 nm. The white dashed line
marks the interface between the SRO layer and the STO substrate. (b) Comparison of the PXS data with
dynamical XRD simulations using the LCM results from panel (a). The curves are displaced for the sake
of visibility.

reproduce the data. Since SRO has an isotropic thermal expansion (pseudocubic lattice)
such effects do not play a role here!?.

In addition to the quasi-instantaneous build-up, the second major assumption used in
the LCM is that the stress profile has an exponential shape given by the optical penetration
depth &sro of the 800 nm pump light into SRO, i.e., o(z) x exp(—z/&sro). The perfect
agreement presented in Fig. 2.6(b) could be achieved by the use of {spo = 44 nm which
significantly deviates from the literature value of 52 nm [44, 61]. This deviation is addressed
further below. In Fig. 2.7(a) I compare the measured rocking curve at ¢ = 6 ps with the
LCDX simulations assuming different values of the optical penetration depth. The different
exponential stress patterns o(z) imply different near-surface strains (at 6 ps) compared to
the final average SRO strain (at 15 ps). This results in slightly different positions of the
shifted peak around 22.7°. The best overall agreement is obtained for é&sgro ~ 44 nm. To
depict the effect of optical penetration depth in more detail, Figures 2.7(b) and (c) present
surface plots of the calculated transient rocking curves for 36 and 52 nm, respectively.
Clearly, a smaller penetration depth results in a larger initial splitting and more bent-like
trajectories of the peaks. This is due to the more rapidly decreasing average strain of
the expanded portion of the layer caused by a larger gradient of the photoexcited stress
profile. If one looks into the “unstrained” portion of the layer in more detail, one finds
that it is actually not completely unstrained. Instead, with decreasing penetration depth
(hence increasing gradients) an increasingly relevant compression wave is launched by
these gradients eventually giving rise to a total compression. This is the reason why the
original SRO peak not only vanishes but also shifts to higher angles. As can be seen
from Figures 2.7(b) and (c), this effect becomes more pronounced for lower &ggro. Another
manifestation of the exponential expansion profile is the asymmetry of the shifted Bragg
peak towards lower angles for late time delays in Fig. 2.6(b).

Altogether, the assumption of a quasi-instantaneous exponential stress profile is valid
which is evidenced by the perfect agreement of the LCDX simulations with the UXRD data
in Fig. 2.6(b). The question remains why the exponential stress and hence the expansion
profile derived from the UXRD data reveals a decay constant of 44 nm which is significantly

12Precisely, SRO has an orthorhombically distorted perovskite structure, however, since the distortion
is fairly small it can be considered as being pseudocubic [1, 63]. The same holds for LSMO.
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Figure 2.7: (a) Comparison of the SRO thin-film UXRD data at t = 6 ps with LCDX results for different
optical penetration depths. (b)-(c) Surface plot of transient rocking curves for (b) {sro = 36 nm and (c)
&ésro = 52 nm.

shorter than the optical penetration depth of 52 nm in bulk SRO [44, 61]. In principle, there
are two possible reasons for the suppressed length scale. First, the optical properties of thin
films may differ from the bulk properties due to the stationary strains induced by epitaxy
(78, 79]. In order to check this possibility Dr. Andreas Hertwig from the Bundesanstalt
fiir Materialforschung und -priifung (BAM) in Berlin, Germany, performed spectroscopic
ellipsometry measurements on the very same SRO thin film. The preliminary analysis of
the data indeed shows a slightly increased imaginary part of the refractive index at 800 nm
compared to the bulk value which implies an optical penetration depth ¢580 ~ 49 +£1 nm
[80]. This value is only weakly dependent on surface and interface roughnesses assumed in
the fitting models of the data analysis. That is, the considered SRO sample has a slightly
reduced optical penetration depth which, however, is still larger than the 44 nm deduced
from the UXRD experiments.

The second mechanism which could cause an apparent decrease of the observed length
scale of the thermal expansion profile is a temperature-dependent lattice Griineisen pa-
rameter v = v(7T") of SRO which could in principle be responsible for an overproportional
stress near the sample surface where the temperature rise is much larger than near the
substrate. A slight increase of v with increasing temperature below the Debye temper-
ature Op is in fact known for many materials [55]. This effect is due to the fact that
the mode-dependent Griineisen coefficients which are in general independently defined for
each phonon mode are not equal as opposed to the assumptions in a simple Einstein or
Debye model. For example, Ishidate et al. found very large differences between the mode-
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2.2.3 UXRD response of superlattices

dependent Griineisen parameters in STO [81]. Moreover, the UXRD experiments on the
SRO thin film discussed in the current section were conducted at 300 K which is well below
the Debye temperature of 448 K of SRO [63]. Altogether, it is not very unlikely that a
temperature-dependent Griineisen parameter is responsible for the reduced decay length
of the photogenerated strain in the SRO layer. Nevertheless, it is not completely clear
whether steady state properties hold on ultrafast timescales where the material may be far
away from equilibrium. For instance, the non-thermal population of the phonons at early
times and possibly differing mode-specific Griineisen parameters could generate stress pro-
files not explained by simple thermal expansion and an average Griineisen coefficient. All
these mechanisms could be investigated, e.g., by a precise fluence-dependent UXRD study
of the transient SRO peak shifts and is out of the scope of this work.

In conclusion, the example of UXRD on a thin film of SRO shows that the LCDX
calculations (i.e. LCM in combination with dynamical XRD simulations) precisely cap-
tures the qualitative and quantitative lattice dynamics in thin films triggered by ultrafast
laser pulses. Moreover, quantitative deviations from the bulk properties of SRO could be
identified by the help of the LCDX simulations which emphasizes the capabilities and the
potential of the these numerical models.

2.2.3 UXRD response of superlattices

After we have found perfect agreement of the LCDX predictions and the results of UXRD
experiments in case of thin metal films, the present section addresses the transient signals
obtained in UXRD experiments on metal-insulator SLs. In analogy to the previous section,
I relate the general experimental findings to the the knowledge gained in Section 2.1.4 on
the photoinduced lattice dynamics of such SLs. As discussed before, there exist two intrin-
sic timescales for the SLs, namely, the oscillation period T, of the fundamental (folded)
SL phonon mode and the timescale of SL expansion, Tg;” = Ng,Tsr, (cf. Section 2.1.4).
Both of these related but different structural dynamics within a SL manifest in distinct
features in the UXRD response.

Fast timescale — SL oscillations

As briefly mentioned in Section 2.1.4, the lattice dynamics triggered by optically pumping
a metal-insulator SL resembles an oscillating standing wave () = 0) by expansion of the
metal layers and a concomitant compression of the insulating layers. In bulk crystals,
homogeneous optical phonons (@ = 0) are periodic coherent motions of the atoms within
cach unit cell with respect to each other [43]. The phase relations of the x-ray waves
scattered from these atoms are thus altered periodically causing a modulation of the x-ray
structure factor and giving rise to oscillations of the Bragg peak intensity [20, 30]. Several
UXRD experiments could identify the optical excitation of coherent optical phonons [27,
82, 83]. Since the size of the unit cell is not changed by optical phonon modes no changes of
the Bragg angles are observed. Mathematically, this is identical to the described dynamics
of the super unit cell and its implications for UXRD. Here, we also have deformations
within one super unit cell without changing its size due to the SL phonon mode (@ = 0).
This results in intensity modulations of the SL Bragg peaks which have been previously
measured in UXRD experiments [1, 28, 53, 59, 60, 68].

The main focus of Paper II is to explain the nature of SL x-ray diffraction curves and
how these change due to the photoinduced coherent lattice dynamics on the timescale of
the SL phonon mode. Both can be described in a simple envelope model (EM) which
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Simulation of photoexcited linear lattice dynamics observed by UXRD

relates the modulations of the various SL Bragg peaks to the change of the x-ray structure
factor of the super unit cell. The latter can be depicted by an effective envelope function
resulting from the complex interference of the XRD curves of each individual layer within
the super unit cell. The EM assumes simplified structural deformations (homogeneous
layer compression and expansion) which alter the single layer diffraction curves (shifts
to higher and lower Bragg angles, respectively) and consequently modify the envelope
function. Since the envelope function essentially dictates the intensity of the SL Bragg
peaks they will also be subject to transient changes.

The proposed EM allows to qualitatively explain the observed features in UXRD ex-
periments and in many cases even gives good quantitative estimates. However, some of
the observations presented in Paper IT cannot be captured by this simplified model and
require the detailed LCDX calculations. Similar to Section 2.2.2, we found a very high
degree of agreement between the LCDX and experimental results. We could successfully
reproduce and therefore explain various responses of the SL Bragg peaks to the pho-
toinduced lattice dynamics. These included linear and highly non-linear dependencies on
the SL phonon mode amplitude as well as constructive and destructive x-ray interference
effects. All these phenomena and the fact that we understand the underlying processes
almost perfectly give rise to the ability to specifically design nanolayered x-ray optics which
are mandatory for high-precision and time-resolved UXRD experiments. A particular ap-
plication of this knowledge is discussed in Chapter 5 where the generation of ultrashort
x-rays by a so-called Phonon Bragg Switch is proposed and first successful experiments
are presented.

Slow timescale — SL expansion

In Section 2.1.4 T have also investigated in detail the dynamics on a slower timescale
corresponding to the expansion of the entire SL. There, I found that the dynamics are
essentially identical to the expansion dynamics of photoexcited thin metal films. This
immediately suggests that also the transient signatures in UXRD should be similar to the
case of thin films discussed in Section 2.2.2.

We investigated and analyzed the structural SL dynamics on the timescale of expansion
T§" in great detail in Paper I. The study indeed revealed that the effects of SL Bragg peak
splitting as well as the 50% increased coherent strain maximum discovered in thin films
(Section 2.1.3 and 2.2.2) also hold for SLs (see Fig. 2 in Paper I). Moreover, the study
discusses the coherent transport of energy into the underlying substrate by the unfolding
of the SL phonon mode due to the mechanical coupling of the SL to the substrate
[84]. A signature of the coherent propagation of the sound waves into the substrate
is the reported rise of shoulders of the substrate Bragg peak (see Fig. 3 in Paper I).
Note that such simulations inevitably require the dynamical XRD calculations employed
throughout this thesis. The topic of coherent phonon propagation into and inside the
substrate is addressed in more detail, however, under slightly different aspects in Chapter 4.

Again, one of the major conclusions to be drawn from the excellent agreement of
experiment and simulation presented in Papers I and II is that the photogenerated lattice
dynamics are very well captured by the LCM and that its implied approximations (e.g.
exponential shape and quasi instantaneous build-up of the stress) for the chosen materials
SRO, LSMO and STO are justified.

23



2.2.4 Limitations of the instantaneous stress assumption

2.2.4 Limitations of the instantaneous stress assumption

One of the crucial assumptions on which the entire framework of the LCM and its implica-
tions for UXRD are based until now is the instantaneous generation of a displacive force or
stress initiated by the laser pulse excitation. One numerical advantage of this approxima-
tion is that one can incorporate the stress into the system of coupled harmonic oscillator
differential equations by imposing a non-vanishing initial condition at t = 0 which gives
rise to the possibility of solving the equations by solving the related eigenvalue problem. A
time-dependent driving force o(z,t) increases the complexity of the mathematical problem
and must then be solved either numerically (cf. Section 4.2) or by successively adapting the
initial condition between time steps (cf. Section 3.1). The dynamics considered so far did
not require the assumption of a time-dependent force or, more precisely, the force driving
the dynamics in real experiments is much faster than all phonon frequencies involved in
the photoexcited lattice dynamics. For instance, the intrinsic timescale of the SRO/STO
SL oscillations considered above, Tgy,, was determined to be about one order of magnitude
slower than the estimated rise time of the photogenerated stress [53]. The modulation am-
plitude of the UXRD signals does then not allow for the deduction of an accurate value of
the rise time as it practically makes no difference whether it is faster by one or many orders
of magnitudes. Hence the instantaneous LCM could perfectly reproduce the experimental
signatures.

There is, however, one aspect in the UXRD data on SLs which crucially reflects how
fast the photoinduced stress has built up and what its physical origin is, namely, the phase
of the SL oscillation [28, 53, 72, 73, 85, 86]. Unfortunately, this is probably the most
difficult task in optical pump — x-ray probe experiments since there is practically no direct
and accurate measure of the time-delay zero where the pump and probe pulses arrive at
the sample simultaneously. One approach to estimate time zero is to investigate a reference
sample having a response as fast as possible such as non-thermal melting [29, 87-89] or
photoinduced structural dynamics in solids as discussed in this thesis. In any case the
question remains whether the assumption of an instantaneous response of the reference
sample is absolutely correct. Alternative approaches use x-ray-induced changes of the
electronic system which is subsequently probed by optical means [90, 91].

Although time zero could not be precisely determined, the fluence-dependent study of
the SRO/STO SL oscillations recorded at the MicroXAS-FEMTO beamline of the Swiss
Light Source reported in Paper II could be reproduced fairly accurately by the LCDX
calculations. Here, the time zero was adjusted until experiment and calculation coincided.
A very careful analysis of the oscillation phase in Paper V revealed a relative fluence-
dependent phase shift of about 150 & 50 fs which could be verified by all-optical pump-
probe experiments (Figs. 1 and 2 in Paper V). Additionally, a lot of effort has been
made to independently determine time zero with the help of the PXS at the University
of Potsdam whereby the absolute oscillation phase of the very same SRO/STO SL could
be deduced with an accuracy of £100 fs (for all the technical details see Paper V). In
particular, in the low-excitation regime we observed a delay of the oscillation phase of
~ 150 fs whereas the phase delay vanishes at high fluence. As explained in Paper V, several
mechanisms could potentially cause the fluence-dependent phase shift such as electronic
pressure [66, 67, 92-95], time and temperature-dependent electron-phonon interactions
(e.g. time-dependent and/or mode-specific Griineisen coefficients) [81, 96, 97] or a change
of the relative contributions from displacive excitation (DECP) and impulsive stimulated
Raman scattering (ISRS) [28, 73, 86]. The former two mechanisms would imply an effective
decrease of the rise time of the driving force while the latter gives rise to the mixing of the
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intrinsically different oscillation phases of DECP and ISRS.

