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Abstract

During this work I built a four wave mixing setup for the time-resolved femtosecond spectroscopy

of Raman-active lattice modes. This setup enables to study the selective excitation of phonon

polaritons. These quasi-particles arise from the coupling of electro-magnetic waves and transverse

optical lattice modes, the so-called phonons. The phonon polaritons were investigated in the

optically non-linear, ferroelectric crystals LiNbO3 and LiTaO3.

The direct observation of the frequency shift of the scattered narrow bandwidth probe pulses

proofs the role of the Raman interaction during the probe and excitation process of phonon

polaritons. I compare this experimental method with the measurement where ultra-short laser

pulses are used. The frequency shift remains obscured by the relative broad bandwidth of

these laser pulses. In an experiment with narrow bandwidth probe pulses, the Stokes and

anti-Stokes intensities are spectrally separated. They are assigned to the corresponding counter-

propagating wavepackets of phonon polaritons. Thus, the dynamics of these wavepackets was

separately studied. Based on these findings, I develop the mathematical description of the

so-called homodyne detection of light for the case of light scattering from counter propagating

phonon polaritons.

Further, I modified the broad bandwidth of the ultra-short pump pulses using bandpass filters

to generate two pump pulses with non-overlapping spectra. This enables the frequency-selective

excitation of polariton modes in the sample, which allows me to observe even very weak polariton

modes in LiNbO3 or LiTaO3 that belong to the higher branches of the dispersion relation of

phonon polaritons. The experimentally determined dispersion relation of the phonon polaritons

could therefore be extended and compared to theoretical models. In addition, I determined the

frequency-dependent damping of phonon polaritons.

i





Zusammenfassung

Während dieser Arbeit habe ich ein optisches Vier-Wellen-Misch-Experiment aufgebaut, um

zeitaufgelöste Femtosekunden-Spektroskopie von Raman-aktiven Gittermoden durchzuführen.

Dieser Aufbau erlaubt die Untersuchung selektiv angeregter Phonon Polaritonen. Diese Qua-

siteilchen entstehen durch die Kopplung von elektromagnetischen Wellen und transversal-optischer

Gittermoden, den sogenannten Phononen. Die Phonon Polaritonen wurden in den optisch nicht-

linearen, ferroelektrischen Kristallen LiNbO3 und LiTaO3 untersucht.

Durch die direkte Beobachtung der Frequenzverschiebung der gestreuten, schmalbandigen

Abfragepulse konnte die Raman-Wechselwirkung im Abfrage- und Erzeugungsprozess von Phonon

Polaritonen nachgewiesen werden. Diese experimentelle Methode vergleiche ich mit der Mes-

sung mittels ultrakurzen Laserpulsen. Hierbei ist die Frequenzverschiebung wegen der relativ

großen Bandbreite der Laserpulse nicht auflösbar. Die Stokes- und Anti-Stokes-Intensitäten

sind hingegen in einem Experiment mit schmalbandigen Abfragepulsen spektral getrennt. Diese

konnten den jeweiligen, entgegengesetzt propagierenden Wellenpaketen der Phonon Polaritonen

zugeordnet werden. Deshalb war es möglich, die Dynamik dieser Wellenpakete einzeln zu unter-

suchen. Basierend auf diesen Erkenntnissen konnte ich eine mathematische Beschreibung der

sogenannten homodynen Detektion des Lichtes für den Fall von Lichtstreuung an entgegengesetzt

propagierenden Phonon Polaritonen entwickeln.

Desweiteren habe ich die breitbandigen, ultrakurzen Pumppulse mithilfe von zwei Band-

passfiltern so modifiziert, dass zwei spektral unterschiedliche und spektral nicht überlappende

Anregepulse zur Verfügung standen. Dadurch wurde die frequenz-selektive Anregung von

Polariton-Moden in der Probe ermöglicht. Diese Technik erlaubt mir die Untersuchung auch sehr

schwacher Gittermoden in LiNbO3 und LiTaO3, die zu den höheren Ästen der Dispersionsrelation

der Phonon Polaritonen gehören. Die experimentell bestimmte Dispersionsrelation der Phonon

Polaritonen wurde erweitert und mit theoretischen Modellen verglichen. Zusätzlich habe ich die

frequenzabhängige Dämpfung der Phonon Polaritonen bestimmt.
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1 Introduction

The rapid progress in the field of signal processing, telecommunication technology, and processor

technology continues for more than thirty years. Beside the miniaturization of integrated circuits

in microelectronics, the speed of data processing continuously increases and nowadays is in

the frequency range of several gigahertz. Slowly, a frequency regime is reached at which the

functionality of the electronic circuits starts to fail. Therefore, recent developments try for

instance implementing the optical data communication in order to overcome these limitations.

However, most dielectric materials have optical active modes in the far-infrared spectral region

and hence absorb strongly at these frequencies. In this region, the signals are neither transported

as current nor as light but as a mixed mode consisting of electromagnetic radiation and a

vibrational mode of the polar dielectric medium. These modes first discovered by Henry et al. [1]

can be described as quasi-particles and commonly called phonon polaritons. Their existence had

previously been predicted by Huang [2,3]. These quasi-particles can coherently be excited via

optical rectification or difference frequency generation (DFG) of optical light that undergoes

Raman scattering. The first experimental and theoretical investigations of phonon polaritons

and their interaction with light were made in the mid-sixties of the last century [4–6]. However,

it was only after the progress in femtosecond-pulse generation in laser science in the mid-eighties

that phonon polaritons could coherently be excited. More than ten years later, an improved

wavevector selective excitation of these wavepackets was experimentally demonstrated [7]. An

important outcome of these studies is the use of phonon polaritons as an efficient source for

intense ultra-short terahertz radiation [8, 9].

In this thesis, the transient dynamics of impulsively excited phonon polaritons in optically

non-linear LiNbO3 are investigated. During this work, several different aspects concerning the

physics of phonon polaritons were covered. In the following, the most important findings are

summarized. These are:

Wavevector-selective excitation of phonon polaritons

The wavevector-selective excitation of phonon polaritons leads to an excitation of narrow band-

width wavepackets. This is achieved using the so-called transient grating geometry of the pump

pulses. This approach allows investigating the dynamics of phonon polaritons as function of the

wavevector. The generation of polariton modes with low damping ensures a long propagation
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1 Introduction

distance and hence allows their detailed examination at a region that is spatially well-separated

from the excitation region. For probing of the coherent phonon polaritons variably delayed

ultra-short laser pulses are used. This corresponds to impulsive stimulated Raman scattering

(ISRS) experiment performed in the time domain. A complimentary experiment is performed

using narrow bandwidth probe pulses and employing a spectrometer to resolve the inelastic

light scattering process. This elegantly verifies the role of the Raman mechanism in the pump

and probe process. Moreover, the data obtained in the frequency domain are used for the

unambiguous interpretation of transients observed in the time domain.

Measurement of the dispersion relation of phonon polaritons in LiNbO3

As a consequence of the selective excitation of phonon polaritons, the direct mapping of their

dispersion relation is possible. The experiment with temporally short probe pulses measures the

dispersion relation of phonon polaritons, which allows to determine the frequency-dependence of

the real and imaginary parts of the phonon polariton wavevector. The use of a spectrometer

and narrow bandwidth probe pulses allows detecting energetically higher lying and only weakly

excited polariton modes that were not observed in the ISRS experiments with short probe pulses.

This also means that the measurement of the dispersion relation in this work is extended toward

higher wavevectors, away from the classical polariton region. As a consequence, studying the

transition from the mixed state of the phonon polariton toward the pure phonon state it becomes

possible.

Wavevector-dependent damping of phonon polaritons in LiNbO3

The frequency-dependent damping of phonon polaritons is close related to the imaginary part

of the complex dispersion relation of phonon polaritons. The lower dispersion branch, which

approaches the frequency of the lowest phonon mode in LiNbO3, is measured with temporally

short pulses. The appearance of an additional coupling mechanism to other low-frequency modes

is observed. This coupling leads to an increase of the damping rate of the phonon polaritons.

These findings could be of great interest for the generation of terahertz radiation via optical

rectification of visible laser light in non-linear crystals with subsequent excitation of phonon

polaritons. Especially, the efficiency of the terahertz radiation, which can be coupled out, is very

sensitive to its absorption in the material.

Frequency-selective preparation of single narrow-band wavepackets of phonon polaritons

Using pump pulses with narrow bandwidths and different content of spectral components leads

to an excitation of phonon polaritons with a certain frequency and well-defined direction of

propagation. In addition, this is advantageous for the study of weak optically active modes of

2



solids, which are selectively enhanced. It allows us to overcome the interference of scattered light

from simultaneously generated counter-propagating phonon polaritons. The relative efficiency of

the generation of a single polariton wavepacket is higher than for the case of the excitation with

spectrally broad pulses.

This thesis is structured as follows: in chapter 2 an introduction to the properties of the

phonon polaritons in LiNbO3, such as their dispersion relation and group velocity, is given. The

impulsively stimulated excitation and the subsequent detection processes of phonon polaritons

are explained in detail. Both are explained in the context of stimulated Raman scattering and

difference frequency generation. The relation between both models is illustrated. The optical

four wave mixing setup, which has been used in this work, is discussed in detail in chapter 3.

The spectral and temporal characterization of the pump and probe pulses is explained and

the uncertainty of the selectively excited wavevector of the phonon polaritons is discussed. In

chapter 4 the observation of the impulsively stimulated wavepackets of phonon polaritons in

LiNbO3 is exemplarily presented for the cases of broad and narrow bandwidth probe pulses.

The advantages and limits of both measurement methods in the context of the mapping of the

dispersion relation of phonon polaritons is elucidated. Both methods are compared and the

wavevector and frequency selectivity of the excitation and detection in the transient grating

geometry is discussed in detail. Different mechanisms that cause a spectral broadening of the

spectrum of the excited phonon polaritons are examined. Chapter 5 deals with the so-called

homodyne detection scheme in the four wave mixing experiment with phonon polaritons. The

probe light simultaneously undergoes Raman scattering from left- and right-propagating phonon

polaritons and subsequently mix on the detector. A mathematical description of the frequency

resolved detection of the scattered light fields with a spectrometer is developed. The special

cases of the homodyne detection that intrinsically occurred during this work, namely the cases of

a negligible elastic Rayleigh contribution, a displaced probe region with respect to the excitation

region, a detection with spectrally narrow probe pulses, and an increased contribution of Rayleigh

light due to light scattering from impurities, are discussed. The following chapter 6 covers

the observation of propagating wavepackets of phonon polaritons for which the probe region is

displaced with respect to the excitation volume. Both, narrow and broad bandwidth measure-

ments are compared. In chapter 7.1 the frequency-selective excitation of phonon polaritons is

realized by modifying the spectra of both pump pulses. This allows to prepare a single polariton

wavepacket with a well-defined direction of propagation. Moreover, a polariton mode of the

second dispersion branch of LiNbO3 is uncovered by the selective enhancement using this narrow

bandwidth excitation. In chapter 8 the measured dispersion relation of phonon polaritons in

LiNbO3 is discussed. The fitting of a theoretical dispersion function is illustrated and the result

3
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is compared to the calculated dispersion relations of phonon polaritons with different sets of

parameters taken from the literature. Chapter 9 discusses the frequency-dependent damping

of phonon polaritons in LiNbO3. The data are corrected for the effect of polaritons leaving

the observation volume. The obtained sub-structure in the damping rate of phonon polaritons

indicates additional damping contributions, which can be explained by assuming a coupling

to low-frequency defect modes in LiNbO3. In chapter 10 an outlook on the measurement of

impulsively excited phonon polaritons in LiTaO3 and to the detection of the transient lattice

changes, which are caused by impulsively excited phonon polaritons, by means of ultrafast X-ray

diffraction (UXRD) is given.
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2 Background

This work concentrates on the investigation of coherently excited optical modes in the optically

non-linear insulator LiNbO3. The used experimental technique is based on transient grating

pump-probe experiment. The time-resolved spectroscopic observations of the laser generated and

selectively excited vibrational and polar lattice modes reveal ultrafast dissipation and propagation

dynamics. In this chapter the basic physics that are necessary for the understanding of the

interaction of intense light pulses with condensed matter, namely non-linear optical effects,

the propagation of electromagnetic fields in a dispersive medium, and inelastic light scattering

(Raman scattering), is introduced. The experimental methods described in this thesis rely on

the generation of femtosecond (fs) laser pulses, which provide large intensities in order to drive

non-linear light-matter interactions. Ultra-short laser pulse generation is covered extensively in

the literature [10,11].

This chapter opens with a brief overview of the crystal structure of LiNbO3 (2.1). Next, the

optical and non-linear optical properties that are of special interest in the course of this thesis

are addressed (2.2). In the same section the Raman and infrared spectroscopic measurements

of optical phonons in LiNbO3 are presented and the dielectric function in the terahertz region

is derived. Hereafter, the physics of the phonon polariton, particularly the complex dispersion

relation and the group velocity of phonon polaritons in LiNbO3 are thoroughly discussed in

section 2.3. In section 2.4 the excitation of phonon polaritons in the transient grating geometry

by two optical pulses is described in the view of energy and momentum conservation by three

interacting particles. In the same section the excitation process is illustrated on the basis of

the Cherenkov-like radiation emission from a transient optical grating in the material. A closer

look is taken on the issue of the non-linear optical microscopic generation process of phonon

polariton wavepackets at the end of section 2.4. Finally, the optical probing of phonon polaritons

is discussed in section 2.5 considering stimulated Raman scattering, non-linear wave mixing, and

diffraction from the transient modulation of the refractive index.

2.1 Crystal Structure of LiNbO3

Lithium niobate is a chemical compound with the formula LiNbO3. It is a transparent, colorless

and crystalline solid material that is not found in the nature. The single crystals of lithium
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2 Background

niobate are usually grown using the Czochralski method [12]. Lithium niobate belongs to the

group of materials that crystallize in a perovskite unit cell. At room temperature the unit

cell is doubled along the optical c-axis and exhibits the lattice constants aH = 5.142 Å and

cH = 13.863 Å [13]. This is described by the distorted trigonal crystal system with the space

group R3c and point group 3m [14]. This structure is shown in figure 2.1 and lacks inversion

symmetry. The central cation Li1+ and Nb5+ are displaced from the centrosymmetric position into

directions along the c-axis with respect to the centers of the oxygen planes or the centers between

two oxygen planes, respectively. The displacement is of the order of x ∼ 0.55 Å for lithium

and x ∼ 0.26 Å for the oxygen octahedron [13]. This corresponds to a relative displacement

of x/cH ∼ 0.04 and x/aH ∼ 0.019, respectively. Consequently, the unit cell experiences an

electrical polarization Ps = 71 µC cm−2 [15]. The volume of the hexagonal unit cell amounts to

V = 318 Å3. LiNbO3 is a well-known ferroelectric material [16] with a relatively high Curie point

of TC = 1167◦C [13] as well as a high melting point Tm = 1260◦C. The exact stoichiometry of

the sample strongly influences the Curie temperature and other physical properties [17, 18]. The

ferroelectric-to-paraelectric phase transition involves a softening of the ferroelectric soft modes

with temperature approaching towards TC [19]. This issue is closely related to the polarizability

of the phonon and phonon polariton modes.

2.2 Optical Properties of LiNbO3

The next sections deal with characteristic physical properties of LiNbO3 that determine the

interaction of the laser light with the sample. First, the visible range of the radiation is considered

in section 2.2.1 because the wavelength of the used laser system is centered around 800 nm. In

section 2.2.2 the terahertz range is discussed where the optical phonon modes determine the

dielectric constant of the material (sec. 2.2.3) and thus are of great importance for the description

of the propagation of the electromagnetic radiation in this frequency range and particularly of

the phonon polaritons.

2.2.1 Linear and Non-Linear Optical Properties of LiNbO3

LiNbO3 is an insulator and thus transparent in the spectral region from 320 nm to 5600 nm. The

indirect band gap is at 3.78 eV (330 nm) [20]. An interband transition driven by a two photon

absorption process is expected to occur below 1.9 eV (660 nm). Thus no interband transition

or resonant excitation effects are expected in the experiments which are here conducted with

800 nm light. LiNbO3 single crystals are birefringent with the optical axis oriented parallel

to the tetragonal c-axis of the crystal. For 800 nm light the values of the ordinary and the

extra-ordinary refractive index are n0(800 nm) = 2.257 and ne(800 nm) = 2.163, respectively [21].

6



2.2 Optical Properties of LiNbO3

Figure 2.1: The crystal structure of LiNbO3 in the ferroelectric phase below Tc ∼ 1170 after Abrahams et

al. [14]. a) Sequence of distorted octahedra along the polar c-axis. The positions of the oxygen

layers and the position of the centers between the oxygen layers are indicated by the blue and

black dashed lines, respectively. The position of Li+1 and Nb+5 is also drown. The unit cell is

doubled along the c-axis. The A1 vibrational mode is indicated by the red and green arrows,

which show the displacement of Li+1 and Nb+5 ions relative to the oxygen planes. b) View

down the c-axis. The dark blue oxygen atoms form the top layer and the light blue oxygen

atoms the bottom layer. The hexagonal unit cell is indicated by the yellow dashed line.

At room temperature the non-centrosymmetric unit cell is the reason for several pronounced

non-linear optical effects: the observed χ(2) processes during this work are the sum frequency

7



2 Background

generation (SFG), second harmonic generation (SHG) and difference frequency generation (DFG).

The electro-optic tensor [22], ¯̄T , consist of the following elements:

¯̄T =



0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0


, (2.1)

with r13 = 9.6, r22 = 6.8, r33 = 30.9, r51 = 21.1 [23] (all values are given in (pm/V)). The largest

coefficient is r33. For incident light polarized along the c-axis–this case applies for the experiments

discussed in this work–only this element contributes to the DFG and leads to the highest possible

generation efficiency of the phonon polaritons in LiNbO3 [24]. Note, the electro-optic coefficients

rijk are related to the non-linear optical coefficients for the optical rectification dijk via the

relation dijk = −0.25 · rijk · n4vis, where nvis is the refractive index in the visible range [25,26], in

our case nvis = ne = 2.163 and d33 = −169 pm/V.

2.2.2 Infrared- and Raman-Active Phonon Modes in LiNbO3

Infrared- and Raman-active phonon modes in polar LiNbO3 crystal were intensively studied by

infrared reflectivity measurements [27] and conventional Raman scattering technique [19,27]. A

more recent Raman measurement is shown in figure 2.2 by the black circles. Four transverse

optical (TO) modes are observed which have an A1g-symmetry and the associated displacements

point parallel to the optical axis (c-axis), as indicated in figure 2.1. The Raman tensor ¯̄R, which

describes coupling of visible light to optical phonon modes, is given by [27]:

¯̄R =


a 0 0

0 a 0

0 0 b

 . (2.2)

Again, the largest element of the tensor is the b. The Raman lines in figure 2.2 can be analyzed to

obtain information about the central frequency υ, the linewidth γ, and the integrated intensity A

under the four resonances that correspond to the four TO phonons. The determined parameters

will be used later for the calculation of the dielectric function and the dispersion relation of

phonon polaritons in section 2.2.3 and 2.3.1, respectively. These parameters are obtained using a

fit analysis with Lorentzian functions. The result is shown in figure 2.2 as red circles. The values

are summarized in the third column of table 2.1. Note, the integrated intensity A is in general

not directly proportional to the infrared absorption strength of a mode, because the Raman

polarizability influences the cross-section in Raman scattering experiments [4, 30]. In the second
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Figure 2.2: Raman x(zz)y spectrum (black circles) of a nearly stoichiometric LiNbO3 sample measured

at room temperature (after reference [28]). Four transverse optical (TO) modes are visible at

252.9, 277.1, 335.5 and 633.9 cm−1. The fitted spectrum (red circles) assumes a Lorentzian

line shapes. The fit parameters are tabulated in table 2.1 on the right side. The nomenclature

of x(zz)y is as follows: x and y denotes the direction of incoming and scattered light with

respect to the principal axis of the examined crystal. The first and second latter denotes the

orientation of the polarization of the same incoming and scattered light. For more details see

reference [29].

column of table 2.1 the Raman parameters from reference [27] are given that are often cited

by authors discussing the phonon polariton dispersion relation. The parameters determined by

the analysis of the Raman data exhibit smaller damping rates for the first, second and fourth

mode compared to the Raman study reported by Barker and Loudon [27] and which are listed in

the second column of table 2.1. On the other hand, the values of the damping are very close to

the ones determined from the infrared reflectivity measurement [27] that are listed in the first

column.

2.2.3 Dielectric Function in the Terahertz Region of LiNbO3

The propagation of electromagnetic fields in media is determined by the complex dielectric

function ε(ω). In the terahertz region (ω ∼ 1013 Hz), the polar modes of a solid dominate the

ionic part of the dielectric function and ε(ω) diverges as it approaches the resonance of an infrared

active TO-mode. The dielectric function is described by the Lorentzian form

ε(ω) = ε∞ +

4∑
i=1

(ε0,i − ε∞)ω2
T,i

ω2
T,i − ω2 − iΓiω

, (2.3)
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i υ Γ S υ Γ υ Γ A

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

1 248 21 16.0 252 28 252.9 19.9 9.5

2 274 14 1.0 276 20 277.1 11.1 3.5

3 333 25 0.16 333 13 335.5 5.8 0.15

4 628 34 2.55 634 28 633.9 20.0 8.85

ε∞ = 4.6

Table 2.1: Room temperature central frequency υ, linewidth Γ, integral intensity A of the Raman line,

and absorption strength S of the four TO phonons in LiNbO3 with the E-field polarized

parallel to the c-axis. First column: parameters are obtained from an infrared reflectivity

measurement [27]. Second column: parameters are determined from a conventional Raman

scattering experiment [27]. Third column: parameters as obtained by the analysis of the

Raman scattering data from reference [28].

where ε∞ is the high frequency dielectric constant, ε0,1 = ε(ω = 0) is the low frequency dielectric

constant, ωT,i is the frequency of the (TO) phonon mode i, Γi is the phenomenological damping

factor of the resonance i. The quantity Si = ε0,i − ε∞ is the oscillator strength of the resonance

i. In the case of LiNbO3 the sum takes into account four infrared-active modes which are for

example observed by conventional Raman scattering studies [28].

In figure 2.3 the obtained real and the imaginary parts of the dielectric function ε(ω) =

εr,1(ω) + iεi,1(ω) of LiNbO3 are depicted. The imaginary part εi,1(ω) exhibits a maximum at the

resonance frequency ωTO of a TO phonon mode. At the same time the real part εr,1(ω) increases

as it passes one resonance by the value of its oscillator strength S. In the frequency region

where the real part εr,1(ω) is negative, the propagation of electromagnetic waves in medium is

impossible. The so-called Reststrahlen band of the medium is indicated by the points (1) and (2)

in figure 2.3. Thus the electromagnetic waves are reflected from the sample surface.

The situation for εr,2(ω) is different. Although the integrated intensity A of the Raman line is

not equal to the oscillator strength S, A can be used for the calculation of the dielectric function.

In other words, the different Raman polarizabilities [4,30] of the phonon modes are neglected and

it is consequently assumed that A ≈ S. The used strength A together with the lower damping

rates of the resonances cause a region (indicated by point (3)) inside the Reststrahlen band where

the real part is positive. In the small range around ω = 8.15 THz (272 cm−1) the propagation

of electromagnetic waves becomes allowed. The mathematical condition for the positive value

10
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Figure 2.3: Derived real εr and imaginary εi part of the dielectric function of LiNbO3 using the equation

2.3 and parameters from the literature [27] (1) or from the analysis of the measured Raman [28]

spectrum (2). In the frequency region between the point (1) and point (2) the real part

(green line) of the dielectric function becomes negative. This frequency range is named the

Reststrahlen band. Around 8 THz at point (3) εr,2 gets positive indicating allowed phonon

polariton states inside the Reststrahlen band. The low-frequency constant ε0 is depicted by

the pink line.

of the real part of the dielectric function is dependent on the strength, damping and central

frequency of the two phonon modes under discussion.

2.3 Phonon Polaritons in LiNbO3

The coupling of a terahertz light field to a transverse optical vibrational mode of an ionic lattice

is described by a quasi-particle that is called phonon polariton. This concept can be applied in

the region where the frequency of the light and the phonon mode match. Hence, the frequency

of a phonon polariton exhibits a strong dispersion. In the following sections, the properties of

phonon polaritons and their interaction with light are discussed.

2.3.1 Dispersion Relation of Phonon Polaritons in LiNbO3

The nature of a phonon polariton and consequently the shape of its dispersion relation are

determined by the coupling between the terahertz light and the TO phonon. In figure 2.4 the
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unperturbed dispersion relations of a TO phonon ωTO and terahertz light c/nTHz are shown by

the dark green and dark blue line, respectively. The light field strongly couples to a TO-mode

in the region where the frequency ω and the wavevector q are similar for both. The dispersion

relation of a phonon polariton ωpp(q) can be calculated from the following equation1:

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 . 0

0 . 5

1 . 0
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 p h o n o n  p o l a r i t o n
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Figure 2.4: Dispersion relation of phonon polaritons (red line) in a dielectric material with an assumption

of light coupling to only one TO phonon mode. The branches of the unperturbed TO phonon

(dark green line), the light below (dark blue line) and above (light blue line) the resonance

are indicted. The frequency of the LO mode, which is defined as the root of the dielectric

function above the resonance frequency ωTO, is shown by the brown line.

ωpp =
co√
ε(ω)

q , (2.4)

with the frequency-dependent dielectric function ε(ω) from equation 2.3. In figure 2.4 the

calculated dispersion relation of phonon polaritons is shown by the red line for the case of one

phonon mode. Near the phonon resonance frequency the phonon polaritons become mostly

phonon-like. They exhibit a large damping and behave like a standing wave with almost negligible

group velocity vg. For the lower phonon polariton branch, that is for ωpp<ωTO, this is true for

large wavevectors q.

In the regions where the polariton dispersion approaches the linear dispersion of light, the

polariton exhibits mostly light-like properties: it propagates with the speed of light in the

medium and shows a linear dispersion. For the lower polariton branch this case applies for small

wavevectors q of phonon polaritons. In the intermediate frequency region phonon polaritons

1Because of the relatively large thickness of the sample (∼ 0.5 mm), waveguide effects are not important in this

work.
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Figure 2.5: Calculated dispersion relation of phonon polariton in LiNbO3. a) The real part of the polariton

wavevector q versus frequency. The unperturbed light (blue line) and three phonon branches

TO1, TO2, TO4 are shown. The dispersion is calculated using equation 2.4 and 2.3 with the

parameters, which were obtained by infrared reflectivity from reference [27] (gray line (1)),

using the values obtained by the analysis of the Raman scattering data from reference [28]

(red line (2)), and using the data from the Raman analysis but with ten times smaller damping

rates (pink line (3)) according to Barker and Loudon [6]. b) The imaginary part of the phonon

polariton wavevector q–which describes the damping–is plotted versus frequency. The curves

have the same color code as in a). Note, the absorption coefficient α in the law of Lambert is

related to the imaginary part of the polariton wavevector q via α(ω) = 2Im(q(ω)).

exhibit both, light and phonon character. The more complicated dispersion relation of phonon

polaritons in LiNbO3 is shown in figure 2.5a. Here, four TO modes have to be considered which

couple to the light in the terahertz region. Three different parameter sets are used to calculate

the polariton dispersion relation: (1) values taken from reference [27], (2) values obtained from

the analysis of the Raman scattering data from Ref. [28], and (3) the same parameters as in

(2) but with the damping rates decreased by a factor of 10. The latter set resembles to the

previously discussed simple dispersion relation that considers only one TO mode and which is

13



2 Background

most commonly discussed in the solid state physics literature [31–33]. The difference of these

different calculations of the lower polariton branch (between (1) and (2) in figure 2.5a) amounts

up to 0.25 THz. As can clearly been seen in figure 2.5b, the deviation is much larger for the

higher polariton branch.

