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Abstract

This publications-based thesis summarizes my contribution to the scientific field of ultrafast
structural dynamics. It consists of 16 publications, about the generation, detection and
coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves.
To generate such high frequency phonons, femtosecond near infrared laser pulses were
used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As
a consequence the heated regions of such a nanostructure expand and a high frequency
acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use
ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or
x-ray photon is scattered by the excited sound wave in the sample. The scattered light
intensity measures the occupation of the phonon modes.

The central part of this work is the investigation of coherent high amplitude phonon
wave packets which can behave nonlinearly, quite similar to shallow water waves which
show a steepening of wave fronts or solitons well known as tsunamis. Due to the high
amplitude of the acoustic wave packets in the solid, the acoustic properties can change
significantly in the vicinity of the sound pulse. This may lead to a shape change of the
pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound
pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes
until 1 % which I have calibrated by ultrafast x-ray diffraction (UXRD).

On the basis of this first experiment we developed the idea of the nonlinear mixing
of narrowband phonon wave packets which we call nonlinear phononics in analogy with
the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena
showing up at very high electric fields. Such phenomena are for instance Second Harmonic
Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the
wave packets have usually very broad spectra which make it nearly impossible to look at
elementary scattering processes between phonons with certain momentum and energy.

For that purpose I tested different techniques to excite narrowband phonon wave pack-
ets which mainly consist of phonons with a certain momentum and frequency. To this end
epitaxially grown metal films on a dielectric substrate were excited with a train of laser
pulses. These excitation pulses drive the metal film to oscillate with the frequency given
by their inverse temporal displacement and send a hypersonic wave of this frequency into
the substrate. The monochromaticity of these wave packets was proven by ultrafast optical
Brillouin and x-ray scattering.

Using the excitation of such narrowband phonon wave packets I was able to observe the
Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear
wave mixing of nanometric phonon wave packets.
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Kurzdarstellung

Diese publikationsbasierte Dissertation fasst meinen Beitrag zum Forschungsgebiet der
ultraschnellen Strukturdynamik zusammen. Diese Arbeit besteht aus 16 Publikationen
aus den Bereichen der Erzeugung, Detektion und Kopplung von kohärenten Gigahertz
longitudinal-akustischen Phononen, auch Hyperschallwellen genannt. Um solch hochfre-
quente Phononen zu erzeugen, werden Femtosekunden nahinfrarot Laserpulse benutzt,
um Nanostrukturen auf einer ultraschnellen Zeitskala zu erhitzen. Die aufgeheizten Re-
gionen der Nanostruktur dehnen sich aufgrund der hohen Temperatur aus und ein hoch-
frequenter Schallpuls wird generiert. Um solche akustischen Pulse zu detektieren benutze
ich ultraschnelle Varianten der Brillouin- und Röntgenstreuung. Dabei wird ein einfallen-
des optisches oder Röntgenphoton an der erzeugten Schallwelle gestreut. Die gemessene
Streuintensität ist hierbei ein Maß für die Besetzung einzelner Phononenzustände.

Der zentrale Teil dieser Arbeit ist die Untersuchung von kohärenten Phonon-Wellenpa-
keten mit sehr hoher Amplitude. Diese Wellenpakete können sich nichtlinear verhalten, sehr
ähnlich zu Flachwasserwellen bei denen nichtlineare Effekte in Form eines Aufsteilens der
Wellenfronten oder der Existenz von Solitonen, bekannt als Tsunamis, äußern. Durch die
hohe Amplitude der akustischen Wellenpakete können sich die akustischen Eigenschaften
des Festkörpers in der Umgebung des Schallpulses signifikant ändern, welches sich dann
in einer Formänderung des Schallpulses widerspiegelt. Ich konnte mittels zeitaufgelöster
Brillouinstreuung das Aufsteilen der Wellenfronten eines Hyperschallpulses bestehend aus
einem einzigen Oszillationszyklus beobachten. Hierbei wurden Hyperschallwellen mit einer
Dehnungsamplitude von bis zu 1% angeregt, wobei ich diesen Wert mittels ultraschneller
Röntgenbeugung kalibrieren konnte.

Mit diesem ersten Experiment als Basis entwickelten wir die Idee der nichtlinearen
Wellenmischung von schmalbandigen Phonon-Wellenpaketen unter dem Titel nichtlineare
Phononik in Analogie zur nichtlinearen Optik, welche sich aus einer Reihe von verblüffen-
den optischen Phänomenen bei sehr hohen elektrischen Feldstärken zusammensetzt. Solche
Phänomene sind z. B. die optische Frequenzverdopplung, das Vier-Wellen-Mischen oder
Solitone. Nur sind im Falle von kohärenten Phononen die erzeugten Spektren sehr breit-
bandig, was die Untersuchung von spezifischen Phononen mit festem Impuls und definierter
Frequenz fast unmöglich macht.

Aus diesem Grund testete ich verschiedene Methoden um schmalbandige Phonon-
Wellenpakete anzuregen, welche im Wesentlichen aus Phononen bestimmten Impulses und
definierter Frequenz bestehen. Dafür wurden schließlich epitaktisch auf ein dielektrisches
Substrat aufgewachsene Metallfilme mit einen Laserpulszug angeregt. Hier sorgen die Licht-
pulse für eine periodische Oszillation des Metalfilms, wobei die Anregefrequenz durch den
inversen zeitlichen Abstand der Lichtpulse gegeben ist. Diese periodische Oszillation sen-
det dann ein Hyperschallwellenpaket eben dieser Frequenz ins Substrat. Die Monochromie
dieser Wellenpakete konnte dabei mittels ultraschneller Brillouin- und Röntgenstreuung
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bestätigt werden. Durch die Benutzung dieser schmalbandigen Phonon-Wellenpakete war
es mir möglich, die Frequenzverdopplung (SHG) von kohärenten Phononen zu beobachten,
was ein erstes Beispiel für die nichtlineare Wellenmischung von nanometrischen Phonon-
Wellenpaketen ist.
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Comments on Papers

Here, I present the respective key statement(s) of the papers listed in the previous section.
The summary is followed by an outline of my contributions to each of these papers.

I Comparing the oscillation phase in optical pump-probe spectra to
ultrafast x-ray diffraction in the metal-dielectric SrRuO3 /SrTiO3

superlattice

In this paper we have investigated the oscillation phase of optical reflectivity and
x-ray diffraction of a photoexcited superlattice. This phase contains information
about the mechanisms involved in the stress generation process in SrRuO3. We have
found that the phase of the reflectivity measurements is wavelength-dependent and
has to be carefully interpreted: around the Fabry-Pérot maxima and minima of the
superlattice the phase of the optical reflectivity oscillations shifts depending on the
probe wavelength and makes statements about the excitation mechanism difficult.
However, after carefully determining time zero with optical reflectivity experiments
using the appropriate wavelength region together with x-ray diffraction experiments
we discovered a fluence-dependent oscillation phase. The lattice responds faster to
an excitation with higher fluence. This quite unusual behavior of SrRuO3 has lead
us to the conclusion that, in addition to normal heating, some alternative excita-
tion mechanisms like occupation of antibonding orbitals or temperature dependent
Grüneisen coefficients are responsible for the particular behaviour of SrRuO3.

For this publication I have performed the simulations of the optical reflectivity change
after photoexitation, participated in the optical reflectivity experiments and x-ray
diffraction measurements with our x-ray plasma source, and have contributed to
build the manuscript. Moreover, I have been actively involved in the interpretation
of all of the experimental results.
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II Ultrafast lattice response of photoexcited thin films studied by X-ray
diffraction

Here we present ultrafast x-ray diffraction results of photoexicted SrRuO3 thin films.
After the excitation with an ultrashort laser pulse the SrRuO3 film expands and
sends a sound pulse into the SrTiO3 substrate. The observed dynamics in the film
are described by an analytical solution of the one-dimensional linear wave equation
with an instantaneous excitation of the phonon system.

I have helped to build and align the experimental setup used for the measurements
and have participated in the data acquisition process. Furthermore, I have actively
contributed to the theoretical treatment of the experimental results.

III udkm1Dsim - A Simulation Toolkit for 1D Ultrafast Dynamics in
Condensed Matter

In this publication we present a software toolkit based on MATLAB (MathWorks
Inc.), which can be used to calculate the one-dimensional lattice response of a ma-
terial after laser excitation. Therefore we use an N-temperature model and heat-
diffusion to describe the differently excited subsystems of the material after excitation
and their spatial changes. The underlying model for the calculated lattice dynam-
ics is a linear chain with nearest-neighbour interaction that also can take nonlinear
coupling terms into account which can be arbitrarily specified. Moreover, the toolkit
allows calculating the transient x-ray diffraction by the temporally changing lattice.

For this work I have developed important parts of the numerical algorithms to cal-
culate the transient changes of the coherent sound and introduced several code en-
hancements for faster calculations. Moreover, I have been strongly involved in the
discussion and implementation of the theoretical concepts used in this toolkit.
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IV Brillouin scattering of visible and hard X-ray photons from optically
synthesized phonon wavepackets

We present a generalized view of time-resolved visible light and x-ray scattering on
acoustic phonons as variants of time domain Brillouin scattering. By subsequent
excitation of a SrRuO3 film with a femtosecond laser pulse train, we are able to
generate a narrow-band phonon wave packet. Probing this wave packet with optical
light proves that each wave vector component of the probe light is only sensitive
to a certain phonon wave vector of the excited wave packet, which allows to probe
different wave vectors simultaneously by using a supercontinuum probe. This direct
connection between phonon and photon wave vector gives the scattering of light
absolutely the same to measure the wave vector of the phonons as in inelastic x-ray
scattering.

In this study I have been highly involved in the measurements of the presented optical
and x-ray data sets. I have written the manuscript and developed the theoretical
concepts presented in the paper.

V Detecting optically synthesized quasi-monochromatic sub-terahertz
phonon wavepackets by ultrafast x-ray diffraction

In this work we excite a SrRuO3 film deposited on a SrTiO3 substrate with a laser
pulse train consisting of 8 pulses. Using time-resolved x-ray diffraction we observe
directly after excitation sidepeaks appear around the (002) substrate peak which are
displaced by the amount of the central wave vector of the excited wave packet and
integer multiples. These measurements show that the wave vector and bandwidth of
the excited wave packet can be controlled by shaping the optical pulse train in the
desired way. In addition, we observe a very short lifetime of the excited fundamental
wave of around 130 ps which we attribute to Akhiezer’s mechanism and thermoelastic
damping.

For this publication I have been involved in the acquisition of the presented x-ray data
sets and in the data analysis. I participated in the development of the manuscript
and the writing process.
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VI Direct time-domain sampling of subterahertz coherent acoustic phonon
spectra in SrTiO3 using ultrafast x-ray diffraction

A sub-THz longitudinal narrow-band acoustic phonon wave packet has been gener-
ated in SrTiO3 via the ultrafast laser excitation of a SrRuO3/SrTiO3 superlattice. We
monitor the excited coherent phonon spectrum using time-resolved x-ray diffraction
at our BESSY beamline. Our analysis exhibits a wave vector dependent damping
of the first and second order of the excited narrowband phonons, which is in good
agreement with Akhiezer’s model for hypersound attenuation.

I suggested this experiment with this particular superlattice and have been highly
involved in the interpretation of the experimental outcomes.

VII Observing backfolded and unfolded acoustic phonons by broadband
optical light scattering

In this publication we investigated with broadband time-domain Brillouin scattering
photoexcited longitudinal acoustic phonon modes in bulk and nanolayered samples.
After Fourier transforming the transient data we compare our results with calculated
dispersion relations. Using a superlattice with a large period we are able to detect
phonons within nearly the whole Brillouin zone.

For this paper I have performed measurements using broadband time domain Bril-
louin scattering. Furthermore, I have been involved in the paper writing process and
in the fundamental discussion about the underlying physics.

VIII Selective preparation and detection of phonon polariton wavepackets by
stimulated Raman scattering

In this publication we demonstrate how to impulsively excite narrow-band phonon
polariton wave packets by shining a femtosecond transient grating into a LiNbO3

crystal. We use a narrow-band probe technique to resolve Stokes and anti-Stokes
shifted probe pulses with a spectrometer. These measurements directly prove the
inelastic nature of light scattering on moving gratings. By the analysis of the four-
wave mixing process we show that these measurements can be understood in terms
of two subsequent stimulated Raman scattering events.

For this paper I have supported the experiment, and have been deeply involved in
the conceptional development of the experiments and their theoretical description. I
also have contributed to the paper writing process.
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IX Normalization schemes for ultrafast x-ray diffraction using a table-top
laser-driven plasma source

In this paper we present our lab-based femtosecond x-ray diffraction experimental
setup based on a commercially available laser-driven x-ray plasma source. We in-
troduce different normalization schemes to reduce the influence of the x-ray source
intensity fluctuations on the the acquired datasets, which results in a significantly
improved signal-to-noise ratio.

For this paper I have been heavily involved in the construction of the experimental
setup. I furthermore developed important parts of the data acquisition software and
contributed valuable knowledge to several normalization schemes.

X Ultrafast reciprocal-space mapping with a convergent beam

In this follow-up publication we present how we use our laser-driven plasma x-ray
source for reciprocal-space mapping with femtosecond temporal resolution. We show
a reciprocal space map of a mosaic sample and showed that this technique is suitable
to get high quality, time-resolved data of nearly perfect heterostructures. Further-
more we derive a coordinate transform that transfers from angle to wave vector space.

For this work I have contributed to the construction of the experimental setup, de-
veloped important parts of the data acquisition software, and contributed to the
finalization of the publication.

XI Time-domain sampling of x-ray pulses using an ultrafast sample response

This work introduces an interesting application for the photoinduced coherent ex-
pansion of thin heterostructures. We use a ultra thin SrRuO3 film on a SrTiO3

substrate as Bragg reflector with a fixed Bragg angle. The diffraction efficiency can
be switched on and off within 5 ps due to the coherent sound generated in the film.
Cross-correlation measurements between the laser pump which triggers the coherent
sound and the synchrotron x-ray pulse allow us to reconstruct the x-ray pulse shape.

For this work I have performed measurements using the plasma x-ray source at the
University of Potsdam and have participated in the measurements at the European
Synchrotron Radiation Facility.
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XII Ultrafast switching of hard X-rays

Here we show a new concept for shortening x-ray pulses produced by a third-
generation synchrotron down to a few picoseconds. The development concludes in
a device called PicoSwitch that consists of a thin film, which gets photoexcited, on
a substrate. The excitation triggers coherent phonons that change transiently the
lattice constants of the film and therefore the Bragg reflection condition changes.
The device is tested in a real synchroton-based pump-probe experiment and offers a
greatly enhanced timere-solution.

For this work I performed measurements using the plasma x-ray source at the Uni-
versity of Potsdam and have been involved in the measurements at the European
Synchrotron Radiation Facility.

XIII Second Harmonic Generation of Nanometric Phonon Wave Packets

This paper reveals the first observation of the upconversion of nanometric hypersonic
phonons using time-resolved x-ray and visible light scattering. We show the second
harmonic generation of an excited narrow-band phonon wave packet and describe
the results using a chain of nonlinearly coupled oscillators. This paper is an impor-
tant step in physics, which may enable nonlinear phononics, in a way towards using
phonons like photons in nonlinear optics. The result of nonlinear phononics may help
to build new functional devices with artificial thermal properties.

For this paper I have developed the experimental setups, measured the time-resolved
optical data, and have contributed to the conception of the beamtime and partici-
pated in the x-ray diffraction measurements at the European Synchrotron Radiation
Facility. In addition I analysed the data sets, developed the theory and wrote the
manuscript.

XIV Calibrated real-time detection of nonlinearly propagating strain waves

In this paper we generate high amplitude strain pulses in an epitaxially grown metallic
film, which propagate into the substrate. We performed excitation fluence dependent
time-resolved optical Brillouin scattering measurements in order to follow the strain
pulse evolution. These fluences were calibrated to the induced strain using ultrafast
x-ray diffraction measurements. For high fluences the leading compressive part of
the strain pulse propagates significantly faster than the trailing expansive part. This
behaviour is well explained by a model consisting of a chain of nonlinear interacting
oscillators.

For this paper I have performed time-resolved optical Brillouin scattering experiments
as well as ultrafast x-ray diffraction measurements at the plasma x-ray source of
the University of Potsdam. In addition, I wrote the manuscript and developed the
underlying computational code of the linear chain calculation.
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XV Coupling of GHz Phonons to Ferroelastic Domain Walls in SrTiO3

In this publication the linear and nonlinear acoustic response of SrTiO3 across its
ferroleastic phase transition has been studied in detail by time domain Brillouin
scattering. For high strain amplitudes we observe a giant slowing down of the sound
velocity by 12% and attribute this to the coupling of GHz phonons to ferroelastic
twin domain walls. We support our interpretations by a microscopic picture of the
underlying coupling mechanism.

Here I was heavily involved in the data analysis process, the interpretation of the
results, the model building process, and the finalization of the manuscript.

XVI Following Strain-Induced Mosaicity Changes of Ferroelectric Thin Films
by Ultrafast Reciprocal Space Mapping

In this paper we investigate the coherent phonon propagation in a thin ferroelec-
tric PbZr0.2Ti0.8O3 (PZT) film using time-resolved reciprocal space mapping. For
expansive strain the mosaic film exhibits a strong coupling of the out-of-plane and
in-plane sound propagation directions which immensely increases the damping of the
expansive part of the excited longitudinal strain wave. This coupling is interestingly
not visible for compressive strain. This fact is attributed to the presence of columnar
defects in the PZT layer.

For this work I have performed measurements using the plasma x-ray source at the
University of Potsdam and have taken part in the model calculations of the partially
damped propagating strain pulse.
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Chapter 1

Introduction

Today’s high tech is mainly based on electronics. In the last decades engineers have learned
to build highly complex electric circuits and shrank it to the nanometer scale. They put
millions of logic gates on a square millimeter with transistors working in the GHz range.
Such high frequency currents lead inevitably to an enormous friction loss which converts
electric energy to waste heat. Due to the size reduction of the integrated circuits this heat
production became an intrinsic problem of today’s processor generations; it sets limits to
the maximal possible computational power of the circuits.

One idea for future integrated circuits is to use photons instead of electrons, but visible
light which is easy to manage has a wavelength in the range of hundreds of nanometers.
This sets unpractical limits to the size of the possible devices, which can be overcome by
the use of surface plasmon polaritons as the information carrying particle in circuits.[1]
They are as fast as light which makes it possible to transfer light information directly into
plasmons. But surface plasmon polaritons are collective excitations of light and electrons,
therefore they also produce heat. Thus, it seems that the heat problem will be there also
in next generation technology. The main heat carrying particle in a semiconductor is the
phonon.

Phonons are the quantized particles of lattice vibrations. These quasiparticles are
bosons and carry a certain energy and momentum. Their quantum mechanical conse-
quences are the low-temperature heat capacity of crystals and the blackbody-radiation.
At room temperature the heat capacity of phonons is orders of magnitudes larger than of
electrons, as a result the main fraction of heat is carried by phonons.

The ability to manipulate phonons in such a way as we utilize electrons and photons
today opens up new opportunities for future technology.[2] Because of the technical impor-
tance of a better heat transport on the nanometer scale several groups investigated heat
transport in artificial nano-structures.[3–7] The diffusive or ballistic character of heat con-
duction is determined by phonon-phonon scattering processes. This is also important for
new highly efficient thermoelectric materials, which transform waste heat back to electric
energy.[8–10]

The key point is to understand, measure and manipulate the coupling between different
phonons with frequencies of gigahertz until terahertz, because these are the phonons which
contribute mainly to heat. Theory predicts by the use of a modified phonon coupling the
possibility of thermal diodes which define the direction of heat flow as well as thermal
memory devices.[11, 12] Such rectification of heat current could finally lead to the realiza-
tion of thermal transistors and thermal logic gates, which implies that future integrated
circuits could use phonons directly as information carrying particle.[13]
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The aim of this work is to establish measurement techniques in which specific acoustic
phonons of such high frequencies as discussed before are coherently excited so the coupling
to other degrees of freedom can be investigated. Here I set the main focus to the anhar-
monic coupling between phonons, which promises a new scientific field called Nonlinear
Phononics [14], as an analog to nonlinear optics where intense photon packets can interact
with each other in a nonlinear medium. In optics this led to a kaleidoscope of different
optical effects as the second harmonic generation, the generation of coherent white light or
the optical parametric amplification. The use of coherent phonons has the advantage that
the mode specific coupling can be directly measured. However in thermal measurements,
information is obtained which is the average effect of a large number different phonons, so
the main important phonon coupling channels are not visible here.

In the center of this work stands the generation of hypersonic narrow-band coherent
phonon wave packets and the measurement of their spectral composition at different times
after excitation using time-resolved Brillouin scattering and ultrafast x-ray diffraction.
As this dissertation is a cumulative work, the main results are found in the attached
publications which are numbered by Roman numerals. I classified the overall 16 publication
of this thesis into three categories which are identical with the three chapters Generation
of Hypersound, Light and Sound Interaction as well as Nonlinear Sound of this
thesis. The assignment of the different publications to these categories is not unique.
Several publications discuss physics of all three categories, however the main outcome of
each publication is used for assignment.

In the related chapters I condensed important and fundamental knowledge in these
three categories. These details go beyond the information in my publications because
some of this is anticipated knowledge of the readership and other parts where cut due
to the restricted length of scientific papers. I hope that these concise descriptions of the
basics needed for conducting experiments and simulations may help students and scientists
entering the field.

� The chapter ”Generation of Hypersound” contains common knowledge about the
strain generation processes in solids as well as an analytic discussion of the evolution
of sound in a solid after laser excitation. Furthermore the added value of the papers
I, II and III to the understanding of the generation of ultrasound in opaque materials
is discussed.

� In chapter ”Light and Sound Interaction” I summarize how visible light interacts
with phonons via inelastic light scattering in case of acoustic phonons also known as
Brillouin scattering. Then I present the experimental setup for time-resolved optical
Brillouin scattering. And finally I show that the reflectivity of a material changes
due to induced acoustic waves where the reflectivity change for a certain optical
wavelength is a measure of the occupation number of a phonon with a certain energy.
The generation and detection of hypersonic narrow-band phonon wave packets is
summarized in Paper IV.

� The chapter ”Nonlinear Sound” contains the theory of nonlinear propagating
phonon wave packets in form of a Fermi-Pasta-Ulam (FPU) chain which was used in
the publications XIII and XIV and relates this to a number of different nonlinear
wave equations used in nonlinear acoustics. The aim of this chapter is to show that
the FPU chain is the root of numerous one-dimensional nonlinear wave equations
typically used in nonlinear acoustics.
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Introduction

In my opinion the publications IV, XIII and XIV build the central core of this work,
where Paper XIII presents the main new physics in this thesis. It shows the Second
Harmonic Generation of GHz phonon wave packets, and is therefore a first example of
nonlinear wave mixing for very high frequency acoustic phonons in analogy to nonlinear
optics.

Besides this, I contributed substantially to the establishing of ultrafast x-ray diffraction
using a tabletop x-ray source in Potsdam which reflects in the publications IX, X, II and
XVI. In particular, these papers build the core of the PhD thesis of Daniel Schick [15],
whereas the essence of my work stands out by combining ultrafast x-ray diffraction with all-
optical pump probe measurements to benefit from the pros of both techniques. Moreover,
our group used metal-insulator hetero-structures to excite high frequency phonon modes
and detect them by ultrafast optical and x-ray methods. Here I contributed as author and
coauthor to the publications I, VI, XI and XII where the last two publications describe the
application of ultrafast lattice dynamics to switch hard x-ray light due to the modulation
of the Bragg diffraction. This is summarized in the PhD thesis of Marc Herzog [16] with
whom I performed first experiments to excite hypersonic narrowband phonon wave packets
and detected them by x-ray diffraction which can be found in publication V. In addition to
x-ray scattering I also performed time-resolved optical spectroscopy where in paper VII we
studied the optical light scattering from phonons excited in hetero-structures and metal
films in more detail. Such light scattering on phonons was used in publication XV to
look at the interaction of GHz acoustic waves with ferroelastic domain walls in strontium
titanate. Finally, in publication VIII we investigated light scattering on phonon-polaritons
which shows nicely the inelastic nature of light scattering on quasi-particles.
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Chapter 2

Generation of Hypersound

In this chapter I will review a few theoretical concepts, which describe the stress and strain
generation in solids. The chapter’s aim is to lay out basic knowledge of ultrafast stress
generation processes using simple models which can be understand as a introduction to the
Papers I, II and III. At first I will discuss the so called Two Temperature Model as the easi-
est case, neglecting diffusion of carriers and heat and introduce electron-phonon coupling as
well as electronic and phononic stress as the main reasons of the hypersound generation in
metals. Using this context, I will classify the excitation processes of Displacive Excitation
of Coherent Phonons (DECP) and Impulsive Stimulated Raman Scattering (ISRS). Sec-
ondly, I will introduce a forced linear and one-dimensional wave equation which describes
the dynamics of the excited propagating strain, which mostly fall short in corresponding
publications of the chapter. I will present a complete analytic solution of strain dynamics
of a photoexcited metal film on a transparent substrate. At the end of this chapter, I will
show strain profiles for different excitation conditions and their spectral signature, which
are important for probing with x-rays and optical light.

2.1 Two Temperature Model

One way to describe the excitation process of an optically excited material is to divide the
material into different subsystems i (electrons, phonons, magnetic system ...), which have
some thermal energy Qi = ciTi stored, where ci and Ti are the specific heat and temperature
of the subsystem i. These subsystems are coupled that energy can flow between them. For
typical metals it is usually sufficient to describe the whole excitation process using only
electrons and phonons as subsystems (i = e, p). Mathematically, one can describe such
behavior with coupled partial differential equations following Paper III as well as [17, 18]:

ce(Te)
∂Te

∂t
=−g(Te − Tp) +

∂

∂z

(
ke(Te)

∂Te

∂z

)

cp(Tp)
∂Tp

∂t
= g(Te − Tp) +

∂

∂z

(
kp(Tp)

∂Tp

∂z

)
(2.1)

The first term on the right side of eqs. (2.1) describes the coupling between the sub-
systems of the material with the coupling constant g whereas the second term represents
the heat diffusion within the individual subsystem. These partial differential equations
are typically nonlinear, because ki is usually temperature dependent, and can be solved
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2.1 Two Temperature Model
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Figure 2.1: (a) Typical transient change of electronic and phononic temperatures. The
electronic system is excited at time zero, which drives the entire system out of equilibrium.
Energy flows to the phononic system until both subsystems have the same temperature.
(b) Change of relaxation time τ in dependence of the ratio of electronic and phononic
specific heat. As example: For SrRuO3 ce/cp reaches unity at an electron temperature of
≈ 3400K using the Dulong-Petit limit for phonons and the Sommerfeld coefficient for the
electrons as published in [19].

numerically. Our toolkit presented in Paper III can solve these equations with given tem-
perature dependencies of the parameters. A spatial dependence is also possible. In this
thesis we are content with the case of no diffusion, which simplifies the situation to a set
of linear and coupled ordinary differential equations. In the case of a metal we can assume
a sole excitation of the electronic system which leads to a non-equilibrium state where
Te 6= Tp. This situation can be described by an initial value problem with Te(t = 0) = Te0

and Tp(t = 0) = 0 where Te0 is the temperature step of the electronic system due to laser
excitation. This simulates a delta-like excitation pulse. Keeping ce and cp for simplicity
independent of temperature,

ce
∂Te

∂t
=−g(Te − Tp)

cp
∂Tp

∂t
= g(Te − Tp) (2.2)

can easily be solved using the Laplace transform and its identities for derivatives. The
solution of this model is given by:

Te(t ≥ 0) = T∞

(
1 +

cp

ce

exp(−r · t)
)

Tp(t ≥ 0) = T∞

(
1− exp(−r · t)

)
(2.3)
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Generation of Hypersound

r = g
ce + cp

cecp

, T∞ = T0e
ce

ce + cp

(2.4)

A typical transient situation of both subsystem temperatures can be found in Fig. 2.1a.
T∞ is the temperature of both systems in thermal equilibrium, which is reached for t =∞.
One important finding is that the rate r depends on the ratio of the relative magnitudes of
the specific heats. Using the definition of r in eq. (2.4), we can plot the inverse rate τ = 1/r
as a function of ce/cp assuming constant g and cp (Fig. 2.1b). As visible in Figure 2.1b,
the model predicts a longer relaxation for a higher specific heat of the electrons.