In order to capture the changing rise time of the photogenerated stress the LCM has
to be extended to include non-instantaneous driving forces. This extension is presented in
Chapter 3. Nevertheless, to gain more insight into the underlying microscopic nature of the
stress generation in the studied metals by ultrafast laser pulses additional experiments have
to be performed and different sample structures may have to be considered. For instance,
changing the wavelength of the pump pulses (UV, infrared or Terahertz radiation) and/or
varying the temperature of the materials will further elucidate the physics of ultrafast
photoexcited solids.
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CHAPTER 3

THE ROLE OF INCOHERENT LATTICE
DYNAMICS

The previous chapter dealt with the question how the crystal lattice of epitaxial nanolay-
ered heterostructures responds to impulsive heating of the metal layers by ultrafast laser
pulses. By proposing a linear-chain model and comparing its numerical results to UXRD
experiments, it could be verified that coherent sound waves are launched if the heating of
the layers is much faster than the timescale set by sound propagation through the layers.
One central assumption was that the laser-induced thermal stress in the metal layers is
time-independent which proved to be valid in the considered cases. However, the heat
exclusively deposited in the metallic layers has to eventually diffuse into the neighbouring
layers and into the substrate due to finite temperature gradients as dictated by the Fourier
law [64]

Q=—-kVT (3.1)

where Q is the local heat flux, k is the thermal conductivity and VT is the local tempera-
ture gradient. This will render the local stress time-dependent since it is a function of the
local temperature. In one dimension (1D), denoted by z, without heat sources, the Fourier
law implies the 1D heat equation [64]

oT  k O°T

where C), is the specific heat capacity and p is the mass density of the solid. The prefactor
on the right side of (3.2) is also known as the thermal diffusivity Dy, = k/C,p. The fun-
damental solution! of this partial differential differential equation assuming no boundaries
is given by [64, 98]

1 22
P(z2,1) = ———=-exp | — 3.3
0= e (~1m1) 39
The standard deviation of this Gaussian-like solution is o(t) = /2Dyt and represents
a measure of the width and thereby of how far the heat has propagated?. This relation

I'The fundamental solution represents the solution of a differential equation with a point source as the
initial condition (delta function). In case of the heat equation this means the heat can be thought of as
deposited at a single point at ¢ = 0 which results in a divergent temperature at this point. The evolution
of the temperature field for ¢ > 0 is the governed by the heat equation. The knowledge of the fundamental
solution allows to obtain the solution for any initial condition by simple convolution [98].

2The relation ¢ o v/t is due to the fact that heat propagation is a diffusion process and is thus related
to the concepts of Brownian motion and random walks [64].
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3.1 Incorporation of heat diffusion into the LCM

Table 3.1: Comparison of heat propagation distance ¢ and time ¢ for a point source of heat in STO
according to the fundamental solution (3.3) of the heat equation (3.2). The effective heat velocity v = o/t
is also shown. Note that the LA sound velocity of STO is v$3° ~ 7900 m/s [81, 99, 100].

Distance o (nm) | Time ¢ (ps) | Avg. heat velocity v = o/t (m/s) |

1 0.17 5800
) 4.3 1200
10 17 580
25 110 230
20 430 120
100 1700 60

implies an increasingly fast heat transport if the spatial distances become smaller. Some
representative values are shown in Table 3.1. For instance, for sample structures on the
order of 100 nm such as the SRO thin film discussed in Section 2.1.3 and Section 2.2.2 the
timescale of heat diffusion is on the order of nanoseconds. This verifies the previously drawn
conclusion that heat diffusion can be neglected on the timescale of the coherent lattice
dynamics for the considered SRO thin film (< 100 ps). To follow the incoherent lattice
dynamics at later times one may then solve the heat diffusion equation (3.2) separately
with the appropriate initial and boundary conditions and combine the results with the
LCM calculations. If the sample structure dimensions reach down to &~ 10 nm, which is a
typical size of the SLs considered in this thesis, the heat equation suggests that thermal
diffusion may not be neglected any more. The results of the LCM as presented in Chapter 2
may then differ from reality in some aspects. In the following, I will present some cases
which require a modification of the LCM to include the effect of heat diffusion.

Note, that for sub-nm structures the heat equation implies heat propagation velocities
larger than the speed of sound (Table 3.1). Since heat transport is a result of anharmonic
phonon scattering the heat can actually not propagate faster than the energy carrying
phonons themselves. This illustrates the break-down of the Fourier heat equation when
the characteristic length scales become comparable to the sample dimensions [101-106].
Not only because of a high technological relevance, e.g., for circuits, thermoelectrics and
photovoltaics [106], the issue of nanoscale thermal transport is a very active research topic
which is, however, still not fully understood as summarized in Ref. 9 and references therein.
The investigation of heat transport in nanolayered structures such as thin films and SLs
may hence be beneficial for developing a complete physical picture of such processes.

3.1 Incorporation of heat diffusion into the LCM

In Section 2.1.2 T explained that the photoinduced displacive stress can be thought of as
spacer sticks which are inserted between the masses and the springs of the linear chain at
t = 0 thereby compressing the springs and generating potential energy (cf. Fig. 2.3(e)).
Since this insertion is assumed to happen instantaneously it generates the coherent sound
waves described in Section 2.1. In order to include the process of heat diffusion, one
can first solve the heat equation (3.2) for the given initial and boundary conditions on
a defined time grid ¢; maintaining the assumption of an instantaneous build-up of the
lattice temperature. This way one obtains a matrix, 7;; = T'(x;,t;) which specifies the
spatiotemporal temperature field for each unit cell at the spatial and temporal coordinates
x; and t;, respectively (cf. Paper I). This matrix can be converted into a matrix containing
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the length of each stick at all predefined time steps by assuming linear thermal expansion,
ie. S;; = co;(T;; —Tp), where ¢; and «; are the size and linear thermal expansion
coefficient of the 7th unit cell, respectively, and Tj is the initial temperature. In a nutshell,
one can now solve the system of differential equations of the linear chain successively by
adapting the initial conditions after each time step according to the stick length matrix
S;.; which encodes the heat diffusion.

In the above formalism the matrix S;; plays the role of a general force which does
not have to be governed by the heat equation but can in fact resemble any kind of time-
dependent force. As an alternative to a Heaviside-like displacive excitation which is em-
ployed throughout this thesis, one may also use the matrix S; ; to simulate different excita-
tion mechanisms such as, e.g., a delta-like Raman excitation of coherent phonons® or more
complex scenarios where the stress is generated simultaneously by electronic and phononic
pressure components [67] which are related by the two-temperature model [42, 52]. Note,
that for time-dependent forces one may also consider solving the system of differential
equations numerically as briefly discussed in Section 4.2.

3.2 Coherent and incoherent lattice dynamics in
thin films

In the following I apply the heat-diffusion LCM to the case of a rather thin SRO layer?
(dsro = 15.4 nm) on a STO substrate in order to demonstrate the capabilities of the model
and to discuss the influence of heat diffusion in nanometer-scale thin films. According to
Table 3.1, the small thickness of the SRO layer leads to an accelerated heat diffusion from
the layer to the substrate. Note, however, that the estimations in Table 3.1 only hold
for a two-sided thermal contact of a point source whereas the present case treats a one-
sided thermal contact of a finite source region which implies a slower heat conduction. In
comparison to the thicker SRO layer investigated in Chapter 2, the thinner layer is not only
expected to show a faster heat transfer but also the transit time of the coherent sound waves
through the layer is decreased. The calculation yields Tyoung = 2.45 ps. The comparison
of the timescales for the coherent and incoherent lattice dynamics shows a rather large
difference and one could in principle treat these dynamics separately. Nevertheless, |
choose this sample in order to compare the simulation to available UXRD data and, more
importantly, if layers of this size are used to build up a SL the timescale separation is no
longer possible.

We conducted UXRD experiments on this thin SRO layer using the PXS at the Univer-
sity of Potsdam. Figure 3.1(a) shows the recorded rocking curves at selected time delays
after pumping the sample with &~ 30 mJ/cm? at 800 nm wavelength. Since the SRO layer
is fairly thin and the diffraction efficiency of a thin film in the kinematical limit has a
squared dependence on the layer thickness [107] the signal-to-noise ratio of the PXS data
is not as good as for the thicker SRO layer discussed in Section 2.2.2. Another consequence
of a much thinner film is that the Bragg peak is significantly broadened. As the peak width
is now comparable to the maximum change of the Bragg angle the peak splitting identi-

3Raman scattering excites optical phonons which are not described within the LCM presented here.
One could refine the linear chain by simply defining two masses per unit cell. For the perovskite crystal
structure this would already represent the lower limit in a 1D linear chain as the unit cell only contains 2
atomic layers along the c-axis. However, in order to describe all optical phonon modes of the perovskite
unit cell a 1D LCM is not sufficient.

4This SRO thin-film sample will be reconsidered in Chapter 4.
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Figure 3.1: (a) Transient PXS rocking curves of 15.4 nm SRO on a STO substrate at selected time
delays after laser excitation with ~ 30 mJ/cm? at 800 nm wavelength. (b) Transient change of the SRO
Bragg peak angle deduced from the PXS data (black bullets) and from LCDX calculations including heat
diffusion. The grey solid line assumes the bulk SRO heat conductivity ksro = 5.72 Wm~t K~ [63] and
the red solid line assumes ksgo = 1.0 Wm— K1,

fied in Section 2.2.2 is not observed in the present case®’. The broadened Bragg peak in

combination with the rather limited angular resolution of the PXS also somewhat merges
the unexcited SRO peak with the substrate peak.

Nevertheless, it is possible to extract the transient position of the SRO peak due to the
photoinduced expansion by fitting the rocking curves with a Gaussian after an appropriate
subtraction of the substrate peak. The extracted transient change of the SRO peak position
is depicted by the symbols in Fig. 3.1(b) and the error bars represent the 68% confidence
interval of the fitting parameter. The maximum peak shift is reached after 2.5 ps which
perfectly matches the estimation of T;,,,q. Furthermore, the data nicely verify the universal
feature of the 50% increased coherent strain maximum discussed in Chapter 2.

After t &~ 5 ps the coherent LA phonons have essentially left the SRO layer which
is then expanded due the incoherently excited phonons, i.e., heat. As predicted, the
heat subsequently diffuses out of the SRO layer into the STO substrate comparatively
slowly giving rise to a backshift of the SRO Bragg peak on a few-nanoseconds timescale.
The solid lines in Fig. 3.1(b) represent the change of the SRO peak position obtained
from LCDX calculations including heat diffusion which have been analyzed in the same
way as the PXS data. Employing the literature value for the heat conductivity of bulk
SRO, ksro = 5.72 Wm ' K~! [63], the analysis yields the solid grey line in Fig. 3.1(b).
Clearly, the simulation deviates quite strongly from the PXS data and exhibits a much
faster relaxation of the SRO layer. However, an excellent agreement of calculation and
measurement can be achieved by setting ksro = 1.0 Wm ! K~!. This indicates that the
1D heat equation (3.2) is a valid model on the lengthscales of the considered SRO thin
film (~ 10 nm) albeit with a strongly reduced heat conductivity. Possible reasons for
the suppressed conductivity may be, e.g., thermal interface resistance or the lack of the
contribution of certain heat-carrying phonon modes due to the nanostructure of the sample

5In fact, the conclusions drawn in Section 2.2.2 regarding the Bragg peak splitting do not apply here.
Due to a layer thickness (15.4 nm) much smaller than the optical penetration depth (= 50 nm) the
tensile strain waves launched at the surface and the layer-substrate interface are comparable in amplitude.
Accordingly, the SRO layer is not half-expanded and half-unstrained at ¢ = Tyouna/2 as deduced for the
thicker sample considered in Section 2.2.2 and does therefore not exhibit the discussed Bragg peak splitting.
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(see Paper VI and references therein as well as Ref. 108). However, one would actually
expect that both effects produce only small deviations from the bulk thermal conductivity
at the given structural size. Therefore, further investigations are required to clarify the
nature of the strongly reduced thermal conductivity.

3.3 Heat diffusion in superlattices

Similar to the heat diffusion from a photoexcited thin film into its supporting substrate the
heat deposited optically in the metal layers of the previously considered metal-insulator
SLs will diffuse into the adjacent unexcited insulator layers. The SRO/STO SL I have
examined in the preceding chapter has layer dimensions very similar to the SRO thin film
discussed in Section 3.2. However, as indicated before, for a two-sided thermal contact one
expects a significant acceleration of the temperature equilibration among the individual
layers according to the 1D heat equation (3.2).

Numerous experimental and theoretical approaches to the topic of static thermal trans-
port in SLs have been discussed in the literature. Many experiments on different types
of SLs evidence a significant reduction of the cross-plane thermal conductivity as the SL
period is decreased [108-112]. This effect is mainly attributed to an increased scattering
of acoustic phonons by the layer interfaces. Theoretical models have also predicted an in-
crease for very thin semiconductor SLs [113]. Previous UXRD experiments on a SRO/STO
SL suggested a surprisingly strong suppression of heat conduction from the SRO into the
STO layers up to 200 ps [60].

In Paper VI we re-addressed the topic of time-resolved heat conduction in SLs with
much higher precision by optical pump—x-ray probe experiments at the EDR beamline at
the synchrotron source BESSY II°. We considered a SL made from metallic LSMO and
STO which is considered to be similar to the SRO/STO SL investigated in Ref. 60 in terms
of its optical, mechanical and structural properties. Due to the limited time-resolution of
the synchrotron pulses of & 100 ps we were not able to observe the coherent SL. dynamics.
In analogy to the previous section, we monitored the heat flowing out of the SL into the
STO substrate by recording the transient shift of the respective Bragg peaks over a wide
range of time delays up to 4 us. If the heat conduction between the individual layers
of the SL was permanently suppressed as reported in Ref. 60 the net heat flux into the
substrate would also be hindered and one would thus observe a delayed relaxation of the
SL expansion and an accordingly delayed onset of the substrate expansion. However, the
results of the very sensitive experiments presented in Fig. 4 of Paper VI could be almost
perfectly simulated by the predictions of the 1D heat equation (3.2) using bulk thermal
properties reported in the literature for LSMO and STO. In conclusion, in case of the
LSMO/STO SL we found no evidence of a deviation from the heat conduction laws on
timescales from several 100 ps up to a few us and on length scales of ~ 10 nm (defined by
the layer thickness of the SL). This result is supported by the simple argument that the
mean free path of thermal phonons at room temperature in the considered SL, L ~ 1 nm, is
much smaller than the SL period dg;, which suggests that heat diffusion should be bulk-like
[9]. Also thermal interface resistance could be excluded by the analysis.