Figure 2.5b shows corresponding frequency ωpp plotted against the imaginary part of the

polariton wavevector, q. This representation of the dispersion is proportional to the frequency-

dependent damping of the phonon polaritons. Its magnitude increases as expected in the vicinity

of a phonon resonance, as it is evident for example from the red line. Around a frequency of

8 THz, a local minimum of the damping is observed whereas the real part of q in figure 2.5a

rises toward ωpp = ωTO,2. Thus, the life-time of the polariton states increases here which is a

indication of allowed polariton modes.

2.3.2 Group and Energy Velocity of Phonon Polariton Wavepackets

The envelope of a wavepacket–such as a phonon polariton–propagates with the group velocity vgr.

The group velocity is the velocity at which the energy or a signal moves through a medium. For

transparent, weakly absorbing media, the dielectric function ε(ω) can be assumed to be mostly

real and the group velocity can be calculated from the relation [34]

vgr(ω) =

[
Re

(
∂q

∂ωpp

)]−1
. (2.5)

This equation has an analytic solution that is not explicitly given here due to its complexity. The

red line in figure 2.6 shows the numerically calculated polariton group velocity in LiNbO3 as a

function of frequency. In the linear regime of the dispersion relation, i.e. for small values of ωpp,

phonon polaritons propagate with ∼ 0.2 · c0. In this frequency region the imaginary part of the

polariton wavevector is negligibly small compared to the real part of the polariton wavevector.

Equation 2.5 can be well applied to describe the propagation of a polariton wavepacket. The

group velocity decreases to zero, as the frequency of phonon polaritons approaches the frequency

of the TO phonon resonance at νTO = 7.56 THz. For absorbing media the group velocity is not

exactly equal to the speed at which the energy is transported [35, 36] and thus, this equation

is not valid anymore in the region where the damping of phonon polariton increases. This is

especially the case for frequencies that are close to the resonance frequency of the TO phonons.

As can be seen in figure 2.6 the group velocity vgr–drown as red line– starts to increase near

νTO = 7.56 THz, reaches the value of plus infinity, jumps to minus infinity, and finally approaches

zero frequency. As discussed by Loudon [36], the group velocity defined by equation 2.5 violates

the principles of causality and the concept of group velocity breaks down for the case of an

absorbing medium. Starting with a classical model of a damped harmonic oscillator, Loudon

derives an expression for the velocity at which the energy is transported through an absorbing
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Figure 2.6: Calculated group velocity vgr (red line) of phonon polariton wavepackets in LiNbO3 for

frequencies lower than the first TO mode, ω < 7.56 THz. The velocity is given as fraction of

the velocity of light in vacuum, c0. All calculations use parameters that are obtained by the

Raman scattering experiment and are listed in the third column of table 2.1. The velocity

of low-frequency phonon polaritons, vgr(ωpp = 0) = 0.195 · c0 is shown as blue line. The

calculated group velocity ṽgr and energy velocity vE are indicated by the green and violet

lines, respectively.

dielectric material [36]. Moreover, he makes the assumption that the whole energy, namely

the energy stored in the electromagnetic wave and the energy stored in the excited harmonic

oscillator, has to be taken into account. The derived energy velocity,

vE(ω) =
1

Re(
√
ε(ω)) + 2 · Im(

√
ε(ω))/Γ

, (2.6)

remains always positive and smaller than the speed of light in free space. The calculated

energy velocity for the case of LiNbO3 is shown as the violet line in figure 2.6. For small

frequencies vE is equal to vgr. For frequencies close to the frequency of the phonon resonance

the curve continues to approach zero frequency. Furthermore, the green line in figure 2.6 shows

a calculation of the group velocity of phonon polaritons. In this case, the damping constant is

assumed to be Γ1 = 19.9/10 cm−1, which is ten times smaller than the value, which is used in

the calculation of the function shown by the red line. This curve coincides with the previously

calculated group velocity vgr and the energy velocity vE for small frequencies and the curve

approaches zero frequency even faster than the energy velocity for frequencies in the vicinity

of the phonon resonance. In this work, the high group velocity of phonon polaritons has to
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explicitly be considered in the analysis of the obtained frequency-dependent damping rate of

phonon polaritons. This is later discussed in section 9.2.

2.4 Impulsive Excitation of Phonon Polaritons

So far, the dispersion relation and the group velocity of the phonon polaritons in LiNbO3 were

discussed. In this section we discuss the coherent optical excitation of phonon polaritons with

ultra-short laser pulses. The excitation of the phonon polaritons is impulsive: the pulse duration

τγ is shorter than the period τpp of the lattice mode. Consequently, the spectral width ω of the

laser pulse is larger than the spectral frequency of the polaritons, ωLaser > ωpp. Moreover, in

this work the generation of the phonon polaritons is realized by two simultaneously incident

laser pulses with wavevectors k1 and k2 that are crossed under an angle Θ in the sample. This

allows us to selectively excite a certain wavevector of the phonon polariton under the constraint

qpp = |k1 − k2|. If this condition is fulfilled, all photons of the first pulse with the energy ω1 and

all photons with the energy ω2 from the second pulse can mix and coherently excite phonon

polaritons. Simultaneously, the energy conservation |ω1−ω2| = ωpp has to be fulfilled. For broad

band excitation this is not a constraint as long ω1 and ω2 lie within the bandwidth of the laser

pulse. But the use of spectrally narrow pulses in the excitation process is more restrictive for the

energy ~ωpp of the quasi-particle. Thus only one specific mode of the dispersion relation of the

polaritons is excited and its dynamics can subsequently be examined, as will be later shown in

section 2.5.1. In the following, the excitation process of phonon polaritons is described in detail.

2.4.1 Excitation of Phonon Polaritons by Stimulated Stokes Scattering

In order to excite phonon polariton wavepackets, the femtosecond laser pump pulse is split into

two parts. One pulse is labeled k1 and the other k2. The two coherent laser pulses are crossed

under a well-defined intersection angle Θ in the sample. The excitation pulses are non-divergent

and simultaneously arrive at the sample. Further details of the experimental arrangement are

described in chapter 3. The laser pulses overlap in an elliptical spot where they interfere and

form a periodical transient intensity pattern as shown in figure 2.7. The so formed excitation

profile in the transparent medium has a transient grating period

λtg =
λc

2 · sin(Θair/2)
, (2.7)

where λc is the central wavelength of the excitation pulses and Θair is the intersection angle in

air [37]. Both pulses possess the same spectrum. Thus they can simultaneously act as stimulation

or pump beams. Let us first consider |k1| > |k2| (see Fig. 2.8a). A photon with wavevector k1

will be decomposed into a right-propagating phonon polariton qR and a photon with a wavevector
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Figure 2.7: Schematic representation of the boxcar arrangement 3.3 for forward four wave mixing experi-

ments: two laser beams k1 and k2 intersect in a transparent sample S in order to create a

transient spatial modulation of the refractive index of the medium. A delayed third beam k3

is diffracted from the transient grating into the direction k4.

k2 with a lower energy, which is present in the spectrum of the second pulse that acts as seed

here. Simultaneously, in the case |k1| < |k2| a photon with the wave vector k2 will in turn be

decomposed into a left-propagating phonon polariton qL and a photon k1. Now the pulse k1

acts as stimulation beam and the pulse k2 as the pump beam. In that case, the excitation of

the left- and right-propagating phonon polariton is equally likely. The generation of the phonon

polaritons2 is described by Stokes scattering which requires energy and momentum conservation.

The angular frequencies ω1 and ω2 of the first and second pulse have to satisfy the conservation

of energy

ωpp = |ω1 − ω2| , (2.8)

describing the creation process of a phonon polariton with angular frequency ωpp. All angular

frequencies of two pump pulses which fulfill this requirement contribute to the Stokes scattering

process. The direct observation of the inelastically scattered light is not possible due to the

geometry of the experiment: both pulses act at the same time as stimulation and pump beams

during the creation of counter propagating phonon polaritons. Raman scattered light is diffracted

into the same direction and with the same energy as the corresponding spectral components of

the opposite beam.

2At room temperature the phonon polariton modes are thermally occupied according to the Boltzmann distribution.

Although a frequency of f = 6.25 THz corresponds to a temperature of T = 300 K, the annihilation of thermal

phonon polaritons is negligibly small compared to stimulated Stokes scattering. Raman scattering of ultra

short pulses by optical active vibrational modes is described in terms of impulsive stimulated Raman scattering

(ISRS) [38–40].
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Figure 2.8: a) Energy level and momentum conservation diagrams considered in the impulsive generation

of phonon polaritons. a) Two counter propagating phonon polaritons qR and qL are excited

within the bandwidth of the laser pulses. The photons with the energy ω1 (ω2) are decomposed

into the photons with the lower energy ω2 (ω1) and the right-propagating (left-propagating)

phonon polaritons with the energy ωpp, whereby the photons in the second pulse k2 (k1) act

as the seed photons in the stimulated excitation of the phonon polaritons with the wavevector

qR (qL). b) The probe process is sensitive to the light scattered from the left and right

propagating phonon polariton with the wavevector qL and qR. The frequency of the probe

light ω3 is Stokes or anti-Stokes shifted by the amount of the frequency ±ωpp of the phonon

polariton. The position of the spectrometer selects the direction k4 along which the light

is detected and the spectrometer pixel fixes the wave vector magnitude |k4| of the detected

light.
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Note, the same rules of energy and wavevector conservation applies for stimulated Stokes (or

Raman gain) measurements [41,42], where the scattered intensity is detectable as the amplification

of the seed beam. The main difference between ISRS and stimulated Stokes amplification is the

bandwidth of the laser pulses and the induced inelastic Raman shifts of the light. In the ISRS

the bandwidth is larger and in stimulated Stokes amplification the bandwidth is smaller than

the frequency shift. The magnitude of the phonon polariton wave vector q can be calculated

using the law of cosine in the wave vector diagram in figure 2.9:

q =
ne
c0

√
ω2
1 + ω2

2 − 2ω1ω2 cos(Θ) , (2.9)

where ne is the extraordinary refractive index for 800 nm light, ω1 and ω2 the angular frequency

of the beam k1 and k2, respectively, c0 the speed of light in vacuum, and Θ the intersection

angle of the laser pulses in the medium. This equation is well-known in conventional Raman

scattering [1] and holds as well for femtosecond laser pulses [43,44].

2.4.2 The Relation of the Wavevector of the Transient Grating and the Phonon

Polariton

The relation of the wavevector ktg of the transient grating [37] and the phonon polariton

wavevector q is demonstrated here. ktg holds for the elastic interaction where no energy is

transferred into the system and consequently no quasi-particle is generated. In the present work

a phonon polariton is excited by in an inelastic Stokes process, where the energy is conserved for

three interacting particles, namely: incident photon, Stokes scattered photon and created phonon

polariton. In figure 2.9a the momentum conservation, which applies in the excitation process of a

phonon polariton, is illustrated for the case |k1| > |k2|. The spectrum of both pulses is identical

and the central wavevector is kc. In this case the wavevector magnitude of the transient grating

ktg is calculated taking the intersection angle Θ of the crossed pump beams, which is fixed:

ktg = 2kc sin(Θ/2) (2.10)

This equation just rewrites formula 2.7 in terms of the central wavevector of the incident laser

pulse. The wavevector ktg is parallel to the x-axis which is shown in figure 2.9c. The momentum

and energy conservation for three interacting particles holds:

~q = ~k1 − ~k2 , (2.11)

ωpp = ω1 − ω2 = cl(k1 − k2) , (2.12)

where ωpp is the frequency of phonon polariton, ω1 is the frequency of the incident laser light

and ω2 is the frequency of the Stokes scattered light. The right hand side of the equation 2.12
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Figure 2.9: a) Wavevector diagram for the momentum conservation in stimulated Stokes scattering by a

phonon polariton. b) Calculated electric field of a phonon polariton generated by a transient

grating assuming Cherenkov-like emission (copied from [45]). c) Coordinate system of the

propagation plane of phonon polaritons.

simply restates ωpp in terms of the wavevectors k1 and k2, where cl is the speed of light in the

sample. The wavevector components of the polariton wavevector ~q can be rewritten as follows:

~qx = k1 · sin(Θ/2) + k2 · sin(Θ/2) = (k1 + k2) sin(Θ/2) (2.13)

qy = k1 · cos(Θ/2)− k2 · cos(Θ/2) = (k1 − k2) cos(Θ/2) (2.14)

Now, for convenience we define k1 = kc + q/2 and k2 = kc − q/2 and rewrite the equation 2.13:

qx = (kc + q/2 + kc − q/2) sin(Θ/2) = 2kc sin(Θ/2) , (2.15)

qx = ktg . (2.16)

The x-component of the excited polariton is equal to the wavevector of the transient grating ktg,

which is the excitation grating of phonon polaritons. The magnitude of the polariton wavevector

q is included as q2 = q2x + q2y . In combination with equations 2.12 and 2.14 it can be expressed in

the following way:

q2 = k2tg +

(
ωpp
cl

)2

cos 2(Θ/2) . (2.17)

This equation relates the magnitude of the excited phonon polariton wavevector q to the frequency

ωpp with respect to the intersection angle Θ of the excitation laser beams. The first term (k2tg) is

20



2.4 Impulsive Excitation of Phonon Polaritons

easily calculated or even directly measured, for example with a CCD-camera. It is often set equal

to the polariton wavevector q = ktg whereby qy is commonly neglected because it is assumed

that qx � qy. The second term in equation 2.17 can be seen as a small correction to ensure

the energy conservation rules. For a good approximation we can set cos(Θ/2) ≈ 1 because the

angles in forward Raman scattering do not exceed 0.17 Rad ≈ 10◦. The reason for this is that

the magnitude of the wavevector of the incoming light k is much larger than the magnitude of

the polariton wavevector q. Assuming the dispersion relation of light k = ω/cl and of phonon

polariton q = ωpp/cTHz, equation 2.17 can be rewritten as follows:(
ωpp
cTHz

)2

= k2tg +

(
ωpp
cl

)2

(2.18)

=⇒ ω2
pp = k2tgc

2
0(n

2
THz − n2l )−1 , (2.19)

nTHz and nl denote the refractive index of the medium in the terahertz and visible range,

respectively. The deviation from the often applied approximation q = ktg [44,46] is denoted by

the difference of the squared refractive indexes: for n2THz � n2l the above assumption holds and

the expression simplifies to

ω2
pp = k2tgc

2
0/n

2
THz . (2.20)

In the following, the approximation q = ktg is discussed in the context of the ISRS measurement

of the phonon polaritons in LiNbO3. The experimental measured quantities are: the selected

intersection angle Θ, the central wavelength of the laser pulse λc, and the frequency ωpp of the

phonon polariton. The dispersion relation of phonon polaritons is obtained, if the measured

frequency ωpp is plotted versus the polariton wavevector q calculated using equation 2.17. This

is shown in figure 2.10 by the red line.

The case where the polariton frequency ωpp is plotted versus the calculated wavevector of the

transient grating using equation 2.10 is shown in figure 2.10 by the gray line. The so deduced

dispersion relation displays larger polariton frequencies for the same magnitude of the wavevector.

The error of the approximation q = ktg can reach ∼ 0.2 THz for determined polariton frequencies

in the lower polariton branch in LiNbO3. Even larger deviations are expected for the higher

polariton branch, where ν > 10 THz, as depicted in figure 2.10. One further aspect which

influences the deviation between ktg and q is the wavelength of the excitation laser, because in

equation 2.19 the index of refraction nl is a function of the wavelength of the light. For example,

the extraordinary index of refraction for 400 nm in lithium niobate amounts to 2.33. This is

approximately 10% higher than for the 800 nm light n800 = 2.16, which has been used in the

calculation shown in figure 2.10.
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Figure 2.10: Dispersion relation of phonon polariton in LiNbO3 as obtained if the measured frequency

ωpp is plotted versus the wavevector of phonon polariton using equation 2.17 (red line), or

versus the wavevector ktg of the transient grating using equation 2.10 (gray line). Blue line

shows the branch of terahertz light.

2.4.3 Propagation Direction of Phonon Polaritons

With respect to ktg the internal angle β of the polariton propagation direction can be calculated

using a simple trigonometric relation:

cosβ =
ktg
q

=

√
n2THz − n2l
nTHz

. (2.21)

The right hand side of the expression is derived with the help of equations 2.20 and 2.4. In figure

2.11 the frequency dependence of the internal angle β(ω) of the generated phonon polariton

by the transient excitation grating is depicted. For ωpp = 0 the propagation angle is β = 26

degree. At the same time the intersection angle Θ of the two exciting laser beams is about zero

degree. For larger frequencies of phonon polaritons, when Θ gets larger, the internal angel β

decreases. Because of the finite sample thickness and the non-neglectable angle β the polariton

wave undergoes a total internal reflection from the back and front face of the sample. It is

effectively guided parallel to the surface of the crystal. The angle β of the polariton propagation

will decrease even stronger for larger magnitudes of the wave vector q, if much lower damping

rates for TO phonon modes are considered in the calculation (dark red solid line in figure 2.11).

The phonon polariton is almost oriented parallel to the surface of the sample. A similar situation

is observed for the higher dispersion branch (ω>10 THz).
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Figure 2.11: Calculated internal angle of the phonon polariton propagation β in LiNbO3 versus the

frequency ωpp. (1) Equations 2.21 and 2.3 with the parameters from reference [27] are

used in the calculation. (2) The same as in (1) but with assumption of ten times lower

damping rates for the optical phonon modes. The right y-axis indicates the Cherenkov angle

γCh = 90− β. Note, the critical angle in LiNbO3 for the terahertz field is always smaller

than γCh and reaches 11.7◦. Thus, excited phonon polaritons are internally reflected from

the sample surface sites.

2.4.4 Cherenkov-like Radiation Emission from a Transient Grating Source

In the previous section 2.4.2 the relation between the wavevectors of the transient optical grating

and the generated phonon polaritons was discussed. The underlying physical process of the

transient grating and the generated phonon polaritons is based on the fact that the transient

grating acts as a source for the emitted radiation, namely the polariton waves. In this section

the Cherenkov-like emission is applied to describe the excitation process of phonon polaritons.

The concept of the Cherenkov-like emission applies if a relativistic source – such as a dipole–

travels faster than the emitted radiation. In polar media, such as ferroelectric materials like

LiNbO3 the laser induced transient grating moves with relativistic speeds faster than the emitted

radiation [45,47], which in this case are the phonon polaritons. In the visible range the velocity

of the transient grating is given by vtg = cl/ cos(Θ/2). This can be inferred from the propagation

of the phase fronts of both pump pulses which travel under an angle of Θ/2 with respect to

their bisector. vtg is equal to the velocity at which the crossing point of the two phase fronts
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propagates. The illustration is shown in figure 2.9b. To derive the expression for the Cherenkov

angle γCh we start with equation 2.17, which we divide by q2 :

1 =

(
ktg
q

)2

+

(
ωpp
q cl

)2

cos2(Θ/2). (2.22)

Now one can rewrite the equation using of vtg, vpp and cosβ:

1 = cos2 β +

(
vpp
vtg

)2

, (2.23)

sin2 β =

(
vpp
vtg

)2

. (2.24)

With the identity sinβ = cos γCh as shown in figure 2.9b, equation 2.24 can be rewritten in

order to obtain the final expression for the Cherenkov angle with respect to the bisector of the

excitation laser pulses:

cos γCh =
vpp
vtg

(2.25)

The Cherenkov angle γCh relates the velocity vtg of the transient grating to the polariton

velocity vpp. The right y-axis in figure 2.11 shows the Cherenkov angle γCh = 90− β versus the

polariton frequency ωpp. In LiNbO3 the critical angle for the terahertz field is always smaller

than γCh ≤ 11.7◦. Thus, the excited phonon polaritons are always internally reflected from the

sample surfaces. Moreover, the electromagnetic part of the excited phonon polariton can be

coupled out from the medium into the free space, if the backside of the sample is cut under a

angle which is perpendicular to the propagation direction of the quasi particle [48,49].

2.4.5 Non-linear Optical Excitation of Phonon Polaritons

Up to now, the excitation of phonon polaritons was described in terms of Raman scattering,

where the light field couples via the electronic system directly [4] to the vibrational degree of

freedom of the polariton mode. Because a phonon polariton is a coupled mode that consists of

an electromagnetic wave E(Ω) and polar lattice vibration with an amplitude Q(Ω), an additional

coupling mechanism of the light field to the electric field E(Ω) of the polariton, which is known

as difference frequency generation (DFG), is assumed in the following. In this section the capital

Greek letter Ω is used instead of ω for a better distinction from the frequencies of visible light.

The both incoming light fields of the excitation laser E(ω1) and E(ω1) mix and create a

non-linear polarization

PNL(Ω = |ω1 − ω2|) = χ
(2)
effE(ω1)E(ω2), (2.26)
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2.5 Time Resolved Observation of Phonon Polaritons

where χ
(2)
eff includes Raman and DFG components, respectively. This polarization creates the

electric field associated with a phonon polariton. The second-order tensor χ
(2)
eff is the sum of the

DFG part χ2 and the Raman part χR. Both of these susceptibilities are electronic in nature. It

will exhibit strong dispersion as a function of the frequency Ω. In this work, the excited phonon

polaritons are observed using a third laser pulse. Thus, the non-linear optical probe process and

the intrinsic structure of the effective susceptibility is discussed in detail in section 2.5.3.

2.5 Time Resolved Observation of Phonon Polaritons

The time-resolved observation of coherent non-equilibrium phonon polariton dynamics inside the

medium is achieved by delaying a third laser pulse k3 with respect to the two pump beams k1

and k2, respectively. The time-delayed probe pulse is taken from the same laser and is focused

into the sample in order to scatter from the excited polariton wavepackets. Two pump and

one probe pulses are incident in the so-called box-car geometry as shown in figure 2.7 (a more

detailed description is presented in chapter 3).

2.5.1 Probe of Phonon Polaritons by Stimulated Raman Scattering

In the probe process both Stokes and anti-Stokes scattering of light occur. A phonon polariton

can either be annihilated or it can act as a seed wave leading to a decomposition of the incident

probe laser photon k3 into an additional polariton with the same frequency and wavevector

and a Stokes scattered phonon k4. In figure 2.8b this situation is schematically explained. For

the Stokes scattering process the incoming photon with the frequency ω3 is inelastic scattered

from the left-propagating polariton qL under the stimulated emission of a red shifted photon

with frequency ω4 and an additional polariton with wave vector qL. Anti-Stokes scattering in

this geometry leads to the annihilation of a right-propagating phonon polariton qR under the

emission of a blue-shifted photon with ω4. As long as phonon polaritons are inside of the probe

volume the scattered light is detectable and is recorded as a function of time-delay and gives

the information about the frequency ωpp and the damping γ of phonon polariton. In principle

all photons ω3 present in the probe pulse can Stokes (anti-Stokes) scatter from a left- (right-)

propagating phonon polariton and thus contribute to the signal. Most of the times, the energy

shifts are much smaller, than the spectral widths of the femtosecond pulses. To resolve these

shifts directly narrow bandwidth probe pulses are experimentally implemented in the present

work as will be discussed in the following section.
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2.5.2 Probe Process with Narrow Band Pulses

Stokes and anti-Stokes frequency shifts cannot directly be detected with temporally short and

spectrally broad probe pulses. In the ISRS experiments the frequency shifts induced by Raman

scattering are generally smaller than the bandwidths of the incident laser pulses. In this work the

bandwidth of the laser pulses is ∆ω 1
e

= 18 THz, which is larger than the frequency ωT,1 = 7.5 THz

of the lowest TO phonon in LiNbO3. Moreover, the Stokes and anti-Stokes diffracted photons

are superimposed, which results in a small and almost unresolvable broadening of the detected

spectrum. Therefore, a bandpass filter is implemented in the present work in order to narrow

the spectrum of the probe beam to ∆λ = 2 nm, which in turn should enable to resolve spectral

shifts induced by inelastic scattering from phonon polaritons. Figure 2.12 shows the energy and

momentum diagrams that apply for this situation. The incoming and scattered light frequencies

ω3 and ω4 are directly measured. This allows to calculate the angular frequency ωpp and the

magnitude of the polariton wave vector q according to

ωpp = |ω4 − ω3| (2.27)

k3 k4

-qL

+qR

Θ

Stokes anti-Stokes

virtual state

ω3 ω4 ω3 ω4

ωPP ωPP

Figure 2.12: Energy level and momentum conservation diagrams considered in the narrow band detection

of phonon polariton wavepackets. The incoming probe light with the energy ω3 is Stokes

shifted be the amount −ωpp or anti-Stokes shifted by the amount +ωpp. It is diffracted into

the direction k4, where the detector is placed.

and

q =
ne
c0

√
ω2
3 + ω2

4 − 2ω3ω4 cos(Θ) , (2.28)

where ne is the extraordinary refractive index for 800 nm light, c0 is the speed of light in vacuum,

and Θ is the angle between k3 and k4 in the medium [1, 43, 44]. In our case this is the same

angle as the intersection angle of both pump pulses. As shown in figure 2.12, the frequencies
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2.5 Time Resolved Observation of Phonon Polaritons

of the phonon polaritons, which are observed through anti-Stokes and Stokes scattering, are

not exactly equal. The arrow of the right-propagating phonon polaritons qR that causes the

anti-Stokes scattering of the incoming probe light is somewhat larger than the arrow of the

left-propagating phonon polariton qL. In the present work, the frequencies of qR and qL lie within

3.75% of the central frequency of the excited spectrum of the phonon polaritons. This spectral

width is determined by the bandwidth of the used excitation pulses. The generated phonon

polaritons have the same relative bandwidth as the used short laser pulses, as can be inferred

from equation 2.9. The subsequently impinging narrow bandwidth probe pulses will scatter
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Figure 2.13: Spectra of the broad pump pulses, k1 and k2, and the narrow band probe pulse k3, respectively.

The spectra of probe light that undergoes anti-Stokes (k4+) and Stokes scattering (k4−).

Spectral components of the broad pump pulses, K0, K1, K2, which will contribute to the

generation of such phonon polariton modes, that are subsequently exclusively probed by the

narrow bandwidth pulses with the wavevector magnitude k3.

from a subset of these polariton modes, depending on the central frequencies and bandwidths

of the probe pulses. As long as the central frequencies of the probe and pump pulses are not

equal, the probed subset of the right- and left-propagating phonon polaritons are not the same.

Furthermore, the occupation numbers of these subsets of the phonon polariton spectra are

different. Thus, the intensity of probe light that undergoes Stokes and anti-Stokes scattering will

be different, too. This is true for the experiments that are described in present work. In the

following, the reasons for the different occupation numbers of the right- and left-propagating

phonon polaritons is explained.

In figure 2.13 the spectra of spectrally broad pump pulses, k1 and k2, and of the narrow

bandwidth probe pulses, k3, are shown. Note, the energy axis is given in frequency and the

width of the calculated Gaussian spectra corresponds to the bandwidths of the used laser pulses.

Let us now assume the central frequency of the generated phonon polaritonsa and of the probe
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light to be 2 THz and 377.5 THz, respectively. During the probe process, the incoming light

k3 undergoes Stokes or anti-Stokes scattering from left- or right-propagating phonon polaritons

and are shifted in frequency by -2 THz or +2 THz, respectively. The spectra of the scattered

light, k4− and k4+, are shown in figure 2.13. Further, the question remains, which components

of the incident pump spectra are involved during the excitation of these phonon polaritons that

are subsequently probed by k3. The spectral components are exactly the same as the spectra

of the detected light k4− and k4+. In figure 2.13 these components of the pump pulses, labeled

K0, K1, K2, are shown. During the excitation process an incident photon K2 decomposes into

a photon K0 with the propagation direction k1 and a right-propagating phonon polariton qR.

Simultaneously, a photon K0 in the second pump pulse k2 decomposes into a photon K1 and a

left-propagating phonon polariton qL. Exactly these created phonon polaritons, qR and qL, are

probed, as shown in figure 2.12.

The intensities of the Stokes and anti-Stokes lines depend on the occupation numbers of

the contributing phonon polaritons, which on their part are proportional to the product of

the spectral components K0 · K1 and K0 · K2, respectively, which contribute to the creation

of these phonon polaritons. Because the product K0 ·K2 is larger than K0 ·K1, the number

of excited right-propagating phonon polaritons is higher than the number of left-propagating

phonon polaritons, which are subsequently probed by k3. Thus, for the discussed case here, we

expect the detected anti-Stokes line to be more intense.