In real physical systems the specific heat of electrons usually rises linearly with
temperature whereas for phonons it can be assumed constant.[20, 21]1 Following this
easy model the system needs more time to relax at temperatures well above the Debye
temperature, which leads to a less rapid buildup of phononic stress.

The Two Temperature Model is a simplification of the circumstances. First, one
assigns temperatures for electrons and phonons but if one would model the systems more
precisely one would also need to consider non thermal distributions, as has been done
for electrons.[25] Second, diffusive transport of electrons is often a bad approximation
because in many materials electrons can travel ballistically over distances of several tens
or hundreds of nanometers.[26] Here people changed the diffusive terms to parabolic
differential equations or solved the Boltzmann transport equation directly.[27, 28] And
third, phonons can transport heat ballistically, too. It was recently shown, that phonon
heat transport can significantly deviate from Fourier’s law already on a µm length
scale.[29]

2.2 Stress generation using ultrashort laser pulses

To understand the origin of laserinduced stress in opaque materials the concept of
Grüneisen parameters can be introduced. Microscopically the Grüneisen parameter is
the ratio between the relative energy change of a quantum state and the applied relative
volume change to the system. A thermodynamic identity for a Grüneisen parameter γ of
a physical system with internal energy U , pressure P and volume V is [30, p. 17]

γ = V

[
∂P

∂U

]

V

. (2.5)

In words, the Grüneisen parameter describes how the pressure of a gas changes when we
change its energy by letting the volume constant. For a metal it is sufficient to think
about two gases (electrons and phonons) with specific energies and Grüneisen parameters.
Therefore each gas contributes to the overall pressure of the crystal. In crystals it is
common to use the concept of stresses σi instead of pressure. Stress can be anisotropic
and has the opposite sign of pressure. As discussed before the overall stress σ is the sum
of electronic (σe) and phononic (σp) stress. The induced stress after photoexcitation of a
crystal along the [001] direction is then given by the occupation number density changes

1In the Debye model the specific heat of phonons reaches a constant value for high enough temperatures.
This is known as Dulong-Petit’s law. However phonon-phonon interaction which is neglected in the Debye
model leads to a small deviation from this law and a linear temperature dependence of phonon specific
heat was found. [22–24]
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2.2 Stress generation using ultrashort laser pulses

δni(k) of the possible state energies Ei(k) and their specific Grüneisen parameters γi(k).
Here, k represents the wave vector of the phonons and electrons:[31–34]

σ = σe + σp = −
∑

k

γe(k)Ee(k)δne(k)−
∑

k

γp(k)Ep(k)δnp(k) (2.6)

In this content the mode specific Grüneisen parameter is given by the relative energy
change of a state with strain ε, γi(k) = − 1

Ei(k)
∂Ei(k)
∂ε

. Using this relation eq. (2.6) changes
to

σ =
∑

k

∂Ee(k)

∂ε
δne(k) +

∑

k

∂Ep(k)

∂ε
δnp(k) (2.7)

For an arbitrary crystal consisting mainly of electrons and lattice (phonons) eq. (2.7)
specifies the overall stress in dependence of the occupation of electrons and phonons.
In semiconductor physics the derivative ∂Ee(k)

∂ε
is called deformation potential. It tells

us the change of electronic states by stretching or contracting the crystal. The use of
eq. (2.7) needs a good knowledge about the excitation process and the involved electronic
and phononic states and for complex materials it is the formula of choice. For a metal
where only conduction band electrons are exited and under the assumption of thermalized
electrons and phonons, we can define temperatures for electrons and phonons separately
using fermi-dirac and Bose-Einstein distribution functions. For this case we can simplify
eq. (2.6) to

σ = −γ̃e
∆Ee

V
− γ̃p

∆Ep

V
= −γ̃ece∆Te − γ̃pcp∆Tp (2.8)

where ce, cp and γ̃e, γ̃p are the specific heats and macroscopic Grüneisen parameters of
electrons and phonons, respectively. [32, 33] Using eqs. (2.3) we get the time-dependent
σ(t) after photo-excitation:

σ(t ≥ 0) = −γ̃eceT∞

(
1 +

cp

ce

exp(−r · t)
)
− γ̃pcpT∞

(
1− exp(−r · t)

)
(2.9)

Because cp(T∞)� ce(T∞) we can neglect the static stress contribution of the electrons. Us-
ing this, combining terms and introducing the quantity σ∞ = −γ̃pcpT∞ we get a simplified
relation for the time-dependent stress after photoexitation of a metal: [33]

σ(t) ≈ H(t)σ∞

((
γe

γp

− 1

)
exp(−r · t) + 1

)
(2.10)

Here H(t) represents the Heaviside function which mimics the instantaneous temperature
change at t = 0. The Grüneisen parameters of both subsystems have usually a value around
unity.2 Moreover, the constant σ∞ can be expressed by the heat expansion coefficient
α, bulk modulus B as well as the final temperature change ∆T of the crystal yielding
σ∞ = −3Bα∆T . [31, 33]

2In case of a free electron gas the Grüneisen parameter of the electrons is given by γe = 2/3. [35, p.
495]

8



Generation of Hypersound

2.3 Classification of different phonon excitation

mechanisms

In the literature different phonon excitation mechanisms using ultrashort laser pulses are
discussed.

On the one hand scientists investigated opaque media by femtosecond laser pulses
and observed exited phonons.[36] For the rapid excitation of coherent phonons in semi-
conductors a very effective mechanism is the Displacive Excitation of Coherent Phonons
(DECP).[37] In this mechanism the laser pulse translates electrons from an occupied elec-
tronic band to an unoccupied one, visualized in the lower panel of Fig. 2.2a. Because
different electronic bands contribute differently to the bonding of a material, this transi-
tion will increase or decrease the equilibrium bond length. The electronic part of eq. (2.7)
describes this situation mathematically. For this mechanism two different bands with dif-
ferent deformation potentials are necessary, otherwise the stress change of both bands will
compensate - in the first band the electron density goes down whereas in the other one it
goes up. Because the lifetime of photoexcited carriers are in the range of ns and longer,
those resonant excitations lead to an instantaneous step like change of the electronic stress
contribution. Therefore the excited mode has a new equilibrium position and oscillates
with a cosine, depicted in the upper panel of Fig. 2.2a.

On the other hand an excitation of lattice vibrations in transparent materials is also
possible. This typically non-resonant process is called Impulsive Stimulated Raman Scat-
tering (ISRS).[38] Here, no carriers are exited from one band to another. In the Raman
scattering process an incident photon perturbs the material’s electronic structure, which
leads to an excited state in presence of the photons electric field. A stimulated emission by
a second photon with less energy can translate this ”virtual” state into a state where the
material returns into the electronic ground state plus an excited phonon. In contrast to
DECP the equilibrium position of the atoms is not changed. Thus the lattice oscillations
are sine like. The lifetime of the virtual state is proportional to the inverse energy distance
to the nearest eigenstate. In addition to energy conservation depicted in Fig. 2.2b the right
scattering geometry has to be chosen to fulfil the conservation of momentum. This can be
done by shining both light beams with a defined intersecting angle on the material.[39, 40]

While DECP describes a physical situation where the lifetime of the excited electronic
state is much larger than the excited phonon oscillation period, in the non-resonant ISRS
the lifetime is much smaller than the excited phonon oscillation period. Although DECP
and ISRS seem to be different mechanisms, ISRS can explain DECP results considering
resonant scattering, which changes the lifetime of the excited state and adds displacive
character to the theory.[41, 42]

Besides those processes, thermoelastic stress due to phonon gas heating of a mate-
rial also initiates a stress change. Once the photons are excited, the material expands
due to the anharmonicity of the interatomic potentials. Here phonons with a much longer
oscillation period than the stress driving phonons can be coherently excited. Remembering
the Two Temperature Model from section 2.1, one additionally needs a fast electron
phonon coupling to drive high frequency phonons by thermoelastic stress following an
optical excitation.

Our observations for SrRuO3 in Paper I showed a very short electron phonon coupling
time of approximately 150 fs. In addition we saw a fluence dependent change of the ex-
ited phonon phase which means that the stress generation is faster for higher excitation
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2.3 Classification of different phonon excitation mechanisms

Energy

(a) The energy diagram describes an electronic
transition of the material. In this state the equi-
librium position of the atoms is immediately
changed which finally leads to an oscillatory mo-
tion of the lattice with a cosine phase.

Energy

(b) Two photons trigger a stimulated Raman
excitation process visualized in the energy dia-
gram. The equilibrium position of the atoms is
unchanged. The instantaneous velocity change
finally leads to an oscillatory motion of the lat-
tice with a sine phase.

Figure 2.2: Energy diagrams for ISRS and DECP excitation mechanisms. The atoms and
springs visualize the equilibrium positions of the atoms in the individual states.

energies. This is in direct contradiction to the expected behavior in the Two Temperature
Model. Here one would expect a slower phonon-induced stress generation for the case of
high excitation fluences considering the expected electronic stress is negligible. The heat
capacity of electrons grows linearly with temperature, which would lead to a slower energy
transfer to the phonons see Figure 2.1b. These experimental observations led us to the
conclusion that another mechanism becomes important at high excitation densities. One
can speculate that the electron transfer in other states adds a DECP character to the
SrRuO3 excitation which contains an instantaneous stress generation by electrons. For
sufficient high intensities this DECP character dominates the excitation and finally results
in an instantaneous excitation. Also temperature dependent Grüeisen parameter of the
electrons could explain this, and might be a result of the non-fermi-liquid behavior of
SrRuO3.[43] Moreover, it was recently shown for TiO2 combining experiments and Den-
sity Functional Theory (DFT) calculations that the cooling of electrons can also have an
important influence on the displacive forces of the material.[44]
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2.4 The evolution of sound in a solid

2.4.1 Harmonic linear chain and acoustic wave equation of a
solid

One way to think about sound in a crystalline solid is to imagine atoms with mass mi

which are nearest neighbor coupled by springs with spring constants ki describing the
interatomic interaction. The displacement ui of an atom i in such a network launches a
distortion which will propagate through the lattice of these coupled atoms.

By focusing on longitudinal sound waves and propagation in a certain direction, we can
simplify this network of atoms to a one-dimensional linear chain. Using the simplification
of Hooke’s law which postulates a linear increase of the spring forces with the distance be-
tween neighboring atoms we can describe the whole problem with N second order ordinary
differential equations (ODEs), where N is the number of oscillators

müi = k [(ui+1 − ui)− (ui − ui−1)] . (2.11)

Focusing on waves which have much longer wavelength than the interatomic distance a,
we can simplify the set of ODEs to a partial differential equation (PDE) describing the
displacement u(x, t) where x is the position on the chain. In that sense ui−1 → u(x− a, t),
ui → u(x, t) and ui+1 → u(x+ a, t). Inserting the Taylor approximations

u(x− a, t) = u(x)− ∂

∂x
u(x, t)a+

1

2

∂2

∂x2
u(x, t)a2 (2.12)

u(x+ a, t) = u(x) +
∂

∂x
u(x, t)a+

1

2

∂2

∂x2
u(x, t)a2 (2.13)

into eq. (2.11) yields finally the wave equation

∂2

∂t2
u(x, t) = v2 ∂

2

∂x2
u(x, t) (2.14)

where v =
√

k
m
a is the speed of sound in the medium.

In general, a medium e. g. a crystal can be anisotropic. This leads to direction
dependent elastic properties of the material which can be expressed in the form of a
stiffness tensor cijkl, which is defined by Hooke’s law for anisotropic materials:

σij = cijkl
∂ul
∂xk

(2.15)

σij is the stress tensor where the diagonal elements describe the contraction or expansion
along the directions (x,y,z), whereas the off-diagonal elements are defined by the coupling
between two directions due to Poisson’s ratio. The quantity εkl := ∂ul

∂xk
is the corresponding

strain tensor. In combination with the dynamic field equation coming from Newton’s law
where ρ is the density of the medium, [45, p. 177]

ρ
∂2ui
∂t2

=
∂σij
∂xj

(2.16)

we can write down the wave equation for anisotropic media:

ρ
∂2ui
∂t2

= cijkl
∂2ul
∂xj∂xk

(2.17)

This result is the general version of eq. (2.14) which describes only a longitudinal wave
along a certain propagation direction. Eq. (2.17), in contrast, describes the linear acoustics
including anisotropic materials and different wave polarisations in one formula.
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2.4.2 Thermoelastic stress as a source for sound

2.4.2 Thermoelastic stress as a source for sound

As discussed in section 2.2 shining a near infrared laser pulse on a metal film will generate
stress. Firstly, let us assume that the investigated spot is much smaller than the excited one
yielding a laterally homogenous excitation condition. Under this condition in-plane forces
cancel and only stresses perpendicular to the metal surface are unbalanced. Secondly, we
make the assumption that the generated stress in the metal is due to quasi-instantaneous
phonon heating. Using those assumptions we can write down the stress perpendicular to
the metal surface acting at a position x: [31]

σ33 = 3
1− ν
1 + ν

Bε33 − 3Bα∆T (x3, t) (2.18)

Combining this with eq. (2.16) and using the definition of strain ε33 we finally get a one
dimensional forced wave equation which describes the dynamics of photoexcited sound
waves

ρ
∂2u3

∂t2
− 3

1− ν
1 + ν

B
∂2u3

∂x2
3

= −3Bα
∂∆T (x3, t)

∂x3

. (2.19)

variable definition

u u33

z x3

v2 3
1− ν
1 + ν

B

ρ

θ(z, t)
3Bα

ρ
∆T (z, t) =

3Bα

ρcV
∆Φ(z, t)

g(z, t) −∂θ(z, t)
∂z

Table 2.1: Variable definitions to simplify eq. (2.19). cV represents the volumetric specific
heat and ∆Φ the change in energy density due to photo-excitation. The second repre-
sentation of θ(z, t) is often more useful due to the similar temperature dependence of the
linear thermal expansion coefficient α and cV making the set of parameters in front of ∆Φ
in first order independent of temperature.

2.4.3 The solution of the 1D forced wave equation in free space

Using the definitions in table 2.1 we can simplify eq. (2.19) to

∂2u

∂t2
− v2∂

2u

∂z2
= g(z, t), (2.20)

where u is the acoustic amplitude, v the speed of sound and g(x, t) the driving acceleration
of each position due to thermoelastic forces. This is the inhomogeneous wave equation. A
solution for the Cauchy problem can be found using Green’s theorem. [46, 47] To find an
explicit solution in free space (no additional boundary −∞ < z <∞) one needs to define
the initial conditions

u(z, 0) = φ(z),
∂u

∂t
(z, 0) = ψ(z), (2.21)
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metal substrate

Figure 2.3: Schematic picture of a metal film with thickness d grown on top a substrate.
The black line depicts the profile of the temperature change directly after photoexcitation.
The white arrows symbolize that the metal wants to expand into the new equilibrium
position.

yielding a solution given by [46, p. 89]

u(z, t) =
1

2
[φ(z + vt) + φ(z − vt)] +

1

2v

∫ z+vt

z−vt
ψ(s) ds+

1

2v

∫ t

0

∫ z+v(t−s)

z−v(t−s)
g(y, s) dy ds

(2.22)

2.4.4 Describing a photoexicted metal film on a substrate using
the 1D forced wave equation

In this section we use the previous mathematics to solve an explicit problem, a laser heated
metal film with thickness d grown on top of a substrate, as schematically shown in Fig. 2.3.
We predefine that there is no sound in the sample before excitation. This assumption fixes
the initial conditions to

φ(z) = 0, ψ(z) = 0, (2.23)

and simplifies the expression for u(z, t) using the definition of g(z, t) from table 2.1 to

u(z, t) = − 1

2v

∫ t

0

∫ z+v(t−s)

z−v(t−s)

∂θ(y, s)

∂y
dy ds (2.24)

Now we make some helpful assumption to the function θ(z, t), which is essentially given
by the temperature profile after excitation. This makes eq. (2.24) finally simpler and more
useful in practical cases. At first let us assume that θ(z, t) = Z(z)T (t) is a function where
we can factorize the dependencies on z and t. Assuming this, the integration of ∂θ/∂y is
trivial and we can write:

u(z, t) = − 1

2v

∫ t

0

[θ(z + v(t− s), t)− θ(z − v(t− s), t)] ds (2.25)

This formula is good for temporally changing temperature profiles. By assuming further
that θ(z, t) does not depend explicitly on t we can also integrate eq. (2.25) by defining
Γ(ξ) =

∫
θ(ξ) dξ as the primitive of θ(ξ), yielding

u(z, t) =
1

2v2
[2Γ(z)− Γ(z + vt)− Γ(z − vt)] (2.26)
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2.4.4 Describing a photoexicted metal film on a substrate using the 1D forced wave equation

In case of the strain ε we get

ε(z, t) =
∂u(z, t)

∂z
=

1

2v2
[2θ(z)− θ(z + vt)− θ(z − vt)] (2.27)

This means, that ε(z, t) is mainly given by a sum of spatially shifted energy density profiles
∆Φ(z, t) after excitation (see table 2.1). The equations (2.26) and (2.27) are the solutions
of the Cauchy problem which describes a quasi-instantaneously heated slap in between two
unexcited regions. To get a solution εh for the half-space we have to fulfill the boundary
condition εh(0, t) = 0. We can find an appropriate solution using the symmetry of the
problem, combining two Cauchy solutions and ignoring the left half space of the coordinate
z:

uh(z ≥ 0, t) = u(z, t) + u(−z, t) (2.28)

εh(z ≥ 0, t) = ε(z, t)− ε(−z, t) (2.29)

Using the assumption that θ(z < 0) = 0 leads finally to the strain εh(z, t) of the half-space
solution given by

εh(z, t) =
H(z)

2v2
[ 2θ(z)︸ ︷︷ ︸
static heat

− θ(z + vt)︸ ︷︷ ︸
left propagating wave

+ θ(−z + vt)︸ ︷︷ ︸
reflected left wave

− θ(z − vt)︸ ︷︷ ︸
right propagating wave

] (2.30)

where H(z) is the Heaviside function. Eq. (2.30) contains four different terms where the
first is independent of time and describes the induced static heat. The second term belongs
to the excited wave packet propagating to the sample surface, where it is reflected. This
is described by the third term. The fourth term finally belongs to the excited wave packet
propagating to the substrate.

In the last step we have to consider the interface at x = d. In general, layer and
substrate regions can have different acoustic impedances Zi = ρivi and sound velocities
vi. Let us call the layer region 1 and the substrate region 2. The solution of the wave
equation has to fulfill two boundary conditions. The displacement ui and the overpressure
δpi = −Ziviεi have to be continuous. Assuming perfect acoustic impedance matched layer
and substrate, those conditions lead to a perfectly transmitting interface. The continuity
of overpressure yields for the strain: [45, p. 27, 39]

ε2(d− v1t) =
v1

v2

ε1(d− v2t) (2.31)

Due to this boundary condition and the fact that ε2 has to be a solution of the wave
equation in region 2, we can find an explicit relation for ε2(z, t).

ε2(z, t) = H(z − d)
v1

v2

ε1

(
v1

v2

z +

(
1− v1

v2

)
d, t

)
(2.32)

The solution of ε1(z, t) in the layer region is given by εh(z, t). Now we can write down the

solution of the whole problem using v = v1 and defining l :=

(
1− v1

v2

)
d.

εδ(z, t) =
1

2v2
1




H(z)[2θ(z)− θ(z + v1t) + θ(−z + v1t))− θ(z − v1t)] z ≤ d
v1

v2

[
θ

(
−v1

v2

(z − v2t)− l
)
− θ

(
v1

v2

(z − v2t) + l

)]
z > d

(2.33)
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Generation of Hypersound

Remembering the definition of θ from table 2.1 which is essentially given by the energy
density change after excitation, we can write down the solution for the photo-excited strain
wave in dependence of the change in energy density ∆Φ(z)

εδ(z, t) =
α

2cV

1 + ν

1− ν




H(z)[2∆Φ(z)−∆Φ(z + v1t) + ∆Φ(−z + v1t)−∆Φ(z − v1t)] z ≤ d
v1

v2

[
∆Φ

(
−v1

v2

(z − v2t)− l
)
−∆Φ

(
v1

v2

(z − v2t) + l

)]
z > d

(2.34)
Equations (2.33) and (2.34) represent the acoustic answer of the treated system: a metal
film on a substrate disturbed by an infinitesimally short laser pulse, which is absorbed
in the metal, assuming no intrinsic delay in the stress generation process. In practice it
might be interesting to know the system’s answer to an arbitrary pulse pattern. Due to
the linearity of the wave equation one can calculate this by a convolution of eqs. (2.33) or

(2.34) with the normalized temporal excitation profile Ĩ(t) = I(t)∫∞
−∞ I(t)dt

:

ε(z, t) =

∫ ∞

−∞
εδ(z, τ)Ĩ(t− τ)dτ (2.35)

where ∆Φ(z) represents the excitation profile with t→∞, the time when the laser pulse
pattern has excited the layer completely.

As one example for ∆Φ(z) we could imagine a laser pulse which is absorbed in the metal
film, where the induced profile of energy change instantaneously produces stress. Due to
the Lambert-Beer law the internal intensity in the metal film has the profile Iint(z, t) =
(1 − R)I(t) exp(−z/η), where R is the reflection from the air/metal interface, I(t) the
incoming intensity envelope of the pulse pattern and η the penetration depth of the laser
light. The overall absorbed energy density profile ∆Φ can be calculated by

∆Φ(z) = (H(z)−H(z−d))

∫ ∞

−∞
− ∂

∂z
Iint(z, t)dt =

(1−R)F

η
exp

(
−z
η

)
(H(z)−H(z−d))

(2.36)
where F =

∫∞
−∞ I(t)dt is the overall deposited fluence.

Using the equations (2.34) and (2.36) as well as material parameters for the SrRuO3

metal film and the SrTiO3 substrate which are listed in table (2.2), we can plot the strain
evolution in this sample system. To keep it simple, I used a fluence of F = 20 mJ/cm2, a
reflectivity R = 0 and a film thickness d = 35 nm. Figure 2.4 shows the calculated strain

quantity symbol value citation

Penetration depth of 795 nm light in SrRuO3 η 48 nm Paper II
Sound velocity of SrRuO3 v1 6.312 nm

ps
[48]

Sound velocity of SrTiO3 v2 8 nm
ps

Paper XIV

Linear thermal expansion of SrRuO3 α 1.03 · 10−5 [48]
Poisson’s ratio of SrRuO3 ν 0.3 [49]

Specific heat per volume of SrRuO3 cV 3.424 · 106 J
m3K

[19]

Table 2.2: Important quantities for the strain calculation of a photo-excited SrRuO3 metal
film on a SrTiO3 substrate including symbol and used value.

evolution of the photo-excited SrRuO3 film on the SrTiO3 substrate. Here the upper part
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2.4.4 Describing a photoexicted metal film on a substrate using the 1D forced wave equation
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Figure 2.4: Shows the calculated strain evolution of a photo-excited SrRuO3 film with
thickness d = 35 nm grown on the dielectric substrate SrTiO3.

depicts the strain evolution as a color coded plot. The lower part shows some selected time
cuts.

In Paper II we used ultrafast x-ray diffraction (UXRD) experiments to observe the
photo-excited sound wave in the film. A change of the lattice constant due to the sound
propagating in the metal film is measured and fits quantitatively to the expected stress
profile given by Lambert-Beer’s law. The analytic solution of the wave equation for the
layer is used to explain that the film is partly contracted after photo-excitation although
the whole film wants to expand. This is due to inhomogeneously stressed film and is only
observed for thick enough layers.
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Generation of Hypersound

As we will see in the next chapter the Fourier spectrum of the excited wave packet
defines the Brillouin oscillation amplitude in the probing process. For that reason the
tables (2.3) - (2.4) show an overview of different wave packets with strain ε(z > d, t) and
their corresponding Fourier amplitudes defined by:

ε(q) :=

∣∣∣∣
∫ ∞

−∞
ε(z > d, 0) exp(−iqz)dz

∣∣∣∣ (2.37)

For shorter formulas we define the prefactor A which contains all important parameters
for the quantitative calculation of the strain by

A =
(1−R)Fα

2ηcV

1 + ν

1− ν
v1

v2

. (2.38)

For the plots in tables (2.3) - (2.4) I set A = 1 and varied the penetration depth η in
fractions of d. By setting A the penetration depth dependence of A ∼ 1/η is ignored in
the graphs for better visualization. For correct amplitude ratios the graphs have to be
weighted by 1/η. Despite this, the plots of the spectrum for different ratios of η and d
nicely show that for low values of η/d the magenta spectrum (η � d) is smeared out. This
is because the spectrum of a strain pulse with an arbitrary η/d is given by a convolution
of the complex spectrum of a rectangular shaped strain pulse (η =∞) with length 2d and
a Lorentzian function with the half width at the half maximum of 1/η which is the Fourier
transform of the exponential decaying profile.
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Chapter 3

Light and Sound Interaction

In this chapter I give a more detailed view on how light interacts with sound in a solid
medium. For that purpose I will shortly discuss the interaction mechanisms between
photons and phonons and present a detailed picture of the kinematics of the photon-phonon
scattering process. Then I will introduce the pump-probe scheme as my experimental setup
of choice to probe coherent phonon dynamics by measuring the time-dependent reflection
of the sample after sound pulse excitation. Subsequently I will use Maxwell’s equations to
model the transiently changing reflection from the sample which is a superposition of the
reflection from the heated sample and the scattering form the excited sound wave. Finally I
will interpret the measured relative reflectivity oscillation amplitudes as phonon amplitude
proportional quantities. Here I will focus on photons in the visible spectrum. In my thesis
I also used x-ray photons which scatter on the crystal lattice planes, because sound is
nothing else but moving lattice planes this is also sensitive to phonons. In publication IV
I discuss the correspondence of inelastic light and x-ray scattering on phonons. Moreover,
Paper III presents a detailed way how to calculate the time-resolved x-ray diffraction on
longitudinal acoustic phonons. Detailed discussions about ultrafast x-ray scattering can
be found in the review of Bargheer et al. [50] and the book of Authier [51].

3.1 Why photons are influenced by phonons

Let’s assume we have a piece of a transparent crystal of an arbitrary material in front of
us. At room temperature phonons are thermally excited. This lets the atoms oscillate ran-
domly. Shining light on the crystal, a part of the light would reflect at the interface between
air and the solid whereas the remaining part would penetrate into the crystal. Thinking
about different ions in the unit cell of the crystal we could drive a oscillation of these ions
against each other using the right frequency of the light wave (usually infrared). By this
process photons will be directly coupled to the phonons and build quasi-particles called
phonon-polaritons.[52][VIII] The lattice displacement and the electro-magnetic wave are
mutually dependent and can only exist together.

Now assume we have light frequencies far away from those phonon resonances or a
homopolar crystal like Silicon, why would we expect an interaction of the light with the
excited phonons? The answer is, because of electrons. Electrons mediate the interaction
process in solids because they are coupled to both, photons and phonons. Figure 3.1
(a) visualizes the dominating contribution of a resonant Stokes Raman scattering process
as a Feynman Graph.[53] A photon with energy ~ωi generates an electron-hole pair via
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3.1 Why photons are influenced by phonons

Figure 3.1: (a) shows a Feynman Graph describing a Stokes Raman scattering process
mediated by a virtually excited electron hole pair in the crystal. (b) depicts this process
where an electron decays into an phonon and new a electron in a band structure of an
arbitrary material. (c) shows the same process for holes adapted from [54, 55]

an interaction of electrons and photons. The electron can then relax to a new electron
and emit a phonon fulfilling momentum conservation governed by the electron phonon
coupling. After that process a photon with energy ~ωs is generated by the annihilation
of the electron-hole pair. Figure 3.1 (b) shows a schematic picture of this process for an
arbitrary band structure and (c) the corresponding process in which phonons were emitted
via annihilation and creation of holes.[54, 55]

It turns out that also for photon energies far away from such interband resonances
depicted in Fig. 3.1 (b) and (c) these scattering processes are quite probable especially
in case of high photon or phonon occupation numbers which can stimulate those Raman
scattering processes.