The above conclusion seems to somewhat contradict the findings of Section 3.2 where
a significantly suppressed heat conductivity of a thin SRO film on a STO substrate was
identified. This may indicate that the LSMO and SRO nanolayers are not as similar as
expected regarding their thermal transport properties. However, it is not clear whether

Details on the experimental setup and methods at BESSY II can be found in Ref. [114]
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the observed differences are intrinsic for the nanolayered materials or whether they arise
from the interface to the STO layers or substrate. A comparison of static rocking curves of
the SRO/STO SL (Fig. 1(a) in Paper III) and the LSMO/STO SL (Fig. 2(a) in Paper II
and Fig. 3(a) in Paper VI) measured at BESSY II reveal that the structural quality of
both SLs is comparable and almost perfect. That is, phonon scattering from the interfaces
should be small in both cases. Note that the low heat conductivity from the thin SRO
film into the STO substrate found in Section 3.2 qualitatively supports the reduced heat
conductivity of the SRO/STO SL reported in Ref. 60 but does not suffice to quantitatively
reproduce the authors conclusions.

Finally, the topic of thermal transport on small length and timescales in SRO and
LSMO is still not entirely understood and thus additional investigations have to be per-
formed. The LCM including the effect of lattice heat diffusion and its combination with
dynamical XRD calculations has nevertheless proven to be a powerful tool for the precise
analysis of UXRD measurements on photoexcited nanolayered crystal structures. It there-
fore represents a suitable toolkit to investigate the physical mechanisms of coherent and
incoherent structural dynamics in such systems.
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CHAPTER 4

NONLINEAR LATTICE DYNAMICS

The previous chapters discussed the lattice dynamics of photoexcited nanolayered struc-
tures and their supporting substrate assuming a harmonic interaction of the neighbouring
atoms forming the lattice. That is, the forces exerted on the atoms are proportional to the
nearest-neighbour distances which can be described by quadratic interatomic potentials.
Of course, this approximation cannot hold for arbitrarily large mutual displacements of the
atoms. The physical nature of the effective interatomic potential is manifold and includes
repulsive forces (electrostatic repulsion, Pauli exclusion principle) and attractive forces
(Van-der-Waals, Tonic, Covalent bonding) depending on atoms involved in a particular
crystal [43]. All of these interactions are intrinsically nonlinear which renders the effec-
tive interatomic potential anharmonic in general. For very small deformations a harmonic
approximation may be applied as was done in the previous chapters. However, some partic-
ular physical aspects which rely on anharmonic phonon-phonon interactions (e.g. thermal
expansion, thermal conduction, sound attenuation, etc.) already indicate that even for
small strain amplitudes nonlinearities cannot be completely neglected [43, 115]. In partic-
ular, the thermal expansion of the metallic layers which is responsible for the generation
of the coherent phonons considered in this thesis is only possible due to the anharmonic
nature of the crystal lattice. Having said that, a thorough description of the excitation
mechanism in the metal layers is out of the scope of this thesis. The concept of incorpo-
rating the photogenerated stress in form of (possibly time-dependent) initial conditions is
continued in the following sections. Nevertheless, the above considerations suggest that
nonlinear interactions have to be included into the lattice dynamics calculation as they
will strongly affect the propagation and population of phonons in anharmonic lattices.

As mentioned above and realized fairly early [116], lattice anharmonicity gives rise to
and thus influences very basic physical effects such as thermal expansion and conduction
[43] which are highly relevant from a technological standpoint [117]. Moreover, it creates a
temperature and pressure-dependence of the material’s elastic constants [81, 99, 118] and
allows for interaction of different vibrational modes which gives rise to phonon damping
[119-121] and nonlinear phononics [122, 123]. The importance of higher-order contributions
to the interatomic potentials has also been directly measured on dynamical effects in the
frequency and time-domain [27, 124-129].

In the current chapter, I do not exclusively focus on UXRD experiments but also in-
voke results from all-optical pump-probe reflectivity measurements. Specific features of
the latter experimental method also reflect the triggered structural dynamics and unam-
biguously indicate the importance of lattice anharmonicity. Therefore, Section 4.1 presents
a brief introduction to light scattering from phonons and how optical pump-probe tech-
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niques in addition to UXRD can be used to study structural dynamics in solids. In the
subsequent sections, which are closely related to Papers VIII and VII, I introduce the
anharmonic LCM (Section 4.2) and compare its predictions to all-optical pump-probe and
UXRD experiments on photoexcited nanolayered oxides (Sections 4.3 and 4.4). In partic-
ular, the anharmonic propagation and attenuation of high-amplitude longitudinal acoustic
(LA) phonons in STO will be considered in detail.

4.1 Light scattering from coherent phonons

Not only since the discoveries by Raman [130, 131] it is known that in addition to reflection
and refraction light can be scattered by static or dynamic fluctuations of matter having
a characteristic size smaller than or comparable to the wavelength of the light. Such
scattering effects can be due to elastic scattering from particles and thermal fluctuations
(Mie and Rayleigh scattering [41, 132]) or inelastic scattering from quasi-particles such as
optical phonons (Raman scattering) or acoustic phonons (Brillouin scattering) [133]. The
information one can obtain from the scattered light can thus be used to gain insight into
these fundamental and material specific processes. Since the main focus of this thesis is on
photoexcited longitudinal acoustic phonons Brillouin scattering will be of primary interest.

As T have discussed in detail, the absorption of an ultrashort light pulse (pump) can
lead to an impulsive excitation of coherent phonons by which a second ultrashort light
pulse (probe) can be scattered. By varying the time delay ¢ between the pump and the
probe pulse one can extract the time evolution of the coherent phonons. This class of
experiments is known as pump-probe technique [16]. The typical experiment considered
throughout this thesis is the photoexcitation of a thin metal film which thereby acts as
a transducer launching longitudinal sound waves inside the film and into the supporting
substrate [40]. These phonon wavepackets possess a certain spectrum of phonon modes
each of which is then capable of scattering the photons of the probe pulses given the
energy and momentum conservation regarding the participating photons and phonons is
fulfilled. The conservation laws generally imply a modified Laue (diffraction) condition
(see Paper VIII and references therein)

d=kout —kin=G£Q (4.1)

where Q is a particular phonon wavevector. Equation (4.1) is similar to (2.8) but in
addition to the diffraction of (x-ray) photons from a reciprocal lattice vector G it includes
the diffraction from a phonon of wavevector Q. Interestingly, (4.1) holds in principle
for any photon energy. For hard x-rays which typically have wavevectors comparable to
or larger than G = |G| this implies that a monochromatic phonon appears in XRD as
sidebands to the bulk Bragg reflections at G £ ) where we again assume symmetric XRD
along the z-direction!. These sidebands represent an additional Fourier component due
to the spatial periodicity A = 27 /@ imprinted in the crystal by the phonon. In contrast,
the wavevector of optical photons is at least three orders of magnitude smaller than that
of hard x-ray photons in which case (4.1) can only be fulfilled if G = 0. In other words,
the wavelength of optical light is to large to be sensitive to the crystal structure itself.
However, optical photons can still be diffracted from phonons present in the bulk material.
Classically, this can be viewed as the diffraction of waves from a Bragg grating due to the
periodic modulation of the optical constants by the phonon. As explained in Paper VII

'For a three-dimensional treatment see, e.g., Ref. 134
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as well as in Refs. 73, 100, 133, 135, 136, for optical experiments (mostly in reflection
geometry) (4.1) can be recast as

q= 4Tﬁn(/\) cos B = +Q (4.2)

where n()) is the refractive index of the scattering material at the optical probe wave-
length A\ and S is the internal angle of propagation towards the surface normal?. Equa-
tion (4.2) reveals that either the scattering angle or the probe wavelength can be tuned to
access different phonon wavevectors (). Depending on the phase of the oscillating phonon,
the diffracted (Brillouin scattered) wave interferes constructively or destructively with a
reference wave which gives rise to oscillations of frequency Q(Q) in the transient diffrac-
tion/reflection signals [24, 73, 100, 134-137]. In optical reflectivity measurements this
reference wave is the wave reflected at the sample surface and interfaces. The generally
nonlinear phonon dispersion® relates the phonon frequency €2 to the phonon wavevector
(. Since the LA phonons discussed throughout this thesis have wavevectors near the
Brillouin-zone center the dispersion relation reduces to the linear equation

Q=vaQ (Q < %) (4.3)

where c is the lattice parameter. That is, the ratio of the experimental quantities €2 and ¢
reveals the longitudinal sound velocity v,a of the scattering material.

To simulate the transient optical reflectivity from coherent phonons in nanolayered
solids one can employ a transfer matrix approach similar to the dynamical XRD calculation
mentioned in Section 2.2 where the Fresnel-like reflection and transmission amplitudes
of each unit cell are given by the strain-dependent (and thus time-dependent) optical
constants. This approach can be applied to an arbitrarily layered structure and it includes
the multiple reflections from the various interfaces. When restricted to phonons inside
a homogeneous layer, e.g., the substrate, this dynamical approach is equivalent to the
kinematic approach presented in Ref. 40 since the strain-induced gradients of the optical
constants are typically very small.

The all-optical pump-probe experiments I discuss in the following employ ultrashort
pump pulses of 800 nm wavelength. As probe pulses we utilize an ultrashort white-light su-
percontinuum which is produced by self-phase modulation in a sapphire disc [138]. The re-
flected broadband optical pulses are recorded with a multichannel spectrometer (AvaSpec,
AVANTES) at different pump-probe time delays similar to setups used by other groups
[135, 139].

4.2 The anharmonic linear-chain model

Before addressing specific experiments revealing the anharmonic nature of the interatomic
forces in a crystal lattice I briefly introduce a generalized LCM which accounts for such
anharmonicities. The model is also discussed in Paper VII.

2For x-rays the refractive index n is practically unity and the scattering angle © is usually measured
with respect to the surface, i.e., cos f +— sin ©.

3As opposed to simple elastic continuum models [40, 57], the LCM introduced in Section 2.1 already
implies the basic nonlinear LA phonon dispersion relation of 1D crystal lattices. The extension to two
masses per unit cell would also yield the dispersion relation for optical phonons of a diatomic linear
chain. The derivation of these relations is presented in nearly any textbook on solid state physics, e.g., in
Refs. 43, 55

35



4.2 The anharmonic linear-chain model

The LCM exploited in the previous chapters and its technical details were presented
in Paper I. The model treated the unit cells as symbolic masses and only the nearest-
neighbour harmonic interaction was accounted for which can be thought of as springs
connecting adjacent masses. In the following we extend this model in order to include more
general interatomic forces. As opposed to the harmonic LCM, we evaluate the anharmonic
LCM by using two different masses per unit cell connected by identical springs (also known
as diatomic or alternating linear chain) [57]. This refined model resembles the two different
lattice planes of the perovskite unit cell, e.g., StO and TiO, in case of STO. The reason
for doing so is that for such a complex and nonlinear dynamical system proposed below
there may not exist a unique or general transformation between the two descriptions “one
mass per unit cell” and “one mass per lattice plane”. In order to be as close to reality
as possible we thus choose the latter. In the following I focus exclusively on acoustic
deformations of the diatomic linear chain by considering the strain of an entire unit cell.
Furthermore, we maintain the assumption of nearest-neighbour interactions which implies
that the independent variable for the force acting between the ith and the (i + 1)th mass
in the linear chain is their distance® A; = z;,; — ;. The total force on one mass is
of course given by the difference of the forces exerted by the two neighbouring masses.
The anharmonic LCM carrying N masses (2 per unit cell) can thus be described by the
following set of N nonlinear differential equations®

OU(D)  Ui1(Aiy)
A, OA

mit; = + mi%(Ai — Ai,l) + F(t) (4.4)
Here, m; is the mass of the ith unit cell, U; is an arbitrary potential between two masses,
~v; is a material specific damping constant and F;(t) is a time-dependent force acting on
the ith mass which is proportional to the photoinduced stress o(x;). The damping term
in (4.4) is a phenomenological term that accounts for internal irreversible processes due to
anharmonic coupling to the bath of incoherent thermal phonons which lead to an inevitable
decay of coherent phonons in real crystals [140, 141]. These kind of effects will be discussed
in more detail in Section 4.4.2.

As a first approximation, we restrict our considerations to the second and third-order
term of the Taylor series of U. The former yields the harmonic interaction and the lat-
ter introduces a slight anharmonicity of odd symmetry. The set of nonlinear differential
equations which then have to be solved read

miZ; = (KA — K1 Ai_q) — (AiA? — Ai—lA?_l) + (mz‘%‘Az’ - mz‘—l%‘—lAi—l) + F;(t) (4.5)

where K; > 0 is the formerly introduced force constant of the springs connecting the ith
and the (i + 1)th mass and A; > 0 is the anharmonicity parameter. As we intend to
simulate the anharmonic lattice dynamics of nanolayered heterostructures, we separated
the terms belonging to either side of the ith mass in order to account for any interfaces
between different materials.

The system of nonlinear ordinary differential equations (ODE) (4.5) is much more
complicated than the linear system discussed in Chapter 2 and Paper I. We therefore do
not attempt to solve this system analytically but employ built-in ODE solver routines of
the numerical computing software MATLAB. As opposed to the analytical approach for

4Although I previously defined the relevant spatial dimension as the z-axis, I use z; in this section in
accordance with Paper VII.