The experimental verification is presented in section 8.1, where the dispersion relation of

phonon polaritons in LiNbO3 is measured with narrow bandwidth pulses. All transient spectra,

which were recorded for different intersection angles Θ, exhibit a stronger anti-Stokes than Stokes

intensity peaks. Moreover, for the case where the central wavelength of the probe and pump

pulses are not equal, the probe process breaks the symmetry of the excitation process in the

four-wave mixing experiment and different subsets of the polariton spectra are probed.

2.5.3 Phonon Polariton Detection by a Non-linear Optical Process

Just as the excitation process of polariton wavepackets, the probe process can also be understood

as a non-linear optical mixing process. The non-linear interaction of visible light with a phonon

polariton mode involves both: the coupling to the electric field via DFG and the coupling to

the lattice via virtual electronic Raman transitions. In non-linear optics, a higher-order of the

electric susceptibility tensor is used to describe such an interaction of the light field in a medium.

Lithium niobate is a typical example for such non-linear crystals. The second-order tensor χ
(2)
eff

is composed of two parts: the Raman tensor dχ/dQ = χR that describes the coupling of visible

light to the phonon mode with amplitude Q, and the second-order non-linear susceptibility
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dχ/dE = χ(2) that couples visible light to the terahertz field. Both of these susceptibilities are

electronic in nature. The total non-linear polarization

PNL(ω4) = χ(2)E(Ω)E(ω3) + χRQ(Ω)E(ω3) (2.29)

accounts for both contributions. ω3 denotes the frequency of the probe light. The frequency ω4

satisfies the energy conservation ω4 = ω3 ± Ω. Moreover, the equation of motion

µ(Ω2
TO − Ω2 − iΩΓ)Q(Ω) = e∗E(Ω) (2.30)

describes the relation between the electric field E(Ω) and the vibrational amplitude Q(Ω), which

describes the motion of a charged oscillator. Here, µ is the reduced mass of the lattice mode, e∗

the effective charge of the ionic dipole, and ΩTO the resonance frequency of the TO-mode [50].

Now, by substituting equation 2.30 into 2.32, the displacement coordinate Q(Ω) can be eliminated

and the Raman contribution can be included in the effective non-linear susceptibility deff , which

has the form

deff (Ω) = χ(2)

[
1 + C

(
1− Ω2

Ω2
TO

− iΩΓ

Ω2
TO

)−1]
. (2.31)

Here, C = χR/χ(2) · e∗µ−1(ΩTO)−2 is the Faust-Henry coefficient, which is the ratio of the

Raman intensity compared to the electronic contribution. C can be assumed to be constant for

a given laser wavelength and medium [45]. From these considerations the probe process can be

viewed as a non-linear χ(2) process, where Raman and DFG apply simultaneously. It should

be noted that the same energy and momentum conservation rules apply to both contributing

processes.

Moreover, in conventional Raman scattering experiment, the Faust-Henry coefficient C can be

in principal be measured [50] by the comparison of the intensities of the spectral lines caused by

the scattering of light by the LO and TO phonons. In the case of the selective excitation in the

transient grating geometry, which is used during this work, only TO modes and no LO modes

are excited. Consequently, the determination of the Faust-Henry coefficient is not possible from

these experiments.

Furthermore we can express E(Ω) by means of PNL(Ω) assuming the relation E(Ω) =

PNL(Ω)/χ(1). The expression 2.26 takes the form

PNL(ω4) = deff (Ω)
χ
(2)
eff

χ(1)
E(ω1)E(ω2)E(ω3) , (2.32)

where χ
(2)
eff is taken from equation 2.26. This relation shows that the whole ISRS process, which

includes the non-linear excitation, and the subsequent non-linear probe process can formally

be described as a χ(3) process. In this perspective, the propagation effects of the non-collinear
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light fields and the polariton fields could be included by assigning a damping to the amplitudes

of the fields that depends on the time-delay between pump and probe pulses. However, this

formalism does not bring any new substantial insight into the field of non-linear light-matter

interaction nor helps understand better the dynamics of light scattering by the vibrational modes

of solids. Thus, the description of the whole ISRS process preferably divided into two subsequent

second-order non-linear processes, as is done in this work.

2.5.4 Diffraction From a Modulated Refractive Index Grating

In the following a second view of the probe process will be presented. The optical four wave

mixing experiment is commonly described in terms of the diffraction of a probe pulse from a

transient refractive index modulation caused by the laser induced polarization change of the

medium [37]. In order to adapt this concept to the interaction of the phonon polaritons with the

probe light the electric field E(Ω, q) of an excited polariton shall fully describe its nature. This

is true for the light-like part of the dispersion relation, where the polariton is associated with

the terahertz field. The polarization of the medium shall instantaneously follow the temporal

modulation of the electric field E(Ω, q). The relationship of the polarization P and the electric

field is characterized by:

PLIN (Ω, q) = P0 + χ(1)E(Ω, q) , (2.33)

whereby the higher-order terms, which are responsible for non-linear effects, are not important

here. P0 is the static polarization of the ferroelectric material. We see, that the polarization is

modulated by the same frequency Ω and has the same period q as the electric field E(Ω, q). The

electric field E(Ω, q) thus results in a modulation of the index of refraction of the sample due to

the linear electro-optical effect (Pockels effect):

n(Ω, q) = ne(1− r33 · n2eE(Ω, q)) . (2.34)

ne denotes again the extraordinary refractive index in the absence of an applied field, and r33 is

the relevant electro-optical tensor element (see Eq.:2.1). The incident probe field illuminates the

transient refractive index grating at a certain time-delay after its generation. A portion of the field

is elastically diffracted into the direction, that is determined by the Bragg condition ∆k = G = q

and ωout − ωin = 0, whereby G denotes the reciprocal wavelength of the polariton grating and

ωout, ωin denote the frequency of scattered and incoming light. This result seems to be in a

strict contradiction to the fact, that the inelastically scattered light from phonon polaritons is

expected if a Raman process is assumed. Until now, no propagation effects were considered.

Indeed, the diffraction grating is not static, because the polaritons propagate at light-like speeds

in the medium. Consequently, one has to treat the problem relativistically. This leads to the
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qL´ | k3-´ | = | k4´ | 

Figure 2.14: Diffraction from the phonon polariton grating in the laboratory frame of reference (dashed

vectors) and in the frame of reference of co-propagation with the phonon polariton at

relativistic velocities (solid vectors). After [51].

optical Doppler effect, which causes a frequency shift of the diffracted light [51]. For the case

of a left propagating phonon polariton, figure 2.14 shows how the incoming and inelastically

scattered wavevectors have to be transformed in the frame of reference of co-propagation with

the diffraction grating at relativistic speed and then elastic Bragg scattering is fulfilled in the

co-propagating frame of reference. The Lorentz transformation leads to a relative frequency

shift of incident and scattered probe light but the total phase of the light is invariable under the

Lorentz transformation [52]. Thus, the relative phase difference of all colors present in the laser

pulse are unaffected by the inelastic scattering from the phonon polaritons.
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3 Experimental Setup

The progress in femtosecond pulse generation technology opens new fields in the direct observation

of dynamics in molecules and solids. Time domain femtosecond spectroscopy covers a frequency

range of up to several terahertz. Scientific endeavors in this field advance into the direction

of control and manipulation of light-induced ultrafast processes in matter or on the sample

surface [53–58]. For such purposes an extensive characterization and monitoring of ultra-short

laser pulses is required.

This chapter deals with the setup for Impulsive Stimulated Raman Scattering (ISRS) that was

build as part of this work. After a brief discussion of the ultrafast laser system in section 3.1 and

of the main components of the pump probe setup in section 3.2, the interferometric phase-mask-

based, degenerate four wave mixing apparatus is discussed in detail in section 3.3. In the following

section 3.4, the spatial characterization of the excitation and probe profiles is described and the

uncertainty of the selectively exited polariton wave vectors is deduced. Afterwards, the optical

spectrometer is introduced and the measurement of the pulse duration via the transient grating

frequency resolved optical gating (TG-FROG) is discussed. Finally, the temporal resolution of

the experiment is discussed.

3.1 The Ti:Sapphire Laser System

A commercially available Ti:Sapphire ultrafast oscillator (Mantis, Coherent) with Kerr lens

modelocking [59–62] generates femtosecond laser pulses with 80 MHz repetition rate and a center

wavelength of 790 nm. The range of the spectrum measures from 760 nm to 845 nm, which

corresponds to a bandwidth of 85 nm (FWHM) or to a duration of 11 fs for a transform limited

pulse. The pulse energy is approximately 5.6 nJ (∼ 450 mW). These pulses are then sent into

the regenerative amplifier unit.

The amplifier is a two stage Ti:Sapphire amplifier laser system (Legend Elite Duo, Coherent) [63]

and consists of a regenerative amplifier and a single pass booster amplifier. Both units utilize

Ti:Sapphire crystals as active media and both are optically pumped with nanosecond-pulses with

a central wave length of λ = 527 nm delivered from a frequency-doubled, Q-switched Nd:YLF

laser (Evolution, Elite Duo, Coherent). Each unit is pumped with a power of ∼ 20 W. The

amplification of the 800 nm seed pulse from the oscillator (< 100 fs) is performed according to
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Figure 3.1: Optical setup with typical pulse parameters used in the discussed experiments. The beams are

displaced at the phase mask interferometer for clarity. Used abbreviations: BS = beamsplitter,

L = lens, PM = phase mask, S = sample.

the principle of chirped pulse amplification [10,11,64]: the seed pulses are initially temporally

stretched to several picoseconds in a grating stretcher. Thereafter, they are amplified in the

active media and afterwards the high power pulses are again temporally compressed in a grating

compressor. The compressor adds a negative chirp [10,11] and essentially reverses the positive

chirp previously added in the stretcher. This procedure reduces the peak intensities of the short

pulses in the amplifier system and thus prevents the crystals from being damaged. This allows a

higher pulse power after the amplification. After the amplifier units, the pulse energy measures

about 7 - 8 mJ at a repetition rate of 1 kHz. The femtosecond pulses share a central wavelength

of 800 nm and a temporal widths of FWHM = 40 fs which corresponds to a bandwidth of

FWHM = 32 nm for Fourier limited pulses.

3.2 Optical Setup

Figure 3.1 shows the optical setup that is used for the ultrafast pump probe spectroscopy [65]

experiments. First the pulses with an average power of ∼ 90 mW pass a prism compressor

made of two SF-10 prisms which add a linear negative chirp to account for the positive material

dispersion in the whole laser path [11]. An attenuator is build using a zero-order lambda-half-wave

plate and a linear polarizer. Simultaneously, the light polarization is rotated from p polarization

to s polarization with respect to the plane of the following mirror. The beam is focused with
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3.3 In Detail: Phase Mask Interferometer

a telescope to r ≈ 0.5 mm radius which ensures that the laser pulses can later pass through

the phase mask (PM). Next, a beam splitter (BS) divides the laser beam into two parts. The

typical ratio is R/T = 70/30. The pump pulse is guided over the delay stage. The pump and

probe pulses propagate at slightly different heights. A D-shape mirror (DM) positioned after

the mechanical delay is used to align such that the probe pulse propagates parallel to the pump

beam. Both beams impinge on the phase mask (PM) with a vertical offset of 1.5 mm. The

binary phase mask is fabricated from a transparent material by etching a grating pattern with

an optimized etch depth which maximize the diffraction efficiency (up to 70%) of the first-orders

for 800 nm light. Thus the phase mask generates two pump and two probe beams as can be seen

in figure 3.2.

All beams are imaged by a cylindrical (LCY L) and a spherical lens (LSPH) into the sample

creating a interference light grating in the transparent sample. A beam stop (BST) is inserted in

order to block one of the probe beams as shown in figure 3.1. On the detection side a spectrometer

is used instead of a photodiode [7]. The position of the spectrometer is aligned with the blocked

beam which is of course unblocked for this purpose. Different bandpass filters (BP-F) can be

inserted into each beam path. This allows us selectively cut out spectral components from these

pulsed beams and in turn enables us to manipulate the excitation or the detection regime in

the four wave mixing experiment. Moreover, a neutral density filter is inserted into both probe

beams in order to control their relative intensity for an optimal heterodyne detection [7,66] of

the signals. An exemplary measurement is discussed in section 5.6.

3.3 In Detail: Phase Mask Interferometer

The very compact and stable phase mask based interferometer [66] was developed at the

Massachusetts Institute of Technology (MIT) group of Prof. K. A. Nelson for laser-induced

dynamic grating [37] spectroscopy. The key feature is the implementation of a transmission phase

mask (PM), which is fabricated by etching a binary grating into a transparent substrate. The

transmission grating is optimized to achieve high diffraction efficiency of the impinging light of

800 nm into ± 1 orders. This optical device generates two pump and two probe beams, which are

subsequently imaged by two lenses into the transparent sample as shown in figure 3.2. The phase

mask pattern is imposed into the sample and the transmission grating geometry determines the

geometry of the excitation grating in the sample created by the recombined ultra-short laser

pulses. The wave length Λtg of the transient excitation grating in the material is given by the

following equation:

Λtg =
λ

2 · sin(Θair/2)
=

Λ0

2
· f2
f1

, (3.1)

with the laser wavelength λ, the intersection angle of the pump beams in air Θair, and the period
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Figure 3.2: Phase mask interferometer setup. The probe beams are displaced in panel a) for clarity.

Used abbreviations: BP-F = bandpass filter, BS = beam splitter, BST = beam stop, C-

NDF = continuously variable neutral density filter, DM = D-shape mirror, L = lens, PM

= phase mask, S = sample. The central wavelength λcen and FWHM ω of the bandpass

filters are: BP-F1 : λcen = 796 nm, ω = 2 nm; BP-F2 : λcen = 800 nm, ω = 10 nm; BP-F3

: λcen = 810 nm, ω = 10 nm. The focal lengths of the used lenses are: f1 = 75 mm and

f2 = 75 / 100 mm.

of the phase mask Λ0. The ratio of the focal lengths M = f2/f1 determines the magnification

factor of the imaging setup. It is important to note that the right hand side of equation 3.1 is

independent of the laser wavelength. Therefore, all colors present in a femtosecond pulse generate

the same transient grating period Λtg which is solely determined by changing the period Λ0

of the phase mask. The angular dispersion dΘ/dλ of the diffracted light by the transmission

phase mask results in a small variation of the angle of incidence of an individual wavelength

of the broad pulse spectrum. The deviation is estimated to be less than dΘ(λ)/Θ = 0.019.

Consequently, all wavevectors in the laser pulse are assumed to be collinear at the focus of the

interferometer. An overview of available grating spacing Λ0 is given in table 3.1. One important

property of the interferometer is its high symmetry. Since the excitation and probe beams are
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nr: 1 2 3 4 5 6 7 8 9

Λ0 [µm] 160 120 80 60 40 30 24 20 17.1

nr: 10 11 12 13 14 15 16 17 18

Λ0 [µm] 15 13.3 11 10 9.25 8 6.7 5.25 4.3

Table 3.1: The grating spacing Λ0 of the used phase masks.

split by the same diffraction grating, they appear in the so-called box-car geometry [67] as shown

in figure 3.4. In this geometry, the probe beam with the wavelength λp always fulfills the Bragg

diffraction condition 2 · Λtg = λp in sufficiently thick samples [37]. Moreover, the temporal

stability between the two probe pulses is sufficient to perform measurements using a fourth

beam,- which in this case acts as a local field [7, 68]. An exemplary experiment is discussed in

section 5.6. An additional advantage of the box-car geometry is the spatial separation of the

scattered and transmitted light. This yields an almost background-free detection of the signals.

3.4 Characterization of the Laser Pulses

In time-resolved experiments, it is important to know the pulse duration which determines the

temporal resolution of the experiment. In addition, the relative phase of the spectral components

in the pulse, known also as chirp, are of great importance. Within the scope of the present work

it is crucial to be aware of the different wave lengths present in the pulses because they may

lead to DFG and impulsively launch a coherent phonon polariton wavepacket. In addition, it

is important to know which spectral components contribute to the scattering probe process as

it determines which modes are simultaneously excited. Furthermore, the profiles of the laser

pulses and the shape of the transient excitation grating is of a particular importance, because

this determines the initial shape of the wavepacket of the generated phonon polaritons which is

related to the spectrum of the excited wavevectors, especially higher-orders components.

3.4.1 Spatial Characterization of the Excitation and Probe Pulse Profiles

In this section, the characterization measurements of the intensity grating are presented. As

discussed in the previous section 3.3, the transient grating is formed by two crossed excitation

laser pulses that are split and subsequently recombined in the phase mask based interferometer.

The Fourier analysis of the observed intensity grating indicates that the finite size of the excitation

profile leads to an uncertainty ∆ktg of the wavevector ktg of the transient grating and according to

37



3 Experimental Setup

relation 2.17 this leads to the uncertainty ∆q of the corresponding wavevector q – the wavevector

of the excited phonon polariton.

The interference fringes are recorded by replacing the sample by a charge coupled device (CCD)

camera and a typical picture of the interference fringes are shown in figure 3.3. The two crossed

pump beams in this setup create an elliptically shaped excitation spot with the dimension of

800x50 µm FWHM. The power in both pump pulses does not exceed 15 mW at a repetition

rate of 1 kHz which corresponds to a fluence of Fpump ≈ 12 mJ/cm2. The spot size of the probe

pulse is usually a bit smaller and of the order of ≈ 700x30 µm which corresponds to a fluence

of Fprobe ∼ 5 mJ/cm2. This choice of the pump and probe fluences is determined by the two

reasons:

• On the one hand, the generation process is a second-order non-linear optical process.

Consequently, if saturation effects are neglected, a maximized pump fluence is preferential

to generate sufficiently large field amplitudes of the phonon polaritons, which could be

probed in the subsequent light scattering event. On the other hand, the upper limits are set

by the undesired non-linear effects in the focusing optic such as the self-phase modulation.

• The scattered probe intensity is proportional to the intensity of the incoming probe light.

Thus, the fluence of the probe light should be increased. However, one has to pay attention

to not disturb the previously generated polariton wavepacket. No such effects were observed

during the performed experiments.

The horizontal cuts through the beam profiles are shown in figures 3.3a and 3.3b for two

selected values of Λtg, corresponding to an intersection angles Θair = 0.51◦ (Fig. 3.3a) and

Θair = 1.58◦, respectively. The intensity pattern can be described by a modulation proportional

to (1−cos(ktgx)) multiplied with a Gaussian envelope function in order to account for the shape of

the beam profiles. The Fourier transform of the profile allows to determine the spatial modulation

period Λtg and the corresponding reciprocal wave vector ktg = 2π/Λtg of the excitation grating

which is shown in figures 3.3c and 3.3d. The width of the peak after the Fourier transformation

corresponds to the uncertainty ∆ktg. The relative uncertainty δktg = ∆ktg/ktg decreases with

increasing ktg due to the fact that for the same spot size the number of the interference fringes

increases with increasing ktg. Thus, the spectral components of the written transient grating

becomes more and more sharp. In the example shown in figure 3.3, the relative width of the

peak is δktg = 10 % and δktg = 2.6 %, for ktg = 696 cm−1 and ktg = 2170 cm−1, respectively.

The reduced strength of the intensity modulation that is visible in figure 3.3b compared to

the one shown in 3.3a is caused by the finite resolution of the CCD camera. The simulation

of the data that takes the convolution effects into account yields a width of the instrument

function of FWHM ≈ 10 µm which is approximately twice the pixel size. The size of one pixel
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3.4 Characterization of the Laser Pulses

Figure 3.3: Vertical cut of the profile of the intensity profile detected with a CCD camera. The intersection

angle have been adjusted to be Θair = 0.51◦ (a) and Θair = 0.51◦ (b), respectively. c)

Normalized Fourier spectrum of the intensity shown in a) is centered at 696 cm−1. The width

of the peak is FWHM = 56 cm−1. d) Normalized Fourier spectrum of the intensity shown in

b) is centered at 2170 cm−1. The width of the peak is FWHM = 56 cm−1.

is 4.65x4.65 µm. The CCD camera was used to determine the wavevector and especially the

uncertainty ∆q of the excitation grating up to ktg = 2400 cm−1. For larger wave vectors it

was not possible to resolve the fringe spacing anymore. A camera with a smaller pixel size

should overcome this problem. Nevertheless, the use of the CCD camera allows to control and to

optimize the overlap conditions of both excitation pulses as well as the relative spatial position

of the probe pulse.

3.4.2 Spectrometer

For the analysis of the diffracted probe light a fiber-optic spectrometer model USB4000 from

Ocean Optics with a blazed grating and a CCD-array consisting of 3648 pixels is used. Every

pixel has the dimension of 8x200 µm. The integration time of the spectrometer can by set
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Figure 3.4: Schematic representation of the boxcar arrangement 3.3 for forward four wave mixing experi-

ments: two laser beams k1 and k2 intersect in a transparent sample S in order to create a

transient spatial modulation of the refractive index of the medium. A delayed third beam k3

is diffracted from the transient grating into the direction k4.

between 3.8 ms to 10 s and the signal-to-noise ratio is approximately 300:1. The calibrated

spectral range covers the region 650 nm - 1300 nm. In a typical experiment, the region of interest

at the wavelength of 800 nm is covered by a single pixel which is illuminated by light with a

wavelength spread of ±δλ = 0.2 nm which can be converted via the time-energy uncertainty

to a time uncertainty of δτ = 4.7 ps. During this time interval, any scattered light, such as

post-pulses, interfere with the scattered light on the diode array. Therefore, it is important to

check the pump and probe beams for traces of existing post-pulses, for example using TG-FROG

as discussed in section 3.4.3.

3.4.3 Pulse Characterization using TG-FROG

In this thesis, the method of transient grating frequency-resolved optical gating (TG-FROG) [69]

is utilized in order to measure the pulse duration and in order to determine and to control [70]

its spectral chirp [10, 11]. Moreover, in the generation process of phonon polaritons DFG applies

and thus it is important to know which of the spectral components of the incident pulses will

simultaneously arrive in the sample and will contribute to the coherent excitation of the phonon

polaritons. In the probe process it is advantageous to deliver all colors of the probe pulse

simultaneously on the sample and to minimize the effect of phase difference between scattered

light fields which are subsequently detected by the homodyne detection scheme, which is discussed

in chapter 5.

Here, the characterization measurements of the laser pulses have been performed with the

same four wave mixing setup, which has been introduced in the previous section 3.3. For these
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3.4 Characterization of the Laser Pulses

measurements, the sample is replaced by a thin BK7 glass plate. As mentioned before (Sec.: 3.3)

the two crossed pump pulses E1(ω, t) and E2(ω, t) form an intensity grating in the medium

which leads to a modulation of its refractive index n. From this transient grating a probe pulse

E3(ω, t+ τ), with varied time-delay τ , is elastically scattered. The electric field of the diffracted

pulse

ETGsig (t, τ) ∝ χ3E3(t)E1(t− τ)E∗2(t− τ) , (3.2)

is detected. χ3 is the non-linear third-order susceptibility tensor element of the active medium.

This is a material specific constant which relates the three incoming plane waves E1, E2, and E3

to the generated forth wave ETGsig . Since the pulses E1 and E2 are identical, these subscripts are

dropped. Equation 3.2 simplifies to

ETGsig (t, τ) ∝ E3(t)|Eg(t− τ)|2 , (3.3)

where |Eg(t− τ)|2 is the so-called gate function. The spectrum of the diffracted pulse is recorded

as a function of the delay between the third pulse and the gate pulses. The measured signal

intensity IFROG(ω, τ) yields the FROG trace as function of the frequency ω and the delay τ :

ITGsig (t, τ) ∝
∣∣∣∣∫ ∞
−∞

E3(t)|Eg(t− τ)|2exp(−iωt)dt
∣∣∣∣2 . (3.4)

If the measured pulse exhibits a linear chirp (second-order chirp), this is unambiguously deter-

mined by the obtained FROG trace. By adjusting the amount of material dispersion added

by the second prism in the optical compressor one controls the linear chirp. The pulses where

negatively pre-chirped to guarantee the shortest duration at the position of the sample. Thus

the generation process of phonon polaritons in non-linear crystals (e.g. LiNbO3 and LiTaO3)

is especially impulsive and coherent. The probe pulse has no noticeable chirp either. So, all

containing colors are simultaneously scattered. In figure 3.5a typical FROG-trace for a short

probe pulse is shown. The spectrally integrated diffracted light versus time-delay is plotted in

the figure 3.5b. If one assumes that the profile of the cross-correlated pulses exhibits a Gaussian

shape, the relation of the measured width (FWHM) σsig, the gate pulse width σg, and the probe

pulse width σ3 are related by σ2sig = 1
2σ

2
g + σ23. In the case where the gate and the probe pulses

are identical, this relation simplifies to σ2sig =
σ2
g

1.5 . If the width of the gate pulse is known, the

width of the third pulse can be deduced from the cross-correlation data.

In this work three different bandpass filters are used to cut out the specific wave lengths of the

incident short and thus spectrally broad pulses. These spectrally filtered pulses are also measured

using TG-FROG. In figure 3.5b and c, other FROG-traces are presented. The corresponding

spectral integrated intensity versus delay-time (e,f) and the measured spectrum of the pulse (h,i)

are shown. The data shown in the second line are obtained for a 10 nm broad, spectrally filtered
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Figure 3.5: TG-FROG traces (first column) for three different probe pulses: (a) a short probe pulse

(≈ 64 fs), (b) narrow band probe pulse (≈ 100 fs), and (c) very narrow probe pulse (≈ 610 fs).

The corresponding spectrally integrated intensity versus time-delays are shown in the second

column by the blue circles and the red line is a fit to the data points with a Gaussian function.

In the third column, the spectra of the cross-correlated pulses which are used in this work for

the observation of phonon polaritons are displayed.

pulse in the third line, a narrow band probe pulse is shown. For a spectral width of 9 nm or 2 nm,

the data yield a pulse duration of FWHM = 100 fs or FWHM = 602 fs, respectively. Another

important information obtained from the TG-Frog measurement is the signal-to-background

ratio [71]. This depends on the fluence of each of the three mixed beams, on the sample quality

(chemical and physical purity and the surface roughness), and on the precise alignment of the

boxcar geometry, especially the displacement and divergence of the beams. This influences the

amount of the parasitically scattered light which falls onto the detector slit. From the analysis of

the TG-FROG data in figure 3.5 a signal-to-background ratio of 100:2 is derived for an unfiltered

probe pulse, 100:22 for a 9 nm spectrally broad pulse, and 100:50 for the 2 nm broad pulse,

respectively. A short synopsis of the pulse characteristics is given in table 3.2.
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3.4 Characterization of the Laser Pulses

central wavelength λc 800 nm

bandwidths δλ 30 nm

pulse duration τ 64 fs

pump spot area Apump 800x50 µm

probe spot area Aprobe 700x30 µm

pump pulse fluence Fpump 12 mJ/cm2

probe pulse fluence Fprobe 5 mJ/cm2

repetation rate 1 kHz

Table 3.2: Laser pulse parameters in the femtosecond pump probe experiment as obtained by the TG-

FROG experiments.

3.4.4 Temporal Resolution

Now the temporal resolution of the pump-probe experiments can be determined. All measured

responses are broadened, that is, convoluted in time with a Gaussian function with a width equal

to FWHM = 64 fs which corresponds to a frequency of f = 15.6 THz. The amplitude, S, of
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Figure 3.6: Relative amplitude of a cosine function after the convolution with a Gaussian function. The

x-axis gives the ratio of the period of the cosine function τ and the width of the Gaussian

function FWHM = σconv. Two prominent points at the ratio values of 0.5 and 1 are indicated

in red color.

the convoluted signal depends on the ratio between the original signal period, τ , and the width,

σconv, of the convolution function. In figure 3.6, the amplitude S is displayed as a function of
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the ratio σconv/τ . Already at a ratio of 0.5, the signal decreases to 40% (marked by the red

symbol in Fig.: 3.6) and at the condition σ = τ , the signal decreases to 2% of the maximum

value, respectively.
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4 Frequency-Resolved Probe of

Impulsively-Excited Phonon Polaritons

The first observation of phonon polaritons were made in the frequency domain using forward

Raman scattering in 1965 in GaP [1]. Since then, phonon polaritons have been observed in various

systems, e.g., ZnO [72], LiNbO3 [73], BaTiO3 [74], and LiTaO3 [75]. The coherent polariton

dynamics were also studied by stimulated Stokes scattering, also known as stimulated Raman

gain, in LiNbO3 [41, 76]. A bit more than a decade of year later, in the mid-1980s, the progress

in femtosecond laser technology [77, 78] enabled the study of the polariton dynamics in the time

domain [24,46,47,79–83].