In case of light scattering on acoustic phonons also called Brillouin scattering one can
describe the electron phonon coupling in a quasi-static picture where the long wavelength
strain wave (phonon) modulates spatially the band structure of the material.[54, p. 41-
43] This behavior is quantified by the deformation potential which I have introduced in
chapter 2. Because the dielectric function is directly coupled to the band structure [55, p.
85-92], a acoustic wave modulates the optical properties of the material which finally leads
to light scattering from phonons.
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Light and Sound Interaction

Figure 3.2: The energy and momentum conservation for a scattering process between a
phonon, an incident and scattered photon in visualized. The dispersion of light is 105 times
steeper than the dispersion of acoustic phonons. This leads to a quasi-elastic geometry
where |ki| ≈ |ks| also known as Bragg geometry.

3.2 Kinematic treatment of Brillouin Scattering

Brillouin scattering has to fulfill energy and momentum conservation as every scattering
process. It is helpful to have a look at these conservation laws to get an idea which geom-
etry is the right choice for light scattering from acoustic phonons (Brillouin Scattering).
Following Paper IV, the conservation laws can be written as:

ωs − ωi = ±ωq (3.1)

ks − ki = ±q (3.2)

Here plus and minus signs correspond to the annihilation (anti-Stokes) and the creation
(Stokes) of a phonon with frequency ωq and wave vector q. The indices i and s mark the
wave vector k and frequency ω of the incident and scattered photon, respectively. Let’s
assume an acoustic phonon branch with a sound velocity of v. In the center of the Brillouin
zone we can describe the phonon dispersion of this branch by ωq = v|q|. Using the speed
of light c in the medium we can write down the connection between frequency and wave
vector of the light with ωi,s = c|ki,s|. The dot product of eq. (3.2) with itself leads to

|q|2 = |ki|2 + |ks|2 − 2|ki||ks| cos(2θ) (3.3)

with 2θ defining the angle between ki and ks. Using eq. (3.1) we can substitute ks by
ki± r|q| where r = v/c. A rearrangement of terms and the identity 1− cos(2θ) = 2 sin2(θ)
yields

0 = (r2 − 1)|q|2 ± 4r|ki| sin2(θ)|q|+ 4|ki|2 sin2(θ). (3.4)

For each sign these quadratic equations have only one physical solution:

|q|± = 2|ki| sin(θ)

√
r2 sin2(θ)− r2 + 1± r sin(θ)

1− r2
(3.5)

Equation (3.5) tells us from which acoustic phonon with wave vector q an incident pho-
ton with vector ki can scatter. Here plus and minus correspond to the anti-Stokes and
Stokes processes, respectively. In case of acoustic phonons r ∼ 10−5 ≈ 0 which makes the
differentiation between creation and annihilation of phonons for the probed phonon wave
vector mostly irrelevant. In that case we can approximate the scattering of photons from
acoustic phonons as a quasi-elastic process (|ki| ≈ |ks|) which simplifies eq. (3.5) to

|q| ≈ 2|ki| sin(θ) (3.6)
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3.3 Experimental conditions

Figure 3.2 shows the scattering geometry in case of quasi-elastic backscattering. This
formula is known as the phase matching condition of Brillouin backscattering.[56, p. 389-
391] The parallel wave vector component of the probed phonon is two times larger than
the component of the incident and scattered photon. For a phonon wave propagating
with the incident photon, the photon can only be back-scattered by a Stokes process
whereas a phonon wave propagating against the photon direction leads only to anti-Stokes
backscattering.

3.3 Experimental conditions

To make an experiment in which we excite a certain phonon wave packet and probe it by
Brillouin scattering we can use the time-resolved pump-probe scheme in which an initial
laser pulse excites a sample and launches a sound wave, as discussed in chapter 2. A
delayed probe pulse impinging the excited area on the sample scatters from the sound
wave and can then be detected. Knowing the incident angle and the wavelength of the
probing electromagnetic wave we can use eq. (3.6) to calculate the probed phonon wave-
vector. The scattered intensity at this particular photon wavelength in then a measure of
the occupation of phonons with the wave vector given by eq. (3.6). This correspondence
between diffraction Intensity and phonon amplitude will be shown in the next part of this
chapter. Moreover, the scattered light from the sound wave will interfere on the detector
with the reflection of the photo-excited sample. This leads to a homodyne amplification
of the scattered field by the sound wave and enables a measurement of phonon amplitude
and phase.

During my thesis I used two different kinds of probe schemes, probing with a broad-
band coherent picosecond white light pulse and probing with femto- and picosecond x-ray
pulses. In the first variant on which I will mainly focus in this thesis we fix the incident angle
of the white light probe pulse and detect the scattered light using a spectrometer which
finally leads to a discrimination of different phonon wave-vectors using eq. (3.6). For the
second variant where we probe with x-rays a monochromator is used to get narrowband
x-ray probe pulses. Here we change the incident angle of the probing x-ray photons to
probe different phonon wave vectors. For x-rays the backscattering condition is a little bit
different from eq. (3.6) because x-rays are so short in wavelength that they scatter usually
from lattice planes which changes the momentum conservation law in that way that on the
right side of eq. (3.2) a reciprocal lattice vector G has to be added.[IV V VI]

Figure 3.3 shows a schematic picture of the optical pump-probe setup used for hy-
persound experiments in this thesis. A 100 fs laser pulse from a Ti:Sapphire regenerative
amplifier is divided into two parts. Approximately ∼ 90% of the beam are transmitted
through a beam sampler and used as pump (red). The remaining part is reflected and used
as probe (black). The probe beam is focused into a sapphire plate, where the high electric
field amplitude in the sapphire leads to a supercontinuum generation process.[57, 58] This
broad band laser pulse (450 − 800 nm) is then send to the sample in the cryostat. The
temporal structure of the pump beam can be manipulated by changing the chirp using a
grating compressor and interferometers to generate replica of the pump pulse in defined
temporal distances.[similar to XIII], [59] Afterwards the pump is deflected over a change-
able delay path which defines the temporal displacement between pump and probe pulses.
The pump power is set by a combination of a polarizer and a λ/2 wave plate and the pump
footprint on the sample is adjustable by the distance of two lenses.

A chopper was added to the pump path where beam cross section is as small as possible
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Light and Sound Interaction

Figure 3.3: Further details can be found in section 3.3

without ablating material from the chopper surface. The chopper reduces the influence
of long time fluctuations of the experimental setup by measuring pumped and unpumped
intensity of the probe light on a short timescale. The chopper frequency is generated
by dividing the 5kHz laser trigger frequency which belongs to the repetition rate frep of
the laser system by a factor of 20. This signal is then send into the chopper controller,
where is is additionally divided in frequency by 2. This leads to a chopper frequency of
frep/40 = 125 Hz. The spectrometer used for detecting the probe pulses reflected from
the sample is triggered by the previously generated trigger with frep/20 = 250 Hz. The
doubled frequency with respect to the chopper ensures two measurement events: one where
the chopper blade is open and the pump is reaching the sample and the other where the
sample is unpumped.

In the sketched setup the sample is excited from the metal side and probed through
the substrate. As discussed in chapter 2 the pumping from back or front side changes
the excited phonon spectrum so it is important to consider this while designing such an
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3.4 Dynamical treatment of light scattering on acoustic phonons

experiment. For the probe it is usually better to send the pulse from that side where it will
less absorbed before reaching the excited phonon wave packet on which it will be partially
diffracted. This leads to a more sensitive probe of the coherent phonons. So in case of a
metal on a substrate it will be better to send the probe pulse from the dielectric side into
the sample.

To probe a large region of delays after pumping the sample, the pump was send twice
over the delay line which yields a maximum delay between pump and probe of ∼ 8 ns.
These long beam path changes lead inevitably to slight motions of the pump footprint
on the sample. Even for a perfect beam adjustment the wobbling of the linear delay
line is not negligible. To compensate the movements of the pump beam on the sample
surface, a camera permanently measures the beam. Footprint and position are analyzed
by a computer program and the motorized mirror finally readjusts the beam path such
that the pump always shines on the same position on the camera. Without this tool a
interpretation of long delay measurements would be rather problematic.

The measured quantities Ip(λ, t) and Iu(λ, t), the reflected intensities of the pumped
(p) and the unpumped (u) sample are combined to the relative reflectivity change

∆R

R0

=
Ip(λ, t)− Iu(λ, t)

Iu(λ, t)
(3.7)

where ∆R describes the reflectivity change and R0 the reflectivity of the unpumped sample.
Due to the chopper Ip and Iu are measured rather shortly after each other. The normal-
ization by Iu(λ, t) in ∆R R0 reduces the influence of long term drifts and low frequency
noise in the measurement setup.

3.4 Dynamical treatment of light scattering on

acoustic phonons

To get a more quantitative explanation how light is diffracted by acoustic phonons we
want to have a look in this section on a special scattering problem and find a solution
using Maxwell’s equations.

Let us imagine a plane sound wave with some spatial profile which propagates in z-
direction into the material. Such sound wave will change spatially the optical properties of
that material. The optical properties of this material can be described by a z-dependent
electric permittivity ε(z) and magnetic permeability µ(z). To calculate the light reflection
by this sound wave we want to find at first a solution for the reflection by a Dirac like
sound pulse, a small change of the optical properties between z and z+ dz of the medium.

3.4.1 Maxwell’s equations and the wave equation in a stratified
medium

For answering the question: how a reflected electric field coming from a stratified medium
ε(z) looks like – we want to go back to Maxwell’s equations as a profound basis. Maxwell’s
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equations in SI-units are [60, p. 2]

∇×H = Ḋ + j (3.8)

∇× E = −Ḃ (3.9)

∇ ·D = ρ (3.10)

∇ ·B = 0 (3.11)

where H, E, D and B are the vectors of the magnetic field, electric field, electric displace-
ment and the magnetic induction, respectively. Assuming a linear response of the medium
we can write:

D = εE (3.12)

B = µH (3.13)

With no additional macroscopic charges ρ = 0 and currents j = 0 we can substitute B
from eq. (3.9) using eq. (3.13). Dividing the result by µ and applying the curl on the whole
equation yields

∇×
(

1

µ
∇× E

)
= −∇× Ḣ

(3.8)
= −D̈

(3.12)
= −εË (3.14)

The last step on the right side of eq. (3.14) assumes that there is no intrinsic time depen-
dence of ε. This is an approximation which holds well because the investigated acoustic
waves are much slower than the diffracting light wave. With this assumption we neglect
any kind of retardation in the problem, which means that this theory approximates the
light scattering process as a quasi-elastic one and shows now Doppler-shift which we would
expect if we could measure very precisely. Using the identities∇×(uv) = (∇u)×v+u∇×v
and ∇× (∇× v) = ∇(∇ · v)−4v we can rewrite eq. (3.14):

4 E− µεË− ∇(1/µ)

1/µ
× (∇× E)−∇(∇ · E) = 0 (3.15)

The last term of eq. (3.15) can be substituted using eqs. (3.10) and (3.12) yielding∇·(εE) =
ε∇ · E + E · ∇ε = 0 which finally translates eq. (3.15) to [61, p. 11]

4 E− µrεr
c0

2
Ë +∇ lnµr × (∇× E)−∇(E · ∇ ln εr) = 0 (3.16)

Here I used the definitions µ = µ0µr, ε = ε0εr as well as c0 = 1/
√
µ0ε0 and wrote

the relative derivatives of µ and ε as logarithmic derivatives. In this formula εr(x, y, z)
and µr(x, y, z) are scalar functions. Let’s restrict our considerations to the case of non-
magnetic materials which leads to the assumption of µr(z) = 1, which makes the third
term in eq. (3.16) zero. Now let’s assume that εr depends only on the dimension z. In
case of an s-polarized wave, a linear polarized wave with an electric field perpendicular to
the plane of incidence, the last term of eq. (3.16) vanishes also, and we get:

4 E− εr(z)

c0
2

Ë = 0 (3.17)

For a p-polarized wave, a linear polarized wave with electric field parallel to the plane of
incidence, the last term would not vanish and has to be considered. In case of a s-polarized
wave we consider without any loss of generality a wave with a field along the x-direction
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Figure 3.4: A incident light ray with the electric field E polarized along the x-axis is
reflected on a sample surface and partly from the spatially non constant dielectric function
ε(z). The violet regions in the blue material cube visualize the strained regions in the
material which change the dielectric properties along the propagation direction z of the
sound wave.

E = (Ex, 0, 0) exp(−iωt) as depicted in Fig. 3.4. This simplifies eq. (3.17) to its first row.
Using the definition k2

0 = ω2/c2
0, where k0 represents the light wave vector in vacuum, we

get:
∂2

∂y2
Ex +

∂2

∂z2
Ex + εr(z)k2

0Ex = 0 (3.18)

This partial differential equation can be translated into two ordinary differential equations
by separating the variables y and z with the ansatz Ex(y, z) = Y (y)E(z). This leads to
the equations [61, p. 56]

∂2

∂y2
Y (y) = −k2

yY (y) (3.19)

∂2

∂z2
E(z) = −(εr(z)k2

0 − k2
y)E(z) (3.20)

where eq. (3.19) is easily solvable and therefore the solution for Ex(y, z) can be written as

Ex(y, z) = E(z) exp(ikyy). (3.21)

With eq. (3.21) ky can be interpreted as the y-component of the wave vector of the incoming
light wave which is a constant and given by Snell’s law.

3.4.2 Reflection of Dirac like change of the dielectric constant

In this part we want to use eq. (3.20) to find the reflection coefficient of a Dirac like change
in the dielectric constant i. e. a change of εr(z) in an infinitesimal small region [z, z+ dz].
For this purpose it is helpful to describe the dielectric property εr(z) = εr + ∆εr(z) as
a sum of the unperturbed and constant εr and a function ∆εr(z) which describes small
changes of the dielectric ”constant” around the value εr. With the use of Snell’s law we can
write k2

y = k2
0εr sin2(β) with β defining the refraction angle in the medium. This simplifies

eq. (3.20) to [31]
∂2

∂z2
E(z) = −k2

0 [ε′r + ∆εr(z)] E(z) (3.22)
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by using the definition ε′r
..= εr cos2(β). Let’s assume ∆εr(z) is given by the function

Fδ(z − z′) where δ represents the Dirac delta function:

∂2

∂z2
E(z) = −k2

0 [ε′r + Fδ(z − z′)] E(z) (3.23)

The value of δ(z−z′) is only different from zero at z′ which makes it easy to solve eq. (3.23)
for z 6= z′. In those regions the solution E(z) is given by plane waves

E(z) =

{
E0 [exp(ik0n

′z) + rδ exp(−ik0n
′z)] for z < 0

E0tδ exp(ik0n
′z) for z > 0

(3.24)

where the incoming wave E0 exp(ik0n
′z) is partially reflected by the δ peak with the re-

flection coefficient rδ and partially transmitted with the transmission coefficient tδ. Note
that

n′ =
√
ε′r =

√
εr cos2(β) = n cos(β) (3.25)

where n is the refractive index of the medium and β = 90◦− θ with θ described in section
3.2. To find rδ and tδ we can use the continuity of E(z) and the defined discontinuity of

E ′(z) =
∂E(z)

∂z
given by eq. (3.23).

With a small number σ > 0 we can express the continuity condition of E(z) as eq. (3.26)
which yields eq. (3.27) by using the plane wave solutions (3.24).

lim
σ→0

[E(z′ − σ)− E(z′ + σ)] = 0 (3.26)

1 + rδ exp(−i2k0n
′z′) = tδ (3.27)

The discontinuity of E ′(z) due to the Dirac function can be quantified by integrating
eq. (3.23) around z′ which can be expressed as eq. (3.28) yielding eq. (3.29) which finally
translates into eq. (3.30) by using eq. (3.24) and its first derivatives with respect to z.

lim
σ→0

z′+σ∫

z′−σ

∂2

∂z2
E(z) + k2

0 [ε′r + Fδ(z − z′)] E(z)dz = 0 (3.28)

lim
σ→0

[E ′(z′ − σ)− E ′(z′ + σ)] = −k2
0FE(z′) (3.29)

ik0n
′ [(tδ − 1) exp(ik0n

′z′) + rδ exp(−ik0n
′z′)] = −k2

0Ftδ exp(ik0n
′z′) (3.30)

By the use of eq. (3.27) and eq. (3.30) we can determine rδ and tδ which yields [31]

rδ = − k0F

k0F + i2n′
exp(i2k0n

′z′) ≈ ik0F

2n′
exp(i2k0n

′z′) (3.31)

tδ =
i2n′

k0F + i2n′
(3.32)

The last term in eq. (3.31) represents the first order approximation in F of the reflection
coefficient coming from a delta spike in the spatially changing dielectric constant εr(z). It
is valid for rδ far away from unity, where multiple reflection of the incoming light beam
can be neglected.
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3.4.3 Reflection coefficient of a sound wave in a medium

The complete reflection from a medium varying dielectric constant along the z coordinate
can be approximated by the integral of eq. (3.31) over z, where F was the amplitude of
the δ-like ∆εr(z). [31]

r[∆εr(z)] =
ik0

2n cos(β)

∞∫

0

∆εr(z) exp(iqz)dz (3.33)

Here q = 2k0n cos(β) = 2k0n sin(θ) which can be interpreted as the magnitude of a phonon
wave vector along the z coordinate as shown in eq. (3.6). The connection of the strain ε
with the induced change of dielectric constant ∆εr is given by the photoelastic constants
which are defined by ∆εrI = PIJεJ . Using this definition we can rewrite eq. (3.33) and get
eq. (3.34).

rε,spol[ε(z, t)] = P12
ik0

2n cos(β)

∞∫

0

ε(z, t) exp(iqz)dz

rε,ppol[ε(z, t)] = (P12 cos2(β)− P11 sin2(β))
ik0

2n cos(β)

∞∫

0

ε(z, t) exp(iqz)dz

(3.34)

(3.35)

Eq. (3.35) is the corresponding equation for p-polarized light, its derivation is not shown
here but can be comprehended with literature.[62] The equations (3.34) and (3.35) give us
the possibility to calculate the reflection coefficient of a sound wave with strain ε(z, t) in
the medium with refractive index n. The reflection coefficient is in both cases proportional
to the Fourier transform of the strain function ε(z, t). The resulting dependency q is the
corresponding magnitude of the phonon wave vector. Despite the difference of the formulas
(3.34) and (3.35) in the prefactor depending on the elastic constants and the incoming
photon angle β with respect to the normal of the sample surface, both reflection coefficients
are weighted with the incoming photon wave vector magnitude k0. Consequently this
probing process is more sensitive to Fourier components of higher wave vectors.

3.5 Complete reflection contribution in a

pump-probe experiment

For the optical pump-probe experiments in this thesis two different probing schemes were
used. The phonons in the excited sample could be probed by using a probe beam coming
from the metal film side (A) or from the substrate side (B). Both beam paths undergo
different reflections and transmissions which yield different contributions of phonons to the
signal. Figure 3.5 depicts this situation. In this section we want to find explicit formulas
which describe the reflection of the sample including strain in the substrate. We define
z = 0 to the position of the metal substrate interface. The scattered light coming from
phonons will interfere in each case with the light coming from this interface.

A: rA = rL + tLt̃Lrε (3.36)

B: rB = t02t20e
iδ(r̃L + r̃ε + r̃2

Lrε), δ =
4π

λ
sn cos(β) (3.37)
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0 1 2 0

Figure 3.5: In the experiments of this thesis two different probing geometries were used. On
the one hand we can probe the phonons with a probe beam coming from the metal (orange)
surface side, and on the other hand a probe beam coming from the substrate surface. The
last version has the advantage that the probe light does not have to penetrate through the
metal film, which finally leads to more reflected light from phonons. On the other side a
high reflective metal film leads to a additional reflection from the phonons which have to
be considered.

Eqs. (3.36) and (3.37) are the overall reflection coefficients for scenario A and B. rL and
r̃L are the reflection coefficients of the layer for a light ray coming from left or right,
respectively, as depicted in Fig. 3.5. Numbered variables refer to the transmission (t)
and reflection (r) coefficients given by Fresnel’s formulas.[63, p. 61 u. 63] The numbers
define the interface which has to be considered. The values of rε and r̃ε refer to the
reflection of light from the strain in the substrate. The direct reflection of the strain
in scenario B is described by r̃ε. Here the light is reflected from the opposite side in
comparison with the reflection from the strain after the layer reflection given by r̃2

Lrε. The
variable δ is the phase change coming from the propagation of the light ray twice though
the substrate with thickness s and complex refractive index n. In this consideration it’s
mainly important if the absorption of the substrate is not negligible. Note, the variables
rL, r̃L, tL, t̃L as well as rε and r̃ε are time-dependent quantities. The reflection and
transmission of the photoexcited layer are changed mainly due to heat conduction which
leads to layer-cooling. These coefficients are explicitly given by time-dependent Fresnel
coefficients describing reflection and transmission of the air-metal and metal-substrate
interfaces including multiple reflections within the metal film, which are important for
films thinner than the optical penetration depth.

rL =
r01 + r12e

i2φ

1 + r01r12ei2φ
, r̃L =

r21 + r10e
i2φ

1 + r21r10ei2φ
(3.38)

tL =
t01t12e

iφ

1 + r01r12ei2φ
, t̃L =

t21t10e
iφ

1 + r21r10ei2φ
(3.39)

The variable φ represents the phase shift coming from the light propagation through the
metal film and is given by the layer thickness d, the complex refractive index of the layer
nL the vacuum probing wavelength λ and the refraction angle ϑ in the layer are given by
Snell’s law.

φ =
2π

λ
dnL cos(ϑ) (3.40)

The phonon reflection coefficient rε is given by eqs. (3.34) or (3.35) depending on the
polarization of the incoming probe light. The coefficient r̃ε is slightly different from rε,
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because the probe beam reflects from the other side of the strain wave and the beam path
gets shorter as the strain wave propagates which leads to a inverted phase change with
respect to reflection rε. These two differences can be considered by flipping the z-axis
(z 7→ −z) of the strain ε(z, t). With this follows that r̃ε[ε(z, t)] = rε[ε(−z, t)] considering
an integration over the negative half space [−∞, 0] which is the same as flipping the phase
factor in eqs. (3.34) and (3.35) to a minus sign:

r̃ε,spol[ε(z, t)] = P12
ik0

2n cos(β)

∞∫

0

ε(z, t) exp(−iqz)dz (3.41)

r̃ε,ppol[ε(z, t)] = (P12 cos2(β)− P11 sin2(β))
ik0

2n cos(β)

∞∫

0

ε(z, t) exp(−iqz)dz (3.42)

To find an explicit form of eq. (3.7) for scenario A and B it is helpful to translate all complex
coefficients to their magnitude and angle in the form D = |D| exp(iφD). Furthermore, we
add to the subscript of reflection and transmission coefficients of the layer a subscript, an
u for the unpumped and a p for the pumped case. For the unpumped intensity Iu and
pumped intensity Ip detected in the spectrometer we get:

A: Ip = |rL,p + tL,pt̃L,prε|2 (3.43)

Iu = |rL,u|2 (3.44)

B: Ip = |t02t20|2e−2 Im(δ)|r̃L,p + r̃ε + r̃2
L,prε|2 (3.45)

Iu = |t02t20|2e−2 Im(δ)|r̃L,u|2 (3.46)

Neglecting higher order terms of rε and r̃ε, the relative reflected intensity (3.7) measured
in the pump-probe scheme is given by:

A:
∆R

R0

=
|rL,p|2 + 2|rL,p||tL,p||t̃L,p||rε| cos(φε + φtL,p + φt̃L,p − φrL,p)

|rL,u|2
− 1 (3.47)

B:
∆R

R0

=
|r̃L,p|2 + 2|r̃L,p||r̃ε| cos(∆φ1) + 2|r̃L,p|3|rε| cos(∆φ2)

|r̃L,u|2
− 1 (3.48)

∆φ1 = φr̃ε − φr̃L,p = −(φrε + φr̃L,p)

∆φ2 = φrε + 2φr̃L,p − φr̃L,p = φrε + φr̃L,p

B:
∆R

R0

=
|r̃L,p|2 + 2|r̃L,p||rε|(1 + |r̃L,p|2) cos(φrε + φr̃L,p)

|r̃L,u|2
− 1 (3.49)

The equations (3.47) and (3.49) are the final results for the relative reflected intensity of
the scenarios A and B. Interestingly the higher order reflection from phonons by a double
reflection on the metal film in scenario B adds perfectly up to the first order reflection
coming from the phonons.

In case of scenario B with negligible multireflection |r̃L,p|2 � 1 it is possible to deter-
mine a quantity out of the measured relative reflectivity change which is not influenced
by the pumped metal film and proportional to the phonon reflection rε. Therefore we
rearrange eq. (3.49) in a way where we have separated the slowly varying part SL from the
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fast oscillating contribution SH .

∆R

R0

=
|r̃L,p|2
|r̃L,u|2

− 1

︸ ︷︷ ︸
SL

+
2|r̃L,p||rε| cos(φrε + φr̃L,p)

|r̃L,u|2︸ ︷︷ ︸
SH

(3.50)

SL typically changes much slower (∼ ns) than SH (∼ 10 ps) and therefore we can get both
quantities by using high and low pass filters. Let’s define P as

P =
SH√
SL + 1

=
2|rε| cos(φrε + φr̃L,p)

|r̃L,u|
. (3.51)

The quantity P is independent of the reflectivity of the heated layer and depends transiently
only on the temporal variation of rε. To compare different probe wavelengths it is important
to consider the wavelength dependent reflection |r̃L,u(λ)| of the layer. A multiplication of
|r̃L,u(λ)| and P lead then to a quantity which is direct proportional to the phonon spectral
amplitude.
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Chapter 4

Nonlinear Sound

In this chapter we want to go beyond the linear behavior of sound in crystals, similar
to the field of nonlinear optics where the refractive index depends on the electric field of
an existing light wave. In optics this has produced new physical effects like frequency
mixing, supercontinuum generation and the existence of optical solitons.[64–66] Today,
such nonlinear effects build the fundament of new laser applications e. g. in information
technology and ultrafast laser science. In case of phonons the anharmonicity of the lattice
potential leads to a finite thermal conductivity and a nonzero thermal expansion of crystals.
Especially for heat conduction the coupling of phonons with frequencies in the high GHz
range until THz is important. It defines how phonons are scatter with each other and how
fast energy can be transported by them. One possibility to study the coupling of high
frequency phonons is the investigation of high amplitude coherent hypersonic waves by
ultrafast techniques such as optical pump-probe or time-resolved x-ray diffraction.

For hypersound, sound with a wavelength in the nanometer range, nonlinear effects in
crystals are currently under investigation. In the linear regime of sound in a crystal the
forces acting on atoms are proportional to their displacement from the equilibrium position.
This is the case only in perfect parabolic crystal potentials. In real physical systems the
interaction of atoms goes usually down if we take them apart from each other and goes up
if we try to bring them together. This behavior is mainly given by the intrinsic nonlinearity
of the underlying interactions: the electrostatic forces, dipole-dipole interactions and the
pauli-repulsion.