5In fact, the differential equations describing the end masses include the terms indexed either by i or
i+ 1, respectively, as these only experience a force from one side.
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the harmonic LCM where the photoinduced stress ¢ is incorporated as modified initial
condition, o enters the equations via the source term F;(t) in (4.5). The numerical results
can then be analyzed directly or serve as an input for the dynamical XRD calculations.

The issue of nonlinear sound propagation has been previously discussed in the literature.
Theoretical models use either a linear-chain approach similar to the model proposed above
(140, 141] or solve the Korteweg-de Vries-Burgers equation which represents a continuum-
model approach [142-144]. One of the major implications of nonlinear sound propagation
which is, however, out of the scope of this thesis is the formation and propagation of acous-
tic solitons. Such solitons are extensively studied in the context of lattice anharmonicities
and have been experimentally observed by optical means and successfully simulated by the
previously mentioned models [140-144].

The following sections present time-resolved optical and XRD experiments which di-
rectly evidence the influence of anharmonic effects on sound propagation. The experimental
findings are carefully analyzed and related to the general features of the results from the
anharmonic LCM.

4.3 Nonlinear strain propagation in SrTiOj;

The first indications that the inclusion of higher-order terms in the crystal lattice potential
is required were found in all-optical pump-probe experiments which I performed on strongly
photoexcited thin metallic films on STO substrates. The current section summarizes the
experimental and numerical results presented in detail in Paper VII.

Paper VII presents the results of all-optical broadband pump-probe experiments on a
thin film of metallic LSMO (dpsmo = 36 nm) grown on top of a STO substrate. The LSMO
layer is optically excited by 800 nm pump pulses at different fluences. As extensively dis-
cussed in Section 2.1.3, the impulsively expanding metal layer launches a coherent bipolar
strain pulse (BSP) into the STO substrate propagating at the speed of sound v$1° (see also
Fig. 2.3). Within a harmonic LCM considered so far this phonon wavepacket is subject
only to normal dispersion but not to any kind of damping or other nonlinear effects. Of
course, this is a valid approximation only on sufficiently small time and strain scales. As
motivated in Section 4.1, such a phonon wavepacket can be observed by time-resolved opti-
cal reflectivity measurements resulting in characteristic oscillations in the recorded signals
which is shown in Fig. 2 of Paper VII. Given the optical constants of the STO substrate
and the chosen experimental geometry, each optical probe wavelength A is uniquely related
to a phonon wavevector @ by eq. (4.2). The transient reflectivity data are then analyzed
for each A (and thus @) by a Fast Fourier Transform (FFT) which yields the observed
(@)-dependent oscillation frequency (Q). By making use of eq. (4.3) one can precisely
deduce vP1°.

The experimental data presented in Fig. 2 of Paper VII exhibit a fluence and probe
wavelength-dependent beating of the oscillations. The more sophisticated analysis per-
formed to obtain Fig. 3 of Paper VII revealed a sound velocity independent of () at low
pump fluence matching the literature values which is in accordance with the linear LA
phonon dispersion relation (4.3) and the harmonic LCMS. At higher pump fluences, Fig. 3
in Paper VII evidences the occurrence of two separated sound velocities the difference of
which increases with increasing pump fluence. These features cannot be explained by a
simple harmonic LCM and thus suggest additional interactions. Similar experiments with

6The harmonic LCM discussed in this thesis does not include damping and would thus not reproduce
the decay of the measured oscillations.
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an amorphous Al layer on STO have been performed by Brivio et al. [136]. In contrast to
our results, the authors find a ()-dependent STO sound velocity which deviates from the
expected linear LA phonon dispersion relation. The authors, however, do not attempt to
physically interpret the results and since no pump fluence or excitation density is given
one cannot speculate about lattice anharmonicity as a reason for their findings.

In order to interpret our experimental data we employed the anharmonic LCM pre-
sented in Section 4.2. The finite third-order term in the interatomic potential produces an
asymmetry of the interatomic forces. As reported in Paper VII, this asymmetry gives rise
to different propagation velocities of the tensile and expansive parts of the BSP. Since the
influence of the third-order term in the potential becomes increasingly important at larger
strain amplitudes (and pump fluences), the velocity splitting is fluence-dependent. This
qualitatively explains the results shown in Fig. 3 of Paper VII.

By using the well-understood lattice dynamics of photoexcited thin films (Section 2.1.2)
and its manifestation in UXRD experiments (Section 2.2), it is possible to calibrate the
amplitude of the BSP in the STO substrate by evaluation of the transient shift of the Bragg
peak corresponding to the photoexcited LSMO layer. The recorded LSMO peak shift shown
in Fig. 1 of Paper VII reflects the LSMO strain amplitude and thereby also the strain
amplitude in the BSP. We thus adjust the average LSMO strain amplitude calculated by
the anharmonic LCM to match the peak shift in the UXRD data as described in Section 2.2.
The spatiotemporal strain pattern obtained from the anharmonic LCM then serves as an
input for the simulation of the transient optical reflectivity due to the phonon-induced
modulation of the optical constants” [40]. Finally, the comparison of these simulations to
the experimental optical data allows us to deduce the quantitative contribution of the third-
order term in the interatomic potential and the empirical damping coefficient v of STO.
The very good agreement of the simulations with the experimental data as presented in
Paper VII could be achieved assuming the interatomic potential of STO plotted in Fig. 4.1
which has the analytical expression

K, A, kg

_ _ _ 13
U(x)—gz - 3% K—255.1S—2, A=1.79-10

kg
m s2

(4.6)

where K and A are the spring constant and anharmonicity parameter of the diatomic linear
chain, respectively, in SI units. Note, that the value of K reproduces the longitudinal
sound velocity of STO measured in the experiment (7990 m/s). Furthermore, we assumed
a damping coefficient v = 1.0 - 10" s=! although the damping cannot be determined
very accurately from the available data sets. The presented experiment thus verifies that
the lattice anharmonicity is an important ingredient for coherent sound propagation at
large but accessible strain amplitudes in STO. A similar conclusion was recently drawn for
optical phonons in STO [128].

After matching the transient reflectivity data we further investigated the properties
of the simulated phonon wavepacket as it propagates through the STO substrate. The
evolution of the spatial shape of the wavepacket and its transient amplitude spectra are
plotted in Fig. 4 of Paper VII. As opposed to the case of harmonic interactions where the
phonon spectrum remains unchanged for all times, we observe a shift of spectral weight
towards lower phonon wavevectors (). The minima in the phonon spectrum thereby pass
through the Q-range to which the optical photons are sensitive giving rise to the beatings
observed in the optical reflectivity data. The occurrence of acoustic solitons is suppressed

"The simulations were briefly mentioned at the end of Section 4.1. The calculations require the
knowledge of the photoelastic constants which were partly taken from the literature [145].
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Figure 4.1: Anharmonic interatomic potential of STO (red solid line) deduced from the all-optical pump-
probe experiments presented in Paper VII by the anharmonic (diatomic) LCM. The harmonic potential
(black dashed line) to which the harmonic LCM is restricted is also shown for comparison.

in our experiments and simulations due to the high temperature of 300 K giving rise to
a relatively large damping coefficient v in eq. (4.5). As a next step we intend to cool
the sample with a cryostat in order to decrease the phonon damping and to verify the
formation of acoustic solitons. It would also be very interesting—albeit challenging—to
observe acoustic solitons with structural probes such as UXRD in the future.

4.4 Attenuation of quasi-monochromatic phonons

In addition to the previously discussed experiment, we found strong evidences for an-
harmonic lattice effects in STO in various other experiments. In the following I present
synchrotron-based UXRD experiments (Sections 4.4.1 and 4.4.2) which exhibit the decay
of a phonon-induced sideband Bragg peak indicating a considerably reduced lifetime of the
phonons due to anharmonicity. This interpretation is supported by all-optical pump-probe
experiments discussed in Section 4.4.3.

4.4.1 Generation and detection of quasi-monochromatic
phonon wavepackets

In the preceding section I concluded that lattice anharmonicities modify the phonon spec-
trum via damping and spectral weight transfer which we deduced from all-optical pump-
probe experiments. It would thus be favourable to generate phonon wavepackets of narrow
bandwidth (ideally quasi-monochromatic in the sense of the Fourier limit of short pulses)
in order to unambiguously study the transient anharmonicity-induced modification of such
phonon pulses.

In Paper VIII, we present the successful generation of quasi-monochromatic LA phonon
wavepackets in a STO substrate by the excitation of a 15.4 nm thin SRO layer with a train
of 8 ultrashort optical pulses mutually separated by 7, = 7.2 ps (v, = 1/7, = 140 GHz).
The efficient generation of such wavepackets by optical means is evidenced by UXRD
experiments conducted at the ID09B beamline of the European Synchrotron Radiation
Facility (ESRF) in Grenoble, France. As explained in Section 4.1, the additional transient
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Figure 4.2: Left panel: The experimental (a) and simulated (b) transient rocking curves around the (002)
STO substrate peak exhibiting the sidebands which reveal the quasi-monochromatic phonon spectrum
130 ps after pulse-train excitation of a 15.4 nm thin SRO film transducer on a STO substrate. The figure
is adapted from Paper VIII. See the paper for more details. Right panel: Squared amplitude spectrum
of the LA phonon modes (LCM) of the thin SRO film on STO after each pulse for a uniform excitation

pulse train of 8 pulses with separation of 7, = 7.2 ps (v, = 1/7, = 140 GHz). In contrast to the initially

broad phonon spectrum of a single-pulse excitation, only phonons around @, = 27v,/ vEXO and its higher

harmonics interfere constructively. The final spectrum (blue line) yields the blue rocking curve in panel
(b). The increase of phonon amplitude around @ = 0 (and thus € = 0) is due to the long-lived expansion
of the SRO film.

spatial periodicity A = 27/@Q imprinted in the crystal by a LA phonon with a wavevector
(@ gives rise to discrete sidebands to the STO substrate Bragg reflection at positions G+ Q).
Consequently, the entire phonon spectrum is mapped by UXRD onto the vicinity of the
substrate peak®. In fact, the intensity of an XRD sideband corresponding to a phonon mode
Q with amplitude A is proportional to the squared phonon amplitude, i.e., I(Q) oc A%, as
can be verified with dynamical XRD calculations. UXRD therefore measures the transient
squared amplitude phonon spectrum. Depending on the time-resolution of the experiment
one may also obtain the frequency and phase of the phonon from the intensity oscillations
discussed in Section 4.1. For much smaller phonon frequencies this could be shown in, e.g.,
Refs. 25, 134, 137, 146.

The upper panel of Fig. 4.2(a) is adapted from Paper VIII and shows the measured
rocking curves around the STO substrate at a time delay of 130 ps (red bullets) and be-
fore the laser-pulse excitation (black diamonds). The data after excitation reveal separate
sidebands of the STO substrate peak around @), ~ 0.11 rad/nm and integer multiples
thereof which evidences an accordingly shaped phonon spectrum. In essence, each of the
employed 8 pulses generates a coherent broadband BSP which in total forms a phonon
wavepacket of narrow spectral bandwidth. This is depicted in Fig. 4.2(c) which shows the
coherent pulse-to-pulse build-up of the narrow bandwidth phonon spectrum as calculated
by the LCM. Only phonons around the pulse repetition rate v, = 140 GHz and its higher
harmonics—albeit at much weaker intensities—interfere constructively which explains the

8Tn case of the considered symmetric XRD which is structurally sensitive only to the direction per-
pendicular to the layer surface eq. (4.1) becomes a scalar relation. In principle, the mapping of the
phonon spectrum then holds for all possible diffraction orders of the substrate given a sufficiently large
photon wavevector. If not stated differently, we exclusively consider the (002) reflections (in reciprocal
lattice units) since for the perovskite crystal structure the x-ray structure factor of this diffraction order
is maximized.
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appearance of the observed sidebands. The calculated XRD rocking curve of the final
phonon spectrum (blue line in Fig. 4.2(c)) is presented by the blue solid line in Fig. 4.2(b).
The position of the sidebands predicted by the simulation is confirmed by the experimental
data. This verifies the longitudinal sound velocity in STO determined by the linear LA
phonon dispersion relation Q, = 27y, = v71°Q, even without having the time-resolution
required to directly observe the phonon oscillations. Consequently, one thus has the op-
portunity to tune the central wavevector (), of the phonon wavepacket by the pulse train
repetition rate v, for ()-dependent investigations.

The fairly broad sidebands found in the experiments indicate an imperfect phonon
spectrum generated by the pump pulse train. By varying the individual pump pulse
energies in the simulation (non-uniform energy distribution) we could verify that this
spectral broadening is due to the fact that the portion of the sample probed by the x-rays
(diameter ~ 50 pm) was not equally excited by the individual pump pulses (diameter
~ 500 pm). The corresponding XRD and LCM simulations are shown as red dashed lines
in Fig. 4.2(b) and its inset, respectively.

The higher harmonics at integer multiples of ¢, = 0.11 rad/nm observed in both
simulation and experiment are due to the rectangular-like shape of the individual BSPs.
In general, an optimized phonon spectrum is obtained if the time separation between the
pump pulses 7, is equal to twice the transit time of the sound waves through the metallic
layer of thickness d, i.e., T9P* = 2T ouna = 2d/vpa. Since the temporal pulse duration of each
BSP is also given by 275ung, the above relation implies that there is no time gap between
the individual BSPs and the phonon wavepacket thus has no zero-strain gaps between the
BSPs?. For symmetry reasons, the spectrum of such a square-wave-like wavepacket does
not exhibit even harmonics and, for instance, the second harmonic in all panels of Fig. 4.2
would be suppressed.

4.4.2 Anharmonic decay of coherent phonons — UXRD

After the successful generation of coherent quasi-monochromatic LA phonon wavepackets
described above we focused on the dynamics of such wavepackets. The variation of the
pump-probe time delay allowed us to follow these dynamics by monitoring transient rocking
curves of the STO substrate peak vicinity. In Paper VIII, we identified a strongly reduced
decay time of the intensity of the first-order sideband (~ 130 ps) as compared to the
harmonic LCDX predictions (=~ 600 ps). In fact, the phonons described by the harmonic
LCM have infinite lifetime. Nevertheless, the harmonic LCDX calculations do predict a
decay of intensity which is essentially due to the fact that the phonon wavepacket travels
deeper into the substrate and thus gradually vanishes beyond the extinction depth of the
x-rays. The experimental observation therefore clearly suggests that decay processes of
anharmonic nature not included in the harmonic LCM are responsible for relatively short
lifetimes of the photoexcited phonons.