The inelastic light scattering from optical vibrational modes [84, 85] or phonon polariton

modes in the frequency domain is described by Raman scattering [86, 87]. The observed relative

frequency shifts of the scattered light ∆ω is directly related to the frequency Ωvib = ∆ω of the

quasi-particle under investigation. Thus, in the frequency domain the conducted experiments

directly reveal the wavevector ∆k = q and the frequency of the excited mode Ωvib [1].

In the time domain the observation of coherent dynamics of the optical phonon modes is

conducted in the pump probe scheme. The dynamics of phonons are observed through the

modulation of scattered light intensity that results from a modulation of the refractive index by

the propagating phonon polaritons. The modulation frequency νmod corresponds to the frequency

of the mode 2π · νmod = Ωvib. It is generally assumed that the optical probing of the propagating

phonon polaritons occurs via a Raman interaction [39,40]. A direct proof would be a shift of the

frequency of the probe pulse [38]. However, since ultra-short pulses are required to obtain a high

temporal resolution (∆ωpulse >> Ωvib), the frequency shift is obscured by the large bandwidth

of the probe pulse itself. The direct experimental proof of the inelastic light shift in the fs-time

domain spectroscopy of the optical vibrational modes was not reported yet (except of my own

publication [88]).

In this chapter, the use of narrow bandwidth probe pulses resolves the inelastic light scattering

from phonon polaritons in LiNbO3 that reveals the Raman scattering process. The discussion

which involves as well the excitation process is found in section 4.1. Next, the same experiment is

repeated with short probe pulses and the data are analyzed under the consideration of a Raman

process in section 4.2. Hereafter, both experimental schemes are compared in section 4.3. In
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section 4.4 the energy and frequency selectivity of the excitation and probe process is discussed.

The spectrum of the excited phonon polaritons is calculated for the case of the excitation in the

transient grating geometry. Hereafter, the effects of the spectral broadening due to the finite

lifetime of the generated phonon polaritons and finite size of the excitation spot are examined.

The accuracy of the determination of the wavevector q and the frequency ωpp of the observed

phonon polaritons is estimated for the cases of the detection using narrow or broad bandwidth

probe pulses.

4.1 Decoding of Raman Scattering Process: an Observation with

Narrow Bandwidth Pulses

The experimental setup which is used for ISRS study of the phonon polaritons in LiNbO3

was discussed in chapter 3 and is shown in figures 3.1 and 3.2. The two crossed and short

(∼ 64 fs) laser pulses k1 and k2 create a transient grating in the sample, from which two counter

propagating phonon polaritons are impulsively excited. The crossing angle Θair of the pump

pulses is set for selective excitation of the phonon polaritons with a wavevector of q = 2300 cm−1.

A probe pulse k3 arrives variably delayed at the same spot on the sample parallel to k1. A

bandpass filter is placed into the path of the probe beam before the d-shape mirror and the

transparent diffraction grating, as depicted in figure 3.2. This allows us to narrow its bandwidth

to ∆λ =2 nm which corresponds to a duration of 600 fs and which is longer than the oscillation

period of the phonon polariton τpp = 1/νpp. The spectrum is shown in figure 4.1b. As the probe

photons overlap in space and time with coherently launched polaritons they undergo inelastic

Raman scattering and the probe pulse diffracts into the direction k4. The scattered light is than

resolved by a spectrometer.

The transient spectral ISRS trace is shown in figure 4.1a. Two separated intensity lines for

time-delays τ > 0 which correspond to the Stokes scattering (red-shifted) of the probe light from

the right-propagating polariton and the anti-Stokes scattering (blue-shifted) of the probe light

from the left-propagating polariton are visible. For times relatively close to the time-delay zero,

an additional scattered intensity in-between of the two transient Raman lines is observed. It is

not shifted in frequency and is caused by the electronic part of the third-order nonlinearity when

all three laser pulses coincide.

The analysis of the data is done by making a cut through the contour plot for later time-delays

where the contribution of the electronic third-order nonlinearity is negligible. The obtained

spectrum is shown together with the incident probe spectrum in figure 4.1b. The spectra are

corrected for the background. The Raman frequency shift of ∆ν = 2.02 (2.08) THz directly yields

the frequency νpp of the left- (and right-) propagating polariton. Hence the underlying stimulated
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Figure 4.1: Frequency resolved transient ISRS data from LiNbO3 for the selected wavevector q =

2300 cm−1. The excitation and probe region overlap. The pump pulses are temporally

short and spectrally broad. a) The probe pulses are spectrally narrow with a bandwidth of

2 nm. Distinct transient Stokes (red-shifted) and anti-Stokes (blue-shifted) intensity lines

appear as the probe overlaps with the excited counter-propagating phonon polaritons. b) The

incident and scattered probe spectrum. The frequency shifts amount to 2.0 THz (anti-Stokes)

and 2.1 THz (Stokes). The scattered spectrum is obtained for delay-times around 2.5 ps. c)

The same as in a) but the probe pulses are spectrally broad and temporally short. d) Fourier

transform of the transient intensity shown in c) indicates a single frequency for all probe wave

lengths. The signal oscillates at twice the frequency of the excited phonon polariton mode

2νpp = 4.1 THz.

Raman scattering process is now confirmed and the excitation process can be considered as a

stimulated Raman process, too. The whole ISRS experiment includes the Stokes scattering in the
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excitation step and subsequent a Stokes and anti-Stokes scattering in the probe step. The energy

and momentum conservation diagrams are depicted in figure 2.8. The Stokes and anti-Stokes

scattered light fields will interfere on the diode array of the spectrometer, if the probe pulses

have a significant bandwidth. This leads to the homodyne detection scheme in the experiment,

as will be discussed in chapter 5.

4.2 Measurement of the Damping Rate and Frequency of Phonon

Polaritons: Observation with Short Probe Pulses

- 1 0 1 2 3 4 5 6 7
0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

 

 

int
en

sity
 [a

.u.
]

t i m e  [ p s ]

 d a t a
 s i m u l a t i o n

Figure 4.2: Spectrally integrated transient ISRS data (red circles) from figure 4.1a with an integration

region between 798-804 nm is shown by the red circles. The intensity as function of time-delay

is well described using equation 5.9 (green line). The black line shows the Gaussian function

that was used to describe the electronic signal due to third-order nonlinearity of the crystal.

An exponential decay multiplied with a step function, Φ, is displayed in gray. The blue line is a

convolution of the signal with a Gaussian function with a temporal width of FWHM = 610 fs.

The same experiment as reported in the previous section 4.1 is repeated leaving all conditions

the same, but no bandpass filter is inserted into the path of the probe beam. Thus the pump

and probe pulses are temporally short (∼ 64 fs) and spectrally broad. The transient frequency-

resolved intensity is shown in figure 4.1c. The intensity maximum at the time-delay of τ = 0

is caused by the instantaneous third-order electronic susceptibility, χ(3), of the medium. The

polariton response follows at the later time-delays τ > 0. It exhibits a periodic modulation as

function of the time-delay. The Fourier transform of the transient intensity shown in figure 4.1d
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indicates the frequency 2ν = 4.1 THz for all wavelengths of the scattered probe light. Factor 2

comes from the sum of the Stokes and anti-Stokes shifted frequencies due to their superposition

on the detector as deduced from the narrow bandwidth measurement in the previous section 4.1.

A mathematical derivation is presented in chapter 5.

For further analysis of the data it is appropriate to select a small wavelength range where the

oscillation amplitude is large. Otherwise the integration over a large range of the wavelengths

will add up the intensities of the light without account for the different phases of the colors given

in the spectrum. Thus the resulting oscillation amplitude will be washed out. An example for a

small integration spectral range is shown in figure 4.2 as the red circles. The experimental data

can be described by the function

Sτ = I0 + Iele
−
(

4ln2(τ0−τ)
2

σ2

)
+ I± sin2(ωppτ − ϕ0)e

−2γτ · Φ(τ0 − τ) , (4.1)

where I0 denotes a constant background, the second term is a Gaussian function that describes

the purely electronic χ(3) sample response, and the last term accounts for the interference of the

light fields scattered from the left- and right-propagating polaritons as given by the equation 5.9.

The result of a fit to the data is shown as a green line in figure 4.2. It turns out, that the

signal is modulated with twice the fundamental polariton frequency 2νpp and decays with 2γ.

Φ(τ0 − τ) is a step function which ensures the immediate appearance of the scattered probe

light due to the instantaneous generation of the phonon polaritons. The Fourier transform of

the transient intensity and the simulation of the integrated intensity reveal the same result: a

frequency νpp = 2.05 THz and a damping rate γ = 0.16 THz of the phonon polariton with the

wavevector magnitude of q = 2300 cm−1.

The outcomes of this section are:

• the transient scattered intensity can be fit to the model of a damped harmonic oscillator as

is assigned in equation 4.1. This means that the oscillation amplitude–which is associated

with the polariton mode–is small and remains in the harmonic part of the vibrational

potential.

• the frequency νpp and the damping γpp of the phonon polaritons are simultaneously

observable in a ISRS experiment with short probe pulses

The analysis of the transient intensity has to consider interference effects of all incident light

fields, that leads to the homodyne detection scheme. The mathematical treatment is presented

in chapter 5.
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4.3 Comparison of Narrow Bandwidth and Short Probe Pulse

Experiment

The observation of impulsively excited polaritons is conducted with narrow bandwidth pulses and

temporally short pulses. To compare both methods a further analysis of the obtained transient

ISRS traces is made, which are shown in figures 4.1a and 4.1c. First, the transient spectra are

spectrally integrated in the same wavelength region from 787 nm to 803 nm. The integrated

intensities are plotted as a function of time in figure 4.3a as a black and red line, respectively.

Figure 4.3: Transient ISRS data from LiNbO3 for the wavevector magnitude q = 2300 cm−1. a) Red line:

the transient intensity is obtained with temporally short probe pulses and spectrally integrated

a for further analysis. The oscillation frequency is twice the frequency of the phonon polariton

ν = 2νpp. Thick black line: spectrally integrated transient intensity obtained with probe

pulses of 2 nm bandwidth (610 fs). Orange line: convolution of the red line with a Gaussian

function with a temporal width of FWHM = 610 fs. b) Red solid line: normalized power

spectrum as obtained after the Fourier transform of the transient ISRS intensity (red line

in a)). Red dashed line: The same spectrum but scaled with a factor of two. Black line:

anti-Stokes spectrum detected on the spectrometer obtained by the narrow band probe pulses.

The frequency is shifted relative to the incident probe spectrum.

Further, the signal obtained from the short probe pulse experiment is convoluted with a

Gaussian function of a temporal width of FWHM = 610 fs and scaled. The result is shown by

the orange line in the same figure. A nice agreement is visible between the black and orange line.

They exhibit very similar increase and decrease behavior, because in both cases the envelope of

the intensity indicates the effective overlap of the probe volume and the propagating phonon

polaritons. The overlap conditions are assumed to be the same. Moreover, both intensities decay
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with twice the polariton decay rate as predicted by equations 5.9 and 5.13 mainly due to the

dephasing effect.

Figure 4.3b shows the normalized power spectrum as a red solid line which was obtained

from the Fourier analysis of the data depicted by the red line in figure 4.3a. The same power

spectrum scaled by a factor of two is shown by the red dashed line. It peaks at 2.05 THz which

is the polariton frequency νpp. The spectrum that corresponds to the anti-Stokes peak of the

Raman shifted narrow bandwidth pulse is plotted as a black line, too. It indicates a frequency

νpp = 2.05 THz of the polariton. Both experimental schemes yield the same frequency νpp of the

excited polariton mode.

In the following, the limitations of both experimental schemes, namely the observation of

impulsively excited phonon polaritons using either a narrow bandwidth and temporally long

or a broad bandwidth and temporally short probe pulse, are compared. This is done with

respect to the probe of excited phonon polaritons with different wavevectors q as is the case

in the measurement of the dispersion relation of the phonon polaritons, which is the topic of

chapter 8. In this part, I distinguish three different regions of the dispersion relation of the

phonon polaritons in LiNbO3 that are defined by the characteristics of the used probe pulses:

first, a regime where the frequency of phonon polaritons νpp is smaller than the bandwidth of the

narrow bandwidth probe pulses ∆νnarrow < νpp, a regime where the polariton frequency is almost

equal or larger than half of the bandwidth of the short probe pulses, 0.5 ·∆νbroad . νpp, and last

an intermediate regime. The use of both experimental schemes is not equally well applicable to

all these three regions:

Low frequencies region (νpp < 1 THz)

Here, the Raman shifts induced by the scattering from phonon polaritons are comparable with

the spectral width of the narrow bandwidth probe beam (FWHM = 2 nm =̂ 0.95 THz), the

Stokes- and anti-Stokes-shifted light fields of a narrow bandwidth probe pulse will be not clearly

separated in frequency and will interfere in the spectrum. Thus, it will be difficult to determine

the position of Stokes- and anti-Stokes lines. The experiment with short probe pulses will have a

very good temporal resolution of the phonon polariton oscillation with relatively low frequency.

Thus, for low polariton frequencies the short probe pulses will yield more accurate results in

determination of polariton frequency νpp.

Intermediate frequency region (1 THz < νpp < 7 THz)

The main dispersion region of the lowest phonon polariton branch in LiNbO3 lies in this frequency

range. Here, both experimental schemes are equally accurate in the determination of the polariton

frequency.
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High frequencies region (νpp & 7 THz)

For frequencies larger than 7 THz, the duration of the short pulses (∼ 65 fs) is comparable to half

of the oscillation period τpp = 1/2νpp of the phonon polaritons. According to Nyquist–Shannon

sampling theorem, faster oscillations will not be fully resolved by such a probe pulse. Assuming

ν = 7.56 THz, which is the frequency of the lowest TO phonon, the corresponding period

is τpp = 66 fs. This is exactly the duration of the short pulses. In contrast, the relatively

large frequencies of phonon polaritons lead to well-separated Stokes and anti-Stokes lines in the

observation of phonon polaritons with narrow bandwidth pulses.

Moreover, the observation of phonon polaritons that belong to the dispersion branch approach-

ing the fourth TO-mode in LiNbO3 can solely be performed with narrow bandwidth pulses, as

will be further discussed in chapter 8. The frequency of these phonon polaritons amounts to

νpp ∼ 18 THz, which is still within the bandwidth of the excitation pulses ∆ω1/e = 18 THz. In

this case, these phonon polaritons can still be generated by spectrally broad and temporally

short pulses. But the time-resolution of the short pulses is not sufficient to resolve the oscillation

with such high frequencies. Whereas the probe with narrow bandwidth pulses do not suffer from

the issue of temporal resolution. Thus, the main advantage of the pump-probe scheme with

temporally short pump pulses and spectrally narrow bandwidth probe pulses is the increased

frequency range, in which the stimulated phonon polaritons can be observed.

4.4 Selectivity of the Excitation and Probe Process of the Phonon

Polariton Modes in the TG-Experiment

As discussed in sections 4.1 and 4.2, we observe selectively excited phonon polaritons in two

different ways, namely using either narrow bandwidth or temporally short probe pulses. In both

cases, probe light simultaneously undergoes Raman scattering from left- and right-propagating

phonon polaritons. This explains the observed transient behavior of the detected spectra, which

are shown in figures 4.1a and 4.1c, respectively. Both data sets were already analyzed and

compared in section 4.3 and the corresponding spectral analysis and Fourier transform are

depicted in figures 4.1b and 4.1d, respectively. Both experimental schemes yield the same

frequency νpp of the excited polariton modes.

In the following, a detailed discussion of the mode selectivity in the excitation process and the

selectivity and sensitivity of the probe process for both experimental schemes is presented. The

discussion is based on two different measurements: the first one detects phonon polaritons with

a wavevector of q = 2300 cm−1. The corresponding spectrally narrow bandwidth measurement

and the Fourier transform of the transient spectrum detected with spectrally broad bandwidth

and temporally short pulses are shown in figure 4.4c. The second measurement observes phonon
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polaritons with a wavevector of q = 19000 cm−1. The spectrum of scattered narrow bandwidth

probe pulses and the Fourier transform of the transient intensity recorded with temporally short

pulses is shown in figure 4.4b. These two measurements are examined to highlight the possible

differences that occur during the excitation and detection of phonon polariton wavepackets

with different wavevectors q. The way of proceeding is as follows: first, the spectrum of the

excited phonon polaritons is calculated for the case of the wavevector-selective excitation in

the transient grating geometry. Then, the effect of the finite size of the pump beams on the

width of the excited polariton spectrum is considered. This is followed by the calculation of

the spectral broadening of the phonon polariton modes due to their frequency-dependent finite

lifetime. Hereafter, the accuracy of the determination of the wavevector q and the frequency ωpp

of the detected phonon polaritons is discussed for the case of the detection using narrow and

broad bandwidth probe pulses. These factors are important for the correct interpretation of

the measurement of the dispersion relation of phonon polaritons, which will be presented later

in chapter 8. Various different contributions that can cause the spectral broadening and the

obtained frequency and wavevector values for the two discussed measurements are listed in the

tables 4.1 and 4.2, respectively.

Calculation of the spectral bandwidth of excited phonon polariton modes

The bandwidth ∆ωpp of the spectrum of the phonon polariton modes is given by the bandwidth

of the excitation pulses ∆ωpump. In the excitation process, the energy conservation ω1−ω2 = ωpp

and momentum conservation ~k1 − ~k2 = ~q rules apply for the case of three interacting particles.

This results in the selectivity of the excited modes in the experiment. The wavevector of phonon

polaritons is given by

q2 = k21 + k22 − 2k1k2 cos(Θ) . (4.2)

Considering the case k1 > k2 and ω2 = ω1 − ωpp, equation 4.2 can be rewritten as

ω2
pp =

c2THz(ωpp)

c2800
(ω2

1 + (ω1 − ωpp)2 − 2ω1(ω1 − ωpp) cos(Θ)) . (4.3)

This equation describes the frequency ωpp of the phonon polariton as a function of the frequency

of the visible light, ω1, and a constant intersection angle of the two pump pulses, Θ. Note, all

the colors in the pulses impinge on the sample under the same angle. Equation 4.3 can be solved

for ω1 in order to use the result for further modeling. In order to calculate the spectrum of

phonon polaritons, Ipp, one has to assume the spectral shape of light intensities of the pump

pulses, I1(ω1) and I2(ω2). For a more simple discussion, I will assume a Gaussian shape for both

pulses. Now, the spectrum of the phonon polaritons is described by

Ipp(ωpp) = I1(ω1)I2(ω2) = I1(ω1)I2(ω1 − ωpp) , (4.4)
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Figure 4.4: a) Red line: Calculated dispersion relation of phonon polaritons using parameters that are

optimized during the fitting analysis as described in chapter 8. The parameters are listed in

third column in table 8.1. Green lines indicate the effect of the spectral broadening caused

by the finite lifetime of the phonon polaritons. The data that are measured with temporally

short probe (with narrow bandwidth probe) pulses are shown by the black dots (red and blue

dots). The errorbars are given in table 4.2. Purple dots are used to illustrate the bandwidths

of the narrow probe pulses (FWHM = 0.95 THz), where these data points are displaced

along the q-axis. Orange and brown lines indicate the two regimes that are discussed in the

text. The relative bandwidths of the excited wavevectors is exaggerated in the figure and

amounts to δq = 0.2. b) Power spectrum obtained with the Fourier analysis of the transient

spectrum detected with broad bandwidth pulses in the case of excited phonon polaritons with

wavevector q = 19000 cm−1. Inset in b): Raman spectrum (blue dots) detected using narrow

bandwidth pulses that are scattered from the phonon polaritons with the same wavevector

magnitude. The spectrum of the incoming narrow bandwidth pulse is shown by the orange

dots. c) The same as b) but for q = 2300 cm−1. Inset in c): the same as in the inset in b)

but for q = 2300 cm−1.

where ω2 = ω1−ωpp and ω1 is given by equation 4.3. The calculated spectrum is shown in figure 4.5

as black line for an intersection angle of both pump pulses of Θ = 0.69◦, which corresponds

to the angle that was set in the experiment presented in figure 4.4c where a phonon polariton

with the wavevector q = 2300 cm−1 was observed. In this calculation, the frequency-dependent

refractive index in the terahertz region, nTHz(ωpp) =
√
ε(ωpp), is used and the dielectric function

is given by equation 2.3. The spectrum exhibits a width of ∆ν = 0.055 THz. Further, the same

calculation of the spectrum of the excited phonon polariton modes is done for an intersection
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angle of Θ = 6.3◦, which results in a polariton wavevector of q = 19000 cm−1. This case applies

for the measurement shown in figure 4.4b. The result of this calculation is shown as purple line

in figure 4.5. The width of this spectrum is ∆ν = 0.028 THz, which is half the width of the

calculated spectra of the phonon polaritons with a central frequency of 2.1 THz. This behavior

can be explained in the following way: in the experiment, the central frequency of the laser pulses

c0/λc = νc and the intersection angle Θ determines the central wavevector qc and frequency

ωpp,c of the excited phonon polaritons according to equation 4.3. This is indicated by the black

doted lines in figure 4.4a for the two discussed cases. Due to the finite bandwidth of the laser

pulses the wavevector of the phonon polaritons exhibits a bandwidth too. In the linear region of

the dispersion relation, the relative bandwidth of the excitation pulses (δν = 0.0375) is equal

to the relative bandwidth of the polariton wavevector δq = δν. The region of allowed polariton

wavevectors is marked by the orange and brown solid lines for an exaggerated relative bandwidth

of δq = 0.2, respectively. The corresponding allowed frequencies of the phonon polaritons are

inferred from the projection of the segment of the x-axis on the modeled dispersion curve, as

indicated by the dashed orange and brown lines in figure 4.4a. One immediately realizes that, the

range of the excited frequencies of the phonon polaritons for large wavevectors and frequencies is

smaller than for the phonon polaritons excited at small wavevectors and frequencies. This is due

to the increase of the frequency-dependent refractive index with increasing frequencies, which

leads to a smaller slope of the dispersion curve at high frequency.

The finite size effect of the excitation spot

The number of interference fringes within the region of the pump spot defines the sharpnes

of the excited polariton modes. Thus, the spectral bandwidth of the excited polariton modes

depends on the finite size of the pump spot. As previously reported in section 3.4.1, the resulting

width of the defined wavevector is ∆q ∼ 60 cm−1. To account for this finite-size effect, one

has to convolve the calculated phonon polariton spectrum with the function of the Fourier

transform of the interference pattern that–in this work–is assumed to be a Gaussian function.

First, I estimate under which circumstances the bandwidth of the wavevector ∆q will lead to

a larger broadening δνfin = δq of the frequency in the linear region of the dispersion relation

than the bandwidth of the spectrum δνpp of the excited phonon polaritons. For wavevectors

q < ∆q/0.026 = 2300 cm−1 the broadening of the polariton spectrum is mostly determined by the

finite-size effect. Now, for the two examples that are discussed in this section, the broadening due

to the finite size of the excitation pulses is calculated to be ∆νfin = ∆q/q · νpp = 5.3 · 10−2 THz

for q = 2300 cm−1 and ∆νfin = 2.15 · 10−2 THz for q = 19000 cm−1. At the same time, the

spectral widths of the excited polariton modes, which are shown as black and purple lines in

figure 4.5, amount to ∆νpp = 5.5 · 10−2 THz and ∆νpp = 2.8 · 10−2 THz, respectively. Evidently,
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Figure 4.5: Calculated spectrum of excited phonon polaritons for the intersection angle of both pump

pulses Θ = 0.69◦ and Θ = 6.3◦ are shown by the black and purple lines. The calculation uses

equations 4.4 and 4.3 and a frequency-dependent index of refraction. The spectral width of

the spectrum amounts to ∆ν = 0.055 THz (δν = 0.026) and ∆ν = 0.028 THz (δν = 0.004).

The peaks are centered at 2.1 THz and 6.96 THz. Further parameters used in the calculation

are: n800 = 2.163, 2π/λc = 375 THz, and ∆νpump = 14 THz.

the enhanced narrowing of the polariton spectrum with higher frequencies requires to take

into account the broadening caused by the finite size of the excitation grating. Further, the

convolution of two Gaussian functions with the widths σ1 and σ2 yields again a Gaussian function

with the new width σ23 = σ21 + σ22. This results in the spectral widths of the generated polariton

modes ∆νpp = 7.9 · 10−2 THz and ∆νpp = 3 · 10−2 THz for the case of q = 2300 cm−1 and

q = 19000 cm−1, respectively, which correlates to the expectations. Moreover, a larger pump

spot reduces the finite size effect. For a given ratio M of focal lengths of the lenses that are used

to write the grating pattern into the sample, the size of the pump spot can easily be changed

using two lenses with longer focal lengths. The disadvantage is a decreased fluence of the pump

beams.

Spectral broadening due to the finite lifetime of excited phonon polaritons

Phonon polaritons exhibit a frequency-dependent damping, which increases toward the frequency

of the TO-phonon modes, where the imaginary part of the phonon polariton wavevector, Im(q),

increases too. This results in a finite lifetime of the excited phonon polaritons and causes a

spectral broadening of the probe light. In figure 4.4a, the calculated influence of the spectral

broadening on the dispersion relation is indicated by the green solid lines. The imaginary part of

the wavevector Im(q) is related to the damping rate of phonon polaritons γpp = ωpp · Im(q)/Re(q)

56



4.4 Selectivity of the Excitation and Probe Process of the Phonon Polariton Modes in the

TG-Experiment

according to equation 9.3, which will be later derived in chapter 9. The broadening becomes

significant for larger phonon polarition frequencies. Actually, the Stokes and anti-Stokes lines,

which are shown as blue dots in the inset of figure 4.4b, are about two times broader than the

incident narrow bandwidth pulse (∼ 0.95 THz). The Stokes and anti-Stokes lines of light that

undergoes Raman scattering from phonon polaritons with the wavevector q = 2300 cm−1 are

shown by the blue dots in the inset of figure 4.4c and do not show any signatures of a spectral

broadening, which is in agreement with the model calculation. The calculated spectral broadening

of the excited phonon polaritons with the frequencies, which are discussed in this section, are

listed in table 4.1. For the wavevector q = 19000 cm−1 the expected contribution due to the

finite lifetime is one order of magnitude larger, than the other contributions.

q = 2300 cm−1 q = 19000 cm−1

δν [THz] 0.055 0.028

δνfin [THz] 0.053 0.0215√
(δν)2 + (δνfin)2 [THz] 0.076 0.035

δνγpp [THz] 0.0 0.3

Table 4.1: Different contributions to the broadening of the frequency of the excited phonon polaritons

in the transient grating experiment, as discussed in this section: δν - broadening due to the

bandwidth of the excitation pulses, δνfin - broadening due to the finite size of the excitation

region, δνγpp - broadening due to the finite lifetime of excited phonon polaritons.

Determination of the frequency of generated phonon polaritons in an experiment using

temporally short probe pulses

After the discussion of the excitation process, now the focus lies on the measurement of the

frequency ωpp of the generated phonon polaritons. The measurement of ωpp using broad bandwidth

probe pulses yields the sum of the frequencies of right- and left-propagating phonon polaritons.

In principle, the hole spectrum of generated excited phonon polaritons is simultaneously probed.