The nonlinear interaction leads to a sound amplitude dependent speed of sound (cor-
responding to the refractive index in optics) of the material. In the last years the self-
steepening of a sound pulse front which can be seen as acoustic analog of the supercontin-
uum generation was observed by several groups.[XIV][67–69] In addition, non-dispersive
and nanometer long wave packets also called solitons where produced and detected.[70–73]
In all these experiments broadband acoustic pulses were used. To investigate the coupling
of specific phonon modes with a certain frequency, narrow band phonon wave packets have
to be used. Therefore one can excite a nanometric metal film on a substrate by a train
of laser pulses where the excited phonon frequency is given by the inverse of the temporal
pulse displacement.[IV][74]

My main contribution to the field of nanoscale nonlinear acoustics is the experimentally
observed second harmonic generation (SHG) of nanoscale longitudinal acoustic phonons
in SrTiO3 excited by a train of chirped laser pulses [75] and probed via ultrafast x-ray
diffraction and time-resolved Brillouin scattering.[XIII] While these nonlinear modifica-
tions of the waves can be explained by coupled sinusoidal waves on a fixed crystal lattice,
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4.1 The Fermi-Pasta-Ulam chain

our group found in addition mechanisms where phonon wave packets couple to the lat-
tice structure directly. First, we found that short and intense sound pulses can change
the mosaicity of a material which leads to a coupling of out-of-plane phonons to in-plane
phonons.[XVI] And second, we observed a softening of acoustic phonons in SrTiO3 below
the anti-ferro-distortive phase transition which is connected with a coupling of phonons to
domain walls.[XV]

This chapter is a resumé of the theory of nonlinear phonons used in the papers XIV and
XIII which essentially only report the experimental findings and the results of the simula-
tions. I will introduce the Fermi-Pasta-Ulam (FPU) chain, a linear chain as eq. (2.11) but
with additional anharmonic terms describing the nearest neighbor forces. Furthermore I
will show the connection of the FPU chain to the standard acoustic nonlinear wave equa-
tion and its third order elastic constants, the Boussinesq equation, the Burgers equation,
as well as the Korteweg-de Vries equation. All these nonlinear partial differential equations
follow from the FPU-chain. The Burgers equation can describe the nonlinear behavior of
self-steepening and second harmonic generation whereas the Korteweg-de Vries equation
has acoustic soliton solutions, where these solitons are the reason that for large times
after excitation the third order anharmonicity in the chain does not lead to a thermal
equilibration of the energy, which was originally expected by Fermi and coworkers.

4.1 The Fermi-Pasta-Ulam chain

To describe lattice vibrations of an anharmonic lattice in 1D the famous Fermi-Pasta-
Ulam-α-β chain can be used.[76, 77] This model is essentially a chain of oscillators coupled
by nonlinear springs. I extended the FPU chain by an empirical acoustic damping term
which mimics the quadratic frequency dependence of phonon damping due to thermoelastic
damping and the Herring process.[78–82] The equations of motion of each oscillator i with
displacement ui is given by

mM üi = kM [(ui+1 − ui)− (ui − ui−1)] + αM [(ui+1 − ui)2 − (ui − ui−1)2]

+ βM [(ui+1 − ui)3 − (ui − ui−1)3] +mMγM [(u̇i+1 − u̇i)− (u̇i − u̇i−1)] + Fi(t) (4.1)

Here m and k are the oscillator mass and the spring constant. The parameters α and β
are the cubic and quartic contributions of the lattice potential, whereas γ measures the
phonon damping. In general the chain can describe a sample with different materials which
have different material parameters. This is indicated with the material index M. The last
term in eq. (4.1) stands for the external forces acting on the chain. To calculate the forces,
the thermoelastic stress discussed in chapter 2 can be used. Fi = mMg(a · i, t) where a is
the lattice constant and i = 0..N − 1 where N is the number of oscillators in the chain.
The function g(z, t) is defined in 2.4.2. It is essentially the local acceleration acting on the
mass i.

4.2 Continuum approximation of the extended FPU

chain

Let’s assume that the chain is composed of only one material so we can ignore the index
M of eq. (4.1). Furthermore we want to look at a unforced region of the chain and set
β = 0, because in our simulations β is usually a small number which does not change the
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main outcomes of the calculation. It ensures only that the lattice potential will not go to
−∞ as ui →∞. This translates eq. (4.1) to the FPU-α chain with viscoelastic damping.

müi = k[(ui+1 − ui)− (ui − ui−1)] + α[(ui+1 − ui)2 − (ui − ui−1)2]

+mγ[(u̇i+1 − u̇i)− (u̇i − u̇i−1)] (4.2)

Similar to the calculation in 2.4.1 we can now transform the set of differential equa-
tions in eq. (4.2) to a partial differential equation which describes the physics in the long
wavelength regime where the wavelength λ � a, with a representing the lattice constant
of the chain. Using the following Taylor approximations we can translate ui → u(x),
ui−1 → u(x− a) and ui+1 → u(x+ a).

u(x− a, t) ≈ u(x)− ∂

∂x
u(x, t)a+

1

2

∂2

∂x2
u(x, t)a2 − 1

6

∂3

∂x3
u(x, t)a3 +

1

24

∂4

∂x4
u(x, t)a4 (4.3)

u(x+ a, t) ≈ u(x) +
∂

∂x
u(x, t)a+

1

2

∂2

∂x2
u(x, t)a2 +

1

6

∂3

∂x3
u(x, t)a3 +

1

24

∂4

∂x4
u(x, t)a4 (4.4)

Inserting these equations into eq. (4.2) considering approximations only until second or-
der in a for the squared differences and the damping terms, we get the following partial
differential equation (PDE).

∂2u

∂t2
=
ka2

m

∂2u

∂x2︸ ︷︷ ︸
Wave equation

+ γa2 ∂

∂t

∂2u

∂x2︸ ︷︷ ︸
Damping

+
2αa3

m

∂u

∂x

∂2u

∂x2︸ ︷︷ ︸
First order

anharmonicity

+
ka4

12m

∂4u

∂x4︸ ︷︷ ︸
Higher order

dispersion

(4.5)

Differentiating eq. (4.5) by x and using the definition of strain ε = ∂u/∂x leads to the
following equation describing the strain in a nonlinear medium with damping.

∂2ε

∂t2
=
ka2

m

∂2ε

∂x2
+ γa2 ∂

∂t

∂2ε

∂x2
+

2αa3

m

∂

∂x

(
ε
∂ε

∂x

)
+

ka4

12m

∂4ε

∂x4
(4.6)

4.2.1 Boussinesq equation

For the normalized variables ε̃ = 2
αa

k
ε, x̃ =

√
12

a
x, t̃ =

√
12
k

m
t and assuming no damping

(γ = 0) eq. (4.6) translates to the canonical Boussinesq equation.[83]

∂2ε̃

∂t̃2
=
∂2ε̃

∂x̃2
+

∂

∂x̃

(
ε̃
∂ε̃

∂x̃

)
+
∂4ε̃

∂x̃4
(4.7)

This equation was derived by Boussinesq and describes shallow water waves which can
have soliton character. Such a solitary wave was firstly documented by Scott-Russel, who
observed a water wave packet propagating along a canal over a distance of around two
miles without changing its shape.[84] Solitons are often discussed as quasiparticles because
they are stable after collision with other solitons. The main reason why the Boussinesq
equation shows such soliton solutions is that the anharmonicity, which can be imagined as
a strain dependent sound velocity, cancels out the higher order dispersion which effectively
leads to linear dispersion in the region of the soliton.
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4.2.2 Korteweg-de Vries equation

4.2.2 Korteweg-de Vries equation

If we are only interested in waves propagating in a certain direction, let’s say a propagation
to the right, it is possible to transform eq. (4.6) with γ = 0 into a moving frame of reference

by the coordinate transform y = x−ct and τ = t where c =
√

k
m
a is the sound velocity of a

wave with small amplitude (linear regime).[85, p. 18] Neglecting the second time derivative

of ε and transforming to the normalized coordinates ε̄ = 1
6
αa
k
ε, ȳ =

√
24
a
y and τ̄ =

√
24 k

m
τ

we get the Korteweg-de Vries (KdV) equation.[86]

∂ε̄

∂t̄
+ 6ε̄

∂ε̄

∂ȳ
+
∂3ε̄

∂ȳ3
= 0 (4.8)

This equation originally found by Boussinesq describes the nonlinear behavior of right
propagating waves in various fields of physics like hydrodynamics, nonlinear plasma physics
as well as high amplitude acoustics in crystals. The KdV equation has two kinds of
particular solutions. The first is a soliton solution described by a squared hyperbolic
secant and the second are cnoidal waves which can be expressed in form of squares of
Jacobi elliptic functions.[85, p. 21] The solitons were found first numerically by Zabusky
and Kruskal and were documented in their famous publication.[87] This publication was a
important step in understanding why the FPU-chain shows the so called Fermi-Pasta-Ulam
recurrence instead of ergodic behavior, what was expected before Fermi, Pasta, Ulam and
Tsingou made first numerical experiments.[88]

While in the experiments of this thesis no solitons are observed because of the high
phonon damping in SrTiO3 even more at low temperature where the anti-ferro-distortive
phase transition leads to additional damping [XV], [59], current investigations in our group
are running, using different materials such as GaAs and DyScO3 to generate acoustic
solitons at low temperature and investigate their behavior by time-resolved optical and
x-ray methods.

4.2.3 Viscous Burgers equation

In the sections before we ignored the viscoelastic damping term of eq. (4.7) which yields
the Boussinesq and KdV equation. Microscopically the phonon damping is due to the
coupling of phonons to other degrees of freedom such as thermally excited phonons [82],
free electrons [89, 90] or defects [91, 92].

In a dielectric where free electrons are not present, the phonon attenuation usually goes
down with temperature. Neglecting the damping in the description of wave propagation is
therefore only valuable for low temperatures. The typical power law frequency dependence
of the anharmonic damping makes that high phonon frequencies damp out rapidly.[79]
Consequently solitons which have also high frequency contributions are not stable at high
temperatures. For such temperatures it is more appropriate to consider the damping term
in eq. (4.7) and neglect the higher order dispersion which originally stabilized the solitons
in the Boussinesq and KdV equation.

Doing this, transforming the equation into the moving frame of reference by the coor-
dinate transform y = x− ct as well as τ = t as in the case of the KdV and neglecting the
second order terms with time derivatives of ε yields,

∂ε

∂τ
+
αa3

mc
ε
∂ε

∂y
=
γa2

2

∂2ε

∂y2
. (4.9)
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Nonlinear Sound

A translation of this equation to the new coordinates ŷ = 2αa
mγc

y and τ̂ = 2α2a4

m2γc2
τ yields the

viscous Burgers equation.
∂ε

∂τ̂
+ ε

∂ε

∂ŷ
=
∂2ε

∂ŷ2
(4.10)

This equation describes nonlinear sound propagation, where the strain modulates the sound
velocity in the vicinity of the strain pulse. This leads in normal materials (α < 0) to
compressive strain parts which propagate faster than low amplitude sound (supersonic)
and tensile strain parts which propagate slower than the sound velocity (subsonic).

In paper XIV we present the observation of a nonlinearly propagating bipolar strain
pulse and used a linear chain to explain this interesting nonlinear effect which can be un-
derstood as an analog to the supercontinuum generation of light mentioned in the chapter
before (3.3). Here, I would like to use the Burgers equation, although it is an exten-
sive simplification of the FPU-chain it describes the self-steepening of the strain fronts
quantitatively and shows that this effect depends mainly on the anharmonicity of the
lattice potential, whereas higher order dispersion has essentially no influence. Interest-
ingly, although the viscous Burgers equation is a nonlinear equation one can transform it
into a linear diffusion equation using the Hopf-Cole transform and solve the initial value
problem.[93, 94] This leads to the solution [95, ch. 1.1.5]

ε(ŷ, τ̂) = −2
∂

∂ŷ
ln

{
1√
4πτ̂

∫ ∞

−∞
exp

[
−(ŷ − ξ)2

4τ̂
− 1

2

∫ ξ

0

ε(ξ′, 0)dξ′
]
dξ

}
. (4.11)

Using the same bipolar strain pulse as in Fig. 2.4 on page 16 as initial condition (only
substrate part), we can follow the shape changes due to the self-modulation of the sound
velocity shown in Fig. 4.1. Because of the velocity difference between the tensile and
compressive part of the pulse, the pulse fronts move apart from each other and the main
spectral components of the pulse shift to longer wavelength (smaller wave vectors).

As discussed in the chapter before, optical light scattering on a sound wave is nicely
described by a Fourier transform of the strain field (Eqns. 3.34 and 3.35). The whole
spectrum shifts now to smaller wave vectors which leads to a change of the Brillouin
oscillation amplitude. In other words a fraction of the probe light is reflected from the
leading edge of the compressive pulse and another part on the trailing edge of tensile
side of the N-wave. At certain points in time both reflections destructively interfere with
each other and the Brillouin oscillation amplitude gets zero. After that both strain fronts
move further apart from each other and the scattering gets non zero again. This beating
frequency is highly dependent on the acoustic nonlinearity [96]. In paper XIV we used this
beating frequency in combination with the measurement of the acoustic pulse amplitude
by ultrafast x-ray diffraction to determine the first order anharmonicity of the lattice for
longitudinal soundwaves propagating along the [001] direction.

In case of multi-cycle strain pulses which can be generated by a train of laser pulses
which excite a metal film as shown in paper IV, the positive and negative strain contri-
bution cannot move apart from each other, because of neighboring counteracting strain
components which want to move in the opposite direction. This leads to a stabilization of
the fundamental excited mode, but via propagation through the nonlinear medium energy
of the fundamental is transferred to higher harmonics.[XIII]
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4.2.3 Viscous Burgers equation
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Figure 4.1: The figure shows the calculated strain profile changes of a bipolar strain pulse
propagating through the nonlinear acoustic medium SrTiO3. The cubic lattice potential
contribution leads to a strain dependent sound velocity where expansive crystal regions
get softer (lower sound velocity) and tensile regions harder (higher sound velocity). This
leads finally to a self-steepening of the strain fronts and to a building of N-Waves.
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4.3 Nonlinear elastic theory

In the theory of nonlinear elasticity the third order elastic constants are used to describe
the anharmonicity of a material. Using the standard equation of nonlinear elasticity for
waves in a cubic crystal propagating along one dimension (x-direction), we get [70, 97]

ρ0
∂2u

∂t2
= C11

∂2u

∂x2
+ (C111 + 3C11)

∂u

∂x

∂2u

∂x2
(4.12)

We see directly by comparison of eq. (4.12) with the continuum approximation of the ex-
tended FPU-chain eq. (4.5) that the viscoelastic damping term and higher order dispersion
are not present. While damping can be discussed in form of imaginary elastic constants,
higher order dispersion is in this theory usually neglected because of the focus on long
wavelengths.

Comparing the existing coefficients of eq. (4.12) and eq. (4.5) gives us the possibility
to translate the FPU model parameters into the second order C11 and the third order C111

elastic constants of the crystal. Note that ρ0 is the density of unperturbed medium and is
therefore given by ρ0 = m

a3
.

C11 =
k

a
, C111 = 2α− 3

k

a
(4.13)
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Chapter 5

Summary and Outlook

The highlights of this thesis are the three Papers IV, XIII and XIV for which I combined
time-resolved optical pump-probe experiments and ultrafast x-ray diffraction.

Paper IV presents a perspective on ultrafast x-ray and optical light scattering for
investigating the transient spectral content of nanometric narrowband coherent acoustic
phonons in a unified way.

Paper XIV is a study of very high amplitude single cycle longitudinal acoustic pulses
propagating through SrTiO3 by time-resolved optical Brillouin scattering. I calibrated the
strain amplitude of the excited acoustic pulse by ultrafast x-ray diffraction, which allowed
me to determine the anharmonicity of the crystal potential. Due to this anharmonicity,
tensile regions of the sound pulse propagate faster than expansive ones. This changes the
shape of the pulse and therefore also its spectral content which was measured by time-
resolved optical Brillouin scattering. The experimentally observed spectral shape is in
excellent agreement with a numerical model describing the nonlinear pulse propagation.
The anharmonicity serves as the central first parameter of this model.

Paper XIII presents the main new physics of this thesis. The observed second harmonic
generation of nanometric acoustic phonons by ultrafast variants of inelastic visible light and
x-ray scattering is a first important step to make the interaction of very high frequency
hypersonic phonon wave packets visible and utilizable. It is the first observation of a
phase-matched acoustic phonon mixing process in the nanometer range.

In addition to these publications, I presented in this thesis an analytical description
of the thermoelastic excitation of acoustic phonon wave packets by ultrafast heating of a
nanometric metal film on a dielectric substrate. An important outcome of this discussion is
an analytic formula for the strain of the excited wave packet. Furthermore, I showed that
the Fourier transform of this strain function can be used to calculate the scattered light
intensities of different probe wavelengths coming from the excited phonon wave packet in
an optical pump-probe experiment. In the last part of this thesis I presented the model
which was used to describe the nonlinear behavior of the wave packets in papers XIII and
XIV. This model is a Fermi-Pasta-Ulam (FPU) chain with additional phonon damping,
which is essentially a system of masses coupled by anharmonic springs with damping. To
establish the connection to the field of nonlinear acoustics, I presented a viscous nonlinear
wave equation as the continuum approximation of the FPU chain and how this relates to
various nonlinear wave equations.

For future technology, the investigation of short wavelength and high frequency phonon
scattering processes is of huge importance. The knowledge how to manipulate such pro-
cesses could improve the heat transport in nanostructures and the efficiency of thermo-
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electric materials or might open the path to the use of phonons as information carrying
particle in logic gates.

From the physical point of view, it would be interesting to transfer well known concepts
from nonlinear optics to the new field nonlinear phononics like the parametric amplifica-
tion. This is a conversion process where high frequency phonons are stimulated by a lower
frequency phonon wave packet to decay into the phonon with the lower frequency and its
energy and momentum conserving counterpart. Such four wave mixing processes could be
investigated for different phonon polarizations (transversal, longitudinal) as well as for op-
tical and acoustic phonon branches. Due to the intrinsic anisotropy of acoustic properties
a non-collinear wave mixing geometry could be used to fulfill the phase matching condition
for the phonon mixing of different branches.

To investigate scattering processes of those phonons contributing mainly to heat, acous-
tic phonons with a very short wavelength in the nm or sub-nm range have to be investi-
gated. Due to diffraction limits, for detection x-ray short wavelength radiation as x-ray
pulses could be used instead of visible light. Here free electron lasers (FELs) as the first
available coherent and femtosecond pulsed x-ray sources hold a great promise to be the per-
fect tool for such studies. Finally FELs could also be used to generate such high frequency
phonons directly by Impulsive Stimulated Raman Scattering (ISRS) which was shown until
now only for optical light which provides no phase-matching for high frequency acoustic
phonons.[39] Here one would have to cross two FEL beams with a certain angle between
them. The interference of these beams in a material would induce a transient polarization
grating which could act as a driving force of an THz acoustic phonon excitation.
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in Glass”. Phys. Rev. Lett. 24, 584 (1970).

66. L. F. Mollenauer, R. H. Stolen and J. P. Gordon. “Experimental Observation of Picosecond Pulse
Narrowing and Solitons in Optical Fibers”. Phys. Rev. Lett. 45, 1095 (1980).

67. P. J. S. van Capel and J. I. Dijkhuis. “Optical generation and detection of shock waves in sapphire at
room temperature”. APL 88, 151910 (2006).

68. P. J. S. van Capel, H. P. Porte, G. van der Star and J. I. Dijkhuis. “Interferometric detection of
acoustic shock waves”. Journal of Physics: Conference Series 92, 012092 (2007).

69. V. V. Temnov. “Ultrafast acousto-magneto-plasmonics”. Nat Photon 6, 728. 10.1038/npho-
ton.2012.220 (2012).

70. H. Y. Hao and H. J. Maris. “Experiments with acoustic solitons in crystalline solids”. Phys. Rev. B
64, 064302 (2001).

71. O. L. Muskens and J. I. Dijkhuis. “High Amplitude, Ultrashort, Longitudinal Strain Solitons in
Sapphire”. Phys. Rev. Lett. 89, 285504 (2002).

72. W. Singhsomroje and H. J. Maris. “Generating and detecting phonon solitons in MgO using picosecond
ultrasonics”. Phys. Rev. B 69, 174303 (2004).
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Selbständigkeitserklärung
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einen dementsprechenden Doktorgrad nicht besitze.
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Comparing the oscillation phase in optical pump-probe spectra to ultrafast x-ray diffraction in the
metal-dielectric SrRuO3/SrTiO3 superlattice
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We measured the ultrafast optical response of metal-dielectric superlattices by broadband all-optical pump-
probe spectroscopy. The observed phase of the superlattice mode depends on the probe wavelength, making
assignments of the excitation mechanism difficult. Ultrafast x-ray diffraction data reveal the true oscillation
phase of the lattice which changes as a function of the excitation fluence. This result is confirmed by the fluence
dependence of optical transients. We set up a linear chain model of the lattice dynamics and successfully simulated
the broadband optical reflection by unit-cell resolved calculation of the strain-dependent dielectric functions of
the constituting materials.

DOI: 10.1103/PhysRevB.85.224302 PACS number(s): 63.20.Ry, 42.65.Es

I. INTRODUCTION

Optical femtosecond spectroscopy is an established tool
to infer ultrafast dynamics in molecules and solids. Time
constants such as the exponential decay or the oscillation
period can often be directly ascribed to microscopic processes
such as relaxation or vibration. A detailed modeling of
the ultrafast optical response requires the quantum-chemical
modeling of molecular potentials in the case of molecular
systems or calculation of the dielectric function of solids.
With the broader accessibility of various experimental setups
for ultrafast x-ray diffraction (UXRD), the findings from all-
optical experiments can be cross-checked by directly looking
at the lattice motion, including a real time measurement of the
absolute atomic amplitudes. In the case of bulk semiconductors
UXRD allowed conclusions to be drawn on modifications
of the strain fronts induced by the fast diffusion of hot
carriers.1–3 For bulk bismuth UXRD in combination with
ab initio simulations revealed how the lattice potential changes
with the time-dependent carrier density.4 UXRD and ultrafast
electron-diffraction studies show that, for increasing excitation
fluence, electronic pressure gains importance versus phonon
pressure in metallic systems.5,6 All these processes influence
the oscillation phase of the excited phonons. In reverse,
measuring the oscillation phase elucidates the excitation
mechanisms.

The influence of Raman excitation has been discussed in
bulk systems, superlattices, and multilayers.7 Under strictly
nonresonant conditions this excitation causes a sine-like
phase of the lattice motion. In contrast the so-called dis-
placive excitation of coherent phonons (DECP)8 results in
a cosine-like lattice motion.9 DECP is exclusively observed
in opaque materials and can be described by the imaginary
part of the Raman tensor.10 Additional excitation mechanisms
which show a displaced equilibrium of the lattice oscillation

are surface charge screening, the photo Dember effect, or
heating of the lattice by rapid electron-phonon scattering.11

In many cases the oscillation phase was measured by all-
optical techniques and ascribed to the phase of the lattice
motion. Raman scattering with real and imaginary tensor
contributions is held responsible for the excitation of coherent
phonons in metallic systems (Cd, Zn, Zr) as well.12,13 In
the most intensively investigated material, the semimetal Bi,
the microscopic interpretation of the excitation is developed
in detail. Theory predicts the time-dependent change of the
interatomic potential during the relaxation of photoexcited
carriers.4,14 A similarly detailed interpretation of the excitation
in terms of quasiparticle generation is exemplified for Si.15

UXRD would yield direct experimental information on the
lattice motion in this case. However, there is only a single
UXRD experiment that measures lattice dynamics (polaritons)
induced by nonresonant Raman excitation.16

Several all-optical studies measured a fluence dependent
phase of oscillations, which was ascribed to the simultaneous
action of DECP and Raman mechanisms.17 Superlattices ex-
hibit phonon modes which are very well suited for fundamental
tests, as their periods can be tuned via the layer thickness.
Especially for UXRD experiments they yield high signal-to-
noise ratio of the experimental signal. The nanosized layers
support zone folded acoustic phonons18 with few-picosecond
oscillation periods, well suited for distinguishing tiny phase
differences. Optical excitation of the opaque constituent of a
superlattice yields a standing strain wave where the opaque ma-
terial is periodically expanded while the transparent material
is compressed. For GaAs/AlGaAs superlattices a UXRD study
under high fluence conditions revealed a dominant DECP
mechanism19 whereas all-optical measurements under low-
fluence conditions suggest the Raman mechanism.7 Although
it is well established to use such ultrafast structural techniques,
the problem of determining the arrival time of the x-ray or
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electron pulses with high precision relative to the pump pulse
persists. A direct and detailed comparison of ultrafast optical
response over a broad spectral range with the actual lattice
motion determined by ultrafast diffraction techniques under
identical excitation conditions is lacking.

In this contribution we revisit the metal-dielectric super-
lattice (SL) composed of SrRuO3 (SRO) and SrTiO3 (STO),
for which it was shown by UXRD measurements that there
are at least two contributing mechanisms for photoexcited
lattice dynamics: thermal expansion by electron-phonon and
phonon-phonon interaction and ultrafast magnetostriction.21

We present a fluence-dependent UXRD study which shows
a relative phase shift of about 130 fs of the lattice motion,
indicating that for high fluence the photon energy is coupled
more rapidly to the expansion. At high fluences the measured
phase of the lattice motion is consistent with an instantaneous
DECP mechanism within the experimental error. In broadband
optical reflectivity measurements we find that the oscillation
phase of the all-optical signal strongly depends on the probe
wavelength; however, we can confirm the relative shift of
the oscillation phase with fluence. To determine the absolute
phase of the lattice oscillation we perform a combined optical
pump-probe and UXRD experiment without moving any
components.

In order to better understand the broadband optical re-
sponse, the lattice dynamics are calculated in a masses-
and-springs model and calibrated in phase and amplitude
using the UXRD data. The calculated spatiotemporal strain
pattern is used to simulate the optical response by using the
strain-dependent dielectric functions of SRO and STO, where
the dependence ∂NSRO/∂η of the complex refractive index
NSRO on the strain η is the only freely adjustable parameter.
The agreement of these x-ray calibrated simulations with
the optical response is very good. These data directly show
that all-optical pump-probe data can exhibit nearly arbitrary
oscillation phases, even if the lattice dynamics are fixed.

II. SETUP AND EXPERIMENTAL RESULTS

The sample consists of 10 double layers of STO/SRO
(13 nm/7.5 nm) deposited by pulsed laser deposition on
an STO substrate.22 In all experiments presented in this
manuscript we use pump pulses with a wavelength of λpump =
800 nm. Figure 1(a) presents fluence-dependent UXRD data
recorded at the MicroXAS-FEMTO beamline of the Swiss
Light Source (SLS).23 The amplitude of the oscillation has
been analyzed24 and discussed previously.20 The according
strain amplitude is reproduced in Fig. 1(b). Panel 1(c) shows
the delay tosc

0 of the oscillation phase extracted from fitting the
data in panel 1(a) to an analytical function [Eq. (1)] describing
the sample response, which will be further discussed in
Sec. IV. In short, the symmetric superlattice-phonon mode
of the metallic/insulating superlattice is exited by expanding
the metal layers. For the highest fluence the oscillation starts
approximately 130 fs earlier. Figure 2(a) shows the transient
optical reflectivity of the sample at λprobe = 670 nm. The rapid
rise of the reflectivity originates from quasi-instantaneous
heating of the metal electrons. The rising edge determines
the arrival time of the optical pump pulse. The slanted arrows
indicate the delay of the oscillation for lower pump fluence. For

(a) (b)

(c)

FIG. 1. (Color online) (a) UXRD measurements of the (0 0 116)
reflection of the SRO/STO SL recorded at the SLS λpump = 800 nm
for different fluences. (b) Strain amplitude derived from the data in
panel (a) by comparison to a dynamical x-ray diffraction simulation
(Ref. 20). (c) Oscillation phase extracted from the measured data
using the fit function of eq. 1. The error bars correspond to a 68%
confidence interval from fitting the relative phase. The absolute phase
is obtained by comparison to the experiments at the laser-based
plasma source discussed in Fig. 4.

an accurate evaluation we subtract the incoherent background
(dotted line) and fit oscillations to the data. The resulting linear
fluence dependence of the amplitude is shown in Fig. 2(b). The
phase delay is plotted in Fig. 2(c) and compared to the UXRD
result. The excellent agreement suggests that indeed for low
fluence the oscillation is delayed by about 130 fs due to a finite
electron-phonon coupling time as the expansion is dominated
by phonon-phonon interaction. In contrast, for high fluence the

(a) (b)

(c)

FIG. 2. (Color online) (a) Measured optical reflectivity λprobe =
670 nm for different fluences. The dotted line indicates the incoherent
background contribution which is subtracted from each transient to
fit the oscillations and to plot Fig. 3(a). The thin dashed line shows
the UXRD measurement for comparison. (b) Oscillation amplitude
as a function of the fluence. (c) Comparison of the relative oscillation
phase of the optical signal (solid circles) to the phase determined by
UXRD [open squares reproduced from Fig. 1(c)]. The error bars of
the relative phase are determined from the maximum deviation of
phases in two measurement series. The absolute phase is shifted to
agree with the UXRD data.
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FIG. 3. (Color) (a) Experimentally measured change of the
optical reflectivity from λprobe = 500 to 780 nm at normal incidence
after exciting the sample at λpump = 800 nm as a function of
time delay. The electronic response and a slowly varying signal
contribution have been subtracted as exemplified in Fig. 2(a).
(b) Results from the simulation described in the text. The slowly
varying background has been subtracted as well. The simulations
show that the spectral position of the phase change at 560 and 720 nm
is given by an interference of light reflected from the surface and the
interface to the substrate.

time for coupling the energy into the expansion mode is so fast
that we cannot distinguish it from an instantaneous response.