It is long-known that the coupling of coherent acoustic phonons to thermally excited
incoherent phonons via lattice anharmonicities leads to damping of the coherent phonon.
The theories of sound attenuation can be divided into two distinct regimes depending
on the ratio of the considered phonon frequency () and the mean scattering time 7 of
thermal phonons [147, 148]. If Q7 > 1, referred to as the collisionless regime [149], one
has to consider individual phonon scattering events by a quantum mechanical description

9Compare the schematic wavepacket in Fig. 1(b) and the calculated one in the inset of Fig. 2(b) of
Paper VIII. The latter exhibits small zero-strain gaps between the individual BSPs since the laser pulse
separation 7, was slightly larger than the optimum value TI‘)’p” for the employed SRO layer.
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as pioneered by Landau and Rumer in 1937 [150] and further developed by other authors
[151]. This regime is not further discussed in the following analysis. For Q7 < 1, also
referred to as the hydrodynamic regime [149], the sound attenuation can be described
within the classical framework of thermodynamics by the anharmonic interaction of the
coherent phonon with a bath of thermal phonons. This approach was first developed by
Akhiezer in 1939 [152] and later refined by Woodruff and Ehrenreich [153]. In addition to
these references, Akhiezer’s mechanism of relaxation damping (RD) has been explained in
various publications [147, 148, 154]. In a nutshell, it describes the damping of sound via
the modulation of the solid’s elastic constants in the compressed and rarefied regions of the
acoustic wave, respectively, which is due to lattice anharmonicities. The associated changes
in frequencies of the thermal phonons result in a non-thermal distribution thereof which
is relaxed towards local thermal equilibrium via anharmonic phonon-phonon scattering.
This process, however, is entropy-increasing and thus irreversibly removes energy from the
driving sound wave which results in damping. Some later works develop theories which are
valid for both the collisionless and the hydrodynamic regime [147, 154]. For quantitative
comparisons I use the expression for the phonon amplitude decay rate I'rp presented by
Koreeda et al. [149]

3a’BT7

pCi

where « is the linear thermal expansion coefficient, B is the bulk modulus, T is the
temperature, p is the mass density and C} is the heat capacity per unit mass.

A second decay mechanism of acoustic phonons which is related to Akhiezer’s relaxation
damping is the so-called thermoelastic damping (TED) [154-156]. As explained above,
the driving sound wave gives rise to small temperature variations and thus to temperature
gradients. Consequently, heat diffusion between these regions occurs which represents
another channel of energy loss for the driving sound wave. This contribution can be
quantified by [155, 156]

Q2 (4.7)

—1
Trp = I'rD =

Q? (4.8)

7ot = Drep = (Cn + 2012)2 kT
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where C'; and ('3 are the elastic constants and k is the heat conductivity.

The above theories predict that the decay rate of acoustic phonons in the hydrody-
namical regime is proportional to 2. The phonon wavepackets excited in single crystal
STO by trains of ultrashort laser pulses considered in Paper VIII have a central angular
frequency of 1, = 27, ~ 870 GHz and a comparison to the mean scattering time of
thermal phonons!® (77! ~ 2.8 THz) justifies the validity of the hydrodynamical regime.
Note, however, that the values are not far from the cross-over to the collisionless regime.
Although these theories are based on lattice anharmonicities (strain-dependence of elastic
constants, heat conduction) they do not involve the actual amplitude of the coherent sound
wave under investigation. As concluded in Section 4.3, however, the strain amplitude plays
an important role for the sound propagation when considering lattice anharmonicities.

In the following I present an extended analysis of the decay of quasi-monochromatic
phonon wavepackets investigated at the ESRF and partly published in Paper VIII. The

10The mean scattering time of thermal phonons can be estimated from the thermal diffusivity by the
relation Dy, = 79%/3 where ¥ is the mean velocity of thermal phonons [43, 55]. For the estimations I
used the experimental thermal diffusivity of STO from Wang et al. [157], Debye’s mean thermal velocity
v° = 3(vpi + 2vps) ! [149, 157] and the longitudinal (LA) and transverse (TA) sound velocities from
Ref. 99.
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Figure 4.3: (a) Transient rocking curves of the phonon-induced first-order sideband of the (002) STO
substrate Bragg peak at selected time delays plotted vs. phonon wavevector @. (b) Normalized change
of x-ray intensity obtained from (a) for selected ). The solid lines are fits according to eq. (4.12). The
curves are displaced for clarity.

transient rocking curves of the first-order sideband measured at selected pump-probe time
delays are plotted in Fig. 4.3(a). The topmost curve represents the maximum intensity
of the phonon-induced sideband. We observe a complete decay of the coherent phonon
spectrum within 1 ns. The plot shown in Fig. 4.3(b) alternatively presents the normalized
change of x-ray intensity at selected phonon wavevectors across the sideband. After the
generation of the phonon wavepacket sideband around time zero the transients exhibit an
exponential decay with a decay constant depending on the phonon wavevector (). Note,
that the time-resolution of the transients is limited by the length of the probing x-ray
pulses from the ESRF (= 100 ps). Hence, the data can be analyzed by a fitting function
F(t,Q) which is obtained by convoluting a Gaussian function G(t) with an exponential
decay function I(t, Q) set to zero for ¢ < 0, i.e.,

2 t? t

6= e (5 ) 16.Q)=00) W@ (i
where o is the width of the Gaussian'! and I(Q), 7i,t(Q) and I.(Q) are the Q-dependent
amplitude, decay time and the offset of the exponential decay, respectively. Here, G(t)
essentially represents the time-resolution of the experiment and (¢, )) models the transient
x-ray intensity due to the photoexcited phonon spectrum. Of course, the phonons are
not excited instantaneously as suggested by the Heaviside function ©(t), however, due
to the limited time-resolution the rise of the phonon sideband cannot be resolved and is
thus effectively included in o. The offset I is included since the substrate shoulder on
which the sideband resides shifts to lower Bragg angles due to the heat conduction from
the excited SRO layer into the STO substrate. The local x-ray intensity in the @-range
plotted in Fig. 4.3(a) after &~ 1 ns is thus smaller as before the excitation. The analytical

) + IOO(Q)} (4.9)

1 The width ¢ is identical to the standard deviation of the Gaussian and is related to the full width at
half maximum (FWHM) by FWHM = 2v/21In20. The fit parameter o is chosen to be independent of @
since the x-ray pulse duration is fixed in the experiment.
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The different contributions are combined by summation of the corresponding decay rates I'.

expression for F'(¢,Q) then reads

F(Q) = (G+I)(tQ) (4.10)
=/)mom—g@ﬂ (4.11)
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The measured intensity transients shown in Fig. 4.3(b) can now be analyzed by means
of (4.12) and the best fits are plotted as solid lines. The intensity decay times Tiy(Q)
extracted from the best fits are shown as symbols in Fig. 4.4. Recall that if x-ray extinction
is negligible (e.g. near the sample surface) the recorded phonon-induced x-ray intensity
measures the squared phonon amplitude. As the phonon wavepacket travels deeper into
the substrate the x-ray extinction yields an additional decay contribution. In total, the
actual phonon amplitude thus has a decay time

1 1\
Ton = L = 2(Fing — Text) ™' = 2 < - ) (4.14)

Tint Text

where e = It = 600 ps. This formula converts the phonon amplitude decay time into

the x-ray intensity decay time and vice versa. The experimental results of the ()-dependent
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x-ray intensity decay times presented in Fig. 4.4 are compared to the theoretical predictions
by Akhiezer’s RD 7gp (blue dashed line) and additionally including TED 7rgp (red dotted
line) as well as the decay predicted by the harmonic LCDX calculations due to the finite
x-ray extinction depth 7. (black solid line). The different contributions are combined by
summation of the corresponding decay rates I'; similar to (4.14). Although there is a rather
good qualitative agreement of the ()-dependence, the experimental intensity decays faster
than predicted by the theoretical models. The deviation from the combined models appears
to be large where the x-ray intensity of the sideband just after generation I,.x(Q) is large
(cf. Fig. 4.3(a)). As discussed in Section 4.4.1, a larger intensity ,.x(@) implies a larger
amplitude of the phonon with wavevector (). Since the influence of lattice anharmonicity
increases for larger phonon amplitudes Fig. 4.4 suggests that the deviations could indeed
be due to higher order terms in the interatomic potentials.

In order to test this conjecture, I use the anharmonic LCM in combination with dynam-
ical XRD calculations (aLCDX) to simulate the experimental results. For the simulations
I assume the non-uniform pulse energy distribution within the pulse train which was sug-
gested in Paper VIII. Similar to the explanations in Section 4.3, the strain amplitude of the
photoexcited LSMO layer (and hence the phonon wavepacket in the substrate) employed
in the simulation is calibrated by the measured shift of the corresponding Bragg peak
(not shown). Using the nonlinear lattice potential deduced in Section 4.3 (see eq. (4.6)) I
readily obtained quite satisfactory results roughly matching the experimental data. How-
ever, to further improve the agreement—especially the particular decay behaviour of the
phonon sideband—I adjusted the damping coefficient v and anharmonicity coefficient A
to be about 90% of the values given in Section 4.3, respectively'?. This way the intensity
decay of the sideband agrees with the theoretical predictions for low strain amplitudes
(black line in Fig. 4.4) where explicit anharmonicity is negligible and merely the phe-
nomenological damping coefficient 7y causes the decay. Moreover, A was adjusted to give
rise to the approx. 130 ps decay time of the transient sideband intensity integrated over
0.08 rad/nm < () < 0.14 rad/nm which was revealed in Paper VIII. Figure 4.5(c) presents
the change of integrated intensity obtained from the aLCDX calculations including the fit
according to (4.12). A possible reason for the slight deviation from the values for v and
A obtained in Section 4.3 could be terms in the interatomic potential of yet higher order.
Since the strain amplitude in the single BSP excited in the experiments described in Sec-
tion 4.3 is much higher than in the individual BSPs investigated in the current section,
terms of order higher than three have different contributions. This may therefore lead to
different effective third-order potentials to which I restrict the considerations here.

The transient rocking curves of the first-order sideband obtained by the adjusted
alL.CDX calculations including the experimental angular and time-resolution are plotted
in Fig. 4.5(a) for the same time delays as in Fig. 4.3(a). For computational reasons the
presented calculations neglect the effect of heat conduction which would generate a slowly
decaying component due to the shifting wings of the STO substrate peak. Given the com-
plexity of the model we find very good agreement of the calculated and measured rocking
curves in terms of position, width and shape as well as the timing of the decay. In prin-
ciple, one could further improve the shape agreement of the rocking curves by tweaking
the pump pulse energy distribution within the pulse train, however, for the sake of com-
parability with Paper VIII I keep the pump pulse energy distribution derived there. In
order to quantify the intensity decay and thus yield a measure of the ()-dependent phonon
lifetime I performed the same analysis presented for the experimental data, i.e., fitting the

2Precisely, I used A = 1.59 - 10'3 kg/(ms?), v = 8.7-10'2 s~! and the same spring constant K.
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Figure 4.5: (a) Rocking curves of the first-order phonon sideband calculated by aLCDX for the same
time delays as in Fig. 4.3. (b) Q-dependent intensity decay times derived from the aLCDX calculation
(red bullets) and the experimental decay times (black circles). (c¢) Transient intensity of the phonon
sideband integrated over 0.08 rad/nm < @ < 0.14 rad/nm. (d) Strain-dependence of the decay time of
the integrated intensity shown in panel (c¢) due to the lattice anharmonicity. The strain values represent
the average strain of the SRO layer due to the pulse train excitation.

intensity transients for each @ by (4.12). The resulting decay constants 7;,,(Q) are shown
in Fig. 4.3(b) (red bullets) and exhibit a very satisfying agreement with the experimental
values (black circles). The diverging deviation of the calculated and experimental values
below Q ~ 0.08 rad/nm is due to the neglected heat conduction. As indicated above,
the heat-induced shift of the STO substrate shoulder to lower ) results in a decreasing
component of the intensity transient which has a timescale of several 100 ps as Section 3.2
revealed. The contribution of this slow background dynamics is largest for () ~ 0.08 since
there the shoulder intensity is high and the phonon amplitude is fairly low.

I mentioned earlier that the influence of the anharmonicity becomes increasingly impor-
tant if the strain amplitude of the phonon wavepacket increases. We do not have fluence-
dependent UXRD measurements on the nonlinear propagation of quasi-monochromatic
phonon wavepackets. However, this aspect can of course be easily checked in simulations.
The decay time of the transient integrated intensity shown in Fig. 4.5(c) is calculated
for different strain amplitudes of the coherent sound wave. The results are plotted in
Fig. 4.5(d) versus the photoinduced thermal expansion of the SRO layer. As discussed in
Section 2.1.3 the integrated strain of each of the BSPs generated by the individual pump
pulses of the pulse train is proportional to the layer strain after the coherent strain pulses
have left the layer. The aLCDX calculations indeed predict a drastic decrease of the decay
time which thus implies a significantly shortened phonon lifetime. The decay time appears
to converge to &~ 200 ps towards zero strain which shows that the higher order term in
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the interatomic potential U becomes negligible at low strain amplitudes'®. Moreover, this
matches the value given by the theoretical models (black line in Fig. 4.4).

In conclusion, after the successful generation and detection of narrow-bandwidth LA
phonon wavepackets as presented in Paper VIII I analyzed the )-dependence of the char-
acteristic sideband intensity decay. In addition to the previously identified nonlinear propa-
gation of sound in STO, the deviation from standard theoretical models for phonon lifetimes
in the discussed frequency and temperature regimes suggests that the anharmonicity of
the interatomic potentials have to be taken into account when considering the propagation
of coherent phonons generated by strong laser-pulse excitation. The very good agreement
obtained by calculations employing an anharmonic linear-chain and dynamical XRD verify
this assumption and, in particular, reveal that the experimental data can be reproduced
with high accuracy merely including a third-order term in the interatomic potential.