The measured data compose a spectral trace as shown in figure 4.1c. The data can be Fourier

transformed for each individual wavelength. This analysis provides an oscillation frequency for

each optical wavelength. The result of the data evaluation is depicted in figures 4.6a and 4.6b,

respectively. The frequencies scatter around the mean value νpp = 4.095 THz (13.88 THz) with a

standard deviation σ = 0.007 THz (0.15 THz) for excited phonon polaritons with q = 2300 cm−1

(19000 cm−1). The larger scattering of the data for νpp = 13.88 THz can be explained by the

existence of an additional peak in the Fourier spectrum, which is centered at ν = 15.3 THz and
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Figure 4.6: Obtained frequency of probed phonon polaritons as function of the carrier wavelength of the

probe light. a) (b) One of the evaluated Fourier spectra is shown in figure 4.1c (4.1b). The

average frequency νpp = 4.095 THz (13.88 THz) and the standard deviation σ = 0.007 THz

(0.15 THz) are indicated by the violet and green lines, respectively. Orange dashed line

indicates the frequency which corresponds to twice the average frequency shift of Raman

scattered narrow bandwidth probe light that is shown in figure 4.1c or 4.1b.

subsequently influences the shape of the main peak. The nature of this peak can be explained

considering the summation of two frequencies, namely the frequency of the phonon polariton that

belongs to the lower dispersion branch, νpp = 6.95 THz, and a phonon polariton that belongs to

the second branch of the dispersion relation with a frequency νpp = 8.25 THz. For more details

see section 7.2. Further, the region where the transient intensity exhibits oscillations is in the

case of νpp = 13.88 THz five times smaller, than in the case of small frequencies. This result

quantitatively proofs the predicted narrowing of the spectrum of generated phonon polaritons.

Determination of the frequency of the generated phonon polaritons in an experiment using

narrow bandwidth probe pulses

The narrow bandwidth spectrum (FWHM ∼ 1 THz) is only a small subset of the spectrum

of the excitation pulses, which amounts to FWHM ∼ 14 THz. Thus, only thous phonon

polaritons are observed, which were previously generated by the mixing of probe light with
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exactly the same wavelengths as subsequently contained in the narrow bandwidth probe pulses,

as previously discussed in section 2.5.2. The Stokes (-) and anti-Stokes (+) shifted light probes

the corresponding left- and right-propagating polariton modes. As shown in figure 2.13 in

section 2.5.2, the frequency shift of Stokes and anti-Stokes scattered light is not exactly the

same, because somewhat different spectral components of the excited phonon polariton modes

are probed. The measured scattered spectra are shown in the inset of figure 4.4c for the case of

q = 2300 cm−1. The observed frequencies are those of the light that undergoes Stokes scattering

(ν = 375.434± 0.008 THZ), anti-Stokes scattering (ν = 379.444± 0.008 THz), and that of the

incoming light (νin = 377.403 ± 0.002 THz). The uncertainty of the measured frequencies is

very low because the center of the peaks is well-determined. In the discussed case one obtains

∆ν = 0.008 THz. The Stokes and anti-Stokes frequency shifts amount to νpp,− = 1.96±0.008 THz

and νpp,+ = 2.04± 0.008 THz, respectively.

The inset in figure 4.4c depicts the spectrum of light that undergoes Raman scattering from

phonon polaritons with q = 19000 cm−1. The intensity peaks are centered at ν = 384.08±0.01 THz

and ν = 370.86 ± 0.01 THz. The center frequency of the incoming probe light is determined

to ν = 377.3 ± 0.002 THz, hence, the determined phonon polariton frequencies amount to

νpp,− = 6.78± 0.01 THz and νpp,+ = 6.44± 0.01 THz, respectively.

In figures 4.6a and 4.6b the average values of the phonon polariton frequency multiplied by two

are shown. The factor of two is included here to compare with the oscillation frequency obtained

in the time domain measurement, which in this case consists of the sum of the frequencies of the

right- and left-propagating phonon polariton. For small frequencies (νpp ∼ 2 THz), the position

of the Fourier peak is determined with higher accuracy as the measured average Stokes and

anti-Stokes frequency shifts, which are multiplied by a factor of two. As indicated by the orange

and green lines in figure 4.6a the difference in the accuracies of the determination of the phonon

polariton frequency amounts in this case to two. Certainly, for larger frequencies (νpp ∼ 6.9 THz),

the observed frequency shift in the experiment with narrow bandwidth probe pulses yields a

more precise determination of the frequency (see figure 4.6b). In this case, the precision is seven

times higher in the experiment with narrow band pulses. This outcome clarifies the limited

time-resolution of short probe pulses in the time domain experiment, as discussed in section 4.3.

Furthermore, the determined standard deviation or the confidence interval in the fit analysis

of the Raman lines implies a higher precision in the determination of the observed frequencies of

phonon polaritons. But the scattered narrow bandwidth pulses–if one disregards any broadening

effects–show that all wavelengths simultaneously scatter from the excited phonon polaritons.

The spectrum of the phonon polaritons possesses a large enough bandwidth to interact with all

photons within the bandwidth of the incident narrow probe pulse (FWHM = 0.95 THz) where

the same energy and momentum rules as in the initial generation process apply. This means
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4 Frequency-Resolved Probe of Impulsively-Excited Phonon Polaritons

that each wavelength in the scattered probe spectrum corresponds to a specific probed mode of

the generated phonon polariton spectrum. If one plots the bandwidth of the probe pulse into

the figures 4.6a and 4.6b, both experimental schemes yield phonon polariton frequencies that lie

within these limits.

Measurement of the wavevector of the transient grating

The determination of ktg for smaller values than 2400 cm−1 is done with a CCD camera as

explained in section 3.4.1. For the larger wavevectors the camera is not able to resolve the

interference pattern of the two crossed pump beams properly. In this case, the intersection angle

Θ has to be measured directly. During this work, this is done by measuring the distance of the

two parallel pump beams before the last focusing lens. The accuracy of the measurement amounts

to ∆l = 0.5 mm. Hereafter, the angle is then calculated using the measured value of l and from

the known focal length (f = 75 mm) of the last focusing lens. The distance amounts for the case

of q = 2300 cm−1 and q = 19000 cm−1 to l = 2 mm or l = 18 mm, respectively. This corresponds

to an angle Θ = 0.69± 0.17 ◦ and Θ = 6.3± 0.17 ◦. Thus, the wavevector of the transient grating

is for the two discussed cases ktg = 2094± 480 cm−1 and ktg = 18800± 480 cm−1.

wavevector frequency

q = 2295± 60 cm−1 νpp = 2.05± 0.004 THz

q = 19000± 500 cm−1 νpp = 6.94± 0.08 THz

q+ = 2284± 60 cm−1 νpp,+ = 2.04± 0.008 THz

q− = 2308± 60 cm−1 νpp,− = 1.96± 0.008 THz

q+ = 18930± 500 cm−1 νpp,+ = 6.44± 0.01 THz

q− = 19370± 500 cm−1 νpp,− = 6.78± 0.01 THz

Table 4.2: Obtained wavevectors and frequencies of the selectively excited phonon polaritons using

temporally short or narrow bandwidth probe pulses, respectively.

Determination of the wavevector of the excited phonon polaritons

First, I discuss the experiment with temporally short probe pulses. Once the wavevector of the

transient grating ktg and the frequency of the observed phonon polaritons νpp is determined, the

polariton wavevector q is calculated using equation 2.10 and the data point with the coordinates

(q,νpp) is subsequently defined. Table 4.2 lists the obtained wavevectors and frequencies for the

two exemplary cases in this section.
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TG-Experiment

Next, in the experiment with narrow bandwidth pulses, the frequency of right- or left-

propagating phonon polaritons are determined from the relative positions of the anti-Stokes

or Stokes intensities, respectively. The wavevector is calculated with equation 2.28 and two

coordinate pairs, namely (q+,νpp,+) and (q−,νpp,−), are obtained. Like in the case of the experi-

ment with temporally short probe pulses, the uncertainty in the determination of the polariton

wavevector is mainly caused by the measurement of the angle between the incoming and scattered

probe light. During this work, no noticeable deviations of the direction of the incoming and

scattered narrow bandwidth pulses compared to the temporally short probe pulses is observed.

Thus, the same considerations, as in the previously discussed case, applies for the uncertainty of

the observed wavevector of the excited phonon polaritons. The values of determined wavevector

and frequency pairs are listed in the lower half of table 4.2.

In figure 4.4 the experimentally obtained data points and the corresponding errorbars are

plotted together with data points that indicate the bandwidth of the narrow probe pulses. We

see that all data points in the region of 2 THz lie on the model dispersion curve. In the frequency

region around 6.8 THz, two of the data points lie within the calculated spectral broadening of

the phonon polariton modes. However, the red point, which is determined from the measured

frequency shift of light that undergoes Stokes scattering from the left-propagating phonon

polariton and is ”red-shifted”, lies somewhat outside of this frequency region. Nevertheless, the

deviation from the dispersion curve (red line) is smaller than the half bandwidth of the narrow

probe pulses (violet errorbars). This shows the good agreement between the measurements and

the calculated dispersion curve.
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Frequency-Resolved Detection of Light

In the previous chapter 4 the implementation of narrow bandwidth pulses enables the decoding

of the underlying Raman processes in the scattering from probed phonon polaritons. The use of

short pump pulses in the applied transient grating geometry results in a simultaneous excitation

of the left- and right-propagating phonon polaritons. The subsequent scattering of the probe

pulse leads to generation of Stokes and anti-Stokes components of the probe light field, which

are superimposed on the detector. In this work a spectrometer is used to resolve the frequency

of the light. In this chapter a mathematical treatment of the field components in the scattering

and detection process is presented. This leads to an unambiguous interpretation of the dynamics

of the measured transient intensity, which is influenced by the relative amplitudes of the Stokes,

anti-Stokes and Rayleigh components of the detected light fields. The outline of this chapter is

as follows: in section 5.1 the phase shift of the probe light during the scattering from phonon

polaritons is derived. The next sections deal with special cases of the conditions under which

the phonon polaritons are detected in the experiments: in particular the case of a negligible

elastic Rayleigh contribution (5.2), a displaced probe region with respect to the excitation region

(5.3), a detection with spectrally narrow probe pulse (5.4), and an increased elastic-scattered

field contribution (5.5) are discussed. In section 5.6 the discussion of the additionally irradiated

reference light field, the so-called local oscillator, is presented.

5.1 Phase Shift by the Scattering from Phonon Polaritons

The induced phase shifts of the probe light during the scattering from the phonon polaritons

are considered in the following. Let us first assume, that all light fields are plane waves of the

form E = E0 exp(iωt − ikr + iφ0,ω), where ω is the frequency of the laser light, k is the wave

vector, E0 is the amplitude and φ0,ω is the phase of the incoming light field. The relative phase

of the spectral components ∆φi,j = φ0,ωi − φ0,ωj is constant. Therefore, the phase φ0,ω factor is

dropped. After the scattering process, the light field E4 that is diffracted into the k4 direction is

recorded with a spectrometer. Within the scope of this work the following three contributions

to the scattered field E4 are analyzed: E+ stems from the anti-Stokes scattered light from the
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5 Description of Homodyne and Frequency-Resolved Detection of Light

right-propagating phonon polariton, E− from the Stokes scattered light from the left-propagating

phonon polariton and the elastically scattered field Eel is generated by the sample (e.g. from

inhomogeneities, impurities or the surface). Since the spectrometer spectrally resolves only the

detected light field, each pixel coherently adds up these three contributions:

E4 = E+ + E− + Eel . (5.1)

This is shown in figure 5.1 for one single and arbitrarily detected light frequency ω4. The energy

conservation rules relate the frequency ω4 and the three incoming frequency components. The

frequency ω3,el of the elastically scattered field Eel remains unchanged. The field E− with the

initial frequency ω3− is Stokes scattered from a phonon polariton with frequency ωpp and the

field E+ with the frequency ω3+ is given by the anti-Stokes scattered process. Thus the following

identity holds:

ω3± ± ωpp = ω4 and ω3,el = ω4 . (5.2)

Obviously, only light fields with the exact same frequency ω4 and wavevector magnitude k4

can interfere on a single pixel of the spectrometer. It is important to note, that the frequency

of the incoming light for all three contributions is different. Up to now, we discussed only

the energy conservation during the scattering process and no dependence of the signal on the

time-delay τ was considered. Now we investigate the propagation of phonon polaritons more

thoroughly. The wave fronts of the polaritons propagate with velocity vpp, which is almost equal

to the speed of light in the medium, into the direction qR/L. When the pump pulse is delayed

with respect to the probe pulse by the time τ the wave fronts advance in this time interval by

|r±| = vppτ = ωpp/qppτ [88] into the directions of the polariton propagation qR/L. The scattering

on a phonon polariton or impurities affects the incoming light field phases by adding a scattering

phase φ4±(τ). The Stokes (-) and anti-Stokes (+) scattered field detected on a pixel of the

spectrometer take the form

E− = −iE−,0 · e−γτ · ei[(ω3−−ωpp)t+φ4−(τ)] = −iE−,0 · e−γτ · ei(ω4t+φ4−(τ)) (5.3)

E+ = +iE+,0 · e−γτ · ei[(ω3++ωpp)t+φ4+(τ)] = +iE+,0 · e−γτ · ei(ω4t+φ4+(τ)) (5.4)

Eel = Eel,0 · eiω4t. (5.5)

Here, E+,0 and E−,0 are the electric field amplitudes of the diffracted light which are connected

to the incoming light amplitude E0 via the scattering efficiency η± = E2
±,0/E

2
0 . The factor e−γτ

64



5.1 Phase Shift by the Scattering from Phonon Polaritons

Figure 5.1: Visualization of three components of the light fields that contribute to the signal intensity

on a single pixel of the spectrometer which detects the light along a fixed direction of k4.

Incoming wave vectors along k3 have different magnitudes (wavelengths) |k3−|, |k3+|, and

|k3|, respectively. In this case the light fields are scattered from a left-propagating polariton,

a right-propagating polariton and from an impurity in the sample (open circle).

accounts for the damping of the phonon polaritons and the prefactor ±i determines the phase

shift in Stokes and anti-Stokes scattering events [89]. Eel,0 is the amplitude of the elastically

scattered light pointing into the direction k4. Due to the propagation of the phonon polaritons

with respect to the probe pulse the phase of the scattered light evolves as

φ4±(τ) = (r± · k3± − r± · k4) = ±ωppτ , (5.6)

where the right side of the equation is true because of the wavevector matching (k4 − k3+) = qR,

−(k4 − k3−) = qL and the phase velocity vpp = ωpp/qpp of the polariton. The phase φ3,el of

the elastically scattered light is unaffected by τ . Now all three contributing light fields that

contribute to the detected intensity Isig are derived. In general, one pixel of the spectrometer

detects

Isig = |E+ + E− + Eel|2 . (5.7)

In the following, several special cases of the homodyne detection in the transient grating

experiment which have been performed during this thesis are separately discussed.
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5.2 Negligible Elastic Contribution

This is the case where all three beams perfectly overlap in the sample and the phonon polaritons

are efficiently generated. Hence the inelastically scattered probe field is much larger than the

elastic contribution, Eel << E±. The intensity I
(1)
sig is solely determined by the interference of

the Stokes and anti-Stokes scattered light fields:

I
(1)
sig = |E+ + E−|2 = E2

±0(2 + |eiφ4+(τ) − eiφ4−(τ)|2) · e−2γτ · |ei(ω4t)|2 . (5.8)

In this situation, the detected intensity decays with twice the damping rate of the phonon

polariton. The term, which oscillates with the detected light frequency ω4, is a pure phase

factor and the intensity measurement is independent of this contribution. A simple trigonometric

transformation shows that the middle term gives rise to the oscillation of the signal with twice

the polariton frequency:

I
(1)
sig = 2I±,0(1− cos(2ωppτ)) · e−2γτ = 4I±,0 sin 2(ωppτ) · e−2γτ . (5.9)

A typical measurement is presented in figure 5.2a. The data are well described using the

expression for I
(1)
sig from equation 5.9. The result of a calculation is shown by the (red line) in

the same figure. The Fourier transform of the intensity (Fig. 5.2c, green line) shows a single

peak, which appears at twice the phonon polariton frequency ν = 2ωpp/2π.

5.3 Displaced Probe Region

If the probe pulse samples a region of the sample that can only be reached by one phonon

polariton–let us assume for the following discussion that it is the left-propagating polariton–one

may neglect the field E+ which originates from the right-propagating polariton. For a larger

wave vector the strong polariton damping leads to a rapid decrease of E− and the amplitude of

the Stokes scattered field becomes comparable to the elastically scattered light field amplitude:

E− ≈ Eel. Thus, the detected intensity is dominated by the interference of the elastically and

inelastically scattered fields. This is expressed by

I
(2)
sig = |E− + Eel|2 = |E−0e−γτ+iφ4−(τ)−iπ/2 − Eel,0|2 · |ei(ω4t)|2 (5.10)

where again the phase factor ω4t is averaged out in the intensity measurement. The weak signal

oscillates at the fundamental frequency ωpp around an intensity level given by the elastically

scattered light field Eel,0 and the inelastic scattering term which is damped with the rate 2γ:

I
(2)
sig = E2

el,0 + E2
−0e
−2γτ + 2Eel,0E−0e

−γτ · cos(−ωppτ − π/2) (5.11)
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5.4 Narrow Band Probe Pulses

I
(2)
sig = Iel,0 + I−0e

−2γτ − 2Eel,0E−0e
−γτ · sin(ωppτ) (5.12)

Unlike in the previously discussed case, the oscillation amplitude decays with the damping

rate γ of the polariton. The relative intensities of the Eel and E± determine the oscillation

amplitude. Several examples are closely discussed in section 6.1. It should be noted that the

observed transient intensity which is explicitly shown in figure 6.1 is not properly described be

the derived equation 5.12, because it do not consider any propagation effects or the effect of the

exact overlap of the probe volume and the polariton wavepacket. To do so, additional terms have

to be considered that describes the envelopes of the interacting fields. An approach can be found

in reference [7].

5.4 Narrow Band Probe Pulses

For narrow band probe pulses the situation is different. The probe spectrum is so narrow that

for all, except the smallest wave vector polaritons, the inelastically scattered probe pulses do

either overlap with each other nor with the elastically scattered light. The intensity of the elastic

scattered light Eel is hence much smaller and may be neglected. Moreover, the probe pulse is

too long to be able to resolve the beating of the transient field. Since the two inelastic signal

contributions E+ and E− are detected by separate pixels of the spectrometer, they do not give

rise to interference features. Thus, the detector pixel monitors the intensity

I
(3)
sig,± = E2

±,0e
−2γτ |eiω4t|2 · |eiφ4± |2 = I±0e

−2γτ . (5.13)

As can easily be seen, the intensity decays with twice the damping rate γ. An exemplary

measurement is shown in figure 4.1 as the black solid line. The data that are observed with

narrow bandwidth pulses with a temporal width of FWHM = 610 fs are compared to the

convoluted data (orange line) obtained with short probe pulses (FWHM = 64 fs). Both data

sets exhibit a decay with twice the phonon polariton damping rate, 2γ, according to equation

5.13 and 5.9, respectively. This is confirmed by the Fourier analysis, which is shown by the red

solid line in figure 4.1b.

5.5 Increased Elastic Field Contribution

This is a more unusual experimental condition. All three beams perfectly overlap in the sample,

however, the polaritons are either inefficiently generated or the sample shows an increase of the

elastically scattering contribution of the probe field Eel that is for example caused by sample

impurities or other defects. A significant elastic scattering holds for samples with a simultaneously
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excited thermal grating as was previously reported [80, 90]. Here, the elastic contribution is

assumed to have the same field magnitude as the field diffracted by the phonon polaritons,

Eel ≈ E±. Then equation 5.7 has to be evaluated completely (the full calculation is presented in

appendix A.1), which leads to the result

I
(4)
sig = Iel,0+(I+,0+I−,0)e

−2γτ +2I±e
−2γτ cos(2ωppτ+π)+2(Iel,−+Iel,+)e−γτ cos(ωppτ+π/2).

(5.14)

The signal consists of a constant background contribution Iel,0, non-oscillating terms I+,0 and

I−,0, which decay with 2γ, a term that oscillates with twice the polariton frequency and a decay

of the amplitude of 2γ, and the third term oscillating at the fundamental polariton frequency

ωpp with the damping rate γ. For the case I+,0 ≈ I−,0 equation 5.14 simplifies to

I
(4)
sig = Iel,0 − 4Iel,±e

−γτ sin(ωppτ) + 4 · I±e−2γτ sin2(ωppτ) . (5.15)

The behavior of the transient intensity I
(4)
sig is characterized by the ”superposition” of sine and

sine-squared functions. In the following, an exemplary measurement is presented, where the

condition of increased elastic field contribution was deliberately prepared. In figure 5.2a the

transient intensity trace, which was obtained from counter propagating phonon polaritons with

the wavevector magnitude q = 790 cm−1 , is shown by the green line. The pump and probe

regions overlap as sketched in figure 5.2d. The measured data are integrated over the wave-lengths

range between 794 nm and 795 nm. The integration is done for a better statistics. The intensity

ratio of the pump and probe beams is Ipump/Iprobe = 7/3. In this case the contribution to the

signal from the elastically scattered light due to the inhomogeneities is negligible. The simulation

(red line) according to equation 5.9 fits very well to the data. The Fourier transform is depicted

in figure 5.2c. The power spectrum (green line) indicates a single frequency of ν = 1.66 THz

corresponding to twice the polariton frequency 2 · νpp = 2 · 0.83 THz.

Now, the intensity of the pump and probe beams is inverted and the ratio amounts to

Ipump/Iprobe = 3/7. The transient ISRS intensity shown by the blue line in figure 5.2b shows a

pronounced beating, which is caused by the ”superposition” of sine and sine-squared functions in

equation 5.15. The Fourier spectrum (blue line in figure 5.2c) indicates two distinct frequencies.

Again, one frequency is centered at ν = 1.66 THz. Note, this peak has exactly the same width

(FWHM=0.07 THz) as previously one (green line). The second frequency amounts to 0.83 THZ,

which is half of the first value.

The calculation of transient intensity in figure 5.2b is performed using equation 5.14 that

accounts for the elastically scattered light field. The magenta line shows the result of the fitting

to the data points. The agreement between the measurement and the fit is very good. The

experiment, where the pump and probe beam intensities were exchanged, can be explained in
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5.5 Increased Elastic Field Contribution

Figure 5.2: Transient intensity diffracted from the phonon polaritons with a wavevector magnitude of

q = 790 cm−1 measured with short probe pulses. The data are integrated over the wave-length

range between 794 nm and 795 nm. a) Intensity ratio of the pump and probe beams is

Ipump/Iprobe = 14/3. The signal (green line) is simulated (red line) using equation 5.9. b)

The role of the pump and probe beam is switched and the intensity ratio of the pump and

probe beams is now Ipump/Iprobe = 6/7. The intensity (blue line) is simulated (magenta line)

according to equation 5.14. c) Fourier spectrum of the data displayed in a) and b). d) Sketch

of the pump and probe overlap region.

the following way: the excitation efficiency of the polaritons is reduced because the intensity

of the pump beams is diminished by a factor of 2.3. This leads to a respective decrease of

the Raman scattered light. Simultaneously, the elastically scattered light is increased due to

the higher intensity (by the same factor 2.3) of the probe light impinging on the sample. All

three contributions, the Stokes field, the anti-Stokes field, and the elastically scattered field are

mixed. Thus, the signal shows a single and the double frequency νpp and 2νpp, respectively.

This treatment fully agrees with the mathematical description given by equation 5.14. One

additional measurement where one has to consider the increased elastic field contribution is

shown in figure 5.3a. Two counter propagating phonon polaritons with a wave vector magnitude

of q = 1730 cm−1 are impulsively excited. The probe beam perfectly overlaps with the excitation
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Figure 5.3: Transient intensity diffracted from the phonon polaritons with a wave vector magnitude of

q = 1730 cm−1. The measurements are performed with short probe pulses (∼ 64 fs) and a

perfect pump probe overlap. The data are integrated over the wavelength range between

798 nm and 802 nm. a), c) and d) show different time-windows of the same measurement. b)

Corresponding Fourier spectrum of the three time-windows that exhibit a single frequency

ν = 3.16 THz for the early times shown in a), two frequencies ν = 3.16 THz and ν = 1.58 THz

for the transition regime shown in c), and a pronounced single peak at ν = 1.58 THz for long

times shown by d). e) and f) Simulation of the diffracted intensity where three contributing

fields are considered: Stokes scattered E−, anti-Stokes scattered E+, and the elastic field Eel.

The ratio of the field magnitudes is set to E− = E+ = Eel/100.
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5.6 Homodyne Detection with a Local Oscillator Field

area in the sample. Its intensity amounts to 3/7 of the pump beam. The transient intensity is

monitored for up to 20 ps after the excitation. As shown in figure 5.3a the intensity oscillates for

the first 8 ps with twice the frequency of the phonon polaritons, that is ν = 2νpp = 3.16 THz as

is analyzed by the FFT, which is depicted in figure 5.3b by the red line. This is in agreement

with equation 5.9.

Further, the scattered intensity decays due to propagation and damping effects of two counter

propagating phonon polaritons. For large time-delays, this leads to the condition where the

initially amplitude of the inelastically scattered light becomes of the order of elastic field amplitude

Eel. The data in figure 5.3d are recorded for time-delays larger than 14 ps. They exhibit an

oscillation with a single frequency νpp = 1.58 THz. The green line in figure 5.3b shows the

FFT analysis of this time-window. In this case equation 5.14 that includes the contribution of

elastically scattered light has to be applied to appropriately describe the data.

In the intermediate time-range the transition from one regime to the next occurs. This is

shown in figure 5.3c and the corresponding Fourier transform of this time-window is plotted in

figure 5.3b by the brown line. Two peaks centered at νpp = 1.58 THz and ν = 3.16 THz appears

in the Fourier spectrum, which clearly indicate the occurrence of the fundamental and double

frequency νpp of probed phonon polaritons.

A simulation of the transient signal is depicted in figures 5.3d and 5.3e. The intensity given by

equation 5.7 is calculated under the assumption that three fields incident on the same pixel of the

monochromator: Stokes scattered E−, anti-Stokes scattered E+, and the elastic field contribution

Eel. The ratio of the field magnitudes is set to E− = E+ = Eel/100. Indeed, one first observes

an oscillation of the intensity Isig with twice the frequency (not shown here), which is followed

by the intermediate regime (see figure 5.3d), where the transition occurs. For later times that

are shown in figure 5.3e Isig oscillates with the fundamental frequency. In reality, the analysis of

the transient diffracted intensity with a Fourier transform usually reveals a frequency spectrum

with a pronounced peak at twice the phonon polariton frequency 2νpp and an additional peak at

the single frequency νpp, which is barely recognizable.

5.6 Homodyne Detection with a Local Oscillator Field

In figure 5.4 a situation is visualized where a second probe pulse k4 simultaneously illuminates

the sample. This is transmitted and subsequently detected by the spectrometer together with the

Raman scattered light fields from the phonon polaritons. This additional field acts as a so-called

local oscillator. The intensity on a single pixel of the spectrometer is similar to the one given by
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5 Description of Homodyne and Frequency-Resolved Detection of Light

Figure 5.4: Visualization of the homodyne detection using a local oscillator field incident that points

into the kloc = k4 direction. Three components of the light fields, which contribute to the

measured signal on a certain pixel of the spectrometer that detects the light along the fixed

direction of k4 are shown: the light fields are scattered from both, the left-propagating and

the right-propagating polariton. The local oscillator field is transmitted through the sample.

equation 5.16, except that the local oscillator field Eloc substitutes the elastically scattered field

Eel. The modified equation 5.16 then reads:

I
(6)
sig = |E+ + E− + Eloc|2 (5.16)

with Eloc = Eloc,0 · eiω4t. The evaluation of this equation gives the following expression for the

detected intensity:

I
(6)
sig = (I+0+I−0)e

−2γτ+Iloc,0+2I±0 sin 2(ωppτ)·e−2γτ+2(E+0Eloc,0+E−0Eloc,0) cos(ωppτ+π/2)e−γτ .

(5.17)

This is the same formula as already obtained for case of an increased elastic field contribution in

section 5.5, equation 5.14. In the present case, the amplitude Eloc of the local oscillator field can

be adjusted. Generally, the field Eloc is much higher than Raman scattered fields E±0 and thus

the expression 5.17 can be simplified to

I
(6)
sig = Iloc,0 + 2E±0Eloc,0 cos(ωppτ)e−γτ , (5.18)

under the assumption, that the Stokes and anti-Stokes scattered fields are of the same amplitude

E±0 = E+0 = E−0. The observed transient intensity I
(6)
sig is modulated with the single polariton
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Figure 5.5: Transient homodyne detection of probe light diffracted from the phonon polaritons with the

use of a local oscillator field. The wavevector of the phonon polaritons is set to q = 2300 cm−1.