Our broadband optical pump-probe setup is similar to those
reported in the literature,25,26 where a white-light continuum
serves as the probe pulse. Hence, we not only measure the
data at 670 nm (Fig. 2) but over the full visible range. The
analysis teaches us to interpret all-optical data with great care.
After subtraction of the slowly varying background for each
wavelength as exemplified by the dotted line in Fig. 2(a), the
broadband data exhibit complex dependence of the phase on
the probe wavelength [Fig. 3(a)].

A general problem in UXRD experiments is the precise
determination of the time zero. For all-optical pump-probe
data we cross-checked that the rising edge of the signal
corresponds to t = 0 by sum-frequency generation of pump
and probe in a beta-Barium-Borate (BBO) crystal. To
calibrate the time origin of the UXRD data, we repeated
the UXRD experiment at the laser-based femtosecond
diffractometer at the University of Potsdam.27 We removed
the x-ray optic which is used for the standard operation
of the diffractometer.27,28 The Bragg condition selects a
small angular range of the generated x-ray pulses which are
diffracted from the sample (hatched beam in the schematic
in Fig. 4). We introduce slits along this x-ray beam
to ensure that, after removing the copper tape for x-ray
generation, only laser photons propagating along this x-ray
probe path impinge on the sample, now as optical probe pulses.

To switch between optical and x-ray probes, only the copper
band and a 10 μm thick plastic film are removed from the beam
path. The optical probe pulse and the x-ray probe-pulse have

FIG. 4. (Color) (a) All-optical response measured in the same
configuration for λpump = 800 nm and λprobe = 800 nm. The
schematic shows the combined optical/x-ray pump-probe geometry.
Optical (red) and x-ray (green) probe pulses collinearly propagate
through a slit towards the sample. Both emerge from the laser focus
on the copper tape which generates the x-ray pulses and which is
removed for optical probing. (b) UXRD data from the laser-based
plasma source (red dots) with removed x-ray optics to precisely
determine the zero time delay. The signal is shifted by 250 fs to
earlier times with respect to the data as measured, according to the
analysis described in the text. For comparison we show the UXRD
data measured at the SLS [open circles, reproduced from Fig. 1(a)].
The blue line is the simulated UXRD signal based on the calculated
lattice dynamics. (c) Simulated average strain in STO (solid) and
SRO (dashed) pattern which is consistent with the observed x-ray
diffraction signal. (d) Simulated optical reflectivity for three selected
probe wavelengths. (e) Corresponding color-coded horizontal cuts
through Fig. 3(a).

the same geometric path. The optical path is different due to the
decreased group velocities c∗ in air for x rays (c∗

xray − c)/c <

10−6 and 800 nm light pulses (c∗
opt − c)/c = 3 × 10−4. The

300 mm path in air behind the laser focus makes the x rays ar-
rive 300 fs earlier than the laser pulse traveling the same path in
the all-optical experiment. In addition the laser passes through
5 cm of vacuum before the focus in the x-ray experiment, which
is replaced by an air path in the optical experiment, adding
another 50 fs to the time delay. A contribution in the opposite
direction is the additional time delay of the x-ray pulses due
to the propagation of electrons in the metal target before the
x-ray production. This leads to a temporally extended x-ray
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pulse with a duration in the 100–200 fs range29 as compared
to the 40 fs laser pulses. In essence this delays the x-ray pulse
by about 100 fs, since the leading edge of the x-ray pulse must
coincide with the optical excitation pulse as the first generated
x rays travel at the speed of light, and the trailing edge is
delayed by the x-ray pulse duration which is given by the hot
electrons moving through the copper target.30

In short, the time axis of the UXRD experiment must
be shifted by 250 fs with respect to the all-optical exper-
iment. Time zero is determined by the steepest slope due
to the electronic heating in SRO detected in the all-optical
experiment [Fig. 4(a)], which is consistent with the time
overlap determined in a thin BBO crystal for second-harmonic
generation. Now the UXRD signal is measured in exactly the
same configuration and plotted in Fig. 4(b) already shifted
as discussed above. For comparison the data from Fig. 1(a)
measured at the SLS are shown as well. Panel 4(c) compares
this to simulations discussed below, which also predict the
optical response for three selected wavelengths [panel 4(d)],
which are in excellent agreement with the measured data at
these wavelengths [panel 4(e)]. The pump fluence in both
the UXRD and the optical experiment was approximately
20 mJ/cm2. In total, Fig. 4 summarizes how time zero is
compared in all-optical and UXRD experiments and how
both data sets are linked to the simulation of lattice dynamics
discussed in the next section.

Earlier UXRD measurements on the very same STO/SRO
SL reported an additional delay of approximately 500 fs for
weak excitation.21,31,32 Very careful analysis of all experiments
shows that this discrepancy can be partly ascribed to a modified
oscillation phase for the higher pump fluence and partly to the
group-velocity delay of the optical pulses and x-ray pulses in
air which was neglected at that time.

III. SIMULATIONS

As a theoretical support of our interpretations, we have
set up a linear chain model of the superlattice in which
instantaneous stress is generated by optically induced heating
of the lattice. The elastic constants are known and the spatio-
temporal strain pattern has been previously calculated.33 On
the timescale t < 10 ps heat diffusion can be neglected and it
is not relevant for the stress generation.34 In the optical signal
it gives rise to a slowly varying background that is subtracted
before considering the oscillations. The average strain in the
SRO and STO layers resulting from this calculation is given
in Fig. 4(c). The simulated strain map with unit-cell resolution
is the common starting point to predict both the UXRD
signal [panel 4(b)] and the all-optical signal [panel 4(d)].
The simulated solid line in panel 4(b) is obtained from using
the calculated spatio-temporal strain pattern33 in a dynamical
x-ray diffraction simulation.20

To calculate the optical response we specify the complex
index of refraction N (z,t) = n + iκ for each unit cell along
growth direction of the superlattice for each timestep and
calculate the optical reflectivity in a standard optical matrix
formalism. For STO both the wavelength-dependent index
of refraction nSTO(λ) and its derivative dnSTO/dη = 0.5 with
respect to strain η are taken from the literature.35–37 The com-
plex refractive index NSRO(λ) = nSRO(λ) + iκSRO(λ) of SRO

is derived from the literature.38 The derivatives for SRO are
unknown and hence we use dnSRO/dη and dκSRO/dη as fitting
parameters to match the observed data simultaneously for all
probe wavelengths. We already obtain a reasonable agreement
[compare Figs. 3(a) and 3(b) and Figs. 4(d) and 4(e)] if we
assume dnSRO/dη = dnSTO/dη = 0.5 and dκSRO/dη = 1.5
independent of wavelength. Additional variations of the optical
constants with the wavelength could yield even more accurate
agreement. However, already at the current level of simulation
the agreement of the optical broadband data with simulations
presented in Fig. 3(b) gives us confidence in our interpretation.
From an experimental point of view the validation via UXRD
is a preferable cross-check.

IV. DISCUSSION

For t > 0 the UXRD signals can be well fitted by the
following function:

S(t)= − A sin

(
π

t − tosc
0

Tosc

)2

exp

(
− t − tosc

0

Tdec

)
− m

(
t − t lin

0

)
.

(1)

The shape of this fitting function is uniquely determined by
the physics contained in the simulation. The oscillatory part
originates from the excitation of a single zone-folded LA
phonon mode which modulates the x-ray diffraction structure
factor of the superlattice reflection, and the decay is essentially
due to the propagation of the excitation into the substrate.20 The
linear slope on the signal is explained by the shift of the Bragg
reflection due to the average heat expansion of the superlattice.

Such a simple fitting function does not exist for the
all-optical counterpart. Figure 3 illustrates that the optical
signals suffer from a beating due to the interference of probe
pulses reflected from the interfaces, from the phonons in
the SL, and from the propagating sound wave. Despite this
complicated situation, the straightforward simulation yields
excellent agreement.

Now we turn to the discussion of the phase shift observed
in both experiments. From the carefully determined time zero
of the UXRD signal with an accuracy of about ±100 fs, we
can directly conclude that the assumption of an instantaneous
stress generation in our simulation is very good, since the phase
of the signal at the highest fluence corresponds to a perfect
cosine, i.e., to a displacive excitation without considerable
additional delay due to electron-phonon coupling. The phase
of the lattice motion in the simulation is in good agreement
with by the UXRD measurement.

The fluence dependent study in Fig. 1 shows that for lower
fluence the lattice stress starts about 130 fs later, yielding
an estimate of the electron-phonon coupling time. Although
the absolute determination of the time zero is only accurate
within ±100 fs, the relative phase delay of 130 ± 50 fs is
determined with sufficient accuracy. The same clear trend is
observed in the oscillation phase of the all-optical signal at
670 nm [Fig. 2(c)]. Below a fluence of about 20 mJ/cm2 the
electronic pressure is likely negligible compared to the lattice
contribution to the expansion. Hence, below this fluence the
phase is set by the electron-phonon coupling time in SRO. In
the simplest models for metals, the electronic heat capacity
rises linearly with the temperature and the lattice contribution
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saturates to the Doulong-Petit limit. However, calculations
based on the electronic density of states (DOS) show that
for most metals this is not true under strong nonequilibrium
conditions.39 Since for the case of the bad metal SRO with
strong electron correlations, simulations of the DOS strongly
depend on the method used,40 and we do not attempt to predict
the electronic stress contributions.

In the semiconducting material InSb a phase shift of the
oscillations towards earlier times was observed for higher
fluence.2 This was attributed to a decreasing lattice heating
time for strong excitation, essentially because the reduced life-
time of LO phonons41 limits the carrier-lattice thermalization
dynamics.42 Similar arguments could apply in the case of SRO.
Specifically, the observation of an oscillation starting earlier
for higher fluence is in contrast to the observation of electronic
pressure in elementary metallic systems such as aluminum and
gold.5,6 In these metals a larger electron-phonon coupling time
leads to larger effect size in the opposite direction, namely
because the electron-lattice heat transfer takes longer for high
fluence. We cannot rule out that contributions from impulsive
Raman scattering play a role in the phase shift; however,
all processes in question—Raman, electronic pressure, lattice
heat expansion—scale linearly with the pump fluence in the
simplest models and would not explain a fluence dependence

of the phase. Therefore we think that time- and temperature-
dependent modification of the electron-phonon interaction
must be responsible for the observed phase delay.

In conclusion, we have presented ultrafast x-ray diffraction
(UXRD) and all-optical pump-probe experiments on the
metal-dielectric superlattice STO/SRO. Only the combination
of both methods allows one to experimentally deduce the
absolute phase of the optically induced lattice motion. From
fluence-dependent UXRD we extract a relative shift of the
oscillation phase of the lattice which is readily ascribed to
electronic pressure. The same fluence dependence of the phase
is observed in all-optical experiments. However, the complex
wavelength dependence of the broadband data highlight that
the oscillation phase of all-optical experiments must be
interpreted with care. Our x-ray calibrated simulations of the
all-optical data validates the detailed interpretation.
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Using ultrafast X-ray diffraction, we study the coherent picosecond lattice

dynamics of photoexcited thin films in the two limiting cases, where the

photoinduced stress profile decays on a length scale larger and smaller than the

film thickness. We solve a unifying analytical model of the strain propagation

for acoustic impedance-matched opaque films on a semi-infinite transparent

substrate, showing that the lattice dynamics essentially depend on two

parameters: One for the spatial profile and one for the amplitude of the strain. We

illustrate the results by comparison with high-quality ultrafast X-ray diffraction

data of SrRuO3 films on SrTiO3 substrates. VC 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4901228]

I. INTRODUCTION

Pump-probe experiments measure the coupling of various degrees of freedom on their

intrinsic timescale of femtoseconds to nanoseconds. An increasingly powerful toolbox of time-

resolved experimental techniques—ranging from Raman scattering over magneto-optical Kerr

(MOKE) measurements1,2 to angular-resolved photoelectron spectroscopy (ARPES)3—is applied

to directly monitor specific subsystems in solids (charge, spin, orbital, and lattice). The majority

of experiments are conducted on thin film samples which have been designed to exhibit the

phenomena of interest. Especially for opaque layers, the high energy density deposited in the

thin film by the pump pulse not only leads to strong and interesting changes, e.g., in the mag-

netization or electronic properties, but also to considerable dynamics of the underlying crystal

lattice.4–6

Since the pioneering work of Thomsen et al. in 1984 and 19867,8 Brillouin scattering meth-

ods with optical light have been steadily improved and allow for following the evolution of

photoexcited coherent strain pulses.7,9 In general, optical light is only an indirect probe for lat-

tice motion, since it is exclusively sensitive to the dielectric function of matter, which is usually

strongly modified in pump-probe experiments by the substantial perturbation of the electronic

system. More than a decade ago, ultrafast X-ray diffraction (UXRD) techniques emerged as a

versatile tool to monitor photoexcited lattice dynamics directly on the relevant length and time

scales.10–16 Recent UXRD studies established this technique for reconstructing photoexcited

coherent strain pulses17 and used it to determine the underlying mechanism for exciting the

a)Electronic mail: bargheer@uni-potsdam.de; URL: http://www.udkm.physik.uni-potsdam.de.

2329-7778/2014/1(6)/064501/13 VC Author(s) 20141, 064501-1
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atomic motion17–23 or to study phonon damping mechanisms.24 In addition, ultrafast electron

diffraction also reveals the structural dynamics of photoexcited condensed matter; however, this

technique exclusively probes the surface-near regions of the sample.25 Despite this multitude of

experimental studies and although the seminal work by Thomsen et al. has been cited and ela-

borated more than 500 times,8 a comprehensive study of the ultrafast lattice dynamics and its

direct signature in UXRD data for the common case of an opaque thin film on a semi-infinite

transparent substrate are still missing in the literature. In our opinion, the lattice dynamics form

an important basis of all electronic dynamics and especially for solids with complex couplings

and collective phenomena a thorough assessment of the lattice dynamics is mandatory.

In this contribution, we choose the “bad metal” SrRuO3
26 as a prototypical optically opa-

que thin-film material with a very short electron-phonon coupling time which was deposited on

the standard substrate material SrTiO3. We discuss the lattice dynamics after photoexcitation in

the two limiting cases, where the photoinduced spatial stress profile rðzÞ decays on a lengths

scale f larger and smaller than the film thickness d. Working out the standard thermoelastic

model8 in the Appendix and introducing universal temporal and spatial coordinates which are

scaled by sound velocity v and film thickness d, respectively, we identify two essential parame-

ters defining the lattice dynamics: d ¼ d=f for the spatial profile and a for the amplitude of the

strain, where a incorporates all acoustic and thermoelastic parameters. The model correctly

describes signatures in the UXRD data for d > 1 which are at first sight surprising: The Bragg

peak of the opaque layer first shifts to larger angles, indicating a compression of the film de-

spite the expansive photoinduced stress. The intensity of this initial peak decreases and is trans-

ferred to a Bragg peak which emerges at smaller angles. For d < 1, the observed continuous

shift to smaller angles is captured equally well by this model. We demonstrate an elegant way

to measure the sound velocity in impedance-matched thin films, which is not easily accessible

by other experiments, and discuss how to extract the other parameters from the experimental

data. We use the model in its simplest form, for a perfect acoustic impedance match of the thin

film and the underlying substrate, for instantaneous stresses driving the lattice dynamics, and

for negligible heat diffusion in the sample structure.

In Sec. II, we briefly introduce the analytical model and discuss the predicted lattice dy-

namics in dependence of the four parameters d, v, d and a. A detailed derivation of the thermo-

elastic model is given in the Appendix. Section III describes the experimental setup and results,

which are further discussed and related to our analytical model in Sec. IV.

II. THEORY

The strain gðz; tÞ in the one-dimensional thermoelastic response of a semi-infinite crystal

due to a photoexcited stress rðz; tÞ can be well described by the continuum model of Thomsen

et al.,7,8 where z is the depth of the crystal and t is the time. We adopt this model and apply

the same nomenclature for the case of an impedance-matched opaque film of thickness d on a

transparent semi-infinite substrate. We assume an instantaneous formation of the thermal stress

at t¼ 0 with the same spatial profile as the photoexcitation (very short electron phonon cou-

pling time in SrRuO3)27,28 and neglect heat diffusion which is not relevant on this ultrashort

time scale; rðz; t � 0Þ ¼ rðzÞ. The optical excitation of the opaque film has an exponential spa-

tial profile following Lambert-Beer’s law and is determined by the optical absorption depth f,

but is abruptly ending at the film interface at the depth z¼ d. For the case of a very thick layer,

d � f, our model coincidences with the original work of Thomsen et al.
We introduce normalized unitless space x ¼ z=d and time s ¼ vt=d coordinates into our

thermoelastic model, where v is the longitudinal sound velocity normal to the surface of the

thin film. The derivation of the according differential equation (wave equation) after this coor-

dinate transformation is described in the Appendix in detail. A perfect matching of the acoustic

impedance Z ¼ vq (q—mass density) prohibits reflections at the interface. If the sound velocity

in the film v and the substrate vs are different, the amplitude of the sound and the temporal

coordinate must be scaled accordingly. The solution gðx; sÞ of this wave equation solely

depends on two more parameters: a shape parameter d ¼ d=f determining the spatial shape of

064501-2 Schick et al. Struct. Dyn. 1, 064501 (2014)
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the lattice excitation; and a scaling factor a which determines the maximum amplitude of the

static strain in the film: gð0; sÞ ¼ a, cf. Eq. (A22). Here, a collects all experimental parameters

and material properties which influence the amplitude of lattice distortion of the thin film, such

as its heat capacity, thermal expansion coefficient, and excitation fluence. See Table I for a

complete list of all parameters.

The solution of the normalized strain �gðx; sÞ ¼ gðx; sÞ=a is plotted in Fig. 1 for different

values of the shape factor d for varying normalized delays s. The two upper panels (a) and (b)

represent the solution for the two limiting cases d� 1 and d� 1, where the latter case corre-

sponds to bulk material already discussed by Thomsen et al. The two lower panels (c) and (d)

show the experimental cases d < 1 and d > 1 for the two films of different thickness as

described below in the experimental part and discussion.

For d� 1, cf. Fig. 1(a), the photoexcited stress is spatially homogeneous in the opaque

film. The resulting lattice dynamics can only start at the surface x¼ 0 and interface x¼ 1 of the

film where the stresses are highly unbalanced. At the interface, a tensile strain front travels into

the film which is compensated by a compressive strain front propagating into the substrate

which has exactly the same integral strain for perfect impedance matching. At the film surface

(x¼ 0), the situation is essentially the same, however, the compressive strain front cannot prop-

agate away from the film into the air and is therefore reflected back into the film as an expan-

sion (open boundary condition). At the time s¼ 1, all tensile strain fronts have traveled once

through the film adding up to the maximum integral expansion of the layer which is

glayðs ¼ 1Þ=glayðs � 2Þ ¼ 1:5, cf. Eq. (A26), independent of any physical parameter of the

model. Any significant difference from this ratio would indicate a deviation of the initial

assumptions of the analytical model, e.g., that the photoexcited stress is not instantaneous,

TABLE I. Definitions and units of all physical quantities and parameters of the analytical model.

Name Description Unit

z Spatial coordinate (depth) m

t Temporal coordinate (time) s

Q Energy of a single laser pulse J

A Excited area of the sample surface m2

f Optical absorption depth m

C Specific heat capacity J/(K m3)

R Optical reflectivity coefficient 1

B Bulk modulus Pa

� Poisson ratio 1

b Linear thermal expansion coefficient 1/K

q Mass density kg/m3

d Layer thickness m

d ¼ d=f Shape parameter 1

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1��

1þ�
B
q

q
Longitudinal sound velocity m/s

a ¼ ð1�RÞ3BbQ
fqv2AC

Scaling of excitation amplitude m

T(z) Initial temperature profile K

rðz; tÞ Dynamical stress Pa

u(z, t) Dynamical displacement m

x ¼ z=d Normalized spatial coordinate 1

s ¼ vt=d Normalized temporal coordinate 1

g(x) Spatial temperature profile 1

f(x) ¼ � @
@x gðxÞ Source term of inhom. wave equation 1

wðx; sÞ ¼ uðx; sÞ=ða dÞ Normalized dynamical displacement 1

gðx; sÞ ¼ a @
@x wðx; sÞ Dynamical deformation (strain) 1
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because carrier transport during an extended electron-phonon coupling time occurs. For s > 1,

the tensile strain front originating from the surface leaves the film and enters the substrate, end-

ing the compressive strain in the substrate and starting the tensile part of the strain with the

same amplitude gð0; s � 2Þ=2. At the same time, the tensile strain front originating at the film-

substrate interface at x¼ 1 has reached the surface and is also reflected back into the film as a

right-propagating compressive strain front, which reduces the strain at the surface to the final

value gð0; s � 2Þ ¼ a. This compressive strain front propagates into the substrate at s¼ 2,

marking the end of the bipolar strain pulse which keeps propagating in the substrate. The bipo-

lar strain pulse has the same integral absolute strain as the remaining static strain in the thin

film for s � 2.

For the second limiting case of d� 1, cf. Fig. 1(b), no photoexcitation occurs at the inter-

face x¼ 1 but the thermal stresses within the layer are highly unbalanced following the expo-

nentially decaying stress profile. Accordingly, at each point 0 � x � 1 a left-propagating tensile

strain front and a right-propagating compression strain front are triggered by the photoexcita-

tion. These strain contributions add up to a stationary exponentially decaying component in the

film and a propagating bipolar strain pulse with exponential edges. Again, at the time s¼ 1, the

average strain in the layer is: glayð1Þ ¼ 1:5 glayðs � 2Þ, cf. Eq. (A26). A striking difference

compared to the case of d� 1 is the occurrence of compressive strains in the opaque layer,

although exclusively expansive stress was applied. This is a result of inhomogeneous excitation,

where the larger expansion near the surface requires a compression of the adjacent material,

which exceeds its own expansion. The occurrence of these transient compressive strains is

solely determined by the shape factor d and not by the scaling factor a or any other parameter.

The experimental cases with the shape factors d ¼ 15=44 and d ¼ 94=44, see Figs. 1(c) and

1(d), share the dominant features of the two limiting cases as described above. In the

Discussion section, we will show d is experimentally derived.

FIG. 1. The normalized strain �gðx; sÞ ¼ gðx; sÞ=a is plotted for different shape parameters d. (a) and (b) represent the limit-

ing cases d� 1 and d� 1, respectively. (c) and (d) represent the experimental cases of d ¼ 15=44 ¼ 0:34 and

d ¼ 94=44 ¼ 2:14, respectively. For an inhomogeneous spatial stress profile (d > 1), i.e., panels (b) and (d), the transducer

layer (0 � x � 1) is negatively strained for 0 � s < 1. Note that in (a) the amplitude of �gðx; sÞ is increased by 2% for each

time step for better visibility.
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III. EXPERIMENTAL SETUP AND RESULTS

We choose two thin films of the metallic perovskite SrRuO3 (SRO) epitaxially grown onto

dielectric SrTiO3 (STO) substrates. SRO proved to be an ideal transducer layer for large-

amplitude and high-frequency coherent longitudinal acoustic phonons29 due to its high damage

threshold30 and its fast electron phonon coupling time of �200 fs (Refs. 27 and 28) resulting in

a quasi-instantaneous stress after photoexcitation. The lattice constants as well as the layer

thickness of the two films were determined by static X-ray diffraction measurements at the ID9

beamline at the ESRF (European Synchrotron Radiation Facility, Grenoble, France) and the

XPP beamline at BESSY II (Helmholtz-Zentrum Berlin, Germany) for the thin and thick

film, respectively, as cSRO ¼ 3:949 Å and cSTO ¼ 3:905 Å as well as d
ð1Þ
SRO ¼ 15:4 nm and

d
ð2Þ
SRO ¼ 94:8 nm.

Figures 2(a) and 2(b) show a comparison of the static h=2h scans around the (002) Bragg

peaks of SRO and STO of the two samples (gray circles) and the simulation by dynamical

X-ray diffraction theory (gray lines).31,32 As expected, the thicker SRO film [Fig. 2(b)] exhibits

a narrow and intense Bragg reflection whereas the Bragg peak of the thinner SRO film

[Fig. 2(a)] is much broader and weaker. The good agreement between the experimental and the-

oretical diffraction curves highlights the crystalline perfection of the coherently grown SRO

films on the STO substrate.33 The acoustic impedances of SRO (vSRO ¼ 6:312 nm/ps,34 qSRO ¼
6526 kg/m3) and STO (vSTO ¼ 7:8 nm/ps,35,36 qSTO ¼ 5117 kg/m3) match almost perfectly

ZSRO

ZSTO

¼ qSROvSRO

qSTOvSTO

¼ 1:03:

The time-resolved data in Figs. 2(c) and 2(d) were recorded at the Plasma X-ray Source

(PXS) at the University of Potsdam, Germany, which provides 150 fs Cu Ka X-ray pulses with

a repetition rate of 1 kHz.37,38 For the data evaluation, a convergence correction routine was

applied in order to increase the resolution in reciprocal space for the high-quality thin film sam-

ples while preserving the maximum counting statistics.39 Compared to the high-resolution

FIG. 2. Static and time-resolved h=2h-scans of the 15.4 nm SRO sample (left column [(a) and (c)]) and of the 94.8 nm SRO

sample (right column [(b) and (d)]) around the (002) Bragg reflections of the layer at small qz and of the substrate at larger

qz. (a) and (b) Static simulation (thin gray line) and static h=2h-scan (gray circles) acquired at the ESRF and BESSY II,

respectively. The thick lines represent the time-resolved h=2h-scans measured at the PXS for different snapshots of the

coherent lattice dynamics extracted from (c) and (d). [(c) and (d)] Time-resolved h=2h-scans measured at the PXS under

incident laser fluence of F1 ¼ 30 mJ/cm2. The color code represents the logarithmic diffracted intensity and is differently

scaled, because of the much weaker reflectivity of the thin 15.4 nm SRO film. The outer y-axes represent the actual pump-

probe delay t and the inner y-axes the normalized time coordinate s.
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synchrotron diffraction data, the Bragg peaks in the time-resolved measurements are signifi-

cantly broadened by the resolution function of the PXS and exhibit a typical doubling due to

the Cu Ka1þ2 natural line emission.39 The thin film samples were excited by k ¼ 800 nm laser

pulses with a duration of 40 fs and incident laser fluence of F1 ¼ 30 mJ/cm2 and additionally

F2 ¼ 20 mJ/cm2 only for the thicker SRO film (data not shown). In Figures 2(c) and 2(d), the

inner y-axis represents the normalized time coordinate s which is determined by the propagation

time d1
SRO=vSRO ¼ 2:44 ps and d2

SRO=vSRO ¼ 15:02 ps of the coherent phonons across the

15.4 nm and 94.8 nm thick SRO layers, respectively.