The following section presents complementary all-optical pump-probe measurements
which evidence the fluence-dependence of the phonon lifetimes and thus support the con-
clusions drawn so far.

4.4.3 Anharmonic decay of coherent phonons — All-optical
experiments

The important UXRD results discussed in the previous section and in Paper VIII where
collected during 5 days of beamtime at the IDO9B of the ESRF. Since time is usually rather
limited during synchrotron beamtimes we did not measure the fluence or temperature-
dependence of the anharmonic phonon decay which would give much more insight in the
quantitative role of lattice anharmonicities. However, as mentioned above one can also
employ all-optical pump-probe techniques to obtain information of similar kind.

The Brillouin scattering condition (4.2) implies that the wavevector of visible light is not
large enough to probe the fundamental wavevector of the phonon wavepackets generated in
the UXRD experiments (@, ~ 0.11 rad/nm). The phonon wavevectors that are accessible
by photons in the visible range (400 . ..800 nm) in a backscattering geometry (8 = 0) are a
factor of 2 smaller than @), [136]. However, the fundamental wavevector of the photoexcited
phonon wavepacket can be tuned by the pulse repetition rate v, within the pump pulse
train as discussed in Section 4.4.1. Omne has to bear in mind that this may change the
particular phonon dynamics (such as decay rate) since these are in general ()-dependent
(see Section 4.4.2). As also discussed in Section 4.4.1, an optimized phonon spectrum is
obtained by matching the metal layer thickness to a given pump pulse separation 7, = 1/v,.
For this reason, we used a 36 nm LSMO layer as the transducer in the following all-optical
experiments.

Prior to the experiment the pump pulse train is characterized by second-order optical
cross-correlation using a nonlinear §-Barium Borate (BBO) crystal [65]. If one pulse of
the pulse train and a single reference pulse—both with sufficiently high intensity—are
temporally overlapped in the BBO crystal the second harmonic of the fundamental laser
wavelength (800 nm) is generated by sum-frequency generation. The resulting transient
intensity of the second harmonic is shown as a thin black line in Fig. 4.6(a). The extracted
mean pulse separation is 7, = 15.5 ps which corresponds to a pulse repetition rate v, =
65 GHz and an estimated phonon wavevector in STO of ), = 0.051 rad/nm.

13 At very low strain amplitudes the presented fitting procedure of the integrated x-ray intensity becomes
less meaningful due to the very low intensity of the phonon sideband in combination with the considered
angular and time-resolution of the actual experiment.
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Figure 4.6: (a) Second-order optical cross-correlation (black thin line) of the pump pulse train and a
single pulse both at 800 nm wavelength. The mean pulse separation is 7, = 15.5£0.2 ps. The small peaks
are due to reflections inside the nonlinear BBO crystal. Note, that the pulse intensities are not necessarily
proportional to the real pulse energies due to possible mismatches of the individual spatial overlaps. The
equidistant quasi-instantaneous reflectivity rises at a probe wavelength of 490 nm (also shown in panel
(b)) due to the heating of the electronic system in LSMO by the individual pump pulses verify the timing
of the pump pulse train. (b) Raw transient differential optical reflectivity of 36 nm LSMO on STO at
selected probe wavelengths measured at quasi-normal incidence after excitation with a pump pulse train
having an integral fluence of 55 mJ/cm?.

Figure 4.6(b) presents the relative change in reflectivity AR(t)/Ry of a 36 nm thick
LSMO layer on STO for selected probe wavelengths after excitation with the pulse train
(first pulse at ¢t = 0). Clearly, the particular dynamics of the transient reflectivity strongly
depend on the probe wavelength A,,. As discussed in Section 2.1.1, each of the pump
pulses impulsively heats the conduction band electrons and subsequently the lattice of the
metallic LSMO layer. This process gives rise to the equidistant quasi-instantaneous rises of
the reflectivity at A, = 490 nm as shown in Fig. 4.6(a) which verifies the time separation
7, of the pump pulses. Static measurements on LSMO reveal a pronounced increase of the
optical conductivity (and thus reflectivity [41]) with temperature for Ap, < 600 nm which
is related to the ferromagnetic phase transition of LSMO around 7. = 360 K [158]. The
strongly increased reflectivity towards the blue end of the visible spectrum is verified by
the pump-probe data in Fig. 4.6(b). The heat diffusion from LSMO into the STO substrate
slowly recovers the initial reflectivity on a nanosecond to microsecond timescale.

The crucial features of the optical reflectivity transients, however, are the pronounced
oscillations in an intermediate wavelength range. In order to investigate the oscillations
in more detail, the slowly varying incoherent background is subtracted and the remaining
signal is shown in the surface plot in Fig. 4.7 (right panel). The excitation of the LSMO
layer by the pulse train and hence the generation of the quasi-monochromatic phonon
wavepacket in the STO substrate take place for 0 < ¢ < 120 ps. As explained in Section 4.1,
the strong oscillations for ¢ > 120 ps evidence the propagation of the coherent wavepacket
into deeper parts of the STO substrate. The wavelength-dependent amplitude of the
oscillations!? is shown in the left panel of Fig. 4.7. The scattering condition (4.2) uniquely
relates the probe wavelength to the phonon wavevector that this wavelength is sensitive to.
In addition, the well-accepted formalism of Thomsen et al. [40] reveals that the oscillation

14The amplitude spectrum is obtained by calculating the modulus of the Fast Fourier Transform (FFT)
of the reflectivity transients for each probe wavelength and averaging across the peak corresponding to the
oscillation.
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Figure 4.7: Right panel: Transient reflectivity signal vs. probe wavelength after subtraction of the slow
dynamics from the transients shown in Fig. 4.6(b). The data surface plot has been slightly smoothed along
both directions to show the oscillations clearer. The slanted structures due to the wavelength-dependent
oscillation frequency evidence the propagating phonon wavepacket inside the STO substrate. The upright
structures (¢ > 200 ps) are due to measurement noise. Left panel: Phonon amplitude spectrum deduced
from the probe wavelength-dependent oscillation amplitudes.

amplitude of the reflectivity is proportional to the phonon amplitude. Thus, the left
panel of Fig. 4.7 directly visualizes the photoexcited phonon (amplitude) spectrum which
evidences a narrow bandwidth of the phonon wavepacket!®. Moreover, even the first-order
side maxima predicted by the LCM (cf. Fig. 4.2(c)) are clearly observed.

In analogy to the UXRD experiments where we monitored the intensity decay of the
sideband representing the attenuation of the squared amplitude of the phonon wavepacket,
one can now investigate the transient oscillation amplitudes in Fig. 4.7 to obtain informa-
tion on the dynamics of the wavepacket. Note, however, that the oscillation amplitude in
the optical experiments is directly proportional to the phonon amplitude [40]. One way to
extract the decay time of the oscillation amplitude for each QQ(X,) is to divide the time
range of the reflectivity transients into Ny, equal parts and compute the Fast Fourier
Transform (FFT) of each window. The oscillation amplitude obtained from the FFT for
each Q(\,;) and each of the Ny, time windows is then fitted with an exponential decay
function to determine the decay time constant of the phonon oscillation Tosc(Apr). As an
example, Figure 4.8(a) shows the extracted transient oscillation amplitude (black bullets)
for the reflectivity transient at A\, = 590 nm after excitation with an integrated fluence of
55 mJ/cm? (red line in Fig. 4.6(b)). The red solid line in Fig. 4.8(a) represents the best
exponential fit which yields a decay time constant of &~ 810 ps. Since the first FF'T window
covers the time range where the pump pulse train is still generating the phonon amplitude
we omit this data point in the fitting process.

After performing the analysis for all measured fluences and probe wavelengths Ap, I
determine a representative decay time of the phonon wavepacket by averaging the derived
values Tose(Apr) around the maximum of the phonon spectrum, i.e., from 570 nm to 600 nm.
The dependence of this average phonon lifetime on integrated pump fluence is plotted in
Fig. 4.8(b). The all-optical data exhibit a decreasing lifetime of the phonon wavepacket
around the fundamental wavevector for increasing pump fluence and accordingly increasing

5Due to an improved multi-reflection mirror which produces the pump pulse train (cf. Paper VIII)
the relative bandwidth of the phonon wavepacket in the optical experiments is much smaller than the one
observed in the UXRD experiments discussed in Section 4.4.2 and Paper VIII.
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Figure 4.8: (a) Decay of the optical oscillation amplitude (black bullets) determined by a moving FFT
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Figure 4.9: Comparison of the phonon amplitude lifetimes obtained from UXRD and all-optical experi-
ments with the theoretical models described in Section 4.4.2.

strain amplitudes. This result qualitatively follows the prediction by the aLCDX calcu-
lations presented in Fig. 4.5(d) which gives additional support of the important role of
lattice anharmonicities in the conducted experiments.

Figure 4.9 compares the phonon lifetimes derived from the all-optical experiments to
the ones obtained from the previously discussed UXRD experiments. Note that, in con-
trast to Section 4.4.2 where I discussed and plotted the x-ray intensity decay time, Fig. 4.9
presents the actual phonon lifetime, i.e., the exponential decay constant of the phonon
amplitude. As pointed out in Section 4.4.2 the x-ray intensity decay time and the phonon
amplitude decay time are related by eq. (4.14) whereas the decay time of the optical reflec-
tivity oscillations directly yields the phonon lifetime. Although the number of data points
in Fig. 4.8(b) is little a qualitative comparison to Fig. 4.5(d) suggests a low-fluence lifetime
of ~ 1300 ps at the photogenerated central phonon wavevector ), = 0.051 rad/nm. In
contrast, the theoretical estimation by combining RD and TED (egs. (4.7) and (4.8)) at
this phonon wavevector yield a much larger value of 7, = 2250 ps as depicted in Fig. 4.9 by
the red dotted line. Interestingly, the phonon-induced reflectivity oscillations from a single
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BSP analyzed in Paper VII exhibit a similar decay time of ~ 1200 ps at low pump fluence.
A cross-check with the anharmonic LCM using the parameters calibrated to reproduce the
UXRD phonon sideband decay discussed in Section 4.4.2 yields the very same theoretical
phonon decay of ~ 2250 ps at @, = 0.051 rad/nm. This suggests that there may be a
probe-related artificial decay in our optical reflectivity data similar to the x-ray extinction
in UXRD experiments. In optical reflectivity experiments this could be caused by a limited
coherence length of the ultrashort pulses reflected at the sample surface and the phonon
wavepacket leading to a faster decay of the interference effect that gives rise to the oscilla-
tions in the experimental signals. Further investigations are thus required to conclusively
elucidate the mechanism of the additional real or artificial phonon decay observed in the
presented all-optical pump-probe experiments. Nevertheless, the data clearly support the
conclusions drawn from the time-resolved optical and x-ray experiments on STO discussed
in Sections 4.3 and 4.4, respectively: the propagation of coherent phonons in STO launched
by the impulsive heating of metallic thin film transducers is no longer well-described by a
harmonic LCM (or continuum model) if the strain amplitude exceeds 0.1% which in case
of SRO or LSMO transducers is equivalent to a pump fluence F > 1 mJ/cm?.
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CHAPTER D

THE PHONON BRAGG SWITCH

The experimental method which is extensively used in this work to obtain information
about the ultrafast dynamics of photoexcited solid is the pump-probe technique [15, 16].
The time-resolution of this method crucially depends on the pulse durations of the pump
and probe pulses (see Section 1.1). Nowadays, laser systems providing intense sub-100-
fs laser pulses are widely available. Generating ultrashort x-ray pulses, however, usually
requires much more engineering and financial efforts. Established techniques are laser-
based plasma x-ray sources (PXS) (see Paper XI and references therein), low-alpha modes
and femto-slicing of electron bunches at synchrotrons [159-162] and (x-ray) free-electron
lasers (FEL) [163, 164]. The rather limited capacities of all sources worldwide and other
disadvantages such as short/long-term stability (PXS, FEL) or low flux (PXS, femto-
slicing) on one hand call for improvements and extensions of these existing techniques and
sources and on the other hand suggest the need for alternative techniques.

In the following, [ summarize an alternative concept of ultrashort x-ray pulse generation
which exploits the structural dynamics of photoexcited solids and the concomitant modu-
lation of the solid’s x-ray response. I then discuss particular approaches which utilize the
photoexcited structural dynamics of thin films and SLs previously considered in this thesis.

The concept for the generation of ultrashort x-ray pulses by means of a so-called Phonon
Bragg Switch (PBS) was proposed by Bucksbaum and co-workers in 1999 [38]. The authors
suggested to photoexcite coherent optical phonons with non-vanishing wavevector () in
a bulk material by ISRS. As discussed in Section 4.1, this would give rise to transient
sidebands of the bulk Bragg reflection whose intensity would oscillate at the frequency of
the optical phonon. In principle, this realizes an increased x-ray diffraction efficiency within
one oscillation period of the optical phonon which is usually on the order of 10...1000 fs.
Due to the possibility of coherently controlling the optical phonon mode one could switch
off the phonon oscillation with a second properly delayed laser pulse and thereby effectively
realize a single ultrashort x-ray gate. If one shines long x-ray pulses (or even cw x-rays) on
the crystal fulfilling the Bragg condition of the transient sideband the photoexcited bulk
crystal would essentially reflect only a single sub-ps x-ray pulse. This ultrashort pulse of
hard x-rays could then be exploited as a probe pulse for UXRD experiments with high
time-resolution. In analogy to the technique of femto-slicing of electron bunches in a few
storage rings around the world one could also consider this x-ray gating as femto-x-ray
slicing. The main difference is that one directly slices a small portion of x-rays out of a
long x-ray pulse without disturbing the electron bunches inside the storage ring. Similar to
the slicing of electron bunches the laser and sliced x-ray pulse are inherently synchronized.
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A few years later, however, the authors estimated that for a GaAs crystal the efficiency
of this technique is unlikely to provide a sufficiently high switching contrast since the
required phonon amplitudes would be too large [39].