The probe pulses are temporally short (∼ 64 fs). a) Integrated ISRS intensity without

(red line) and with (green line) the local oscillator field Iloc,0 simultaneously impinging on

the spectrometer. b) Fourier analysis of the transient intensity determines the oscillation

frequency to 4.1 THz (red line) and 2.05 THz (green line) as predicted by equation 5.9

and 5.18, respectively.

frequency ωpp and oscillates around the constant amplitude Iloc,0. Its damping rate is γ. An

example is shown by the green line in the left panel of figure 5.5. The transient intensity oscillates

around the value of the intensity of the local oscillator Iloc,0. The Fourier analysis is shown by the

green line in the right panel of the same figure. It indicates a single phonon polariton frequency

νpp = 2.05 THz, which is expected from the dispersion relation for the polariton wavevector

q = 2300 cm−1. The damping rate amounts to 0.055 THz. The measurement is compared to the

data (red line in the left panel) which are recorded in the usual manner of an ISRS experiment,

without the local oscillator field. The transient intensity oscillates with twice the polariton

frequency 2νpp = 4.1, as is evident from the Fourier analysis shown in the right panel of the

figure 5.5. In this case, the damping rate amounts to 0.1 THz. Both confirm the prediction of

the equation 5.18.
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6 Propagation of Phonon Polariton

Wavepackets

For small frequency values the phonon polaritons are light-like, exhibit small damping and

propagate with light like speeds through the medium. Several groups report the detection

of coherent phonon polariton wavepackets after they propagated a distance of up to several

centimeters in the sample [91]. Sophisticated experiments demonstrate the wave-character of the

phonon polaritons: the propagation of polaritons in patterned materials [92], the interference and

diffraction effects in classical diffraction geometries [93], reflection [94,95] and partial transmission

at the side surface of the sample [96], and guidance behavior in thin slab samples [97]. The

low-frequency properties of phonon polaritons enable the development of compact, integrated THz

spectroscopy cells with optical input and output pulses and no THz propagation in air [53,92,98].

The focus of this chapter lies on the propagating polariton wavepackets which are examined

using a slightly displaced probe region with respect to the excitation spot. The advantages

of temporally short and narrow bandwidth probe pulses are discussed in section 6.1 and 6.2,

respectively. The experiment with short probe pulses reveals that the oscillation of the transient

intensity only appears if the Raman scattered light is superimposed with the elastically scattered

light field from the sample. The experiment with narrow bandwidth probe pulses unambiguously

clarifies that the probe beam is Stokes and anti-Stokes scattered from the same polariton

wavepacket simultaneously. Moreover, the position of the detector allows selecting the propagation

direction of the examined polaritons.

6.1 Observation with temporally short Pulses

The pump pulses were aligned in order to excite phonon polaritons with a relatively small

wavevector magnitude of q = 1050 cm−1 and hence with a small damping. The low damping

ensures that the phonon polaritons exhibit a large propagation distance until it finally reaches

the displaced observation volume. The size of the excitation spot is 70x800 µm2. Figures 6.1b

and 6.1c show the spectrally integrated transient intensities for two exemplary cases of displaced

probe regions. The corresponding Fourier transforms are shown in figures 6.1e and 6.1f. In

comparison, figure 6.1a shows the spectrally integrated transient ISRS data where the pump
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6 Propagation of Phonon Polariton Wavepackets

and probe pulses spatially overlap. The scattered intensity I(τ) oscillates at 2ωpp = 2.2 THz

and is damped with 2γ. I(τ) consists here of a superposition of the Stokes and anti-Stokes light

scattered from both counter-propagating polaritons as discussed in section 5.2. The contribution

of the elastically scattered light from the sample is negligible. The ratio of the signal maxima

and the background is determined to Imax/Iel ≈ 400. The signal decays essentially due to the

intrinsic damping of phonon polaritons in the medium.

Figure 6.1: Spectrally integrated transient ISRS signals from LiNbO3 obtained with short probe pulses.

The excited wavevector magnitude of the phonon polariton is q = 1050 cm−1: a) using the

standard boxcar configuration where the probe beam perfectly spatially overlaps with the

pump beam, b) with a 350 µm to the left side of the excitation area displaced probe spot,

and c) using a 750 µm to the left side of the excitation spot displaced probe spot. (d-f) The

corresponding Fourier transformations of the transient ISRS intensities a-c.

Now the probe area is displaced by 750 µm to the left and is essentially separated from the

excitation region (see figure 6.1c). The scattered intensity I(τ) is modulated at the fundamental

polariton frequency ωpp = 1.1 THz and decays with the damping rate γ. Obviously, only the

left-propagating polariton wave packet enters the observation region. Now the inelastically

scattered light is superimposed with the elastically scattered light from defects and impurities in

the sample. The ratio of the intensity maximum and the background for τ < 0 is Imax/Iel ≈ 2.

The transient intensity can be well described by equation 5.12.

In the intermediate regime shown in figure 6.1b where the probe is only displaced by 350 µm

from the excitation center, the intensity level is still low with Imax/Iel = 2.5. Both frequencies
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ωpp and 2ωpp are observed. This is attributed to the left-propagating phonon polariton moving

through the observation spot whereas the right-propagating polariton leaves this region. Note

again, the leading peak in the ISRS trace that is shown in figure 6.1b is due to the pure electronic,

third-order nonlinearity of the sample. The observation of the phonon polaritons with a displaced

probe region is sensitive to the envelope of the polariton wave packet. In figure 6.1b and especially

in figure 6.1c one can clearly see the slow rise and drop of the intensity as the polariton is passing

through the probe volume. The simulation of such signals has to account for the time-dependent

overlap of the probe beam with the polariton wave packets [7].

6.2 Identification of the Propagation Direction: Observation with

Narrow Band Pulses

In order to unambiguously identify the propagation direction of the phonon polaritons, the

discussed experiment in previous section 6.1 is repeated using spectrally narrowed probe pulses.

The probe beam is spatially displaced to the left by 500 µm, as schematically indicated in

subfigure 6.2a. For a low damping of the phonon polariton and hence a longer propagation length,

a smaller wavevector magnitude of q = 700 cm−1 is chosen. In addition, the probed region is

minimized using a knife-edge which blocks the portion of the probe pulse that overlaps with the

pump region. In this experiment, only the left-propagating polariton qL is probed. In figure 6.2b,

the vector diagram applicable for this measurement is shown. The probe pulse enters along k3,in

and the detector is placed in the k4,out direction.

Only the Stokes scattering accompanied by the creation of an additional polariton qL is allowed,

as evidenced from the contour plot 6.2e. In fact, the plots in figure 6.2g show that immediately

after pumping at τ ≈ 3 ps there still are small contributions of an anti-Stokes scattering from

the right-propagating polariton qR (black line). However, the spectrum for τ > 3 ps exclusively

shows Stokes scattering from the left-propagating polariton qL.

The time-dependence of the Stokes (red) and anti-Stokes (blue) intensities depicted in figure 6.2d

shows a sharp rise at τ = 0 ps of both signals. The time resolution is given by the probe pulse

duration. The blue signal associated with the right-propagating polariton, qR, immediately

fades out due to the direction of the propagation. In contrast, the red signal keeps rising as the

polariton qL moves more and more into the probe region. Finally it decays due to the damping.

To verify that Stokes and anti-Stokes scattering can clearly distinguish between qR and qL,

the roles of k3 and k4 are exchanged as sketched in figure 6.2c. Now, only k4,in impinges on the

same position of the sample. The spectrometer is now placed in the k3,out direction. In this case

only anti-Stokes scattering due to the annihilation of a left-propagating polariton qL is detected.

The transient spectrum in figure 6.2f clearly confirms this.

77



6 Propagation of Phonon Polariton Wavepackets

Figure 6.2: Detection of the left-propagating phonon polariton with the wavevector magnitude q =

700 cm−1. a) The probe spot is displaced by 500 µm and is spatially cut in order to prevent

the overlap of the pump and probe areas. b) Wavevector diagram for the case of Stokes

scattering from qL when k3,in is the incoming probe light and the spectrometer detects the

light along k4,out. c) Wavevector diagram for the anti-Stokes scattering with incoming light

along k4,in and detection along k3,out. e,f) Transient Stokes (anti-Stokes) intensity indicates

the creation (annihilation) of the left-(right-) propagating phonon polariton. d) Transients of

the intensities corresponding to the Stokes (red line) and anti-Stokes (blue line) scattered

light. The transients are determined from the data set shown in e) by integrating over the

wavelengths around λ = 797 nm and λ = 793 nm, respectively. g) Light spectrum around

τ = 0 ps (black line) and for later times (3.8 ps - 7.8 ps) (red line). The blue dotted line is

the spectrum of the incident probe pulse.
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Polaritons

Up to now, the selectivity in the excitation of the polariton modes was restricted by the

conservation of momentum |∆k| = qR/L. The intersection angle Θ of the two pump pulses in

the transient grating geometry determines which mode is excited. The conservation of energy

ωpp = |ω1 − ω2| was less restrictive. This relation requires the two mixed frequencies ω1 and

ω1 to lie within the spectrum of the broad pump pulses. In our case the width amounts to

FWHM ≈ 13 THz. Moreover, if the pulse duration of the exciting laser is shorter than the

oscillation period of the driven lattice mode, τpulse < τvib, the excitation is called impulsive.

Because both pump pulses are spectrally identical, two equal counter propagating phonon

polaritons with a well-defined wavevector magnitude and frequency were simultaneously generated.

However, if both pulses do not have the same spectrum and if for example the frequency ω1 is

always larger than ω2, then only phonon polaritons that fulfill the condition ωpp = ω1 − ω2 will

be generated. Now, in addition to the wavevector selectivity |∆k| = qR/L the frequency of the

excited phonon polariton mode can be selected through variation of the energies ω1 and ω2.

In this chapter, the spectra of both pump pulses, k1 and k2, are modified in order to generate

polaritons which propagate with a well-defined energy into only one direction, as is explained in

section 7.1. In section 7.2 an experiment is discussed where modes that have the same wavevector

but a different energy are selectively enhanced.

7.1 Selective Preparation of a Phonon Polariton Wavepacket

Component

In this section phonon polaritons with the direction qR are selectively prepared. To highlight

the difference to the wavevector-selective excitation with two spectrally identical pump pulses,

which leads to generation of two counter propagating phonon polaritons, first a brief recall of

the experiment with short laser pulses and narrow bandwidth probe pulses follows: the incident

pump pulses k1 and k2 have an identical spectrum, which is shown in figure 7.1b by the black

solid line. In this example, a wavevector of the phonon polariton q = 17450 cm−1 is excited,

whereby the right- and left-propagating phonon polariton is equally likely generated by the
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7 Energy-Selective Excitation of Phonon Polaritons

Stokes scattering process, as depicted in figure 7.1a. A probe pulse with a bandwidth of 2 nm is

incident along the k3 direction. The pump and probe volumes coincide (see the schematic inset

of figure 7.1b). The probe light undergoes Stokes scattering from the right-propagating polariton

and anti-Stokes scattering from the left-propagating polariton. The diffracted light is detected

along k4, as explained in the wavevector diagram in figure 7.1d.

Figure 7.1e is the spectrally resolved intensity trace. For time-delays around 0.5 ps, the

transient spectrum is extracted for further analysis (green line in Fig.7.1f). Stokes and anti-

Stokes lines quantify a frequency shift of ∆ω = ωpp = 6.7 (6.6) THz which indicates the creation

and annihilation of qL and qR.

Next, the spectrum of the pump laser pulses, k1 and k2, is modified by inserting appropriate

bandpass filters into each pump beam path separately (see Fig. 3.2). The spectra of k1 and

k2 are now centered at 795 nm and 810 nm as shown in figure 7.1b by the blue and red lines,

respectively. This corresponds to a frequency separation of ∆ω = 6.5± 2.5 THz which matches

the frequency of the previously excited phonon polariton. Note, in this experiment, the angle

between the pump beams is kept unchanged.

Again, one expects the creation of phonon polaritons via the Stokes scattering process.

Because |k2| < |k1|, only the right-propagating phonon polariton can be excited as depicted in

the wavevector diagram 7.1c. Note, that the bandwidths of the excitation pulses (≈ 4 THz) are

smaller than the frequency ωpp = 6.7 ± 0.2 THz of the phonon polariton. Thus, the excitation

process is no longer impulsive. It is a stimulated Raman scattering process.

It should be noted that all conditions of the probe pulse remain as previously explained.

Figure 7.1g depicts the wavevector diagram which applies for this case. The frequency-resolved

intensity trace (Fig.: 7.1h) clearly indicates that only Stokes scattered probe light from the

right-propagating polariton qR is detected. For time-delays around 0.5 ps, the detected spectrum

is shown in Fig. 7.1f. After rescaling the intensity, both Stokes intensities can be compared. It

is evident that the Stokes peaks (green and brown lines) coincide in their peak positions and

their shapes. This suggests that the same phonon polariton modes are excited either by the laser

pulse with the full and broad spectrum or by selective spectrally narrowed pulses. Furthermore,

it is obvious that one can selectively excite a phonon polariton with a well-defined propagation

direction and wavevector magnitude just by controlling the incident spectral components of the

excitation pulses and the intersection angle.

Next, the relative amplitudes of the electric fields of the excited phonon polaritons and the

efficiency of the generation processes of the phonon polaritons are estimated. In figure 7.2 the

spectrally integrated transient anti-Stokes intensity of light which undergoes Raman scattering

from right propagating phonon polariton is shown. In the case of I1, the polariton is excited

using broad bandwidth pulses (FWHM∼ 30 nm) and in the case of I2 spectrally narrow pump
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7.1 Selective Preparation of a Phonon Polariton Wavepacket Component

Figure 7.1: Selective preparation of right-propagating phonon polariton (PP) with q = 17450 cm−1. a)

Wavevector diagram for the excitation of the left- and right-propagating PP by stimulated

Stokes scattering. b) Spectra of incident laser pulses prepared by the inserted bandpass filters:

initial pump laser pulse(s) (black), pump pulse centered at 795 nm (blue), seed pulse centered

at 810 nm (red), probe pulse at 795 nm (purple), and the diffracted probe pulse (brown)

appears at 781 nm. Inset: The overlap of pump (dark grating) and probe (gray area). c)

Wavevector diagram for the excitation of only right-propagating PP by stimulated Stokes

scattering. d) and g) Wavevector diagram for the probe of generated PPs. e) Transient

Stokes and anti-Stokes intensity indicating the creation and annihilation of left- and right-

propagating PPs. h) The transient anti-Stokes intensity indicates the exclusive preparation of

right-propagating PP. f) Light spectra at τ = 0.5 ps as obtained from (e) and (h). Spectra of

the incident probe pulse is shown by the violet line.
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Figure 7.2: Spectrally integrated anti-Stokes intensity as function of the time-delay as obtained from

the measurements shown in figures 7.1e (I1–excitation with full bandwidth pulses) and 7.1h

(I2–excitation with narrow bandwidth pulses). The integration is performed between 777 nm

and 784 nm in both cases. The ratio of the peak intensities amounts to 1:3.

pulses (FWHM∼ 10 nm) are used for the selective excitation of the right propagating polariton.

In both experiments the probe pulse intensity was the same. The ratio of the peak intensities

amounts to 1:3.

We can estimate the relative field amplitude Epp of the polariton under the assumption that

the diffracted intensities I1 and I2 are proportional to the square of the polariton field amplitude

E2
pp,1(2) ∼ I1(2). For the case of narrow bandwidth excitation, the intensity ratio, I2/I1 = 1/3,

reveals a relative field amplitude of 57%. Alternatively, the relative generation efficiency ηgen

can be estimated from the spectral content of the broad and narrow bandwidth pulses, too. The

bandwidth of the spectra is 30 nm and 10 nm, respectively. The bandpass filters cut out a

Gaussian spectral profile with a transmission efficiency of 90% of the initial intensity. Thus, the

additive intensity of the narrow pulses is reduced to 43%. This reduction of the spectra of the

excitation pulses will lead to a reduced efficiency in the excitation process of phonon polaritons.

Because the polariton field amplitude Epp is proportional to the product of the pump fields

Epp ∼ E1E2 ≈ Ipump, the generated polariton field using pulses with a bandwidth of 10 nm will

be reduced to 43%, too. Obviously, this value is lower than the one obtained from the experiment

here (57%). The difference of the estimated values is due to fact, that not all spectral components

of the initial broad bandwidth pulses contribute equally to the generation process of phonon

polaritons. Indeed, the narrow bandwidth pulses are selected for an effective excitation of the

phonon polaritons with a frequency of ωpp = 6.7 THz.
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7.2 Selective Excitation of higher Phonon Polariton Modes

Here, I discuss experiments where two bandpass filters are used to cut out two different spectral

components of the pump pulses. Because both pump pulses are derived from the same laser

and both spectra almost do not overlap, the duration of the pump pulses is not shorter than

the oscillation period of the driven vibration. The excitation is now non-impulsive, but still a

stimulated Raman process. The spectra of the pump laser pulses k1 and k2 with their center

wavelength of 795 nm and 810 nm, which corresponds to ∆ω = 6.5 ± 2.5 THz, are shown in

figure 7.1b by the blue and red lines, respectively. Here k1 > k2, therefore only the right-

propagating phonon polaritons qR in LiNbO3 are excited as is depicted in figure 7.1c. Further,

the narrow bandwidth probe pulses are used to detect the generated phonon polaritons. The

pump and probe regions overlap. The probe pulses are incident and scatter along the k3 and

k4 direction, respectively. The spectrometer detects only the pulses in the k4 direction. The

conservation of momentum, which applies in this case, is shown in figure 7.1g.

Different normalized anti-Stokes spectra are displayed in figure 7.3. The intersection point with

the right y-axis corresponds to the wavevector magnitude, q, of the probed phonon polariton from

the lowest dispersion branch. The purple open circles indicate the peak position of the spectrum,

as obtained from the fitting analysis. The data confirm the theoretical dispersion relation that is

also plotted as a grey dashed line in the same figure. In the spectra for the wavevector magnitude

q = 3920 cm−1 (green line), 6280 cm−1 (red line) and 8360 cm−1 (cyan line) an additional

peak at ωpp = 8.1 THz is observed. These polariton states are allowed in this frequency and

wavevector region as predicted by the dielectric function of LiNbO3 introduced in section 2.2.3.

The measured frequency of 8.1 THz corresponds to the frequency of the second TO mode in

LiNbO3, which has a frequency of 8.25 THz (275 cm−1). For the first time, this mode is detected

here using the ISRS method. Even the implementation of the so-called heterodyne detection

scheme [7, 66] using a local oscillator field failed to detect this mode, because of its relatively

small oscillator strength. The square of the ratio of the oscillator strengths of the first and second

TO mode, (S2/S1)
2 ≈ (16)2, approximates the relative amplitudes of the scattered intensities

from the phonon polaritons of the first and second branch of their dispersion relation. The square

in the expression is due to the fact, that the coupling to the light field is considered twice: first in

the excitation and subsequently in the probe process. In a common ISRS experiments with short

probe pulses the scattered intensity from the second mode will be covered under the detected

intensity scattered from the first mode because of the large difference in the oscillator strength

of the two modes.

The probe with narrow bandwidth pulses observes phonon polaritons that belong to the second

branch of the dispersion relation of the polaritons in LiNbO3, because of the two following

reasons: the scattered photons from the polariton modes which belong to the first and second
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Figure 7.3: Transient normalized anti-Stokes spectra of narrow-band probe pulses scattered from the

phonon polaritons in LiNbO3 for different wavevectors, q. The position of the intensity peak

is indicated by the purple open circles. Theoretical dispersion curve (gray dashed line). Three

spectra exhibit an additional peak around 8.1 THz.

branch are separated in their energy and are detected by different pixels of the spectrometer.

Further, by setting the difference frequency of the exciting laser pulses to ∆ω = 6.5 THz and the

wavevector of the polariton to ∆k = q = 3920 cm−1 the energy and momentum of the second

mode are better matched than the ones of the first mode, as it is visible from the green line in

figure 7.3. The frequency of the lower mode amounts in this case to 4 THz, which is obviously

smaller than the difference frequency ∆ω = 6.5 THz.

For larger wavevector such as q = 21700 cm−1, no additional peak is observable (blue line in

figure 7.3), because now the selected energy ∆ω = 6.5 THz is resonant with polariton mode of the

lower polariton branch, which covers the signal of the second mode. Note, the anti-Stokes spectra

are normalized to the peak intensity of the lower lying mode, for a better visualization of the

ration of the intensities of the first and second peak. Thus, the intensity of the second mode seems

to disappear. Obviously, for higher selected wavevectors the signal of the first mode becomes such

intense, that the second mode can not be observed anymore. The complementing measurements

for smaller wavevectors could not be conducted because the insertion of the bandpass filters was

not possible without disturbing the other laser beams. In conclusion, by setting the difference

frequency of the exciting laser pulses to ∆ω = 6.5 THz and the wavevector of the polariton to

∆k = q = 3920 cm−1 it could by demonstrated that the mode at ωpp = 8.1 THz is selectively

enhanced, as shown in figure 7.3 as a green line. Simultaneously, the mode of the lower branch

of the dispersion relation of phonon polaritons is suppressed, although it couples much stronger

to the light field, according to the ratio of the oscillator strengths [27].
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Phonon Polaritons

The dispersion relation of phonon polaritons in LiNbO3 was measured by different light scattering

methods such as forward Raman scattering [73], stimulated Raman gain [41, 42], ISRS [7, 46, 79],

and partially by terahertz time domain spectroscopy [99, 100] where the accessible frequency

range amounts to only a few terahertz. The experimental results from the previously cited

publications where interpreted in the framework of the common harmonic oscillator model of

the dielectric function. The dispersion relation is subsequently calculated from the relation

c2q2/ω2 = ε(ω). Most of the experimental findings confirm this model [7, 41,42,46,79,99–101].

However, it is important to highlight the fact that in most of the cases the experiments are

conducted in the so-called polariton regime. This range is in the vicinity of the avoiding crossing

point that is determined by the simultaneous equality of the wavevectors klight = kTO−phonon

and the energies ωlight = ωTO−phonon. In this regime, the terahertz light couples to the polar

lattice mode and the newly originating coupled mode is the so-called phonon polariton [102]. If

one excites wavevectors with relatively large magnitudes, the previously discussed model that

describes the polariton dispersion relation seems to break down. The reported data from a

forward Raman scattering experiment [73] indicates such a case.

This chapter is structured as follows: section 8.1 presents the observation of the lower branch of

the dispersion relation of the phonon polaritons which is measured with narrow bandwidth probe

pulses for extended wavevector magnitudes. In this section, the observation of phonon polaritons,

which belong to the forth phonon mode in LiNbO3 at 18.4 THz, and which are exclusively

measured with narrow bandwidth probe pulses, is discussed, too. Next, the extended data of the

polariton dispersion relation are presented in section 8.2. Then the analytical expression of the

dispersion relation is introduced in detail and some limiting cases are discussed in section 8.3.

Hereafter, the index of refraction for the terahertz region is determined from the data. Next,

section 8.4 compares the calculated and measured dispersion relations. The limits of the model

of the harmonic oscillator are pointed out in section 8.5. The dispersion relation is fitted using a

fit function and the resulting parameters are analyzed in section 8.6. The physical meaning of

the determined parameters and the whole procedure is scrutinized. In the next section 8.7 the

response function of the Raman scattering experiment is introduced according to the derivation
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of Barker and Loudon [6] and a reduced damping factor Γ in the dielectric function is accordingly

introduced. The recalculation of the dispersion relation with a reduced damping constant Γ is

finally compared to the measured data.

8.1 Mapping the Dispersion Relation of Phonon Polaritons with

Narrow Band Pulses

In this section the dispersion relation of phonon polaritons in LiNbO3 is mapped out with narrow

bandwidth probe pulses. The wavevector of phonon polaritons is selected by tuning the crossing

angle, Θ, of the temporally short (∼ 64 fs) and spectrally broad pump pulses. Impulsively

excited counter-propagating polariton wavepackets are then probed by a delayed laser pulse

which undergoes stimulated Stokes and anti-Stokes scattering. The transient spectrum is detected

using a spectrometer. Because the spectrum of the probe pulses is extremely narrow (∼ 2 nm),

the frequency of the generated phonon polariton and the light shift of the scattered light are

directly observable.

In figure 8.1a, the spectra of the pump (red) and probe (pink) pulses are shown. Several

normalized intensity spectra of the diffracted probe light are shown in figure 8.1b. Stokes and

anti-Stokes peaks indicate the creation of left-propagating and annihilation of right-propagating

phonon polaritons. The frequency shift of the probe light is a direct measure of the frequency of

the quasi particle, ωpp,L
R

= ∆ω±. The wavevector magnitude, q, of the probed phonon polariton

is indicated by the intersection point of the each spectrum with the y-axis and red dots indicate

the coordinates of each (q, ωpp) pairs. The measurement exhibits an excellent agreement with

the theoretical dispersion curve that is drawn as blue line in the same figure.

Because both pump pulses k1 and k2 have the same spectrum and the excitation process is

symmetric, the same polariton modes of the frequency ωpp for right- and left-propagating phonon

polaritons are generated. As discussed in detail in section 4.4 the narrow bandwidth probe pulses

are sensitive to a subset of these excited spectra. This is experimentally proved by the Stokes

(red dots) and anti-Stokes (blue dots) frequency shifts which are plotted together in figure 8.1c.

Within the error bar, we observe a very good agreement of the Raman frequency shifts and the

theoretical dispersion shown by the gray line.

Narrow bandwidth probe pulses allow us to map out the dispersion relation toward larger

wavevectors compared to the common ISRS studies using only spectrally broad and temporally

short probe pulses. Even much larger magnitudes of the polariton wavevectors can be studied

by simply increasing the intersection angle Θ of the pump pulses. In principle, the temporal

resolution of the narrow bandwidth probe pulse does not limit the observed polariton frequencies.

Instead, the limitation is given by the excitation pulse duration. One exemplary measurement
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Figure 8.1: Measured dispersion relation of phonon polaritons in LiNbO3. a) Spectra of the used pump

(red) and probe pulses (pink). b) Spectra of the scattered narrow bandwidth probe pulses (dark

green lines) for various polariton wavevectors q show that the excited counter-propagating

phonon polaritons are present in the probe volume. The intersection point with the y-axis

of each spectrum indicates the wavevector magnitude, q, of the probed phonon polaritons

and the spectral position of the intensity peak versus the polariton wavevector magnitude

is indicated by the red open circles. For comparison, the calculated dispersion relation of

phonon polaritons in LiNbO3 is plotted by the blue dotted line. c) The same data as in b)

but the Stokes (blue circles) and anti-Stokes (red circles) frequency shifts versus wavevector

of the phonon polariton, q are plotted together. The calculated dispersion relation is shown

by the gray line.

that confirms this statement is shown in figure 8.2. The spectrum of the Raman scattered light

from the impulsively excited phonon polaritons with the wavevector of q = 29500 cm−1 is shown

by the red open circles and the incident narrow spectrum with a bandwidth of FWHM = 2 nm

(∼ 1 THZ) is depicted by the green open circles. Note, the x-axis indicates the frequency shift of

the scattered light relative to the incident one. We observe four different intensity peaks, which

correspond to the Stokes and anti-Stokes scattering of light from the phonon polaritons with the

frequency of ωpp = 7.3 THz and from the additional phonon polaritons with the frequency of

ωpp = 18.4 THz. The polaritons with the higher frequency belong to the branch of the dispersion

relation which approaches the forth TO phonon mode in LiNbO3. These polaritons are exclusively

detected by probe pulses with a narrow bandwidth. Obviously, the bandwidths of the excitation

pulses is sufficient to generate phonon polaritons with the frequency of ωpp = 18.4 THz. Indeed,

the spectral width of the excitation pulses amounts to ∼ 17 THz, if the width is assumed for

1/e of the spectrum. Thus, there is still a small amount of spectral components in the broad

bandwidth pulse, that can mix and coherently excite phonon polaritons.