For both samples, the transient lattice dynamics are triggered after the photoexcitation at

s¼ 0 and reach a quasi-static state for all delays s � 2. In the range between 0 � s < 2, the

transient h=2h-scans show significantly different features for the two SRO films, namely, a con-

tinuous shift of the (002) Bragg peak towards small angles vs. a shift to larger angles combined

with an intensity transfer to a peak that emerges at a smaller angle. Details about this observed

splitting of the Bragg peak are discussed and related to the thermoelastic model in Sec. IV. In

addition to the obvious lattice dynamics of the thin films, weak shoulders at the low- and high-

q side of the (002) substrate Bragg reflection emerge at different pump-probe delays, which are

best visible for the thicker SRO sample, cf. Fig. 2(d). The lattice dynamics of the substrate are

beyond the scope of this work and have been discussed elsewhere in detail.10,17,29,40

IV. DISCUSSION

The direct correspondence between material-specific diffraction signals and the relevant

transient structural parameters provides the strength of UXRD methods in following lattice dy-

namics on the atomic length scale in real-time. The one-dimensional Laue condition

qz ¼ n G ¼ n
2p
c
; n 2N

connects the position of a specular Bragg reflection qz to the average lattice constant c in this

material along the specific crystal axis for all orders n of the Bragg peak. For small changes of

the transient relative peak position Dqz=qzð0Þ ¼ ½qzðtÞ � qzð0Þ�=qzð0Þ < 1% [qzðtÞ � qzð0Þ], the

average strain in the layer can be approximated by the relative peak shift

glay tð Þ ¼ c tð Þ � c 0ð Þ
c 0ð Þ � � qz tð Þ � qz 0ð Þ

qz 0ð Þ : (1)

For an evaluation of the experimental signal in the spirit of unitless normalized coordinates, we

employ the film thickness d as obtained from the static X-ray diffraction data. In order to deter-

mine the sound velocity in the SRO film, we recall that the integrated intensity of the Bragg

peaks is proportional to the thickness of the scattering layer. We know that the peak emerging

at small angles corresponds to the expanding region of the thin film near the surface and plot

the integrated intensity of this peak I2 as a function of time in Fig. 3. After t¼ 0, it increases

linearly until the entire layer is expanded after t ¼ 15:02 ps. The two kinks in the intensity

clearly mark the normalized time moments s¼ 0 and s¼ 1. The sound velocity is therefore

determined as vSRO ¼ 94:8 nm=15:02 ps ¼ 6:312 nm/ps. As a cross check, we also plot the inte-

grated intensity at the original Bragg peak position I1 in Fig. 3. For both fluences, the decrease

of the original Bragg peak and the increase of the emerging peak confirm this sound velocity.

The above procedure experimentally fixes the horizontal time axis in Fig. 4, where we

compare the averaged normalized peak shift �glayðsÞ ¼ glayðsÞ=glayðs � 2Þ of the experimental

and theoretical results. We determine the transient positions qzðtÞ of the (002) SRO Bragg peaks

of both thin film samples by Gaussian fits and derive the according strain in the layer using

Eq. (1). For the thick SRO layer, a fit of two Gaussian functions determines the peak shift for

the compressed and expanded regions of the thin film, separately. For the thinner film sample,

the (002) substrate Bragg peak is subtracted from the signal in advance, because the broad thin
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film peak merges with the substrate peak. Figure 4 shows the gradual expansion of the thinner

film up to �glayð1Þ ¼ 1:5 (red triangles), when the tensile strain front has traveled once through

this layer and gives rise to the maximum expansion. Between 1 � s < 2 the average strain

decreases to its final value �glayð2Þ ¼ 1. For the case of the thicker SRO layer, the experimental

data for the expanded fraction of the film coincide with the thin film value �glay; exp ð1Þ ¼ 1:5.

The compressed fraction of the crystal is clearly visible in Fig. 4. It merges towards a negative

average strain of �glay;compð1Þ ¼ �1, however, since the corresponding intensity of the peak as a

measure of the contributing thickness approaches zero, this Bragg peak vanishes just before

s¼ 1. For a comparison to the thin film values, we calculate the center of mass (CoM) of the

Bragg peak position for the thicker SRO layer (black asterisks and gray crosses). The striking

agreement is an experimental verification of the the universal features of the excited lattice

FIG. 3. Normalized integrated intensities I1;2ðsÞ=ðI1ðsÞ þ I2ðsÞÞ of the initial (red) and emerging Bragg peak (black) of the

thick SRO sample for two different excitation fluences F1 ¼ 30 mJ/cm2, F2 ¼ 20 mJ/cm2. Solid lines represent the normal-

ized average strain of the compressive (red) and tensile (black) strain-regions in the layer as derived from the analytical

model.

FIG. 4. The normalized peak shift DqzðsÞ=Dqzðs � 2Þ is plotted for both SRO films and fluences as open symbols

(Gaussian fits) and crosses (center of mass [CoM]). The solid lines show the normalized average strain �g lay ¼
glayðsÞ=glayðs � 2Þ in the SRO layer as determined from the analytical model for the two different samples. The dashed

lines represent the normalized strain of the initial and splitted Bragg peak for the thick SRO layer for different values of

d ¼ d=f (f ¼ 14, 24, 34, 44, 54, 64, and 74 nm from outside to inside). The black dashed line shows the best fit for

f ¼ 44 nm.
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dynamics. It should be noted that from the data in Fig. 2 not only the normalized strain �glayðsÞ
can be determined, but also the absolute value of the quasi-static average strain: glayðs � 2Þ ¼
0:006 and 0.0047 for the thick layer and the two excitation fluences, respectively, as well as

0.008 for the thin layer. The normalized average strain from the thermoelastic model is plotted

in Fig. 4 as black and red solid lines for the thick and thin layer, respectively.

Now we compare the experimental analysis to the analytical thermoelastic model. We can

independently determine the two remaining input parameters from the experiment: The shape

parameter d is best determined from the peak shifts of the split Bragg peak of the thick layer.

Figure 4 shows the results of the analytical model for different d ¼ d=f as dashed lines. The

best fit is obtained for a stress pattern decaying exponentially with f ¼ 44 nm. This value is

therefore assumed for all simulations. The remaining parameter a can be calculated from Eqs.

(A24) or (A25) in the Appendix, e.g.,

glay s � 2ð Þ ¼ a
d

1� e�dð Þ:

For the fluence range used in our experiments on the SRO thin films a � 0:01.

The pronounced difference in the transient UXRD data is solely due to the different thick-

ness of the two layers and the accordingly different shape factor d. As discussed above, for the

thicker film, d > 1, parts of the photoexcited SRO layer are transiently compressed for

0 < s < 1. In principle, the Bragg peak of the thinner SRO film also exhibits a splitting due to

the presence of three differently stained regions for 0 < s < 1. Since all of these three regions

are positively strained, the difference in the Bragg peak position is rather small and due to the

small thickness of the layer and instrumental function of the PXS, the Bragg peak is initially

rather broad. Thus the crystal regions with different strain only lead to a broadening of the

Bragg peak. Generally, the Bragg peak width provides information about the inhomogeneous

spatial strain profiles but the initial structural broadening of the film’s Bragg peak and the

instrumental function of the UXRD diffractometer render a quantitative analysis difficult. In a

recent publication, the shape factor d 	 1 was large enough in order to conclude on the spatial

profile of the driving stresses of the lattice dynamics.19 The experimentally derived exponential

decay constant of the thicker SRO layer’s stress profile f¼ 44 nm (see Fig. 4) is slightly smaller

than the optical absorption depth determined by optical ellipsometry as 48 nm for this

sample and the accepted literature value of 52 nm.26 This decreased value of f cannot be

explained by transport phenomena of the photoexcited electrons in SRO which would naturally

result in a broader spatial profile of the thermal stresses. For the high excitation fluences

used here (F ¼ 20� 30 mJ/cm2) non-linear absorption processes or possibly a temperature-

dependent Gr€uneisen parameter41 might lead to this slight steepening of the spatial stress profile

in SRO.

Finally, we compare experimental h=2h-scans to dynamical X-ray diffraction calculation of

the photoexcited crystal structure which include the instrumental resolution function of the dif-

fractometer.32 Figure 5 shows the excellent agreement not only of the peak positions but also

of the complete Bragg peak shapes for the thicker SRO layer.

V. CONCLUSION

We introduced an analytical thermoelastic model which depends only on four parameters

(the film thickness, its longitudinal sound velocity, a scaling factor, and a shape factor) for

the calculation of photoexcited coherent acoustic phonon dynamics in an opaque thin film

grown onto an impedance-matched transparent substrate. We presented fluence-dependent

UXRD data of two SRO films of different thickness epitaxially grown on STO substrates

and showed that the significantly different UXRD transients, namely, a continuous shift vs. a

splitting of the (002) SRO Bragg peak, solely depend on the shape factor d of our thermo-

elastic model. The variation of the shape factor d can also be achieved by employing differ-

ent excitation wavelengths instead of thin film samples of different thickness. All transient

peak shifts exhibit the same universal ratio of 3/2 between the maximum shift at s¼ 1 and
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the quasi-static shift for s � 2. Moreover, we described a procedure to quantify all four

parameters of the analytical model from the experimental data. Compared to UXRD experi-

ments on semi-infinite crystals, the usage of thin film samples with well separated Bragg

reflections of the layer and the substrate suppress complex dynamical effect and strong

contributions from unexcited regions of the bulk in the UXRD experiments. Similar to the

original work of Thomsen et al., the assumption of negligible diffusion processes of the

energy-carrying particles in the photoexcited regions is not generally valid and the thermo-

elastic model has to be adapted, e.g., for heat diffusion processes. Similar modifications can

be applied for non-instantaneous thermal stresses after photoexcitation which requires more

parameters of the model.

ACKNOWLEDGMENTS

We gratefully thank Ionela Vrejoiu for providing the samples. We thank the BMBF for funding

the project via Grant No. 05K10IP1 and the DFG via Grant No. BA2281/3-1. A.B. thanks the

Leibnitz graduate school “Dynamics in new Light” for financial support.

APPENDIX: THERMOELASTIC CONTINUUM MODEL FOR A THIN FILM ON A

SEMI-INFINITE SUBSTRATE

We consider the 1D thermoelastic response of a thin photoexcited film of the thickness d on a

semi-infinite transparent substrate which is both acoustically impedance-matched. In order to dis-

cuss the structural dynamics of the thin film, it is equivalent to consider a semi-infinite crystal

FIG. 5. The time-resolved h=2h-scans of the thick SRO film after F1 ¼ 30 mJ/cm2 laser excitation are plotted as circles

from 0 to 18 ps in 2 ps steps from bottom to top. The solid lines represent dynamical X-ray diffraction calculations of the

strained sample as determined from the analytical solution of the thermoelastic model.
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with an initial excitation profile being truncated at the depth z¼ d, e.g., the initial temperature pro-

file. Thomsen et al.8 solved this problem for a continuous initial excitation profile, i.e., for f� d,

where f represents the optical absorption depth.

First, we briefly recall the formalism introduced by Thomsen et al. and reformulate the

according equations into the inhomogeneous wave equation by simultaneously reducing the num-

ber of parameters of the problem. We limit ourselves to a time-independent thermal excitation,

i.e., we neglect diffusion of energy carriers.

The thermoelastic equations described by Thomsen et al.8 have the form

T zð Þ ¼ 1� Rð Þ Q

AfC
e�

z
fH zð Þ; (A1)

r z; tð Þ ¼ 3
1� �
1þ � Bg z; tð Þ � 3BbT zð Þ; (A2)

q
@2

@t2
u z; tð Þ ¼

@

@z
r z; tð Þ; (A3)

g z; tð Þ ¼
@

@z
u z; tð Þ: (A4)

Here, rðz; tÞ; gðz; tÞ, and u(z, t) are the stress tensor, strain tensor, and displacement vector,

respectively, which are scalar functions for the 1D case. T(z) is the time-independent temperature

distribution in the sample after the initial optical excitation and HðzÞ is the Heaviside step func-

tion. All physical quantities and parameters are listed in Table I. Equations (A2)–(A4) have to be

solved on a semi-infinite spatial and temporal domain (z> 0, t> 0) with the initial conditions

(ICs)

gðz; 0Þ ¼ 0; rðz; 0Þ ¼ �3BbTðzÞ; (A5)

and the boundary condition (BC)

rð0; tÞ ¼ 0: (A6)

In order to rewrite the above equations into an inhomogeneous wave equation, we can write

the square of the sound velocity as

v2 ¼ 3
1� �
1þ �

B

q
(A7)

and introduce the normalized coordinates

s ¼ vt

d
; (A8)

x ¼ z

d
: (A9)

For the case of a semi-infinite crystal without transducer layer,8 it might be more convenient to

introduce the normalized coordinates as s0 ¼ vt=f and x0 ¼ z=f, respectively.

With the normalized coordinates x and s Eqs. (A2)–(A4) become

@2

@s2
u x; sð Þ �

@2

@x2
u x; sð Þ ¼ �

3Bbd

qv2

@

@x
T xð Þ;

@2

@s2
u x; sð Þ �

@2

@x2
u x; sð Þ ¼ �a d

@

@x
g xð Þ;

(A10)

064501-10 Schick et al. Struct. Dyn. 1, 064501 (2014)

76



Paper II

where

a ¼ 1� Rð Þ 3BbQ

fqv2AC
; (A11)

and

gðxÞ ¼ e�dxHðxÞ (A12)

is the spatial profile of the initial temperature distribution with d ¼ d=f as shape factor. With the

introduction of the normalized dynamical displacement

w x; sð Þ ¼
u x; sð Þ

a d
(A13)

and the definition of the source term

f xð Þ ¼ � @

@x
g xð Þ (A14)

we obtain the simplified inhomogeneous wave equation

@2

@s2
w x; sð Þ �

@2

@x2
w x; sð Þ ¼ f xð Þ: (A15)

The ICs and BC become

w x; 0ð Þ ¼ 0;
@

@t
w x; 0ð Þ ¼ 0;

@

@x
w 0; sð Þ ¼ 1 (A16)

and the strain rewrites as

g x; sð Þ ¼ a
@

@x
w x; sð Þ: (A17)

The general solution for this problem is given by42

w x; sð Þ ¼
1

2

p x; sð Þ þ q x; sð Þ �
ðs�x

0

/ sð Þds; x < s

ðs

0

ðxþs�#

x�sþ#

f yð Þ dy d#; x > s;

8>>>>>>>><
>>>>>>>>:

(A18)

where

pðx; sÞ ¼
ðs�x

0

ðs�#�x

0

f ðyÞ dyþ
ðs�#þx

0

f ðyÞ dy

0
B@

1
CA d#; (A19)

qðx; sÞ ¼
ðs

s�x

ðxþs�#

x�sþ#

f ðyÞ dy d#; (A20)

and /ðsÞ ¼ 1 for the BC in Eq. (A16). In general, the source term f(x) may also be time dependent,

e.g., if diffusion processes are not negligible, which alters the solution for gðx; sÞ accordingly.
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For the case of an abrupt end of the initial excitation profile at the depth z¼ d or x¼ 1, we

have to change the spatial profile of the initial temperature distribution g(x), cf. Eq. (A12), to

gðxÞ ¼ e�dxðHðxÞ � Hðx� 1ÞÞ: (A21)

The solution is plotted in Fig. 1 for different sets of parameters. It follows from the BC in Eq.

(A16) and the definition of the strain in the normalized coordinates, cf. Eq. (A17), that the ampli-

tude of the strain at x¼ 0 is only determined by the scaling factor a

g 0; sð Þ ¼ a
@

@x
w 0; sð Þ ¼ a: (A22)

Moreover, the shape of the strain pulse depends solely on the parameter d which defines the

exponential decay of the initial temperature profile T(x). The temporal dimension of the phonon

dynamics is scaled by the ratio v/d.

We obtain more general properties of the solution for the thin opaque layer on a semi-infinite

transparent substrate by defining the integral strain in the opaque layer (0 < x < 1) as

glayðsÞ ¼
ð1

0

gðx; sÞdx: (A23)

The solution at time s¼ 1 corresponds to the total layer strain after the coherent sound wave

has traversed the layer once and it reads

glay s ¼ 1ð Þ ¼ 3

2

a
d

1� e�dð Þ: (A24)

Due to the impedance matching of the layer and the substrate, for all times s � 2 the strain in

the layer is constant since all coherent phonons have left it and the integral strains is given by

glay s � 2ð Þ ¼ a
d

1� e�dð Þ : (A25)

Thus, the ratio

glay s ¼ 1ð Þ
glay s � 2ð Þ ¼

3

2
(A26)

is independent of any physical parameter.
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Abstract

The udkm1Dsim toolbox is a collection of matlab (MathWorks Inc.) classes and routines to simulate the structural
dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary
time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary
layered structures on the atomic level including a rich database of corresponding element-specific physical properties.
The excitation of ultrafast dynamics is represented by an N -temperature model which is commonly applied for ultrafast
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1. Introduction

Physics on the ultrafast time scales and nanometer
length scales has received enormous attention during the
last decade. Ultrafast X-ray diffraction (UXRD) tech-
niques allow for directly studying structural dynamics on
the atomic length and time scales. The knowledge of the
time-resolved structural response to an ultrafast optical
stimulus is essential for the understanding of various con-
densed matter phenomena.[1–4]

The udkm1Dsim toolbox is a collection of classes and
routines to model 1D crystalline sample structures on the
atomic level and to simulate incoherent (heat diffusion) as
well as coherent lattice dynamics (acoustic phonons) by
semi-coupled equations of thermoelasticity.[5, 6] The re-
sulting transient X-ray diffraction response for the 1D sam-
ple structure is computed by dynamical X-ray theory.[7, 8]
Due to the high modularity of the toolbox it is easy to in-
troduce user-defined procedures in between the simulation
steps. The complete package is written in the matlab
programming language and requires the installation of the
matlab software environment. In order to use the multi-
core capabilities of matlab the Parallel Computing has to
be installed but is not required for udkm1Dsim to work.
As a convention for this document, all files and directories
are formatted without serifs (./path/file.ext) and all mat-
lab code is written in typewriter format (code = [1 10] ).
Furthermore, all physical quantities have to be input in
SI units and the same applies for all output variables.1

The latest udkm1Dsim package files can be downloaded
from www.udkm.physik.uni-potsdam.de/udkm1dsim in-
cluding a detailed documentation and example files. It
is highly recommended to be familiar with the basics of
matlab programming as well as with fundamental object-
orientated programming schemes. Please refer to the rich
matlab documentation on these topics for further help.

In the following, we introduce the implementation and
common workflow of the udkm1Dsim toolbox as well as
the underlying physical concepts. Please refer to the spe-
cific class documentations in the ./documenation/ folder of
the toolbox for detailed information on all available meth-
ods and properties. Finally, we provide examples of the
udkm1Dsim package which are compared with selected
ultrafast experiments on nano-layered thin film samples.

2. Implementation & Workflow

The udkm1Dsim package is developed as matlab tool-
box with a command-line/script-based user-interface. The
backbone of the fully object-orientated toolbox is a col-
lection of classes in the ./classes/ folder which hold the
complete logic for building 1D sample structures and to

1A helper class units is provided to easily convert physical quan-
tities.

calculate the ultrafast dynamics in these structures. Ad-
ditional helper routines (./helpers/) and material param-
eter files (./parameters/) are included to improve the user
experience.

2.1. Structure Generation

The common workflow of a simulation procedure is
to create a crystalline sample structure at the beginning.
This 1D structure is build of atoms which form unit cells.
Unit cells are then grouped to layers/sub-structures which
can be further nested, e.g. to build multilayer structures.
All physical properties which are necessary for the later
simulations are stored in this structural objects. The in-
volved files are atomBase.m, atomMixed.m, unitCell.m and
structure.m.

2.1.1. Atoms

The smallest building block for a structure is an atom,
which is represented by the atomBase class. Atomic prop-
erties are automatically loaded on construction of each
atomBase instance from the given parameter files, by pro-
viding the correct symbol of the desired chemical element:

C = atomBase( 'C' );
H = atomBase( 'H' );

By executing the command C.disp() all properties of the
corresponding atomBase object are displayed. Solid so-
lutions, i.e. stoichiometric atomic substitutions, can be
modelled by the atomMixed class. Here, atomBase ob-
jects can be added with an according relative amount to
the solution:

ZrTi = atomMixed( '0.2 Zirconium/0.8 Titanium' );
ZrTi.addAtom(atomBase( 'Zr' ), 0.2);
ZrTi.addAtom(atomBase( 'Ti' ), 0.8);

The resulting mixed atomic properties are the weighted
average of the constituent’s properties.

2.1.2. Unit Cells

The unitCell class holds most of the physical proper-
ties which are necessary for the further simulations. In ad-
dition to structural information, i.e. the position of atoms
in the unit cell, thermal and mechanical properties are
stored here. The only required parameters on initializa-
tion of a unitCell instance are a unique identifier (ID),
name, and the c-axis (lattice parameter normal to the sam-
ple surface) of the unit cell. All other properties can be
optionally handed over within a parameter struct on con-
struction, or can be added/modified later:

cAxis = 3.95e −10; % [m]
prop.soundVel = 5100; % [m/s]

.

.
prop.heatCapacity = 465; % [J/kg K]
% SrRuO3− Perovskite
SRO = unitCell( 'SRO' , 'SrRuO3' , cAxis, prop);

2
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After the construction of a unitCell object, one can add
atomBase or atomMixed object at relative positions in the
1D unit cell, e.g for the cubic SrRuO3 (SRO) perovskite
unit cell:

SRO.addAtom(Sr, 0 );
SRO.addAtom(O , 0 );
SRO.addAtom(Ru, 0.5);
SRO.addAtom(O , 0.5);
SRO.addAtom(O , 0.5);

In the 1D approximation the lateral position of the atoms
in the unit cell is not relevant. One needs to determine
the position of the individual atoms in the unit cell along
their projection onto the surface normal of the sample.
Moreover, it is not possible to add fractions of atoms at
certain unit cell position. Hence, one has to translate the
origin of the unit cell accordingly.

All available unit cell properties can be easily displayed
by executing the command SRO.disp() . The position
of atoms in the unit cell can be visualized by executing
SRO.visualize() .

2.1.3. Structures

The final 1D crystalline samples are represented by the
structure class which only requires a name on initializa-
tion. One can add any number of unitCell objects to a
structure, as well as nested substructures. An example of a
SrRuO3/SrTiO3 superlattice with 10 periods on a SrTiO3

(STO) substrate is shown in the listing below:

DL = structure( 'Double Layer' );
% add 13 SRO and 25 STO unit cells to the DL
DL.addSubStructure(SRO,13);
DL.addSubStructure(STO,25);

S = structure( 'Superlattice Sample' );
% add 10 DLs to the sample
S.addSubStructure(DL,10);
% add 1000 STO unit cells to the sample
S.addSubStructure(STO,1000);

In order to simplify the sample structure creation, all of the
above mentioned steps can be included in an external XML
file which holds all information on atoms, unit cells and on
the structure itself. Hence, it is easy to store structures
outside of matlab in a unified and open standard. An
example XML file is provided in the ./example/ folder
of the toolbox. In order to load the data from the XML
file into the matlab workspace one needs to execute the
following command providing the relative or absolute path
to the XML file:

S = structure( 'void' , './structure.xml' );

Again, the structure properties can be displayed with
the command S.disp() and the structure can be visual-
ized by S.visualize() .

2.2. Simulation Classes

Besides the 1D sample structures, also all simulations
are programmed as classes and inherit from the super-class
simulation . All simulation -inherited classes provide
fundamental properties and methods for storing and load-
ing of simulation results from a so-called /cache/ folder.
The udkm1Dsim toolbox can decide independently by com-
paring a unique hash of all simulation input parameters
whether a simulation result (once calculated) can be loaded
from the cache folder or needs to be (re-)calculated. The
hash algorithm decides also which parameter changes are
relevant for a simulation model, e.g. a change of the sound
velocity of a unit cell does not change the result of the heat
diffusion calculation, however it does change the result of
the lattice dynamics simulation. Further functionalities of
the simulation class are to enable/disable any command-
line messages during the simulations, e.g. to display the
elapsed time for a simulation step, and to change the mode
of progress displaying.

In order to calculate the time-dependent X-ray diffrac-
tion response of a 1D crystalline sample structure to an
ultrafast stimulus the following three simulations steps are
necessary:

1. The excitation is described as temperature changes
in an N -temperature model with optional heat dif-
fusion which determines the temperature evolution
in the N coupled subsystems.

2. The resulting lattice dynamics due to thermal stress
possibly generated by any of the N subsystems are
calculated by a 1D linear-chain model.

3. Dynamical X-ray theory is applied to calculate the
UXRD response to the lattice dynamics.

These three steps are encapsulated in the simulation classes
heat , phonon , and XRDwhich all require a structure ob-
ject on initialization.

It is important to note, that each of the simulation
steps listed above may be executed independently with
user-defined inputs. Thus it is not necessary to execute the
heat and phonon simulations if the user needs to calculate
the X-ray diffraction result e.g. for artificial or externally
calculated lattice dynamics.

2.3. Thermal Excitation & Diffusion

The udkm1Dsim toolbox allows for different excita-
tion scenarios and optional thermal transport. The most
general model is an N -temperature model (NTM) which is
described in section 2.3.1.[9] However, for various exper-
imental cases it is convenient to simplify the simulation
procedure in order to save computational time.

In all cases it is assumed that the sample structure
is excited by a light pulse which is absorbed following
Lambert-Beer’s law:

I(z) = I0 e
−z/ζ , (1)

3
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with ζ as optical penetration depth of the material for the
considered wavelength. Accordingly, one can define the
transmission and absorption in the material as follows:

τ =
I(z)

I0
= e−z/ζ , α = 1 − τ . (2)

Note that we do not consider the reflected laser light here.
The deposited optical energy is then given by the spatial
derivative of the absorption:

∂α

∂z
=

1

ζ
e−z/ζ . (3)

The most simplified excitation scenario is represented by
an instantaneous temperature jump of the excited sample
structures (infinitely short laser pulse). This assumption is
generally valid if the excitation and thermal equilibration
between all N subsystems happen much faster than the
subsequent thermal and/or lattice dynamics. The instan-
taneous temperature jump at depth z can be calculated
from the energy absorbed by the corresponding unit cell
via:

∆E(z) =

∫ T2

T1

mc [T (z)] dT (z) , (4)

where T1 is the initial and T2 is the final temperature
of the unit cell, m is the unit cell mass, and c(T ) is the
temperature-dependent specific heat capacity. In order to
calculate the absorbed energy per unit cell at the depth z
in the sample structure one can linearize Eq. 3 for small
∆z in terms of energy instead of intensity to get

∆E =
∂α

∂z
E0 ∆z , (5)

where ∆z is the size of the according unit cell. The initial
energy E0 which is incident on the first unit cell can be
derived from the incident absorbed fluence F = E0/A,
where A is the area of a single unit cell. Hence, one has
to minimize the following modulus in order to obtain the
final temperature T2 of a unit cell after optical excitation:

∣∣∣∣∣

∫ T2

T1

mc [T (z)] dT (z) − E0

ζ
e−z/ζ∆z

∣∣∣∣∣
!
= 0 . (6)

In order to solve the above minimization problem it is nec-
essary that the heat capacity c(T ) is input as a polynomial
of any order, thus enabling matlab to integrate c(T ) al-
gebraically with respect to the temperature T .

The temperature jump resulting from the optical exci-
tation at t = 0 can be further used as initial condition for
solving the 1D heat diffusion equation:

c [T (z, t)] ρ
∂T (z, t)

∂t
=

∂

∂z

(
k [T (z, t)]

∂T (z, t)

∂z

)
(7)

including the thermal conductivity k(T ) and mass density
ρ of the individual unit cells. The udkm1Dsim toolbox
is capable of calculating the optical excitation and ther-
mal dynamics independently for a given sample structure,

thermal parameters, and excitation scenario. The corre-
sponding code listing for an excitation at t0 = 0 with a
fluence of F = 5 mJ/cm2 including heat diffusion for a
given sample structure S might look as follows:

% initialization of heat simulation
H = heat(S,forceRecalc);
% S − structure object
% forceRecalc − boolean
% enable heat diffusion
H.heatDiffusion = true;
% introduces SI units
u = units;
% temporal grid for heat simulations
time = ( −20:0.1:200) * u.ps;
% initial temperature of the structure
initTemp = 300 * u.K;
% define the excitation
F = 5* u.mJ/u.cmˆ2;
% the temperature profile is calculated:
[tempMap, deltaTempMap] = ...