Throughout this chapter we adapt the basic idea of modulating the x-ray diffraction
efficiency of a PBS by photoinduced structural dynamics. A primary x-ray pulse with
rather long pulse duration (e.g. as generated by synchrotron sources) is then modified by
the PBS’s transient x-ray response to form a potentially ultrashort secondary x-ray pulse
which may then serve as a probe pulse in subsequent UXRD experiments. Mathematically,
one can formulate the process in the following way. The first laser pump pulse L;(t)
with fluence F} gives rise to a time-dependent x-ray diffraction efficiency (x-ray response)
Ry(t, 04, F}) which generally depends on the chosen Bragg angle ©; and the pump fluence
Fi'. Given a certain time delay 7, between L;(t) and the primary x-ray pulse X;(¢), the
secondary x-ray pulse diffracted from the PBS is given by

X2<t,@1,FI) :Rl(t+71,@1,F1)X1<t) (51)

Here, 71 = 0 is defined to be the time delay at which the center-of-masses of L; and X;
arrive at the PBS simultaneously and 7; > 0 implies that the laser hits the PBS before the
x-ray pulse. Equation (5.1) directly implies that the shape of the secondary x-ray pulse X5
can be controlled by varying ©; and F}. The schematic setup for the described diffraction
process is depicted in Fig. 5.1(a)-(b). The secondary x-ray pulse X, can then be guided to
the sample of interest to probe the unknown x-ray response Ry(t, Oy, F,) at various time
delays 7o after the excitation of the sample by a second laser pump pulse Ly. Using a
slow (integrating) detector, the measured signal S(7,, O1, F}, Oy, F») of this latter UXRD
experiment is then given by a convolution of X, with Ry, i.e.,

S(TQ,@l,Fl,@Q,FQ) = / RQ(t+TQ,@2,F2)X2(t, @1,F1)dt (52)

If one has an independent measure of X5(¢) the unknown sample response Ry (t) can be ex-
tracted from the measured signal S(7, ©1, F}, O9, F3) by a simple deconvolution. Although
this inverse transformation is mathematically always feasible, limited signal-to-noise ratios
in real experiments do not allow to obtain Ry with an arbitrary probe function Xs. In order
to retrieve information on the sample dynamics with high time-resolution it is mandatory
to have a probe pulse X5 that is shorter than the characteristic timescales contained in
the sample response R,. Ideally, X5 is a single Gaussian with a sufficiently short temporal
width. Accordingly, one has to chose an appropriate response R; of the PBS to generate
an such optimized x-ray probe pulse Xs.

An important part of my work was to find and optimize a PBS response R; in order
to realize optical-pump x-ray-probe measurements at regular synchrotron beamlines with
sub-ps time-resolution. Achieving this goal would vastly increase the number of potentially
available sources of sub-ps x-rays which would circumvent the restriction to expensive and
rare setups such as femto-slicing, FELs or PXSs. Of course, these established sources
partly have other indispensable advantages, e.g., sub-100-fs pulse duration or table-top
setups (PXS).

The following sections describe the different sample geometries and related dynamics
which we used to considerably decrease the pulse durations of synchrotron x-ray pulses.

In general, R, is constant before the laser pulse excitation and shows an arbitrary bahaviour after
the excitation.
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Figure 5.1: Left panel: Schematic of the experimental setup to implement a Phonon Bragg Switch
(PBS) for UXRD experiments using a double-crystal XRD layout. The x-ray pulse originating from the
synchrotron and the laser pump pulse enter the figure from the left propagating along the dashed grey
line towards the integrating x-ray detector D. (a) The laser pump pulse L; and the x-ray probe pulse X;
arrive at the PBS with a respective time delay 7. (b) The x-ray response of the PBS R; has modified the
initial x-ray pulse shape into X5 according to eq. (5.1). The secondary x-ray pulse X5 subsequently probes
the structural dynamics of an unknown sample S at varying time delays 7o with respect to the second
laser pump pulse Ly. The signal measured at the detector D is given by eq. (5.2). Right panel: LCDX
calculations (including heat diffusion) of the x-ray pulse shapes diffracted from different PBS devices
exploiting the transient XRD efficiency of (c¢) the forbidden SL peak of the SRO/STO SL (Papers II-IV),
(d) the SRO layer peak shifting away from its initial position (Section 2.2.2) and (e) the 50% increased
coherent strain maximum of a thinner SRO layer (see e.g. Section 3.2). For further descriptions of the
individual devices see Sections 5.1 and 5.2. In all three cases the first time delay is set to 7, = 0.

Several experiments are presented which evidence the successful shortening of x-ray pulses
and the subsequent utilization of these in UXRD experiments. The technical potential of
this work also gave rise to a long-term project at the EDR beamline of the synchrotron
source BESSY II in Berlin Adlershof which is in parts dedicated to the implementation
and optimization of an experimental setup exploiting the discussed concepts of x-ray pulse
shortening for ultrafast x-ray science.

5.1 X-ray pulse shaping by forbidden SL reflections

In Section 2.2.3 as well as in Papers IT and III I theoretically and experimentally consid-
ered the intensity modulations of the SL Bragg reflections from a metal-insulator SL due
to the photoexcited structural dynamics. In addition to the very accurate LCDX calcula-
tions, I also presented a simple envelope model (EM) which is able to semi-quantitatively
explain the measured signals on different SL reflections. In particular, I discussed the
highly nonlinear response of a SRO/STO SL peak which is nearly forbidden in the unex-
cited state and attains strongly increased diffraction efficiency in a threshold-like manner
after excitation with an ultrashort laser pulse. The nature of this behaviour which we
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measured in great detail at the Swiss Light Source (Fig. 3(b) in Paper IT and Fig. 2 in Pa-
per IIT) could be uniquely identified in Paper IT by the help of the EM. For the unexcited
SL, the considered SL peak has a position very close to the minima of both individual
single-layer envelope functions which results in the very weak static diffraction efficiency.
As explained in Section 2.1.4 the laser excitation triggers the SL phonon mode which es-
sentially compresses and expands the metal and insulator layers, respectively. This shifts
the respective single-layer envelopes and thus strongly increases the diffraction efficiency
of the quasi-forbidden SL peak. The modulation of the SL peak intensity is in analogy
to the intensity modulations of the optical phonon sidebands described by Bucksbaum et
al. and Sheppard et al. who initially proposed the concept of a PBS [38, 39]. An optical
phonon near the Brillouin-zone center modulates the x-ray structure factor of the lattice
unit cell and similarly the SL phonon mode which also lies at the Brillouin-zone center
in a backfolded scheme modulates the x-ray structure factor of the superlattice unit cell
(bilayer).

The fact that this particular SL peak is statically nearly forbidden in combination with
the strong nonlinear increase of the reflected x-ray intensity with phonon amplitude imme-
diately gave rise to the potential use of this response as a PBS. Following the idea presented
above, the SL-PBS could be illuminated by a long synchrotron pulse and simultaneously
excited by an ultrashort laser pulse. Since the SL peak is nearly forbidden before and after
the coherent dynamics and the x-ray flux of the long x-ray pulse is quasi-constant during
this time, eq. (5.1) implies that the reflected x-rays will be shaped into a few isolated pulses
of ~ 1 ps duration as indicated by Fig. 2 in Paper III. To verify this behaviour the LCDX
predictions? of the particular x-ray response are presented in Fig. 5.1(c). Here, I assume an
incident x-ray pulse X; of gaussian shape centered at ¢ = 0 with a FWHM of 100 ps (solid
grey line) which is typical for standard synchrotrons. The laser pump pulse excites the SL
dynamics at ¢ = 0 (i.e. at time delay 71 = 0) and thus triggers the transient x-ray response
R; of the PBS (dotted blue line). In the present case of a forbidden SL peak, the diffracted
x-ray pulse X3 (solid red line) determined by eq. (5.1) indeed exhibits separated pulses in
form of a pulse train and has almost no preceding or subsequent intensity. However, there
is a weak and rather long post-pulse around ¢ = 50 ps. A closer analysis of this contribu-
tion shows that these diffracted x-rays are due to the unfolding of the SL phonon mode
into the substrate (Paper I and Ref. 84). This produces a propagating phonon wavepacket
which exhibits a characteristic phonon spectrum defined by the SL geometry and which
gives rise to corresponding sidebands of the substrate Bragg peak similar to the discussions
in Section 4.4.

As shown in Paper III, the advantage of using SLs as a PBS is the tunability of pulse
duration, pulse repetition rate and switching contrast by variation of the SL geometry.
By properly tailoring the SL one can also avoid the weak post-pulse around ¢ = 50 ps in
Fig. 5.1(c). The disadvantage is that the SL mode automatically generates the pulse train,
however, usually one would like to have a single ultrashort pulse in order to avoid the
deconvolution process which may become impossible due to the inevitable experimental
fluctuations. In principle, one might think about coherent control of the photoexcited
SL phonons, however, this task is not as straightforward as for the ISRS-excited optical
phonons. Due to the displacive excitation it is not possible to cancel the first excitation by
a second pump pulse. Alternatively, one could combine appropriate responses of different

2The LCDX calculations include the heat diffusion inside the SL since Section 3.3 revealed that this
process cannot be neglected for such thin SLs if one considers the intensity of the SL reflections. Fortu-
nately, the equilibration of heat leads to a faster decay of the SL oscillations in the UXRD signal which is
preferable for the function of a SL-PBS.
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SLs to eventually select only a single pulse but due to the rather weak diffraction efficiency
of each reflection the flux of the resulting x-ray pulse would probably be too low to use it
in real experiments.

In order to overcome the disadvantages of the SL-PBS, we also looked at different
approaches using thin films instead of SLs.

5.2 X-ray pulse shaping by photoexcited thin films

In addition to the previously discussed manipulation of hard x-rays by photoexcited SLs,
we tried different approaches to improve the efficiency and the diffracted pulse shape of
the PBS. A simpler geometry which was also extensively discussed in previous chapters of
this thesis is a thin film on a substrate. In Sections 2.1.3 and 2.2.2 I presented the laser-
induced structural dynamics of metallic thin films and their manifestation in particular
UXRD features, respectively. First of all, the impulsive heating of the metal layer leads
to a thermal expansion which results in a change of the Bragg angle in XRD. Second, I
theoretically and experimentally verified that the coherent dynamics of the thin film lead to
a splitting of the Bragg peak and, moreover, to a 50% increased coherent strain maximum.
In the following, I discuss how both UXRD signatures can be exploited to modify the
shape of hard x-ray pulses.

5.2.1 Truncation of x-rays by impulsive thermal expansion

As indicated above, the thermal expansion of the metal film results in a change in the Bragg
condition for the x-rays. In particular, for sufficiently high pump fluence the diffracted x-
ray intensity at the original layer peak position decreases and remains low as depicted
in Figs. 2.5 and 2.6. Fixing the experimental Bragg angle to the initial position of the
layer peak, a properly delayed long x-ray pulse would thus be truncated by a sufficiently
fast decay of the diffracted x-ray intensity. Of course, the latter can be tuned due to its
proportionality to the layer thickness, albeit at the cost of maximum diffraction intensity
and hence switching efficiency. In any case, the fluence has to be high enough to induce
a thermal Bragg peak shift which is larger than the width of the peak. Only under such
circumstances one obtains a good switching contrast.

As an example, consider the UXRD response of the SRO thin film which has been
extensively discussed in Section 2.2.2. Since the LCDX calculations exhibit almost perfect
agreement with the experimental PXS data, I use the simulation with an adapted instru-
mental function for typical synchrotron beamline experiments in order to calculate the
shape of the diffracted synchrotron x-ray pulse. Assuming the same 100 ps x-ray pulse as
before incident at the Bragg angle of the undisturbed SRO layer Bragg peak, the diffracted
x-ray pulse shape is shown in Fig. 5.1(d). Indeed, the synchrotron pulse gets truncated
and thus shortened by the reflectivity drop of the thin-film PBS at the fixed initial Bragg
angle®. By changing the relative timing 7, of the x-ray pulse and pump laser one can
vary the pulse duration of the diffracted x-ray pulse. This shortened pulse can then be
exploited to perform UXRD experiments with improved time-resolution as compared to
the unmodified synchrotron pulse.

3The very little contribution after ~ 25 ps is due to the return of the high-angle wing of the layer
Bragg peak to the initial Bragg angle. This can be circumvented by applying a slightly higher pump
fluence which would cause the peak shift to be larger and would thus avoid the revival of the diffraction
efficiency within the incident x-ray pulse duration.
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5.2.2 Slicing of x-rays by coherent thin-film dynamics

In Paper IX we report on the successful implementation of the above concept in a real
UXRD experiment conducted at the IDO9B beamline at the synchrotron source ESRF in
Grenoble, France. In this paper we present the feasibility of the proposed experimental
setup and, moreover, prove the shortening of the ESRF x-ray pulse by truncating it with
the described thin-film dynamics. In fact, in the described experiment we exploited the
transient change of XRD efficiency from a LSMO/STO SL peak, however, as discussed in
Section 2.2.3, the slow-timescale UXRD features of SLs are essentially identical to those
of a thin film (change of Bragg angle by impulsive thermal expansion via splitting of the
Bragg peak). Since we chose a time delay 7 ~ 0, i.e. the center-of-mass of the laser
and x-ray pulses arrive simultaneously at the PBS, the ESRF pulse duration is effectively
reduced by a factor of 2.

5.2.2 Slicing of x-rays by coherent thin-film dynamics

In the previous section I explained how a long synchrotron x-ray pulse can be shortened
by truncation due to a drop in the XRD efficiency of an impulsively expanding thin film
(and/or SL). This drop is due to the fact that the Bragg condition is no longer fulfilled at the
initial Bragg angle ©, for the expanded layer. Instead, the Bragg peak has shifted to a lower
angle ©; < ©; which is determined by the stationary thermal expansion. Furthermore, the
analysis in Section 2.2.2 revealed that the thin-film Bragg peak temporarily even shifts to
much lower angles compared to the “final” Bragg angle © ¢ of the thermally expanded layer
(50% increased coherent strain maximum). This implies that in a certain angular range
© < Oy the diffraction efficiency of the thin-film is significantly increased only within a
short time window which is on the order of Tyoyng.