Using short pump and probe pulses with narrow bandwidths allows to observe higher polariton

branches and subsequently allows to confirm the dispersion relation of phonon polaritons in
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real samples where several TO phonon are involved. In the following sections, the discussion is

extended and focuses on the case of LiNbO3 where four TO phonon modes are present.

- 2 0 - 1 0 0 1 0 2 0
0 . 0
0 . 2
0 . 3
0 . 5
0 . 7
0 . 8
1 . 0
1 . 2

h i g h e r  b r a n c h

 

 

int
en

sity
 [a

.u.
]

f r e q u e n c y  s h i f t  [ T H z ]

 i n c i d e n t  s p e c t r u m
 R a m a n  s p e c t r u m

h i g h e r  b r a n c h

Figure 8.2: Transient spectrum of Raman scattered light from the impulsively excited phonon polaritons

in LiNbO3 with a wavevector of q = 29500 cm−1 (red open circles). The spectrum of the

incident probe pulses is shown by the green open circles. The intensity peaks at ±7.3 THz

indicate anti-Stokes and Stokes scattered light from the phonon polaritons. These phonon

polaritons belong to the lower branch of the dispersion relation. The intensity peaks at

±18.4 THz indicate anti-Stokes and Stokes scattered light from phonon polariton which

belong to the upper branch of the dispersion relation, which approaches the TO phonon mode

with the frequency ωTO,4 = 18.9 THz.

8.2 Extended Dispersion Relation of Phonon Polaritons

The frequency ωpp(q) of the phonon polariton is deduced from both, the narrow band probe

pulse and the short probe pulse experiments. All measured points of the polariton dispersion in

LiNbO3 are plotted in figure 8.3 as dark-blue circles. All frequencies which are higher than the

frequency ωT,1 of the first TO phonon are solely measured with narrow band pulses. Additionally,

the frequencies around ωpp = 8.1 THz are measured by exciting exclusively the right propagating

polaritons as explained in section 7.2.

The data points obviously indicate three different regions of the dispersion relation: the

lower polariton branch which asymptotically approaches the frequency of the first TO phonon

mode in LiNbO3 at ωT,1 = 7.55 THz, polariton frequencies which lie immediate to the second
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8.3 Model of the Perturbated Dielectric Function

phonon mode ωT,2 = 8.2 THz, and frequencies which belong to the upper polariton branch that

asymptotically approaches the fourth TO phonon mode with the frequency ωT,4 = 18.9 THz.

Note, no signature of the third phonon mode with the frequency ωT,3 = 10 THz is observed in

these experiments, because this mode is relatively weak.
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Figure 8.3: Measured and theoretical dispersion relation of phonon polaritons in LiNbO3. The data

obtained with temporally short and narrow bandwidth probe pulses are shown together by

the blue dots. The black and the red lines show the predicted dispersion relation according to

equation 8.1 with parameters taken from an infrared reflectivity measurements [27] (black

line) or from the conventional Raman measurements [28] (red line). Table 8.1 lists the used

parameters.

8.3 Model of the Perturbated Dielectric Function

The measured data can be compared to the theoretically predicted dispersion relation of the

phonon polaritons.1 According to the equations 2.3 and 2.4, the real part of the polariton

wavevector has the form

Re [q(ωpp)] =

(
ωpp
c0

)
Re

(ε∞ +

4∑
i=1

Siω
2
T,i

ω2
T,i − ω2

pp − iΓiωpp

)0.5
 , (8.1)

1Because of the relatively large thickness of the sample (∼ 0.5 mm), waveguide effects are not important in this

work.
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8 Measurement of the Dispersion Relation of Phonon Polaritons

where Si is the oscillator strength of the i-th TO mode, ωT,i is its resonance frequency, Γi

is the damping constant of the i-th TO mode, and c0 is the light velocity in vacuum. ε∞ is

the high-frequency contribution to the dielectric constant. It accounts for the contribution of

higher-lying phonon modes outside of the measurement range [73] and for all purely electronic

interband transitions [27].

Next, a simplified expression for the real part of the polariton wavevector is introduced. In the

case where only the lower polariton branch is considered the contribution of all other modes can

be expressed by an effective dielectric constant εeff . Equation 8.1 simplifies to

Re [q(ωpp)] =

(
ωpp
c0

)
Re

(ε∞ + εeff +
S1ω

2
TO,1

ω2
TO,1 − ω2

pp − iΓ1ωpp

)0.5
 . (8.2)

This expression was used in the works by Wiederrecht [79] and Crimmins [7] where the predictions

were consistent with the obtained data. The linear part of the polariton dispersion relation

is determined by the low-frequency dielectric constant, ε0, which consequently determines the

velocity, cTHz = c0/
√
ε0, of terahertz light in LiNbO3. It can be obtained from equation 8.1 or

8.2, if the frequency ω approaches zero:

lim
ω→0

ε(ω) = ε0 = ε∞ +

4∑
i=1

Si. (8.3)

By fitting a linear slope to the data shown in figure 8.3 which were measured at low frequencies,

the low-frequency dielectric constant is determined to ε0 = 27.35. This corresponds to a refractive

index nTHz = 5.23. A reference value of ε0 is inferred for example from a measurement using

terahertz time domain spectroscopy. Kojima determined ε0 = 27.6 [99] which agrees well with

the obtained value in this work.

8.4 Calculation of the Dispersion Curve

Now, let us proceed with the calculation of the dispersion relation using equation 8.1. The

parameters from reference [27] which were obtained with an infrared reflectivity measurement are

listed in the first column of table 8.1. The predicted low-frequency dielectric constant (ε0 = 24.4)

is 9% smaller than the one determined in this work. Note, in the publication of Barker and

Loudon [27] there is a confusing disagreement concerning the value of the dielectric constant ε0:

on the one hand, the sum over all noted oscillator strengths Si and ε∞ gives ε0 = 24.4 as written

in table four of reference [27]. On the other hand, the authors discuss in their paper a value of

ε0 = 26.0 which is closer to the value determined in this work.

The black line in figure 8.3 shows the function obtained from the calculation using equation 8.1

with the parameters listed in the first column of table 8.1. In the lower branch of the dispersion,
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8.4 Calculation of the Dispersion Curve

the model (prediction 1) suggests the appearance of points only up to q = 16500 cm−1. The

second mode is extremely weak in this model and in the fourth branch the curve does not exceed

q = 24000 cm−1.

i υ γ S υ γ υ γ S

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

1 252 21 16.0 252.9 19.9 249.7 3.28 19.65

2 276 14 1.0 277.1 11.1 276.8 5.8 2.81

3 333 25 0.16 335.5 5.8 335.2 40 0.3

4 634 34 2.55 633.9 20.0 634.2 30 5.0

ε∞ = 4.6 ε∞ = 3.97

Table 8.1: Room-temperature central frequency υ, line width γ, and absorption strength, S, of the four

TO phonons in LiNbO3 which are polarized parallel to the c-axis. First column: parameters

are obtained from an infrared reflectivity measurement in Ref. [27], second column: parameters

are obtained by an fit-analysis of the Raman scattering data from Ref. [28] (as previously

discussed in section 2.2.2), third column: parameters determined by the optimization of the

simulation to the measured data shown in figure 8.5 by the green line.

The same calculation using equation 8.1 and inserting the parameters taken from the analysis

of a conventional Raman spectrum (see section 2.2.2) from reference [28] is depicted by the

red line in figure 8.3. The parameters extracted from the Raman spectrum are given in the

second column of table 8.1. In contrast to the dispersion curve that was derived using infra-red

reflectivity data, the new dispersion curve with included Raman scattering data exhibits a clear

feature at the second TO phonon frequency of 8.13 THz. However, the lower dispersion branch

describes the data not as well as the previous model for wavevectors larger than 9000 cm−1. The

fourth branch extends to much larger wavevector magnitudes because of the smaller damping

constant Γ4 in this case.

It is important to note that the parameters, which are used for the calculation of the dispersion

relation, were extracted either from Raman scattering or from infrared reflectivity measurement.

One can argue, if these parameters are applicable to the description of the dispersion of phonon

polaritons. The result from Raman scattering provides a peak width which corresponds to an

average life time of thermal phonons. This is the time between two scattering events of the

phonon with the thermal phononic bath and defects in the crystal [32]. However, the measured

wavevectors of the phonons are typically on the order of k ≈ 3 · 105 cm−1 which is much larger

than the wavevector of phonon polaritons q ≈ 8000 cm−1 in LiNbO3. It is known that the
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8 Measurement of the Dispersion Relation of Phonon Polaritons

damping of the phonons exhibits a dependence on the wavevector magnitude [32], which is

correlated to the spatial distance of defects and impurities. Once the wavelength of a phonon

is comparable to the distance between the scattering centers, the observed damping increases.

However, no reports of this behavior of the damping in stochiometric and congruent lithium

niobate sample are known. Thus, the damping can be taken from the data obtained with

conventional Raman scattering.

Next, I will focus on infrared reflectivity measurement and review the subsequent data analysis.

The measured quantity in the reflectivity measurement is the frequency-dependent light intensity

R(ω) reflected from the sample of interest. R is called reflectivity or sometimes reflectance and

is related to the complex index of refraction N = n+ iκ via the Fresnel formula for reflection at

normal incidence [103]

√
R = r = (n+ iκ− 1)/(n+ iκ+ 1) = |r|eiφ , (8.4)

where |r| is the amplitude of the E-field of the reflected light, φ is the phase, and n, κ are

the index of refraction and the extinction coefficient, respectively. In an infrared reflectivity

experiment the relative intensity of the reflected light is measured and thus the phase φ remains

initially unknown. In order to obtain the phase φ Kramers-Kronig transformation is applied to

the measured values of R. This allows to relate the phase φ(ω) and the measured amplitude |r|
according to [104]

φ(ω0) =
2ωi
π

∫ ∞
0

ln |r(ω)|
ω2 − ω2

i

dω . (8.5)

This integral is usually solved numerically and appropriate extrapolation formula have to be

used for the low and high-frequency limits. As soon the phase φ(ω) is calculated, the complex

index of refraction N(ω) can be determined from the Fresnel formula given in equation 8.4

and afterwards the imaginary part of the dielectric function εi(ω) = 2n(ω)κ(ω). Hereafter, the

calculated curve εi(ω) is analyzed to obtain the central frequency ωi, the strength Si, and the

damping Γi of the contributing phonon modes. The oscillator strength Si of the i-th mode is

conveniently determined from the area under the εi(ω) curve [103] by the relation

Si =
1

π2ωi

∫
nκ dω . (8.6)

According to Thomas and Hopfield the accuracy of this procedure for estimating Si is about

10-20% [105]. The requirement is that the resonances are sufficiently far apart so that the mutual

interaction of the modes is negligible [104]. In order to obtain the frequency ωi and the damping

constant Γi, a classical oscillator model has to be fitted to the εi(ω) curve [27, 106]. In this case,

the damping constant Γ is related to the width of spectral peak and thus it is equal to the value

which is used for the calculation of the polariton dispersion relation.
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8.5 Limits of the Model of the Phonon Polariton Dispersion

One question remains open: The analysis of the infrared reflectivity data does not take

into account any interaction of the irradiated light with the phonon polariton modes. It only

considers the interaction with discrete and purely optical phonon resonances and thus may not

accurately describe the measurement. The reflectivity data from LiNbO3 obtained by Barker

and Loudon [27] do not show evidence for such a discrepancy. But the reflectivity measurement

of LiTaO3 exhibits a pronounced disagreement between the measured data point and calculated

curve as reported in reference [107]. This may be a signature for the limitations of this analysis.

Figure 8.4: Near-forward Raman scattering measurement (black dots) of the higher branch of the dispersion

curve of the phonon polaritons in LiNbO3 published by Puthoff et al. [73] The dashed line

is the calculated dispersion curve with the parameters listed in the first column of table 8.1

which are taken from reference [27]. The solid line shows the same calculation, but with a

very small damping value Γ, as predicted by Barker and Loudon in reference [6].

8.5 Limits of the Model of the Phonon Polariton Dispersion

One may ask where the model, which describes the polariton dispersion, starts to break down. A

possible answer to this question is discussed by Puthoff et al. in reference [73] who published

data which were obtained by near-forward Raman scattering in LiNbO3 and are reproduced in

figure 8.4. The authors examined the higher polariton branch shown by the black dots which at first

follows the drawn theoretical dispersion curve shown as dashed line and hereafter asymptotically

approaches the purely mechanical phonon branch with the frequency ωT,4 = 628 cm−1 (18.8 THz).

The same situation seems to occur for the lower polariton branch which is investigated in the

present work and are shown in figure 8.5.

In the main range of the dispersion relation the mechanical vibration and the infrared-field

generated by the lattice vibration propagate through the crystal in-phase and the theoretical

dispersion relation of phonon polaritons applies. For much higher wavevectors, the dispersion
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8 Measurement of the Dispersion Relation of Phonon Polaritons

is determined by only the mechanical vibration which is nothing else than a phonon. The

infrared-wave and the mechanical vibration exhibit a phase mismatch and are not longer coupled

in this frequency range. But the situation is even more complicated because an intermediate

regime is found where the crossover from the phonon polariton to the purely phonon-like behavior

takes place.
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Figure 8.5: Measured and simulated dispersion relation of phonon polaritons in LiNbO3. The experimental

data are shown by the blue dots and are the same as displayed in figure 8.3. The green line

shows the simulation according to equation 8.1. The optimized parameters are listed in the

third column of table 8.1. The orange line is a prediction using parameters from a reflectivity

measurement [27] but with ten times smaller damping rates Γi = 1/10 · ΓIR according to

Barker and Loudon [6].

8.6 Simulation of the Phonon Polariton Dispersion

The simulation of the dispersion relation is shown as the green line in figure 8.5 and exhibits a good

agreement with the measured data. The curve extends to the data points with a large magnitude

of the polariton wavevector. The analysis function is given by equation 8.2. The oscillator

strength, frequency and damping where extracted with a fit routine, where the parameter space

has been limited by physically reasonably boundaries. The obtained fit parameters are listed

in the third column of table 8.1. In particular, the variation of each TO phonon frequency ωT,i

was fixed to ∆ωT,i = ±0.3 cm−1 because it is well known that the exact value is very sensitive

94



8.7 Discrepancy of the Data and Theoretical Predictions

to temperature [21], the exact composition [17,18] and purity of the sample. The value of the

high-frequency dielectric constant, ε∞, is sensitive to the composition and purity of the sample.

Further it is an extrapolated value which strongly depends on the range of the measurement

data and the extrapolation method. Thus, the limits of ε∞ was set to ± 0.2.

The simulation determines the low-frequency dielectric constant to ε0 =32.2, which is 16%

larger than for example measured by Kojima [99]. The simulation yields larger values of the

oscillator strengths than obtained from the reflectivity measurement [27], but they seem to be

reasonable. The observed damping rate Γ1 = 3.28 cm−1 is very close to the value of Γ1 = 3.4 cm−1,

which was reported by Schwarz and Meier from their stimulated Raman gain measurements in

LiNbO3 at 77 K [42]. Further, the determined damping rates Γ1 and Γ2 (5.8 cm−1) from the

simulation here exhibit a significant deviation: Γ1 is 6.5 times smaller and Γ2 is 2.5 times larger

than the values reported by Barker and Loudon [27]. Thus, the determined parameters should

be interpreted with caution.

8.7 Discrepancy of the Data and Theoretical Predictions

The discrepancy between the obtained data points and the theoretical predictions of the dispersion

relation of the phonon polaritons was in detail examined by Barker and Loudon [6]. In their

paper, a coupled two oscillator model was introduced to describe the polar lattice in the presence

of mechanical and electromagnetic waves. They define a general response function F which

describes the response of a polar mode in a dielectric material to an external force caused by a

light field. For a phonon polariton the response function takes the form

F = 1/((q2c2/ω2)− ε(ω)) . (8.7)

Here the dielectric constant is defined as in equation 2.4. The maximum of the imaginary part of

F indicates the frequency of the polariton mode itself that is observed by a Raman light scattering

experiment. Furthermore, Barker and Loudon show that in most experimental cases–which are

applicable as well to the present work–the measured dispersion relation is well described by

the same dielectric function as previously discussed (see equations 2.4 and 8.1), but with much

smaller and almost negligible damping constants Γi. They proved this finding by a comparison

to the data from the forward Raman scattering experiment on phonon polaritons in LiNbO3

which was reported by Puthoff et al. [73]. The black solid line which was calculated using the

model of Barker and Loudon asymptotically approaches towards the fourth TO phonon branch

in LiNbO3 at 628 cm−1 as shown in figure 8.4.

In figure 8.5 another calculated curve is shown by the orange line. In this case, the damping

rates are set to ten times smaller values than determined by the infrared reflectivity [27]. I obtain

a good agreement of the prediction and the measured data for all detected phonon polariton
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8 Measurement of the Dispersion Relation of Phonon Polaritons

dispersion branches in LiNbO3. It should be noted that in figures 8.1b and 8.1c the gray lines

depict the calculated dispersion relations which already account for the fact that the damping

rate Γ is negligibly small.

Note, the conclusions of the findings of this chapter are later presented in the end of chapter 9

in section 9.6. This is done to emphasize the close connection of the complex dispersion relation

of phonon polaritons: the determined frequency-dependent damping of phonon polaritons is

directly related to the imaginary part of the phonon polariton wavevector.
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9 Frequency-Dependent Damping of Phonon

Polaritons

Advances in the efficient generation of ultra-short terahertz pulses was essential for the develop-

ment of terahertz time domain spectroscopy [108,109]. Very recently, the generation of intense

terahertz pulses with only one or a few-cycles via optical rectification in non-linear crystals was

demonstrated [9, 110]. Peak fields amplitudes of up to 400 kV/cm were achieved [111]. Such

large field amplitudes open new perspectives in non-linear terahertz spectroscopy [9] and enable

an intense and direct excitation of lattice modes in solid samples [112].

Because of the high non-linearity, a relatively low absorption in the terahertz region, a large

bandgap (∼ 3.7 eV), and a high optical damage threshold in the visible range, samples of LiNbO3

and its doped species show excellent suitability for the generation of high power ultra-short

terahertz pulses [8, 48, 49, 56, 113, 114] via optical rectification of femtosecond laser pulses. In

LiNbO3 and in other used polar dielectrics the electromagnetic terahertz field propagates as a

phonon polariton and can be coupled out into free space. Besides the pulse tilting and phase

matching arguments [48,54], the absorption or damping of the phonon polaritons is crucial for

the actual emitted field amplitudes and power of terahertz radiation [113]. In this context, the

knowledge of frequency-dependent damping of phonon polaritons is of special importance. The

frequency-dependent damping of the phonon polaritons in samples of LiNbO3 with different

stoichiometry and doping was investigated with stimulated Raman gain and conventional Raman

scattering [42,115,116]. The polariton damping was also determined by ISRS [7] and by terahertz

time-domain spectroscopy [99, 100] in the linear regime of the dispersion relation, that is for

small frequency values, too. These experimental findings cannot be well described by a simple

model that includes a single polar phonon mode with an eigenfrequency ωT,1 and a damping

constant Γ1. These assumptions result in the dielectric function

ε(ω) = εeff + S1ω
2
T,1/(ω

2
T,1 − ω2 − iωΓ1) , (9.1)

where S1 and εeff are the oscillator strength and the effective high-frequency dielectric constant,

respectively. In order to include additional contributions that may lead to experimentally

observed frequency-dependent increase of the observed polariton damping, the simple model has

to be extended as will be explained in the following.
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In section 9.1, the room temperature frequency-dependent damping rate of the phonon

polaritons in LiNbO3 as measured by ISRS is presented. In section 9.2, the effect of the

propagation of the phonon polaritons out of the probe volume is discussed and the data are

subsequently corrected for this effect. Next, in section 9.3 the determined damping rate is

compared to a model of the polar phonon mode with constant damping Γ1. In the same section it

is shown that an improvement of the description of the experimental data can be achieved using

a smaller damping constant of the phonon mode which was previously obtained from the fitting

analysis of the dispersion relation in section 8.6. In sections 9.4, the coupling of the polaritons

to the low-frequency defect modes is discussed. Next, the results of this work are compared

with previously reported measurements [7, 42] and the contribution of the relaxational mode

to the damping of phonon polaritons is discussed in section 9.5. Finally, section 9.6 draws a

conclusion and shows that in this work the complex dispersion relation of phonon polaritons in

LiNbO3 is obtained by the simultaneous measurement of their frequency-dependent damping

and wavevector-dependent frequency.

9.1 Damping of Phonon Polaritons Measured with ISRS

The impulsively stimulated phonon polaritons are measured using short and variably delayed

probe pulses. The transient Raman scattered intensity decays according to equation 5.9 with

twice the damping rate, 2γpp. Hence, the data are evaluated with a Fourier analysis where the

half width of the spectral peak corresponds to the polariton damping rate γpp, as it has been

previously discussed in sections 4.2 and 4.3, respectively. The damping rate γpp of the phonon

polaritons in LiNbO3 is plotted versus the frequency ωpp in figure 9.1 using the red and black

squares, respectively. Note, the red data points have been obtained using laser beams with a

spatial width of FWHM∼ 1.2 mm whereas the black data points result from the measurement

with laser beams with a spatial width of FWHM∼ 0.8 mm.

9.2 Polaritons Leaving the Probe Volume

It is known that the phonon polaritons propagate with light-like speeds in the sample. Especially

for small wavevector magnitudes in the linear region of the dispersion relation, the group velocity

in LiNbO3 amounts to vg0.2c0, as previously discussed in sections 2.3.2 and 8.3. Because of their

high velocity, the phonon polaritons leave the probed volume and thus do not longer contribute

to the scattering of the probe light which consequently results in a decrease of the scattered

intensity. To account for this effect the envelopes of the generated phonon polariton wavepacket

and the probe pulse in the relevant dimensions have to be considered during the data analysis.

Assuming an identical Gaussian envelope function for both interacting electromagnetic fields
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Figure 9.1: Propagation effect on the observed damping of the phonon polaritons. a) Frequency-dependent

damping rate, γpp, of the phonon polaritons in LiNbO3 as obtained by ISRS with short probe

pulses shown by the red (width of the laser beams, FWHM = 1.2 mm) and black (width of

the laser beams, FWHM = 0.8 mm) squares. The effect of phonon polaritons leaving the

probe volume is indicated by the orange and brown lines for the case of the widths of the

laser beams of 0.8 mm and 1.2 mm, respectively. Subsequently, the experimentally obtained

data points are corrected for this effect and the resulting data points are shown by the olive

and bright green open circles. b) Zoom into a).

and the relative velocity vg cosβ of the polariton wavepacket with respect to the probe light, the

problem reduces to the calculation of the overlap integral of both Gaussian functions. The full

calculation is presented in appendix (A.2). The decay of the scattered field is proportional to

≈ e−
l

2σ2 , where l is the traveling distance after the excitation and σ is the width of the Gaussian

function. The 1/e life time is then equal to

τ 1
e
(ωpp) =

FWHM√
2 ln 2

1

vg(ωpp) cosβ
. (9.2)

The group velocity vg(ωpp) is calculated using equation 2.5. The damping constant is obtained

from the relation γ 1
e
(ωpp) = 1/τ 1

e
(ωpp). In figures 9.1a and 9.1b the orange and brown lines

represents the result of the calculation for the spatial widths of ∼ 0.8 mm and ∼ 1.2 mm of the
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9 Frequency-Dependent Damping of Phonon Polaritons

laser beam, respectively. From figure 9.1b it becomes obvious that only in the region of small

polariton frequencies the contribution to the observed damping is significant.

In the following, the data can be corrected for the effect of the propagation of the polaritons

out of the observation volume. In figure 9.1a the olive and bright green open circles show the

corrected data points. For very small frequencies the determined polariton damping rate amounts

to γpp = 0.01 THz, which corresponds to an average lifetime of τav = 100 ps. This leads to to a

propagation distance of l = 6 mm. Obviously, for the case of small damping the polaritons can

travel up to several centimeters through the sample [92,117].

9.3 Constant Damping Rate of the TO-Phonon Mode

In this section, the data are compared to the calculated damping rate with parameters obtained

from far-infrared reflectivity measurements [27]. The imaginary part of the polariton wavevector

Im(q) is related to the observed damping rate γpp via the relation γpp = vphIm(q). Further, the

phase velocity is determined by the real part of the wavevector vph = ωpp/Re(q) which is the

velocity of the propagation of a monochromatic plane polariton wave. The phonon polariton

damping is subsequently calculated using

γpp = ωpp
Im(q)

Re(q)
= ωpp

Im[n(ωpp)]

Re[n(ωpp)]
. (9.3)

The analysis of the reflectivity measurement [27] yields Γ1 = 21 cm−1, S1 = 16, and εeff = 8.3.

The corresponding frequency-dependent damping of the phonon polaritons is shown by the

light blue line in figure 9.2. The experimentally determined data points follow the trend of the

calculated curve for low values of ω but above 170 cm−1 (5 THz) the calculated damping rate

increases drastically and implies higher damping rates. A better description of the experimental

data could be obtained with a smaller value of the damping, which is shown by the red line in

figure 9.2 for Γ = 9 cm−1.

Next, this calculation is repeated using parameters obtained from the fitting procedure of the

dispersion relation of phonon polaritons as discussed in section 8.6. The violet line in figure 9.2

shows the results of this calculation with the parameters Γ1 = 3.28 cm−1, S1 = 19.65, and

εeff = 12.08. The result of the calculation seems to be not very sensitive to the exact value

of the damping constant Γ1. Here, all values between 9 < Γ1 < 3 can be used to describe the

behavior of the obtained damping rate of phonon polaritons. To remain consistent with the

results of the analysis presented in previous chapter 8, the discussion in the following will be

based on the results of the fit procedure of the dispersion relation.
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Figure 9.2: Frequency-dependent damping rate, γpp, of the phonon polaritons in LiNbO3 as obtained by

the ISRS experiment using short probe pulses shown as the blue circles. Calculated damping of

phonon polaritons assuming a dielectric function with a constant damping rate Γ1 = 21 cm−1

(light blue line), Γ1 = 9 cm−1 (red line) and the result of the fit procedure of the dispersion

relation with a damping rate of Γ = 3.3 cm−1 (violet line). For the details of the respective

models, see sections 8.4 and 8.6, respectively.

9.4 Coupling to Low-Frequency Modes

The data discussed up to now exhibit in the region 2.5 THz < ωpp < 6 THz signatures of additional

contributions to the polariton damping rate. These signature cannot be explained by the simple

model that assumes only a constant damping Γ1. One possibility to explain the additional

structures observed in the frequency-dependent damping rate of the phonon polaritons can for

example be explained by coupling to low-frequency modes. Here, the mechanical part of the

phonon polariton couples to the so-called defect modes which were previously reported [42,115,116].

In this case the damping constant Γ1 is replaced with an effective damping constant

Γ
(2)
eff = Γ1 +

1

iω

∑
j

Kj

ω2
low,j − ω2 − iωGj

. (9.4)

ωlow,j and Gj are the eigenfrequency and damping constant of the j-th low-frequency mode, and

Kj corresponds to the coupling constant of the phonon polariton to this particular excitation.

Seven low-frequency modes were for example inferred from spontaneous Raman scattering and

also stimulated Raman gain measurement at 77 K in a nearly stoichiometric LiNbO3 sample [42].
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Figure 9.3: Frequency-dependent damping rate, γpp, of the phonon polaritons in LiNbO3 as obtained

by the ISRS with short probe pulses shown by the blue circles. Calculated damping γpp of

phonon polaritons assuming a dielectric function (Eq.: 9.1) with parameters that are obtained

in this work from the fit procedure is shown by the purple line. The measured data are very

well reproduced by a model (green line) that additionally takes into account the coupling of

the mechanical part of the phonon polaritons to low-frequency defect modes [42].

It is appropriate to attribute the observed structures to such modes even though the number of

measured damping values for different q in this work is relatively small. Nevertheless, the result

of the model including seven low-frequency modes which were reported by Schwarz et al. [42] is

shown by the green line in figure 9.3. Accounting for these modes [42] enables a significantly

better description of the observed frequency-dependent damping rate of phonon polaritons. The

central frequencies, oscillator strengths, and damping constants of the modes that were included

in the model calculation are listed in table 9.1.