H.getTempMap(time,F,initTemp);

Here, initTemp is the initial temperature of the sample,
which can be defined globally or per unit cell and the vec-
tor time defines the time grid of the calculation. The
actual numerical calculation is executed by the last com-
mand in the above listing and requires no further insight
into the involved mathematics. The udkm1Dsim toolbox
allows for more sophisticated excitation scenarios, such as
optical pulse sequences with arbitrary temporal pulse sep-
arations and durations as well as user-defined pulse energy
distributions. Please refer to the corresponding examples
for further details on this topic.

2.3.1. N-Temperature Model

The so-calledN -temperature model (NTM)[9] is a very
general model for laser heating of metals and semiconduc-
tors. In the NTM materials are described by N thermal
subsystems having individual temperatures Tj(z, t), heat
capacities cj(Tj), thermal conductivities kj(Tj) and cou-
pling terms Gj(T1, ..., TN ). The subsystems might be rep-
resented by e.g. electrons, lattice, or spins of the according
material:

c1(T1)
∂T1
∂t

=
∂

∂z

(
k1(T1)

∂T1
∂z

)

+G1(T1, ..., TN ) + S(z, t)

... (8)

cN(TN )
∂TN
∂t

=
∂

∂z

(
kN (TN )

∂TN
∂z

)

+GN (T1, ..., TN ) .

The udkm1Dsim toolbox limits the excitation of a struc-
ture with N subsystem to happen exclusively in the first
subsystem. The excitation can be either given as an ini-
tial condition due to an instantaneous temperature jump
(see above) or by a spatially and temporally varying source
term S(z, t). This source term is the energy flux per vol-
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ume and time

S(z, t) =
∂2E

A ∂z ∂t
, (9)

where A is again the unit cell area. The spatial profile of
S(z, t) is given by the absorbed energy density from Eq. 3
and the temporal profile is limited to a Gaussian function,
which states as

∂2E

∂z ∂t
=
dα

dz
E0 σ(t) , (10)

with σ(t) as a normalized Gaussian function in time [s−1]
and E0 as the initial energy incident on the first unit cell.
The resulting source term reads as follows:

S(z, t) =
dα

dz
F σ(t) . (11)

In order to enable the evaluation of the NTM it is nec-
essary to input all material properties in the structure as
N -dimensional cell arrays. Each element of the cell array
can be either a constant value for the according property or
an anonymous function of the jth subsystem temperature
Tj . In contrast to simple heat simulations with only a sin-
gle subsystem one needs to define the additional unitCell

property subSystemCoupling which represents the term
G(T ) in Eq. 9.

As it is necessary to solve the heat diffusion equation
the udkm1Dsim toolbox allows to define boundary con-
ditions of each subsystem, such as isolating boundaries,
constant temperature, or constant heat flux on either side
of the sample structure. Details on the broad capabili-
ties of the udkm1Dsim toolbox for thermal simulations
are given in the example files heatExample.m, heatNTmod-
elExample.m, and heatExcitationExample.m.

2.4. Lattice Dynamics

The optically induced temperature change usually in-
duce thermal stress in laser-heated materials. This ther-
mal stress eventually relaxes via thermal expansion which
is quantified by the linear thermal expansion coefficient:

α(T ) =
1

L

dL

dT
. (12)

Since the temperature change ∆T (z, t) for each unit cell
at each time step is known one can calculate the actual
thermal expansion of each unit cell by

l = ∆L = L1

(
e[A(T2)−A(T1)] − 1

)
, (13)

where L1 is the initial length (c-axis of the unit cell), A(T )
is the integral of α(T ), T1 and T2 denote the initial and
final temperatures of each unit cell, respectively. It is again
necessary to define α(T ) as a polynomial of any order of
the temperature T to enable matlab for simple and fast
algebraic integration.

The thermally expanded unit cells are only the final
state of the laser-excited crystal. In order to calculate

the transient lattice dynamics (including only longitudi-
nal acoustic phonons) towards this final state, we set up a
model of a linear chain of masses and springs in which each
unit cell represents a mass mi that is coupled to its neigh-
bors via springs with the spring constant ki = mi v

2
i /c

2
i (ci

- lattice c-axis, vi - longitudinal sound velocity):[10]

miẍi = −ki(xi − xi−1) − ki+1(xi − xi+1)

+miγi(ẋi − ẋi−1) + F heat
i (t) . (14)

Here xi(t) = zi(t) − z0i denotes the shift of each unit cell
from its initial position. Furthermore, we introduce an
empirical damping term F damp

i = γi(ẋi − ẋi−1) and the
external force (thermal stress) F heat

i (t). In order to solve
this system of coupled differential equations for each of
the i = 1 . . .N unit cells the udkm1Dsim toolbox pro-
vides an analytical (phononAna ) and a numerical model
(phononNum) which are described in detail below. Ex-
amples for both models are given in the example files
phononExample.m, and phononAnharmonicExample.m.

2.4.1. Analytical Solution

To obtain an analytical solution of Eq. 14 we neglect
the damping term F damp

i (t) and derive the homogeneous
differential equation in matrix form

d2

dt2
X = KX . (15)

Here X = (x1 . . . xN ) and K is the tri-diagonal force matrix.[10]
The matrix K can be diagonalized to obtain the eigenvec-
tors Ξj and eigenfrequencies ωj in order to find the general
solution

X(t) =
∑

j

Ξj (Aj cos(ωj t) +Bj sin(ωj t)) (16)

Mathematical details on the analytical model are given
in Ref. [10] and in the documentation of the phononAna

class. Generally, we use matlab’s capability to solve the
eigenproblem for K in order to get the results for X(t) for
each time step. One can implement the thermal stress as
new equilibrium position x∞i (t)/initial conditions for the
general solution Eq. 16 by doing an according coordinate
transformation. The thermal stress [F heat

i (t)] can be mod-
eled as spacer sticks li in between the unit cells which are
calculated from Eq. 13.

As an example listing of the analytical solution of the
coherent phonon dynamics we continue the above code,
having the structure S, time and the results of the heat

simulation (tempMap,deltaTempMap ) in memory.

% initialization of analytical phonon simulation
P = phononAna(S,forceRecalc);
% the strain profile is calculated:
strainMap = ...

P.getStrainMap(time,tempMap,deltaTempMap);

The matrix deltaTempMap is the temporal derivative of
the temperature profile tempMap. The analytical model

5
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has the advantage that once the eigenproblem is solved
for a fixed K (fixed sample structure) the strain profile can
be easily solved for any excitation profile at any time. In
the case of a quasi-instantaneous excitation without heat
diffusion this results in an extremely fast calculation since
the initial conditions X(0) change only once for the ex-
citation. However, the analytical model becomes rather
slow for time-dependent thermal stress, because of the re-
calculation of these initial conditions for each time step.
Accordingly, the temporal variation of the thermal stress
due to damping has not been implemented in this model.
The main disadvantage of the analytical model is the limi-
tation to purely harmonic inter-atomic potentials which is
overcome by the numerical model, described below. The
numerical model is generally also faster in the total com-
putational time and further accounts for phonon scattering
and damping effects.

2.4.2. Numerical Solution

Mathematical details on the numerical model for the
coherent phonon dynamics can be found in the documen-
tation of the phononNum class and in Ref. [11]. Generally,
we use matlab’s ODE solver to calculate the results for
Eq. 14 which can be simplified to

miẍi = F spring
i + F damp

i + F heat
i .

Here F spring
i = −ki(xi−xi−1)−ki+1(xi−xi+1) is the force

acting on each mass due to the relative shifts in respect to
the left and right neighboring masses. The numerical solu-
tion also allows for non-harmonic inter-atomic potentials of

up to the order M . Accordingly, ki = (k
(1)
i . . . k

(M−1)
i ) can

be a vector accounting for higher orders of the potential

which is purely quadratic (ki = k
(1)
i ) in the harmonic case.

Thus we can introduce the following term into F spring
i :

ki (xi − xi−1) =

M−1∑

j=1

k
(j)
i (xi − xi−1)

j , (17)

which accounts for the anharmonic interaction. In order
to calculate anharmonic phonon propagation, including
damping, one needs to set the according properties of the
unitCell object. For the example of the SRO unit cell
defined in Sec. 2.1.2 one has to write

SRO.phononDamping = 1e −12; % [kg/s]
SRO.setHOspringConstants([ −7e12]); % [kg/m sˆ2]

which sets the damping constant to γSRO = 10−12 kg/s

and the second-order of the spring constant to k
(2)
SRO =

−7 × 1012 kg/ms2. The actual numerical calculation for
the coherent phonon dynamics is similar to the analytical
model expect for the initialization of the phononNum object
at the beginning:

% initialization of numerical phonon simulation
P = phononNum(S,forceRecalc);

% the strain profile is calculated:
strainMap = ...

P.getStrainMap(time,tempMap,deltaTempMap);

We want to highlight, that the analytical and numer-
ical lattice dynamics calculations share the same syntax
in order to calculate the strain profile after optical exci-
tations. In addition, the user can input any temperature
profile for the thermal stresses and is not limited to the re-
sults of the heat simulations. In accordance to the NTM
described in Sec. 2.3.1, the thermal stresses can account
for multiple thermodynamic subsystems in the sample by
introducing different unitCell linear thermal expansion
coefficients αj(Tj) for the jth subsystem.

2.5. X-Ray Diffraction

In order to probe transient lattice dynamics with atomic
resolution, time-resolved XRD techniques have emerged
as an appropriate method in experimental physics. The
udkm1Dsim toolbox provides methods to simulate the
static and transient XRD response of crystalline sample
structures. Due to the limitation to 1D sample structures
only symmetrical X-ray diffraction in co-planar geometry
is implemented. For the calculation of static XRD curves
(θ/2θ-scans) for homogeneously strained layers two differ-
ent theoretical approaches are provided: kinematical and
dynamical XRD. In kinematical XRD theory (XRDkin ) the
incident X-ray beam is unaffected by the crystal, since
absorption and multiple reflections are neglected.[12] In
the XRDkin class no refraction correction has been im-
plemented so far. However, the kinematical theory is a
rather fast analytical approach for thin crystal layers, ide-
ally imperfect mosaic crystals, and diffraction at the wings
of Bragg peaks. For high quality crystals, thick crys-
tals, and diffraction close to the maximum of strong Bragg
peaks, so-called dynamical XRD theory (XRDdyn) should
be considered.[8] Dynamical XRD theory accounts for ab-
sorption, refraction, scattering, and multiple reflections
(extinction) of the incident beam. In comparison to kine-
matical theory, dynamical XRD is generally slower to cal-
culate due to its complex matrix formalism. However, in
order to calculate the transient XRD response of a 1D sam-
ple structure due to ultrafast lattice dynamics only dynam-
ical theory is implemented in the udkm1Dsim toolbox,
since here its matrix formalism has no disadvantageous
against the kinematical theory in terms of computational
time. Examples on the applications and limitations of the
two models are given in the example file XRDexample.m.

For both theories the smallest scatterers in each struc-
ture are the individual atoms, whose scattering cross sec-
tions are given by the atomic form factor f .[8] Gener-
ally, these atomic form factors dependent on the energy
E and scattering vector qz = 2k sin (θ) of the incident X-
ray beam, where k = 2π/λ is the X-ray wave number and
θ is the incidence angle:[8]

f(qz, E) = fCM(qz) + δf1(E) − if2(E) . (18)
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The dispersion corrections δf1(E) and absorption correc-
tion f2(E) have been experimentally determined[13] whereas
the angle-dependence fCM(qz) is a theoretical correction
from Hartree-Fock calculations.[14] The values of f(qz, E)
are automatically loaded and calculated from the accord-
ing parameter files by the udkm1Dsim toolbox for each
atom/ion for a given E and qz and the reader may refer
to the documentation of the atomBase class for further
details. In order to account for the polarization of the X-
rays one has to introduce a θ-dependent polarization fac-
tor P (θ) in kinematical and dynamical XRD calculations
given by:[8]

P (θ) =





1 s-polarized

cos(2θ) p-polarized
1+cos(2θ)

2 unpolarized

(19)

2.5.1. Kinematical XRD

For the calculation of rocking curves using kinematical
theory one further introduces the structure factor of a unit
cell

S(qz , E, ǫ) =

N∑

i

fi e
−i qz zi(ǫ) . (20)

The structure factor S(qz, E, ǫ) is the summation of all
atomic form factors fi(qz , E) in a specific unit cell and
also depends on the lattice strain ǫ by the position zi(ǫ)
of the individual atoms in the unit cell. From Ref. [12]
one can now calculate the diffracted wave field amplitude
at the detector from a single layer of similar unit cells as
follows:

Ep =
i

ε0

e2

me c20

P (θ)S(qz , E, ǫ)

Aqz
, (21)

with e as electron charge, me as electron mass, c0 as vac-
uum light velocity, ε0 as vacuum permittivity, and A as
area of the unit cell in the plane normal to qz . For the
case of N similar planes of unit cells one can then write:

EN
p =

N−1∑

n=0

Epe
i qz z n , (22)

where z is the distance between the planes (c-axis of the
unit cells). The above equation can be simplified to

EN
p = Ep ψ(qz, z,N) , (23)

introducing the interference function

ψ(qz , z,N) =

N−1∑

n=0

ei qz z n =
1 − ei qz z N

1 − ei qz z
. (24)

The total reflected wave field Et
p of all i = 1 . . .M homoge-

neous layers is the summation of the individual wave fields
EN,i

p :

Et
p =

M∑

i=1

EN,i
p ei qz Zi , (25)

where Zi =
∑i−1

j=1(Nj zj) is the distance of the ith layer
from the surface. Finally, the actual reflectivity of the
sample structure is calculated by R = Et

p (Et
p)

∗.
In order to obtain the static kinematical diffraction

curve of a given sample structure S one can follow the
code listing below:

% set the simulation parameters
E = 8047* u.eV; % X−ray energy
pol = 0.5; % mixed X−ray polarization
theta = (22:0.001:24) * u.deg; % angular range
% initialization of XRDkin simulation
K = XRDkin(S,forceRecalc,E,pol);
% set the qz −range by a theta −vector
K.setQzByTheta(theta);
% calculate the static diffraction curve:
Rs = K.homogeneousReflectivity();

2.5.2. Dynamical XRD

In dynamical XRD theory a complex matrix formal-
ism is applied to calculate the reflection and transmission
of X-rays by individual atomic layers forming the sam-
ple structure.[8] The basic building blocks for this formal-
ism are the reflection-transmission matrices of the atomic
planes

H =
1

τ

( (
τ2 − ρ2

)
ρ

−ρ 1

)
, (26)

and propagation matrices

L =

(
exp(iφ) 0

0 exp(−iφ)

)
. (27)

The matrix elements are defined as follows:

ρ = −i
4 π re f(qz, E)P (θ) e−M

qz A
, (28)

τ = 1 − i
4 π re f(0, E) e−M

qz A
, (29)

φ =
qz d

2
, (30)

where re is the classical electron radius, M = (dbf qz)
2/2

with dbf2 = 〈u2〉 as average thermal vibration of the atoms
(Debye-Waller factor), and d is the distance between two
layers of scattering objects.

In order to obtain the final reflectivity of the sample
structure one has to carry out the according matrix mul-
tiplications of the H and L matrices. The reflectivity-
transmission matrix (RTM) of a single unit cell MRT is
calculated from the individual Hi of each atom and the
propagation matrices between the atoms Li:

MRT =
∏

i

Hi Li . (31)

For N identical layers of unit cells one can calculate the
N th power of the unit cell’s RTM (MRT)

N
instead of car-

rying out N matrix multiplications in order to save com-
putational time. The RTM for the homogeneous sample

7
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Mhom,tot
RT consisting of K homogeneous substructures then

becomes:

Mhom,tot
RT =

K∏

k=1

(
M

(k)
RT

)Nk

. (32)

For the case of an inhomogeneously strained sample
one has to carry out the matrix multiplication for each
individually strained unit cell. Thus, the RTM of the in-
homogeneous sample M inhom,tot

RT containing m = 1 . . .M
unit cells is calculated by:

M inhom,tot
RT =

M∏

m=1

M
(m)
RT , (33)

which is a rather expensive calculation since it has to be
carried out for all differently strained types of unit cells,
for all θ or qz, and for all time steps. The final reflectivity
R of the sample is the calculated from the matrix elements
of the 2 × 2 RTM matrix as follows:

R =
∣∣∣M tot

RT (1,2)/M
tot
RT (2,2)

∣∣∣
2

. (34)

In the following code listing we refer again to the results
of the heat and phonon simulations for the given sample
structure S introduced above. For the static case the syn-
tax for kinematical and dynamical XRD is similar. How-
ever, the simulation of UXRD from transient lattice dy-
namics which inevitably involves inhomogeneously strained
layers is only implemented in the XRDdyn class.

% initialization of XRDkin simulation
D = XRDdyn(S,forceRecalc,E,pol);
% set the qz −range by a theta −vector
D.setQzByTheta(theta);
% calculate the static diffraction curve:
Rh = D.homogeneousReflectivity();
% calculate a reduced number of strains per unique
% unit cell in order to save computational time
strainVectors = ...

P.getReducedStrainsPerUniqueUnitCell(strainMap);
% calculate the transient XRD:
R = D.getInhomogeneousReflectivity( ...

strainMap,strainVectors);

2.5.3. Parallel Computing

As mentioned before, the calculation of the transient
XRD result is very expensive in computational time, since
heavy matrix multiplications for all individually strained
unit cells in the sample, for all angles θ and time steps
have to be carried out. In order to speed up this calcu-
lations the udkm1Dsim toolbox uses matlab’s parallel
computing capabilities. The Parallel Computing Toolbox
has to be installed to enable this feature. In this parallel
mode the dynamical XRD results for the individual time
steps are calculated parallel, e.g. on a multi-core system
or computer-cluster2, since the results at different angles

2Cluster calculations require a matlab Distributed Computing
Server license.

and time steps are independent. The user can individu-
ally decide how to calculate the inhomogeneous reflectivity
by adding a third input parameter type to the function
call. The value of the type parameter can be 'parallel'

(default), 'distributed' , or 'sequential' , whereas the
latter case does not require additional licenses for the mat-
lab Parallel or Distributed Computing Toolbox:

type = 'sequential' ;
R = D.getInhomogeneousReflectivity( ...

strainMap,strainVectors,type);

3. Examples

In this section we want to provide physical examples for
the application of the udkm1Dsim toolbox. The complete
example code can be found in the ./examples/ folder.

3.1. Bragg-Peak Splitting Evidences Inhomogeneous Ex-
pansion

Here we consider a 95 nm metallic SRO thin film on
a dielectric STO substrate which is photoexcited by an
ultrashort laser pulse with a fluence of F = 20 mJ/cm2.
The excitation is modeled as instantaneous temperature
jump and we further neglect heat diffusion. The temper-
ature change at t = 0 is shown in Fig. 1 a) and features
an exponential decay in the absorbing SRO layer in accor-
dance with Eq. 1. Subsequent coherent phonon dynamics
are calculated by the phononNum class and the resulting
spatio-temporal strain profile is depicted in Fig. 1 b).
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Figure 1: (Color online) a) Temperature change in the SRO thin film
after excitation at t = 0. b) Spatio-temporal strain profile due to
optical excitation of the SRO film. The SRO/STO interface is at
z = 95 nm.

Using the result of the phononNum simulation as input
for the dynamical XRD calculations (XRDdyn) we obtain
the UXRD response of the ultrafast excitation of the SRO
layer which is shown in Fig. 2 as a waterfall plot. Here,
the SRO Bragg peak splits up due to the excited lattice
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dynamics and does not continuously shift. Details for this
example simulation and comparison to experimental data
can be found in Ref. [15].
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Figure 2: Waterfall plot of the SRO Bragg peak reflectivity for
different delays after excitation of the thin film. The SRO peak
splits up into two peaks instead of continuously shifting into its new
position.

3.2. Superlattice Oscillations

In this example a superlattice (SL) structure is ex-
cited by an ultrashort laser pulse with a fluence of F =
30 mJ/cm2. The SL consists of 11 double layers (DL) each
of which is composed of 20 unit cells of SRO and 38 unit
cells of STO. The SL is grown on an STO substrate. The
excitation is again modeled as instantaneous temperature
jump at t = 0 neglecting thermal transport. The tem-
perature profile after excitation is shown in Fig. 3 a). The
comb-like temperature profile originates from the alternat-
ing metallic and dielectric layers in the SL and exhibits an
exponential decay towards the substrate. Due to the ex-
citation profile, a longitudinal optical SL phonon mode,
also known as zone-folded longitudinal acoustic phonon
(ZFLAP), is excited which results in the complex spatio-
temporal strain pattern shown in Fig. 3 b). Here, the
strain oscillation directly indicates the frequency of the
optical phonon mode.

The SL structure also results in complex static XRD
signatures as can be seen in Fig. 4. This static diffraction
curve is calculated by the XRDdyn class which allows to
access also the individual diffraction curves of the repeated
substructures. The equidistant Bragg peaks originate from
the SL structure and are numerated as SLi. The most
intense Bragg peak is the STO substrate reflection.

The transient X-Ray diffraction calculations using the
coherent phonon result as input feature intensity oscilla-
tions of the SL Bragg peaks due to the excited longitudi-
nal optical SL phonon. The integrated intensities of the
SL0 and SL+2 Bragg peaks are plotted as transients in
Fig. 5. For the SL+2 peak a non-linear X-ray response is
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Figure 3: (Color online) a) Temperature change in the SL after ex-
citation at t = 0. b) Spatio-temporal strain profile due to optical
excitation of the SL film. The SL/Substrate interface is at z = 235
nm.
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Figure 4: (Color online) The static diffraction curve of the sample
structure is convoluted with a Pseudo-Voigt function in order to
account for instrumental broadening. The Bragg peaks of the SL
are numerated as SLi. The colored lines represent the diffraction
curves of the nested substructures in the sample.

observed. Details on this simulation and a comparison to
UXRD experiments are given in Ref. [16].

3.3. Quasi-Monochromatic Phonon Wave Packet

In the last example a thin 15 nm SRO layer on an
STO substrate is excited by a pulse sequence of 8 ultra-
short laser pulses with a pulse separation of 7.2 ps in or-
der to generate a coherent quasi-monochromatic phonon
wave packet in the substrate. The average temperature
in the SRO layer is plotted in inset of Fig. 6, where the
excitation is again modeled as instantaneous temperature
jump without heat diffusion. The corresponding transient
strain pattern is calculated by the phononNum class includ-
ing damping in the STO substrate. The waterfall plot in
Fig. 6 shows the subsequent generation of bi-polar strain
pulses in the substrate after each laser excitation.

9

91



udkm1Dsim - A Simulation Toolkit for 1D Ultrafast Dynamics in Condensed Matter

0 5 10 15 20
0

0.5

1

 
 R

 /
 R

0

SL 0

0 5 10 15 20
0

20

40

Delay [ps]

 
 R

 /
 R

0

SL+2

a)

b)

a)

b)

a)

b)

Figure 5: The integrated intensity modulation of the SL0 and SL+2
Bragg peak are plotted over the pump-probe delay. The X-ray re-
sponse of the SL+2 shows even non-linear behavior.
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Figure 6: The strain profile for different pump-probe delays are
plotted as waterfall diagram. For better visualization, the graphs are
also shift along the x-axis. The amplitude of the thermal strain in the
SRO layer has a maximum of approx. 1 % and the amplitude of the
phonon wave packet is approx. 0.05 %. The inset shows the average
temperature in the SRO layer due to the multipulse excitation of the
sample.

From this strain pattern we can compute the according
transient X-ray reflectivity using the XRDdyn class. Fig. 7
depicts the side bands of the STO substrate Bragg re-
flection for different pump-probe delays. The rise of the
first-order side band at qz = 3.229 Å−1 and a second-order
side band at qz = 3.240 Å−1 become stronger after each
excitation of the sample. Details on this simulation and
comparison to experimental data can be found in Ref. [17]
and [18].

4. Conclusions

The udkm1Dsim toolbox enables the user to easily
build 1D crystalline structures on the atomic-level using
a rich database of element-specific physical parameters.
The excitation and thermal transport in such 1D struc-
tures is calculated within the frame of an N -temperature
model. The results are then plugged into an analytical or
numerical model for evaluating the dynamics of coherent
longitudinal acoustic phonon in the structure. Kinemat-
ical and dynamical XRD theory are provided to further
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Figure 7: The side bands of the STO substrate Bragg peak are
plotted for different pump-probe delays as waterfall diagram. The
rise of the 1st order side band at qz = 3.229 Å−1 and even a second
order at qz = 3.240 Å−1 of the excited phonon wave packet becomes
stronger after each pump event.

calculate the static rocking curves of the structures for
symmetrical Bragg reflections in coplanar diffraction ge-
ometry. The transient XRD response of the structures
due to coherent phonon dynamics is evaluated exclusively
by dynamical XRD theory.

The udkm1Dsim toolbox is programmed fully object-
orientated and highly modular in order to allow for user-
defined inputs at any step of the simulation procedure.
Hence the toolbox is not only applicable for the compar-
ison of experimental UXRD data to the introduced theo-
retical models but also as an educational/theoretical test
ground for students and researchers in the scientific field
of ultrafast structural dynamics and ultrafast XRD.

[1] C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W.
Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J.
Barty, Picosecond-milli̊angström lattice dynamics measured by
ultrafast X-ray diffraction, Nature 398 (6725) (1999) 310–312.
doi:10.1038/18631.

[2] K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Di-
etrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kamm-
ler, M. Horn-von Hoegen, D. von der Linde, Femtosecond
X-ray measurement of coherent lattice vibrations near the
Lindemann stability limit., Nature 422 (6929) (2003) 287–9.
doi:10.1038/nature01490.

[3] M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S.
Kim, M. Woerner, T. Elsaesser, Coherent atomic motions in a
nanostructure studied by femtosecond X-ray diffraction., Sci-
ence 306 (5702) (2004) 1771–3. doi:10.1126/science.1104739 .

[4] C. Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov,
M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, M. Alexe, Cou-
pled Ultrafast Lattice and Polarization Dynamics in Ferroelec-
tric Nanolayers, Physical Review Letters 98 (25) (2007) 257601.
doi:10.1103/PhysRevLett.98.257601 .

[5] I. A. Veres, T. Berer, P. Burgholzer, Numerical modeling of
thermoelastic generation of ultrasound by laser irradiation in
the coupled thermoelasticity., Ultrasonics 53 (1) (2013) 141–
149. doi:10.1016/j.ultras.2012.05.001.

[6] D. Y. Tzou, J. K. Chen, J. E. Beraun, Recent Development of

10

92



Paper III

Ultrafast Thermoelasticity, Journal of Thermal Stresses 28 (6-
7) (2005) 563–594. doi:10.1080/01495730590929359 .