Since the SRO thin film considered in Section 2.2.2 does not have the appropriate
dimensions (dsgo = 94.8 nm) to function as an efficient thin-film PBS, Fig. 5.1(e) shows
the switching effect from a much thinner SRO thin film (dsgo = 15.4 nm) which was
already introduced in Chapter 3 and Section 4.4. The LCDX calculation shows that fixing
the Bragg angle at an appropriate value © < O and inducing the right strain amplitude
in the SRO layer indeed gives rise to the diffraction of a single short pulse from the
thin-film PBS. The fact that the considered SRO layer is rather thin results in very short-
lived coherent dynamics within this layer* which thus yields a very short x-ray pulse of
~ 1.5 ps. The drawback of a thin film is of course that the maximum diffraction efficiency
(and hence the switching contrast) is limited. The choice of the particular design of a
PBS thus depends on the requirements of the subsequent UXRD experiments in terms of
switching contrast and/or time-resolution.

During a follow-up beamtime at the ESRF we revisited the above experiment
(Fig. 5.1(a) and (b)) using the thinner SRO film (dsgo = 15.4 nm) as the PBS. Although
the on and off contrasts of the switching could not be completely optimized during the
time-limited beamtime, we were able to demonstrate the much higher time-resolution
of the concept of slicing synchrotron x-ray pulses by exploiting the coherent structural
dynamics of thin films. The details of the experiment and the obtained results are
discussed in Paper X.

4The trailing and slowly decaying intensity is again due to the low-angle wing of the layer peak which
remains at the set Bragg angle. However, it actively decays within the x-ray pulse duration due to the
heat diffusion from the thin SRO layer into the substrate. As this process is accelerated in very thin films
(cf. Table 3.1) the LCDX calculation shown in Fig. 5.1(e) includes the effect of heat diffusion.
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In conclusion, the most promising approach so far is the concept of x-ray-slicing by
exploiting the coherent lattice dynamics of a substrate-supported thin metal film. Estima-
tions show that such a thin-film PBS may be optimized to realize switching contrasts and
diffraction efficiencies similar to the rather complex and elaborate techniques of electron-
bunch femto-slicing and plasma x-ray sources (PXS). As opposed to these techniques, the
PBS may be operated not only at kHz repetition rates but even up to MHz rates which ap-
proaches the x-ray repetition rates at synchrotrons and would thus drastically increase the
x-ray flux available for UXRD experiments. The proposed concept, however, is not capable
of efficiently generating x-ray pulses with pulse durations on the order of 100 fs. Neverthe-
less, a variety of physical, chemical and biological research areas could profit from a 1-ps
time-resolution [14] which can in principle be available at any beamline being equipped
with a standard ultrafast laser system and our proposed concept of a thin-film PBS. In
analogy to the discussion in Paper XII, ultrashort x-ray pulses such as generated by the
thin-film PBS may be utilized in order to characterize ultrafast streak cameras operating
in the hard x-ray regime.
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CHAPTER 0

SUMMARY AND OUTLOOK

This thesis presents various theoretical and experimental advances in the research field of
ultrafast structural dynamics in solids. In particular, the lattice dynamics of nanolayered
heterostructures such as substrate-supported thin films and superlattices (SLs) after the
absorption of intense and ultrashort laser pulses are considered. At the core of the theoret-
ical treatments lies the development and improvement of a numerical linear-chain model
(LCM) in order to describe and understand the photoinduced coherent and incoherent
lattice dynamics. The key ingredients to the LCM are

e instantaneous generation of thermal stress with arbitrary spatial profile
— coherent lattice dynamics = strain waves

e time-dependence of the thermal stress profile
— incoherent lattice dynamics = heat diffusion

e anharmonic interatomic potentials of the crystal lattice
— nonlinear lattice dynamics = anharmonic phonon-phonon interaction

The LCM is partly solved analytically which enables the analysis of local structural dy-
namics in terms of the superposition of delocalized normal modes (phonon modes). The
numerical results of the LCM are subsequently used in dynamical x-ray diffraction calcu-
lations (LCDX) to obtain simulations of the concomitant transient x-ray response. The
various time-resolved optical and x-ray diffraction (XRD) experiments conducted through-
out my studies which are presented in this thesis and in the papers successively necessitated
the inclusion of the different physical aspects stated above in order to account for the ob-
served coherent, incoherent and anharmonic lattice dynamics, respectively.

In a next step, the development of this versatile model for photoexcited structural
dynamics and the related ultrafast x-ray diffraction (UXRD) response allowed for the
detailed analysis the recorded experimental results on different sample structures and ma-
terials. These studies gave rise to advances in the understanding of physical processes
related to photoexcited structural dynamics and their manifestation in optical and UXRD
signals as well as the progression of experimental means to study such processes. The key
points presented in this thesis include

e nonlinear transient interference effects of x-rays in photoexcited superlattices (Sec-
tion 2.2.3 and Paper II)

e time-resolved phonon spectroscopy by Brillouin scattering using optical and x-ray
photons (Section 4.1 and Papers I, VII-VIII)
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e nonlinear phonon dynamics in Sr'TiO3 such as nonlinear propagation and attenuation
of sound due to anharmonic lattice potentials (Chapter 4 and Papers VII-VIII)

e thermal transport in nanolayered heterostructures on ultrafast timescales (Chapter 3
and Paper VI)

e generation of acoustic phonon wavepackets with tunable pulse shape and spectrum
by optical means (Section 4.4.1 and Paper VIII)

e realization of several efficient Phonon Bragg Switch concepts (Chapter 5 and Pa-
pers ITI- IV IX-X)

In all cases, the experimental results are accurately reproduced by the numerical models
which conclusively reveals the respective lattice dynamics in the photoexcited thin films,
superlattices and their substrates. The investigations presented in this thesis thus show
that the LCDX calculations in combination with UXRD experiments offer a powerful and
extendable toolbox to study ultrafast laser-induced lattice dynamics in great detail. In
addition, I point out the potential of the numerical models for the design of novel ultrafast
multilayer optics.

Future Prospects

Despite the very good agreement between simulations and experiments displaying the
effects of coherent, incoherent and anharmonic phonon propagation the presented studies
partly exhibit slight deviations. This suggests that there are still effects which are not
clearly understood and/or not taken into account correctly by the LCM. In the following
I list a few topics which are ready to be addressed having the toolbox presented in this
thesis or which require further extensions of the numerical models.

A very active research topic is the issue of nanoscale heat transport. As motivated
in this thesis, UXRD on photoexcited nanostructures is a promising technique to gain
more insight into this topic on very small length and timescales. Although I found in
Chapter 3 that the standard heat equation was able to reproduce the relaxation dynamics
of a photoexcited thin SRO film, I deduced a strongly reduced heat conductivity of SRO.
The reason for this reduction is not yet clear and will have to be investigated by systematic
experiments varying the pump fluence, temperature and thickness of the SRO layer. In
addition, the effect of heat conduction in SRO especially in its ferromagnetic phase is an
interesting topic since magnons significantly influence the thermal properties and thermal
transport out of the SRO layers [165]. In order to understand the underlying general
physical laws of nanoscale heat conduction systematic studies with different thin-film and
superlattice geometries are desirable.

In general, the exact nature of the mechanism of stress generation in the considered
metal layers is still unclear. It would be very interesting to perform investigations which
shed some light on the issue of which phonon modes (or which phonon cascades) mainly
contribute to the stress and strain generation. Possible experiments could include the res-
onant excitation of particular phonon modes by THz radiation and subsequent probing of
the layer or SLs by optical and x-ray techniques. As presented in this thesis and in Paper V
the excitation mechanism appears to change from low to high-excitation regimes. Possible
contributions may stem from electronic and phononic pressure as well as displacive and
Raman excitation processes. Also temperature and mode-dependent Griineisen coefficients
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are likely to play an important role at sufficiently large excitation densities. Again, a sys-
tematic temperature and fluence dependent study is necessary to unravel the variations of
the excitation mechanisms. Very closely related is the issue of magnetostriction which was
shown to play an important role for the build-up of the photoinduced stress in SRO on
ultrafast timescales [53]. Similar investigations could be performed for the ferromagnetic
metal LSMO.

When investigating the lattice dynamics of photoexcited thin films in this thesis the
solutions of the discretized LCM (which reflects the atomistic nature of matter) exhibited
high-frequency oscillations superimposed with the tensile and compressive strain waves.
Given a sufficiently fast stress generation, these high-frequency phonons would be inter-
esting to observe in properly chosen experiments. Possible detection schemes could be
interferometric optical techniques or scattering/diffraction techniques using electrons or
x-rays which ar sensitive to the relatively high wavevector (). In any case, the potential
samples will have to be cooled to cryogenic temperatures due to a very high anharmonic
phonon damping as discussed in this thesis.

Finally, the anharmonic lattice interactions in STO and similar materials represent
another wide research topic which can be addressed by ultrafast reflection/scattering tech-
niques and analyzed by the help of the anharmonic LCM presented in this thesis. Here,
changing the temperature and the pump fluence will give a more detailed picture of the in-
teratomic potentials and the related phonon-phonon scattering and decay mechanisms. As
mentioned earlier in this work, an important implication of nonlinear sound propagation
is the formation of acoustic solitons which are expected appear fairly early (hundreds of
picoseconds) in STO due to the relatively large lattice anharmonicity and the large photo-
generated strain amplitudes. Another task in the near future could thus be the observation
of such acoustic solitons in STO by the various detection methods discussed in this thesis.
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Abstract We present ultrafast X-ray diffraction (UXRD)
experiments which sensitively probe impulsively excited
acoustic phonons propagating in a SrRuO3/SrTiO3 super-
lattice and further into the substrate. These findings are dis-
cussed together with previous UXRD results (Herzog et al.
in Appl. Phys. Lett. 96, 161906, 2010; Woerner et al. in
Appl. Phys. A 96, 83,2009; v. Korff Schmising in Phys. Rev.
B 78, 060404(R), 2008 and in Appl. Phys. B 88, 1, 2007)
using a normal-mode analysis of a linear-chain model of
masses and springs, thus identifying them as linear-response
phenomena. We point out the direct correspondence of cal-
culated observables with X-ray signals. In this framework
the complex lattice motion turns out to result from an in-
terference of vibrational eigenmodes of the coupled sys-
tem of nanolayers and substrate. UXRD in principle selec-
tively measures the lattice motion occurring with a specific
wavevector, however, each Bragg reflection only measures
the amplitude of a delocalized phonon mode in a spatially
localized region, determined by the nanocomposition of the
sample or the extinction depth of X-rays. This leads to a
decay of experimental signals although the excited modes
survive.
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1 Introduction

Ultrafast X-ray diffraction (UXRD) is capable of monitoring
atomic motion in solids on the atomic length and timescale.
It has been applied to the study of optical and acoustic
phonons and in particular to zone-folded longitudinal acous-
tic phonons (ZFLAPs) in superlattices (SLs), which can be
viewed as acoustic or optical phonons, from the perspec-
tive of the bulk or the SL-mini-Brillouin zone, respectively
[5, 6]. In theory, the mini-Brillouin zone is defined for an
infinite SL. Experimentally, this is approximated by period-
ically stacking a large number P of epitaxial double layers
of two different crystal lattices (e.g. GaAs/AlGaAs) on top
of each other. Such a SL with P = 2000 and a double layer
period ds;. was recently investigated after homogeneous ex-
citation with femtosecond laser pulses [7]. The resulting
standing strain wave was essentially an optical phonon with
wavevector Q = 0, as it corresponded to the motion of atoms
within the super unit cell (one double layer GaAs/AlGaAs)
and to a good approximation the substrate could be ne-
glected. No lineshift of the Bragg reflection was observed,
evidencing that the size of the super unit cell remained con-
stant on the timescale of the experiment. When the num-
ber P of double layers is smaller, e.g. P = 11, as was the
case in a previously studied oxide SL of SrRuOs3/SrTiO3
(SRO/STO), the coupling to the substrate leads to a decay
of the SL motion [1-4, 8]. The timescale of this decay is
set by the SL expansion time, corresponding to the time
T = D/vsy ~ 35 ps it takes an acoustic phonon to traverse
the SL thickness D = P -dsp, ~ 250 nm at the average sound
velocity vs, [9, 10].

A key advantage of UXRD is the direct correspondence
of the real-space periods with the wavevector transfer q =
k — k' = G £ Q encoded in a generalized Laue condition,
where G = |G| = 27 /c is a reciprocal lattice vector cor-
responding to the real-space lattice spacing ¢ and Q is the
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wavevector of a specific phonon mode. In SLs G =n - g
(n € N) is an integer multiple of the reciprocal SL vector
g =2n/dsy, [11]. The first achievement of UXRD was to
show that coherent acoustic phonons in bulk lattices lead
to a temporal modulation of the X-ray diffraction signal at
G +£ Q according to the phonon dispersion relation w(Q)
[12-14]. The SL phonon modes exhibit a time dependence
according to their frequency wsp, = w(Q = 0) as an inten-
sity modulation of the SL Bragg peak, as they are opti-
cal modes at the mini-Brillouin zone center (Q = 0). Ex-
citing a thin Ge film resulted in sidebands to the bulk re-
flection of a Si substrate at Gsj and a continuous shift and
broadening of the Ge reflection at Gge [15]. Experiments
on InGaAs/InAlAs SLs also reported shifts of the SL Bragg
peaks, and in addition the “unfolding” of the SL phonon
with wavevector Qgy into the InP substrate leading to new
reflections at Gy, + Q§L [16]. In all these cases, the excita-
tion of a broad acoustic phonon spectrum leads to a contin-
uous shift of peaks or the development of a sideband to an
existing peak.

In this paper we present UXRD measurements on a pho-
toexcited SRO/STO SL that shows the disappearance of a
Bragg reflection at a particular G = n - g and its reappear-
ance at a different G’ = n - g’ corresponding to an expanded
SL without exhibiting a continuous shifting of the rocking
curve. In addition, very clear sidebands to the bulk substrate
reflection show up. Continuous shifts as well as sidebands
of thin film and substrate Bragg peaks have been previ-
ously discussed in the context of acoustic sound propa