The included resonance terms given by equation 9.4 also affect the real part of the calculated

wavevector q. However, this influence is smaller than the resolution of the present experiment.

It is important to note that the determined damping constants in this work are comparable–up

to factor of 2–with those reported in [42]. The coupling constants are larger than the ones

previously reported in the same publication. Due to the different temperatures at which the

experiments are performed–in the CARS experiment the sample was cooled down to 77 K, here

the sample stays at room temperature,–one would expect an increase of the observed damping

rates of phonon polaritons [101,116]. This is not the case here. The direct comparison of the
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parameters obtained in this work with those determined by Schwarz and Maier [42] is difficult,

because the attributes of the defect modes, as well as of the phonon modes, are dependent on

the exact composition, degree of purity, temperature, exact growth method and macroscopic and

microscopic stresses in the sample [118–120].

Crystal ωlow G K

LiNbO3 [cm−1] [cm−1] [106cm4]

106 33 (29.7) 9.0 (45.0)

/nearly 125 20 (12) 3.0 (15.0)

stoich. 148 10 (5) 0.8 (7.2)

167 20 (6) 1.2 (8.4)

77 K (300 K) 188 13 (13) 1.7 (1.9)

217 10 (15) 2.0 (9.0)

233 10 (22) 2.0 (2.0)

Table 9.1: Low-frequency modes obtained from spontaneous Raman scattering after Schwarz and Maier [42]

at 77 K in a nearly stoichiometric LiNbO3 sample and from present ISRS experiment at room-

temperature in LiNbO3 (optimized parameters are written in brackets). ωlow denotes the

eigenfrequency, G the damping constant, and K the coupling constant of the low-frequency

mode, as defined in equation 9.4.

9.5 Comparison With Other Measurements and Discussion

The measured damping rate is now compared to two other experimental measurements of the

frequency-dependent damping rate of phonon polaritons. The red squares in figure 9.4a and 9.4b

represent the results of the stimulated Raman gain measurement by Schwarz and Maier [42].

The experiment was carried out at T = 77 K in a nearly stoichiometric LiNbO3 sample. This

experiment exhibits a similar behavior of the damping rate as function of frequency, namely a

first peak is centered around 3 THz, followed by several peaks in the region between 4.2 THz and

6 THz, and a distinct increase of the observed damping rate for frequencies larger than 6 THz.

As expected, the measured damping in the CARS experiment at 77 K is lower than the ISRS

data obtained at room temperature. The temperature dependence of the damping in congruent

LiNbO3 sample was also reported in reference [116].
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Figure 9.4: Comparison of the measured polariton damping rate, γpp, with published investigations of

polariton damping in LiNbO3. a) Measured data during this work are shown by the blue

open circles, the results of the ISRS measurement reported by Crimmins et al. [7] is indicated

by the black open circles, and the data obtained with the Raman gain experiment at 77 K in

a nearly stoichiometric LiNbO3 sample reported by Schwarz and Maier [42] are shown by the

red open circles (A zoom in is shown in b)). The damping rate (ΓTO,1 = 21 cm−1) of the first

TO phonon mode is drown by the orange line.

A different measurement of the frequency depended damping of phonon polaritons is shown by

the black open circles in figure 9.4a. This data are obtained by ISRS by Crimmins et al. at room

temperature in LiNbO3 [7]. Their data show two prominent peaks in the damping rate, γpp. For

low-frequencies, a good agreement of the data obtained during this work and their results is

obtained, albeit for higher frequencies ωpp the reported values are larger than the ones measured

in this work. In reference [7] no further explanation or discussion of the polariton damping in

LiNbO3 is found. However, the authors reference [79] where polaritons in LiTaO3 are studied by

ISRS. In this report a behavior of the polariton damping in LiTaO3, which is very similar to

that in LiNbO3 was observed and explained in terms of a single polariton mode with a constant

damping Γ and a coupling to a relaxational mode. However, the effect of the propagation of

phonon polaritons out of the probe volume was not included in their calculations [79]. This fact

might already account for the higher damping rates observed at small polariton frequencies.

In this work during the analysis of the data, the additional coupling of phonon polaritons to a

relaxational mode was carefully considered. It is known that in ferroelectric materials a low-energy
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relaxational mode–frequently called Debye mode–often plays an important role [83, 116,121–123].

This concept applies well for example in the case of BaTiO3 [124]. Qiu et al. explicitly included

the coupling of phonon polaritons in congruent LiNbO3 to the Debye relaxational mode in order to

describe the observed behavior of the polariton damping even at room temperature [116]. Ridah

et al. studied the temperature-dependence of Raman lines in a nearly stoichiometric LiNbO3

crystal in the temperature range between 300 K and 1100 K [28]. They found evidence for the

appearance of a Debye relaxational mode in their data for temperatures above 450 K. In contrast,

the room temperature Raman spectra do not show any signatures of a Debye contribution to the

scattered intensity. In this work, the ISRS data measured at small polariton frequencies ωpp are

well described by the model of a damped harmonic oscillator and no evidence of a contribution

of the relaxational mode is observed. Moreover, the inclusion of the effect of propagation to

the observed damping can completely describe the obtained damping of the phonon polaritons

at small wavevectors qpp. According to the present data obtained at room temperature, the

coupling of phonon polaritons to a relaxational Debye mode does not play an important role.

9.6 Conclusions

In this chapter, the obtained frequency-dependent damping γpp of phonon polaritons in LiNbO3

was analyzed. The data are well described by a model, which assumes the complex dielectric

function with parameters, as previously determined by the fit analysis of the measured frequency

dependent real part of the phonon polariton wavevector, see the discussion in chapter 8.

The coupling to defect modes, which were previously inferred for example by Schwarz and

Maier [42], is included in the description of the observed sub-structure of the frequency-dependent

damping rate. The measured data can be recalculated in order to obtain the imaginary part of

the phonon polariton wavevector, Im(q), using equation 9.3. In figure 9.5a, Im(q) is shown as

function of frequency by the red dots.

The calculated imaginary part of the wavevector is shown by the violet and green lines,

respectively. The former one corresponds to the violet line in figure 9.3 and the latter one to the

green line in figure 9.3. All data shown in figure 9.5a (red dots) are obtained using short probe

pulses.

On the right hand side in figure 9.5b the real part of the measured (blue and violet dots) and

simulated dispersion relation of the phonon polaritons is shown in the same way as in figure 8.5.

As long as the time resolution is sufficient to resolve the frequency of the phonon polaritons, the

ISRS experiment with short probe pulses yields both, the frequency and the damping of the

impulsively excited phonon polaritons. Thus, the real and the imaginary parts of the dispersion

relation are simultaneously mapped out, as shown in figures 9.5a and 9.5b.
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Figure 9.5: Complex dispersion relation of phonon polaritons as obtained in LiNbO3 with ISRS. The

frequency of the phonon polaritons is plotted versus the imaginary (a) and real part (b) of the

phonon polariton wavevector q. The red, violet, and blue dots are obtained with temporally

short, narrow bandwidth, and with temporally short as well as with narrow bandwidth probe

pulses, respectively. Purple line: calculated damping γpp of phonon polaritons assuming a

dielectric function (Eq.: 9.1) with parameters that are obtained in this work from the fit

procedure of the data shown in b). Green line (in (a)) shows the calculation where additionally

the coupling of the mechanical part of the phonon polaritons to low-frequency defect modes [42]

is taken into account. The orange line is a model using parameters from a infrared reflectivity

measurement [27] but with ten times smaller damping rates Γi = 1/10 · ΓIR according to

Barker and Loudon [6]. The simulation of the real part of the dispersion relation is shown as

the green line in b). The optimized parameters are listed in the third column of table 8.1.

In this work, the time resolution is sufficient to study the lower dispersion branch of phonon

polaritons in LiNbO3. In figure 9.5b, the obtained data that describe the lower branch of the

phonon polariton dispersion relation are measured with both, narrow bandwidth and temporally

short probe pulses, and are shown by the blue dots. Further, the fit-analysis of the real part of the

dispersion relation yields a TO phonon damping constant of Γ1 = 3.28 cm−1, which is significantly

smaller than the damping constants which were measured by infrared reflectivity and Raman
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scattering experiments. The measured frequency-dependent damping rate or the imaginary part

of the phonon polariton wavevector is well-described using the same Γ1 = 3.28 cm−1. This is an

additional prove for the determined damping rate of the TO phonon.

Using narrow bandwidth probe pulses measures and confirms the frequency of higher lying

modes, which exhibit a frequency higher than 7.5 THz and are shown by the violet dots in

figure 9.5b. The dispersion relation is subsequently extended to higher frequencies, where three

additional phonon modes have to be taken into account. Thus, a full picture of the real part of

the dispersion relation is obtained as shown in figure 9.5b.
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This chapter consists of two parts. In the first part preliminary ISRS experiments in ferroelectric

LiTaO3 are discussed. The findings are compared with other ISRS studies of phonon polaritons

in LiTaO3 and further ISRS experiments are suggested. In the second part, an experiment

composed of femtosecond optical excitation and subsequent hard X-ray probing of coherent

phonon polariton wavepackets is proposed. This approach allows the direct monitoring of the

lattice dynamics on femtosecond timescales with sub-nanometer resolution.

10.1 Phonon Polaritons in LiTaO3

The implementation of temporally short laser pulses for the excitation of the phonon polaritons

in the transient grating geometry enables a wavevector-selective and coherent generation of

polariton modes. The detection of the polaritons with narrow band pulses permits an unambiguous

assignment of the frequencies of the observed modes. This is particularly important if several

modes, which belong to different branches of the dispersion relation, are simultaneously excited

because all possess the same wavevector magnitude, which is within the bandwidth of the pump

laser beams. Furthermore, if the probe pulses are temporally short, the Raman scattered light

from different modes would be incident on the same pixel of the spectrometer and thus these

fields would interfere. The interpretation of such a resulting transient intensity may be difficult.

But in case of narrow bandwidth probe pulses, the Raman scattered fields would be detected by

different pixels, because the frequency shifts are different and thus no interference is expected.

In addition to the wavevector selectivity, the frequency selectivity is achieved through inserting

narrow bandpass filters with different central wavelengths into the path of the first and second laser

pump pulse, as described in section 7.1 for the case of LiNbO3. The same experiment is repeated

for a LiTaO3 sample. Like LiNbO3, LiTaO3 is a well-known ferroelectric material [125] and exhibits

non-linear optical properties. Its phononic and polaritonic behavior was intensively characterized

by Raman scattering [19,126,127], forward Raman scattering [75], reflectivity measurements [107],

and in the time-domain by ISRS experiments [47,48,55,79,81,83,91,117,128,129].

In the following, an exemplary measurement of the phonon polaritons in LiTaO3 using the

transient grating geometry is presented. This experiment shows that the wavevector and frequency

selectivity of the transient grating geometry allows us to detect even very weak polariton modes
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as they appear in LiTaO3. The diffracted spectrum, obtained for time-delays for which the

phonon polaritons are still within the probe volume, is shown in figure 10.1. The intersection

angle Θ of the pump pulses was tuned such that a wavevector of qR = 3927 cm−1 is excited.

The spectra of the pump pulses were already depicted in figure 7.1b. The energy difference of

the central wavelengths (795 nm and 810 nm) of the pump pulses corresponds to a frequency

of ω = 6.5± 2.5 THz. Three intensity maxima indicate modes of phonon polaritons with the
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Figure 10.1: The blue line shows the spectrum of Raman scattered light from a selectively prepared

phonon polariton with the wavevector magnitude of qR = 3927 cm−1 in LiTaO3. The spectra

of the pump laser pulses, k1 and k2, with their center wavelengths of 795 nm and 810 nm

are shown in figure 7.1b. The frequency difference of the maxima of the spectra of the pump

pulses corresponds to ∆ω = 6.5±2.5 THz. The measurement is performed with narrow band

probe pulses with a width of 2 nm. Besides the phonon polariton in the lower dispersion

branch (ωpp = 2.6 THz), scattering from two other modes is visible by the peaks centered

at 7.0 THz and 10 THz. The red line shows a fit to the data by a Gaussian function. The

determined FWHM is 1.3 THz, 3.0 THz, and 3.2 THz, respectively.

frequency 2.6 THz, 7.0 THz, and 10 THz, respectively. The lowest frequency corresponds to

a mode of the lowest polariton branch, which is not efficiently excited, because the frequency

difference of the pump pulses is too large (∼ 6.5 THz). This increases the visibility of the higher

frequency modes, which would otherwise be covered by the low frequency mode.

The TO modes in LiTaO3 have the resonance frequencies of ωTO,2 = 7.5 THz, ωTO,3 = 10.7 THz,

and ωTO,4 = 18 THz, as reported in references [107,126]. Crimmins et al. deduce from an ISRS

study [7] several phonon branches with the frequencies of 7.5 THz, 11.5 THz, and 13.0 THz. The
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10.1 Phonon Polaritons in LiTaO3

present experiment, however, does not show any signature of a branch at 13.0 THz (figure 10.1),

because we selectively excite at 6.5 THz. For the same reason, no intense peaks are observed

in the transient spectrum of LiTaO3 for frequencies which are larger than ω = 10 THz. In the

future, the discrepancy of the data reported by Crimmins et al. [7] and the measured data in

this work may be clarified by further measurements with narrow band probe pulses.
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Figure 10.2: Dispersion relation of phonon polaritons in LiTaO3. Data obtained with short probe pulses

and with narrow band probe pulse are shown by the green open circles. Three lower TO

phonon modes as observed in other experiments (see text) are indicated by the green lines.

The predicted dispersion relation is calculated with equation 8.1 and parameters as obtained

from the Raman scattering experiment [126] (red line) and the infrared reflectivity study [107]

(blue line). Parameters are listed in table 10.1.

In figure 10.2, a few measured points of the dispersion relation of phonon polaritons in

LiTaO3 are shown. Two theoretical dispersion curves are calculated using equation 8.1 and

parameters determined from an infrared reflectivity experiment [107] and from a Raman scattering

experiment [126]. They are shown by the red and blue lines in figure 10.2, respectively. The

parameters are given in table 10.1. In the lower part of the dispersion relation both calculations

describe the experimental data from this thesis equally well. The second branch is observed

at the frequency of 7.59 THz (253 cm−1) by the Raman experiment [126] and at 7.23 THz

(241 cm−1) by the reflectivity experiment [107]. The Raman value for the spectral line position

can vary by about 0.15 THz, depending on the exact stoichiometry and purity of the sample.

Thus both predictions are consistent with the data point at 7.0 THz. The detected frequency of
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i υ γ S υ γ

cm−1 (THz) cm−1 cm−1 (THz) cm−1

1 200 (6.0) 30 28 201 (6.0) 10

2 241 (7.2) 2 30 253 (7.6) 0.64

3 357 (10.7) 0.005 11 356 (10.7) 0.18

4 596 (17.9) 2.66 18 600 (18.0) 3.2

5 657 (19.7) 0.34 56

ε∞ = 4.527

Table 10.1: Room-temperature central frequency υ, linewidth γ, and absorption strength, S, of the

four (five) TO phonons in LiTaO3 which are polarized parallel to the c-axis. First column:

parameters are obtained with the reflectivity study reported in [107]. Second column:

parameters are obtained from the Raman scattering experiment reported in [126].

10 THz can be assigned to the third TO mode of LiTaO3 with the frequency 10.7 THz. Both

model calculations fail to describe this data point.

It is worth to note that in this case one would gain no information from a more detailed data

fitting analysis, because of the lack of data points. In summary, these first measurements confirm

the theoretical dispersion relation of the phonon polaritons of the lower dispersion branch in

LiTaO3. Moreover, some of the previously observed higher lying branches are confirmed by the

present experiment. No clear signature of polariton modes were found at 13 THz, which is in

contradiction to the previous report by Crimmins et al. [7].
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10.2 UXRD View on Phonon Polaritons

As already discussed in this thesis, phonon polaritons are quasi-particles that consist of a mixture

of electromagnetic wave and transverse optical lattice mode. The proportion of the lattice part

and electromagnetic wave of the excited phonon polariton depends on the frequency and on the

wavevector of the quasi-particle. A standard all-optical pump-probe spectroscopy experiment

cannot determine this ratio, which thus remains an open question. However, a time-resolved

experiment that is sensitive to the lattice part of the phonon polariton could separate the lattice

and the electromagnetic field part of the phonon polariton. A suitable experimental method for

this question is ultrafast hard X-ray diffraction (UXRD). Since X-ray diffraction in the hard

X-ray regime is predominantly sensitive to the lattice structure, the amplitude of a vibrational

lattice mode and consequently the stored energy in the mechanical part of the excited mode can

be determined.

To follow the ultrafast lattice dynamics caused by phonon polaritons and more general by

optical phonons in time domain, one has to use short X-Ray pulses that are shorter than the

time of one oscillation of the lattice vibration. In the case of the phonon polaritons the relevant

time scale is of the order of sub-picoseconds. Due to the technical challenges related to such

an experiment, only one report on this topic has been published so far. This experiment on

coherent phonon polaritons in LiTaO3 was performed by Cavalleri et al. [130]. A broad frequency

spectrum of phonon polaritons was excited by a single femtosecond laser pulse and subsequently

probed by X-ray pulses derived from the femto-slicing [131] beam line at the synchrotron storage

ring at the Advanced Light Source, Berkely, USA. The measured maximum amplitude of the

mode was relatively small (u = 0.005 Å). This is caused by the distribution of the the laser pulse

energy between between the broad spectral components of generated phonon polaritons. Each

of these modes induces only small transient lattice changes. Because of this very challenging

experimental conditions, this experiment has not been reproduced by other groups, yet. One

possibility to gain a larger amplitude of the lattice mode would be to excite the phonon polaritons

by the wavevector-selective excitation. This will lead to an excitation of a very narrow mode, but

with a relatively high amplitude in comparison to the excitation with a single incident laser pulse,

as was done by Cavalleri. Moreover, the generated spectrum of the phonon polaritons in the case

of the wavevector-selective excitation is much sharper. Thus, the expected transient modulation

could easily be simulated. In contrast, the oscillation frequency (1.5 THz) as determined by

Cavalleri has to be met with caution. It is the central frequency of a very broad spectrum.

Obviously, small transient lattice changes induced by coherent phonon polaritons require high

fluxes of the X-Ray source for their detection. Therefore, measuring the frequency-dependent

vibrational amplitude of the lattice part of the phonon polariton a free electron laser (FEL) [132]

is likely to be most appropriate. In principle, such a measurement is possible at plasma X-ray
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sources (PXS) [133–136] and femto-slicing beam lines [131,137], but the number of photons is

relatively low in this cases (Nfemto = 2 · 106 s−1 and NPXS = 5 · 106 s−1 (on the sample)), which

will require long integration times to resolve relative changes of the diffraction efficiency of the

order of ∆a/a0 = 1−5 ·10−3 [130]. Moreover, PXS and femto-slicing beam lines [131,137] exhibit

a temporal resolution of 100− 200 fs. This sets a limitation for the observation of frequencies of

phonon polaritons of about 2− 2.5 THz. However, the temporal duration of the FEL pulses is of

the order of 10 fs. Certainly, the jitter in the arrival time of the FEL probe pulse and laser pump

pulse is typically much larger and amounts to 100-200 fs. The most recent experiments show,

that the arrival time of each pulse can be measured with an temporal uncertainty of ∼ 40 fs [138],

which sets the limit for the temporal resolution in the UXRD experiment at the FEL. Further,

the energy of the PXS source is not easily tunable but relies on a certain medium (e.g. copper)

to generate X-rays with a characteristic energy. In this case, some of the Bragg reflections that

are sensitive to the transient lattice changes, are not accessible. One has to consider that the

phonon polariton mode is associated with an oscillation of the differently charged ions within the

structural unit cell. The generation of a phonon polariton hence results in a transient modulation

of the structure factor, which defines the intensity of the diffraction peak [32]. This is true, as

long as the scattering wavevector has a component along the direction of the atomic motion.

With the know-how of the selective excitation of the narrow band modes of phonon polaritons in

non-linear crystals that have been accumulated in this work, an experiment at a FEL seems to

be feasible for determining the lattice part of the phonon polariton mode: the dependency of

the vibrational amplitude on the frequency and the optical pump intensity could be studied. A

simultaneous measurement of the generated terahertz fields would enable us to disentangle the

vibrational and the electromagnetic part of the impulsively generated phonon polaritons. This

could in turn provide new insight into the elementary generation process of phonon polaritons

and will be of great interest for the generation of intense and ultra-short terahertz pulses via

optical rectification in polar non-linear crystals.
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A.1 Calculation of the Transient Diffracted Intensity

In chapter 5 the homodyne detection of two counter-propagating phonon polaritons with a

variably delayed probe pulse is derived for the case of the energy-resolved detection scheme,

where a spectrometer is used to detect the transient diffracted intensity. In the following,

equation 5.7

Isig = |E+ + E− + Eel|2 (A.1)

sis explicitly evaluated for the case where all three field amplitudes, namely the Stokes field E−,

the anti-Stokes field E+, and the Rayleigh field Eel, contribute to the detected intensity Isig.

The fields have the form

E− = E−,0 · e−γτ · ei(ω4t−ωppτ−π/2) (A.2)

E+ = E+,0 · e−γτ · ei(ω4t+ωppτ+π/2) (A.3)

Eel = Eel,0 · eiω4t , (A.4)

where ω4 is an arbitrary frequency which is detected by a single pixel of a spectrometer, τ is the

delay-time between pump and probe pulses, γ is the damping rate of phonon polaritons, and the

factors −π/2, +π/2 represent the phase shift that originates by Stokes or anti-Stokes scattering

of light, respectively. Now, equation A.1 is evaluated:

Isig =(E+ + E− + Eel) · (E∗+ + E∗− + E∗el)

⇒E+E
∗
+ + E−E

∗
− + EelE

∗
el + E+E

∗
− + E−E

∗
+ + Eel(E

∗
+ + E∗−) + E∗el(E+ + E−).

(A.5)

All individual terms of the sum can be calculated. The first three terms yield the contribution

Ia = E2
el,0 + (E2

+,0 + E2
−,0)e

−2γτ = Iel,0 + (I+,0 + I−,0)e
−2γτ . (A.6)
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The term Iel,0 yilds a constant offset and the second term shows no oscillatory behavior and

decays exponentially with 2γ. The next two terms in equation A.5, where the Stokes (-) and the

anti-Stokes (+) fields are multiplied, yield

Ib =E+,0E−,0e
−2γτei(−2ωppτ−2π/2) + E−,0E+,0e

−2γτei(2ωppτ+2π/2)

⇒I±e−2γτ (ei(−2ωppτ−π) + ei(2ωppτ+π))

⇒2 · I±e−2γτ cos(2ωppτ + π) = −2 · I±e−2γτ cos(2ωppτ) .

(A.7)

This intensity oscillates with 2ωpp and decays with 2γ. The evaluation of the last terms in

equation A.5 leads to the contribution

Ic =(E0,elE−,0e
i(ωppτ+π/2) + E−,0E0,ele

i(−ωppτ−π/2))e−γτ

+ (E0,elE+,0e
i(−ωppτ−π/2) + E+,0E0,ele

i(+ωppτ+π/2))e−γτ

⇒2Iel,−e
−γτ cos(ωppτ + π/2) + 2Iel,+e

−γτ cos(ωppτ + π/2) .

(A.8)

For the case E−,0 = E+,0, equation A.8 simplifies to:

Ic = 4Iel,±e
−γτ cos(ωppτ + π/2) = −4Iel,±e

−γτ sin(ωppτ) . (A.9)

This expression shows, that the intensity Ic decays exponentially with γ and exhibits a modulation

with ωpp. The total transient detected intensity Isig = Ia + Ib + Ic shows different temporal

evolution depending on the ratio of the filed amplitudes E+,0, E−,0, and Eel,0. In the following

the different cases, that are examined in this work, are discussed in detail:

Negligible elastic field regime

Here, the Rayleigh field is much smaller than the Stokes and anti-Stokes fields, E+, 0 ≈ E−, 0�
Eel,0, hence

I = 2 · I±e−2γτ (1− cos(2ωppτ)) = 4 · I±e−2γτ sin2(ωppτ) . (A.10)

Local oscillator field

In this case, the Rayleigh field is much larger than the Stokes and anti-Stokes fields, E+, 0 ≈
E−, 0� Eel,0, thus

I = Iel,0 − 4Iel,±e
−γτ sin(ωppτ) . (A.11)
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Increased elastic field contribution

This is the case where all three fields have approximately the same amplitudes: E+, 0 ≈ E−, 0 ≈
Eel,0, which finally leads to

I = Iel,0 − 4Iel,±e
−γτ sin(ωppτ) + 2 · I±e−2γτ (1− cos(2ωppτ))

= Iel,0 − 4Iel,±e
−γτ sin(ωppτ) + 4 · I±e−2γτ sin2(ωppτ) .

(A.12)

Displaced probe region

For the case where only one phonon polariton reaches the observation area, the field which would

be diffracted from the other wavepacket is set to zero (E+ = 0, E+, 0 ≈ Eel,0):

I = Iel,0 − 2Iel,−e
−γτ sin(ωppτ) + I−,0e

−2γτ . (A.13)

A.2 Overlap Integral of the Gaussian Envelope Functions

For the calculation of the effective overlap of the probe volume with the generated wavepacket of

the phonon polariton let us assume that the envelopes of both, the probe beam and the polariton

wavepacket can be described by Gaussian functions with approximately the same widths. We

begin with the solution of two useful integrals, namely the integral over the Gaussian function

and over the square of the same Gaussian function:∫ ∞
−∞

e−
x2

σ2 =
√
πσ (A.14)

∫ ∞
−∞

e−2
x2

σ2 =

√
π

2
σ (A.15)

The latter integral describes the situation where the pump and probe volumes are equal and

overlap perfectly. Next, one of the Gaussian functions is displaced with respect to the first one

by a spatial distance l. This overlap integral has the following solution:

E(x) =

∫ ∞
−∞

e−
x2

σ2 e−
(l−x)2

σ2 =

√
π

2
σe−

l2

2σ . (A.16)

A normalized expression is obtained if one divides equation A.16 by A.15. Assuming that the

relative decrease of the scattered field amplitude is 1/e the expression for characteristic distance

l can be derived according to

1

e
= e−

l2

2σ ⇒ l =
√

2σ ⇒ l =
FWHM√

2 ln 2
. (A.17)
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To relate equation A.17 with the group velocity vg of phonon polaritons, the assumptions

vrel = vg cosβ and l = vg cosβ · τ 1
e

have to be made, which define the relative velocity vrel of the

polariton wavepacket with respect to the wavevector k of the probe light and defines the relation

between the characteristic distance l and lifetime of phonon polaritons. The expression for cosβ

was already derived in section 2.21 and has the form cosβ = (1− n2
l

n2
THz

)0.5. The lifetime τ 1
e

is

then calculated from

τ 1
e

=
σ√

2 1
vg cosβ

(A.18)

and the characteristic damping rate is given by

γv =
1

τ 1
e

. (A.19)

In the measurement, this damping rate γv adds to the natural polariton damping rate γpp.

Especially for small wavevectors, where γpp is relatively small and the group velocity vg is

relatively high, one has take this effect into account. The calculated damping rate γv is shown

for two different diameters of the laser beams in figure A.1.
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Figure A.1: Calculated damping rate γv using equations A.19 and A.18 for the case of two the laser beams

with diameter ∼ 0.8 mm (orange line) and ∼ 1.2 mm (brown line), respectively.
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Abbreviations

DFG Difference Frequency Generation

fs femtosecond

FROG Frequency Resolved Optical Gating

gr group

IR Infrared

ISRS Impulsive Stimulated Raman Scattering

PP Phonon Polariton

SFG Sum Frequency Generation

SHG Second Harmonic Generation

sig signal

TG transient grating

TO transverse optical

UXRD Ultrafast X-Ray Diffraction
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[138] Dr. Markus Gühr (Stanford)–private communication.

131





Danksagung

Mein besonderer Dank gilt Professor Matias Bargheer, der es mir ermöglicht hat, mich im Rahmen
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