[7] S. Stepanov, E. Kondrashkina, R. Köhler, D. Novikov,
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Abstract: We monitor how destructive interference of undesired
phonon frequency components shapes a quasi-monochromatic hypersound
wavepacket spectrum during its local real-time preparation by a nanometric
transducer and follow the subsequent decay by nonlinear coupling. We
prove each frequency component of an optical supercontinuum probe to
be sensitive to one particular phonon wavevector in bulk material and
cross-check this by ultrafast x-ray diffraction experiments with direct access
to the lattice dynamics. Establishing reliable experimental techniques with
direct access to the transient spectrum of the excitation is crucial for the
interpretation in strongly nonlinear regimes, such as soliton formation.
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1. Introduction

Brillouin scattering describes the inelastic interaction of photons with acoustic phonons, which
can be excited or detected by this process. [1] It has important applications in the determination
of elastic and photoelastic properties [2, 3] and is used for optical amplifiers or phase con-
jugation [4]. Stimulated Brillouin scattering can create intense hypersound waves [5], where
the wavevector �Q can be selected by tuning the transient grating induced by two intersecting
laser-pulses. The diffraction of a probe pulse then senses the presence of phonons with the
imprinted phonon wavevector �Q [6]. Ultrashort laser pulse excitation of strongly absorbing
materials or transducers on transparent substrates generates even larger phonon amplitudes up
to 1% strain and can be detected by picosecond acoustics, the time-domain analog of Bril-
louin scattering [7,8]. This proved advantageous for investigating anharmonic propagation and
damping of phonons and has generated excitement about ultrashort acoustic solitons [9–13].
Similar to transient gratings, optical multipulse excitation enhances a certain wavelength in the
hypersound wave [14, 15]. Recently optical broadband probe pulses were used to access many
phonon wavevectors simultaneously in picosecond acoustics experiments. [13, 16, 17]

Visible light only interacts with bulk phonons near the Brillouin-zone center, unless impu-
rities are used to enhance the spectroscopy [18]. Optical phonons with high wavevectors in
Bismuth have been accessed by microstructuring the film under investigation [19]. The back-
folding of the phonon dispersion relation in superlattices can convert acoustic phonons with
large wavevector into quasi-optical phonons with detectably small wavevector [20–22]. Alter-
natively, the acoustic reflection from the backside of the sample or from an interface propa-
gating back to the transducer yields reflectivity modulations of the transducer which can be
detected by a probe pulse [23]. The pulse-echo technique was refined by introducing additional
thin detector films and combined with acoustic pulse shaping [24] and was extended to the
detection of shear waves in glycerol [14]. The fourier-transform of real-time signals due to
pulse-echoes at the transducer or from Brillouin scattering in the bulk yields the spectrum of
acoustic phonons. The analysis of the reflection coefficient of such acoustic perturbations was
recently discussed in detail [25].

In order to observe high phonon wavevectors in a bulk material directly, shorter probe wave-
lengths are needed. The phonon dispersion for larger wavevectors is measured by inelastic X-
ray scattering, which is essentially Brillouin scattering of X-rays [26,27]. The new millennium
came along with the rapidly developing scientific field of ultrafast X-ray diffraction (UXRD),
which allows direct measurement of the lattice oscillation amplitude associated with propa-
gating strain pulses. [28–32] Very recently optically synthesized quasi-monochromatic phonon
wavepackets in the 100 GHz range were clearly detected by UXRD as sidebands to bulk Bragg
reflections [15].

In this paper we present a unifying view on UXRD and optical picosecond acoustics as
two types of Brillouin scattering. The presence of monochromatic phonons in bulk SrTiO3 is
directly evidenced by the scattering of photons. The conceptually simple analysis provides a
real-time perspective on the spectral shaping of high-frequency phonon wavepackets by tai-
lored multipulse excitation. In particular, we demonstrate how the optical supercontinuum
probe accomplishes a versatile simultaneous broadband sensing of bulk phonon wavevectors
constituting a large amplitude phonon wavepacket that decays by anharmonic interactions. We
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Fig. 1. Calculated phonon spectra. Spectral phonon amplitude present in the STO sub-
strate after excitation of a 35 nm LSMO transducer by 1, 2, 4 and 8 pulses with a pulse
spacing of ΔT = 15.4 ps. All pulse sequences have the same integrated pulse energy.

believe that this combination of ultrafast X-ray- and optical broadband-detection of phonons
will significantly enhance the confidence regarding interpretations of future optical picosec-
ond ultrasound experiments. The supercontinuum detection scheme is also applicable to other
quasiparticles such as magnons or polaritons which are generally identified by their dispersion
relation ω(k). The wave-particle duality requires such wave-packet description, in which only
a coherent excitation of a broad wavevector-spectrum allows for localization of quasiparticles.
Real-time preparation and detection of such wavepackets will aid the understanding and con-
trolling such excitations.

2. Synthesizing quasi-monochromatic phonons

We first discuss how to synthesize coherent quasi-monochromatic phonon wavepackets in the
GHz - THz range, using a thin metal transducer of SrRuO3 (SRO) or La0.7Sr0.3MnO3 (LSMO)
on the material of interest SrTiO3 (STO). The absorption of an ultrashort light pulse leads to
rapid expansion of the metal film. The good acoustic impedance matching of the SRO/LSMO
transducer and the STO substrate suppresses reflections at the interface. [13,33] Consequently,
clean bipolar strain pulses without unintended replica are sent into the substrate. [7] The spatio-
temporal dynamics can be simulated by a linear-chain model which includes the anharmonicity
in the interatomic potentials [13, 33]. In the present simulations we neglected the anharmonic
terms according to the moderate excitation fluence. Due to the very fast electron phonon cou-
pling of SRO and LSMO the optically excited electrons are rapidly localized and consequently
the spatial profile of the exciting stress corresponds to the absorption of light according to
Lambert-Beer’s law [34]. A single ultrashort laser pulse generates a broad phonon spectrum in
the substrate. The red line in Fig. 1 shows the Fourier-transformed spatial strain pattern of the
substrate only. If the heated transducer layer with thickness d is added to the analysis, a strong
Fourier-component at k = 0 emerges because of the thermally expanded absorbing region. If the
pump penetration depth dabs � d the calculated excited strain pattern of the substrate yields a
bipolar strain pulse with a frequency spectrum centered around Q = 0.74 ·πvt/vsd whereas for
dabs � d the exponential shaped profile of the induced strain pulse have a spectral maximum at
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Fig. 2. Birth and decay of phonon-wavepackets observed by UXRD. (a) Calculated X-
ray diffraction pattern for an STO substrate with a coherent phonon spectrum excited by
1 to 8 pulses. (b) UXRD data demonstrating the successive sharpening of the diffraction
pattern with 8 excitation pulses separated by 7.2 ps. (c) Same UXRD data for larger delay
time t showing the decay of the coherent phonons.

Q = vt/vsdabs. Here d, vt and vs are the thickness of the transducer film and the sound velocities
of transducer and substrate in [001] direction, respectively. Our conditions are well described
by the first limit value because dabs > d. For longer excitation pulses, the phonon spectrum is
suppressed for wavevectors Q corresponding to phonon frequencies ω > 2π/τpulse where τpulse

is the temporal duration of the pump pulse.
Successive excitation of the metal transducer with a sequence of light pulses equally spaced

by ΔT in time generates a strain wave traveling into the substrate with a fundamental frequency
ν = 1/ΔT and contributions of its higher harmonics due to the sharp edges of the strain pulses.
As an example we simulate the phonon spectra for a transducer thickness d = 35 nm and a
pulse spacing of ΔT = 15.4 ps. Figure 1 shows how additional pulses in the pump sequence
sharpen the spectrum around Q = 2π/ΔTvs and its higher harmonics by canceling the am-
plitude of other wavevectors. Note, that in Fig. 1 the integral pump energy is kept fixed in the
simulation. As a consequence, the different pulse trains induce a constant phonon amplitude for
the constructive interference, whereas the suppressed modes interfere destructively. Hence, for
multipulse excitation, less energy is deposited in coherent phonons, compared to single pulse
excitation with the same integral fluence. [33]

3. Inelastic light scattering from directed phonons

The energy quantum h̄ωs of such a strain wave is the longitudinal acoustic phonon with a mag-
nitude of the wavevector |�Q| = ωs/vs. Photons with wavevector �k are scattered by phonons
with wavevector �Q only in accordance with the energy and momentum conservation. In a crys-
tal with reciprocal lattice vectors �G, the equation for momentum conservation with�k′ as the
wavevector of the scattered photon reads

Δ�k =�k′ −�k = �G+Δ�Q. (1)

Here we discuss the situation where Δ�Q = ±�Q is the momentum added to the scattering photon
by the creation or annihilation of the particular phonon with wavevector �Q which was synthe-
sized into the crystal. It is important to see that generating phonons with an optical transducer
thin film breaks the symmetry, and only phonons with wavevector �Q directed into the crystal
are generated. Figure 3(a) schematically shows how the creation of an additional phonon with
wavevector �Q leads to a scattering with momentum transfer �G + �Q. In the geometry depicted
in Fig. 3(a), i.e. for a phonon propagating into the crystal, the energy conservation imposes a
constraint on the angular frequencies ω ′ of the scattered and ω of the incident photons:
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ω ′ −ω =

{
ωs, if Δ�Q = +�Q ;phonon annihilation

−ωs, if Δ�Q = −�Q ;phonon creation
, (2)

because the stimulated emission of a phonon with wavevector �Q directed into the substrate
acquires its energy from the scattering photon, whereas the annihilation of a phonon with the
same �Q adds energy to the scattering photon and corresponds to a positive wavevector transfer
Δ�Q = +�Q.

These equations describe an inelastic scattering process which generally leads to an asym-
metric scattering geometry, where the incoming and outgoing photon do not have the same
angle with respect to the surface. However, the vast difference of the light and sound velocities
implies a very small length change of the scattered photon wavevector with respect to the in-
cident one. This quasi-elastic condition leads to a nearly symmetric scattering geometry with
Δ�k = �G± �Q.

4. Brillouin scattering of X-rays

We first discuss Brillouin scattering in the hard X-ray range [27]. The simulation of the UXRD
signal is shown in Fig. 2(a) for the excitation with an increasing number of pump-pulses. All
strain pulses have fully entered the substrate and in contrast to Fig. 1 the deposited fluence rises
with each absorbed pulse. Figure 2(a) directly shows how the diffraction feature at �G+�Q sharp-
ens as more and more bipolar strain pulses are sculptured into the crystal.We performed the cor-
responding UXRD experiment at the ID09B beamline at the synchrotron source ESRF which
provides ∼ 100 ps hard X-ray pulses. The SRO transducer film was excited with eight pulses
spaced by ΔT = 7.2 ps, consistent with the calculation of Fig. 2(a). Details of the setup were
discussed previously [15]. Here, we show an angular resolved analysis of the data recorded with
100 ps time resolution. The spectral narrowing of the feature around �G+�Q, is qualitatively con-
firmed in the experiment. When the synthesis of the quasi-monochromatic phonon wavepacket
(Fig. 2(b)) was stopped after eight pulses, we observed that this sideband decayed (c.f. Fig. 2(c))
within 130 ps. This is not much longer than it took to create the wavepacket. The corresponding
phonon decay is due to anharmonic phonon-phonon scattering processes within the STO sub-
strate [35–39]. Up to now we have shown that the interference of sound waves (phonons) in the
crystal created by multiple pulses in fact leads to the predicted quasi-monochromatic phonon
wavepacket. UXRD directly measures the shaping of the quasi-monochromatic phonon spec-
trum in real time. Moreover, we showed that this wavepacket decays on a 100 ps timescale.

5. Brillouin scattering and picosecond acoustics

Now we turn to Brillouin scattering of optical photons from similar phonon wavepackets. In
a classical interpretation of Brillouin scattering, the incident electromagnetic wave with wave-
length λm = λ/n(λ ) in the material is diffracted from the Bragg grating given by the strain-
induced refractive index modulation according to the photoelastic effect. Here λ and n(λ ) are
the wavelength of the incident electromagnetic wave in vacuum and the wavelength dependent
refractive index of the material, respectively. For visible light STO has a refractive index of
n ≈ 2.4. [40] The scattering angle is given by Bragg’s law [1]

λm = 2λs · sinθ , (3)

implying that for a given scattering angle θ an optical photon with wavelength λm = 2πn/|�k|
is diffracted from a refractive index grating induced by phonons with wavelength λs = 2π/|�Q|
as schematically shown in Fig. 3(b). For a phonon propagating perpendicular to the sample
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Fig. 3. Schematics of Brillouin scattering and picosecond acoustics. (a) Schematic of the
inelastic X-ray scattering with creation of a phonon with wavevector +�Q. (b) Schematic
of the Brillouin scattering with creation of a phonon with wavevector +�Q. (c) Schematic
showing the interference of waves which is used for a time-domain explanation of the
observed oscillations (see text).

surface the scattering angle θ is equal to the angle between the incident photon wavevector in
the sample and the sample surface. This angle can be easily calculated by Snell’s law. Given a
strain wave propagating into the crystal, the scattered light undergoes a tiny Doppler-red-shift
corresponding to the frequency of the moving sound wave, which can be detected by high-
resolution Brillouin scattering experiments. [41, 42]

Eq. (3) is a direct result of the optical Laue-condition�k′ −�k = ±�Q, (Fig. 3(b)) under quasi-
elastic scattering conditions (|�k′| ≈ |�k|), and is in fact Eq. (1) describing Brillouin scattering
with �G = 0. For a fixed angle θ Eq. (3) implies that an optical photon with wavelength λ
specifically scatters from phonons with the wavevector magnitude

Q(λ ) =
4π
λ

n(λ ) · sinθ . (4)

For n(λ ) = 1 Eq. (4) defines the well known scattering vector in elastic X-ray scattering theory.
Up to now we have adopted a perspective which is suitable for conventional Brillouin scat-

tering experiments detecting the frequency shift of a narrow-band-laser. In optical picosecond
acoustics experiments a laser pulse excites a short bipolar strain pulse with a broad spectrum
(Fig. 1, red line). The detection by a time-delayed laser pulse is explained as follows: A part
of the supercontinuum probe pulse is diffracted by the refractive index modulation associated
with the propagating sound pulse fulfilling Eq. (4) and interferes with the reflection of the
probe pulse at the sample surface (Fig. 3(c)). The moving sound pulse leads to a phase change
of the diffracted wave which depends on the pump-probe delay t. The resulting intensity of the
interfering electric fields is proportional to cos(ωst) = cos(2πt/Ts) with the period

Ts =
λ

2vsn(λ )sinθ
. (5)

For normal incidence Ts corresponds to the time a soundwave with wavevector �Q perpendicular
to the surface needs to propagate one half of the optical wavelength λm. Combining Eqs. (4)
and (5) leads to vs · Q = 2π/Ts = ωs. Hence ωs is the angular frequency of the phonon with
the wavevector �Q. Such oscillations are in fact observed in all-optical reflectivity experiments
[13,16] using a single optical pump pulse and an ultrashort broadband probe pulse. Figure 4(a)
shows the recorded reflectivity change for the LSMO transducer on STO after subtraction of
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Fig. 4. Experimental proof for the wavevector selectivity of supercontinuum probe
pulses. (a) Measured transient relative reflectivity change for single-pulse excitation as a
function of the phonon wavevector given by Eq. (4). Slowly varying background is sub-
tracted. (b) Same for an excitation with 8 pulses. (c) The dashed lines show the calculated
spectral amplitude of the excited phonons for 1 (red dashed) and 8 (black dashed) excita-
tions pulses (reproduced from Fig. 1). The solid lines show short-time Fourier transform
data of Fig. 4(b). Each of the extracted datasets was multiplied with the probe wavelength
to obtain a quantity proportional to the spectral amplitude of the coherent phonons.
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a slowly varying electronic and thermal contribution to the signal. The observed oscillation
period depends on the probe wavelength as predicted by Eq. (5) and extends across the entire
visible spectrum according to the broad spectrum of the excited coherent phonons calculated to
obtain the red line in Fig. 1. Here, Eq. (4) is applied to translate the optical probe wavelength λ
into the phonon wavevector �Q.

6. Selectivity of the supercontinuum probe

Finally, we show that Brillouin scattering with broadband optical probe pulses not only has a
mathematical one-to-one correspondence between the optical probe wavelength and a specific
phonon with wavevector �Q (Eq. (4)) but that in fact individual wavevector components can be
experimentally discriminated. Similar to the X-ray experiments shown in Fig. 2, we synthesized
a monochromatic phonon via excitation of an LSMO transducer by a train of eight optical pump
pulses (λ = 800 nm) with the pulse duration τpulse ∼ 100 fs and separation ΔT = 15.4 ps.
Figure 4(b) shows the relative reflectivity change of the sample. After t ≈ 150 ps oscillations
are mainly visible in the vicinity of |�Q| = 0.05 rad/nm. The black dashed line in Fig. 4(c),
reproduced from Fig. 1, shows the idealized simulation of the coherent phonon spectrum in the
substrate after 150 ps when all bipolar strain pulses have entered the substrate. The excellent
agreement of the measured suppression of the reflectivity oscillations in certain wavelength
regions of Fig. 4(b) with the simulated destructive interference in the phonon spectrum confirms
both the wavevector-selective probing process and the shaping of quasi-monochromatic phonon
wavepackets by tailored destructive interference. To support this argument we have extracted
the spectral amplitude of oscillations observed in Fig. 4(b) by short-time Fourier-transform and
multiplied the spectra by the wavelength of the probe light to get a quantity which is in first
approximation proportional to the spectral amplitude of the occupied phonons. [7] The results
plotted in Fig. 4(c) show good quantitative agreement of the measured spectra with the predicted
spectrum (black dashed line). In particular, the measured spectral width of the main spectral
component of the wavepacket exactly matches the prediction, demonstrating the simultaneous
spatial and temporal resolution of the supercontinuum pump-probe setup. The higher amplitude
of the secondary maximum is due to slight imperfections in the experimental optical pump
pulse train, which leads to an imperfect destructive interference of phonon modes. Furthermore,
Figure 4(c) directly measures the damping of the phonon amplitude in time. This is analogous
to the measured phonon attenuation using UXRD (Fig. 2(c)). In particular, both experiments
show that high-frequency components of the wavepackets undergo stronger damping.

Scattering experiments using synthesized monochromatic phonon wavepackets thus show di-
rectly that both UXRD and picosecond ultrasonics are wavevector-selective probes of ultrafast
phonon dynamics, which are both described by Eq. (1). The difference of the two methods is
that in the X-ray range we have selected the detected phonon wavevector �Q by tuning the Bragg
angle, keeping the light wavelength fixed, whereas for the optical experiment we kept the angle
of incidence fixed and measured a broad frequency range using a spectrometer. In principle, the
experiments could also be carried out vice versa. More importantly, the absorption of the probe
pulses is different. STO has essentially no optical absorption, while the penetration depth for
hard X-rays is not larger than 10μm. Generally, for very short sound wavelengths hard X-rays
are definitely the only suitable choice, since the required VUV and XUV photons undergo very
strong absorption.

7. Conclusions

In conclusion, we have given a unifying interpretation of ultrafast versions of Brillouin scatte-
ring in the ranges of optical and X-ray photon energies. We have synthesized large-amplitude
quasi-monochromatic phonon wavepackets and proved that their spectrum and their anhar-
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monic decay can be directly observed in both types of experiments. In particular, we showed
that the optical supercontinuum is a direct, simultaneous and nonetheless selective real-time
probe of the spectra composing a phonon wavepacket in bulk material. We confirmed this in-
terpretation by comparison to UXRD experiments for which the direct access to the spectrum
of the lattice strain is obvious. We think that this experimental confirmation will be essential
for the interpretation of future experiments where wavevector-selective excitation and probing
will be used to measure anharmonic and nonlinear phonon interactions in condensed matter. In
particular, we envision experiments on nonlinear phononics as an analog of nonlinear optics, in
which we observe sum and difference frequency mixing of synthesized phonons.
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We excite an epitaxial SrRuO3 thin film transducer by a pulse train of ultrashort laser pulses,

launching coherent sound waves into the underlying SrTiO3 substrate. Synchrotron-based x-ray

diffraction (XRD) data exhibiting separated sidebands to the substrate peak evidence the

excitation of a quasi-monochromatic phonon wavepacket with sub-THz central frequency. The

frequency and bandwidth of this sound pulse can be controlled by the optical pulse train. We

compare the experimental data to combined lattice dynamics and dynamical XRD simulations

to verify the coherent phonon dynamics. In addition, we observe a lifetime of 130 ps of

such sub-THz phonons in accordance with the theory. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3688492]

Ultrafast x-ray diffraction (UXRD) is a powerful tool

for monitoring atomic motion in solids on the related length

and timescales. In principle, each displacement field within a

crystal can be decomposed into discrete phonon modes of re-

spective frequency x and wavevector Q which are related by

the phonon dispersion relation x ¼ xðQÞ. One key aspect of

UXRD is the direct correspondence of a phonon-induced

real-space periodicity k ¼ 2p=Q within a host crystal of lat-

tice spacing c and the finite diffraction intensity at wavevec-

tor transfer q ¼ jkin � koutj ¼ G6Q, where kin and kout are

the incident and diffracted x-ray photon wavevectors, respec-

tively, and G ¼ 2p=c is the reciprocal lattice vector of the

host crystal.1,2 This relation is depicted in Fig. 1(a) for

GþQ. Each phonon mode Q is, thus, responsible for x-rays

diffracted into sharp sidebands of the main crystal Bragg

reflection at G6Q which oscillate at their respective eigen-

frequency xðQÞ. These features have been theoretically dis-

cussed by Larsson et al.2

Early UXRD experiments verified these relations by

observing UXRD signals of longitudinal acoustic (LA) pho-

nons in bulk crystals.1–3 In these experiments, the intense

and ultrashort laser pulses excite bipolar strain waves into

the bulk crystal4 which have a broad phonon spectrum that

accordingly generates contributions in a broad vicinity of the

bulk Bragg reflection. The linear dispersion relation of LA

phonons, x ¼ vLAQ, was verified by tuning q, where vLA is

the LA sound velocity.

For various physical and technical issues (such as phonon

spectroscopy, phonon-phonon scattering, etc.), it is favorable

to selectively generate high-frequency monochromatic pho-

non beams instead of spectrally broad pulses as in the first

UXRD experiments. Several techniques have been devel-

oped, e.g., via thermomodulation5 or piezoelectric trans-

ducers.6 Roshchupkin and co-workers observed XRD

sidebands due to continuous surface acoustic waves in langa-

tate crystals.7 Acoustoelectrically amplified phonons below

10 GHz forming a continuous monochromatic bulk sound

wave have also been detected by XRD.6 Solely optical techni-

ques provide tunability of the phonon frequencies into the

THz region. Optical multi-pulse excitation has been used to

coherently control LA phonons in bulk InSb.8 Recently, high-

frequency narrow-bandwidth tunable LA phonon pulses were

coherently excited by optical pulse trains and subsequently

verified by optical means.9,10 Alternatively, the single-pulse

photoexcitation of semiconductor superlattices generates

folded LA phonons.11,12 Due to coupling to the substrate,

these folded phonons unfold into the substrate which results

in similar phonon pulses as discussed here.13 Such unfolding

could be monitored by UXRD; however, the corresponding

weak signatures in the diffraction curves were mainly domi-

nated by the strong superlattice Bragg peaks.14 Moreover,

FIG. 1. (Color online) (a) Schematic representation of coherent XRD from

a reciprocal lattice vector G (solid lines) and from an additional phonon of

wavevector Q (dashed lines). The same process is possible for G and Q
being antiparallel. (b) Schematic of the experiment. Each laser pulse

launches a bipolar strain wave into the substrate (dashed line) resulting in a

phonon wavepacket with central wavevector Q (dashed and solid line).a)Electronic mail: bargheer@uni-potsdam.de.

0003-6951/2012/100(9)/094101/4/$30.00 VC 2012 American Institute of Physics100, 094101-1
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these unfolded phonon wavepackets have a fixed central fre-

quency defined by the spatial superlattice period.13,14

In this letter, we synthesized a quasi-monochromatic

phonon pulse by excitation of a SrRuO3 (SRO) thin film

transducer epitaxially grown by pulsed laser deposition32 on

a SrTiO3 substrate15 with a train of ultrashort optical laser

pulses (schematically shown in Fig. 1(b)). Relevant material

properties of SRO and STO can be found in, e.g., Refs. 27,

28, 33, and 34. Each laser pulse impulsively launches a sin-

gle spectrally broad bipolar strain pulse with high amplitude

into the substrate (schematically depicted by the dashed line

in Fig. 1(b)).16 The optical pulse train with pulse frequency

� ¼ s�1 and N pulses thus synthesizes a coherent phonon

wavepacket10 with wavevector Qp ¼ 2p�=vLA, where vLA is

the LA sound velocity of the STO substrate. Using UXRD,

we observe clear sidebands to the STO Bragg peak as the x-

ray photons scatter from the monochromatic phonons

according to q ¼ Gþ Qp. The selective excitation of coher-

ent phonons with a specific Qp allows us to directly monitor

the 130 ps lifetime of these sub-THz phonons which undergo

strong damping attributed to thermoelastic damping and

Akhiezer’s mechanism of relaxation damping.17–19 The cen-

tral wavevector of the observed wavepacket can be con-

trolled by the pulse repetition rate � and the bandwidth is

inversely proportional to N. By tuning �, one can thus map

out the LA phonon dispersion relation xðQÞ.
The time-resolved XRD experiments were performed at

the undulator beamline ID09B at the synchrotron source

ESRF.20 The general experimental setup working at 1 kHz

repetition rate was described in Ref. 21. The storage ring

was running in 16-bunch mode generating � 100 ps x-ray

pulses. We chose a photon energy of 12 keV for the experi-

ments and utilized only one sample (cf. Ref. 21). The optical

pulse train was produced by a mirror composed of four alter-

natingly stacked glass plates and spacer rings giving eight

reflections from the air-glass interfaces. The plates and rings

had a thickness of 710 lm and 1100 lm, respectively, corre-

sponding to pulse spacing of s � 7:2 ps (� � 140 GHz) at

normal incidence, which was verified by optical cross-

correlation measurements. Due to the rather low reflectivity

of the air-glass interfaces, the energy distribution within the

pulse train was almost homogeneous. The integrated fluence

at the sample was set to � 44 mJ/cm2, i.e., each pulse con-

tributed a mean fluence of � 5:5 mJ/cm2.

The inset of Fig. 2(a) shows the static rocking curve

around the (002) STO substrate Bragg peak from which we

deduced a SRO layer thickness of � 15:4 nm. The high-

angle side of the STO substrate Bragg peak has very little

contribution from the SRO layer which allows to observe the

sidebands of the phonon wavepackets without any conges-

tion from the top layer(s). This situation is even improved by

the shift of the SRO peak towards lower angles due to the

photoinduced thermal expansion. The robust perovskite ox-

ide SRO has a fast electron-phonon coupling and is, thus,

perfectly suited as a thin film transducer which can be trig-

gered by strong laser-pulse excitation in order to generate

phonon spectra with a high frequency cutoff.22–25

Figure 2(a) shows the measured rocking curves in the vi-

cinity of the (002) STO substrate Bragg peak before (open

black diamonds) and 130 ps after (solid red bullets) the ar-

rival of the first pump pulse of the pulse train. The rocking

curve at positive time delay shows a distinct sideband evi-

dencing the excitation of a coherent narrow-bandwidth pho-

non wavepacket with a central wavevector around

Dq ¼ Q
ð1Þ
p ¼ 0:11 nm�1. Moreover, the excitation of the sec-

ond harmonic around Dq ¼ Q
ð2Þ
p ¼ 0:22 nm�1 with much

weaker amplitude can be inferred from Fig. 2. Although we

observe clearly separated harmonics, the sidebands are rather

broad and exhibit additional modulations. The comparatively

large penetration depth of the 800 nm pump light in SRO

(nSRO � 52 nm) results in nearly homogeneous excitation of

the thin film transducer.13,26 The individual bipolar strain

pulses thus roughly have a rectangular and steplike shape

and consequently higher harmonics of Qp are generated.

Since we have an independent measure of �, the linear LA

phonon dispersion relation readily yields vLA � 7:9 nm/ps

which perfectly agrees with the literature values.27,28

In order to understand the experimental data in more

detail, we utilized numerical model calculations to simulate

the experiment. First, we use a linear-chain model of masses

and springs to calculate the coherent lattice dynamics.13 The

multiple pump pulse excitation necessitates the inclusion of

heat diffusion into the simulation. The resulting spatio-

temporal strain maps then serve as an input for dynamical

XRD simulations to calculate the transient rocking curves.26,29

The simulated transient rocking curves are plotted in Fig.

2(b). We first assume a pulse train of 8 identical pulses with

7.2 ps pulse separation. The calculated strain field at 130 ps is

shown in the inset of Fig. 2(b). The corresponding rocking

FIG. 2. (Color online) (a) Experimental rocking curves (measured piece-

wise) of the high-angle side of the STO substrate peak before (open black

diamonds) and 130 ps after (solid red bullets) excitation by a pulse train

with 7.2 ps pulse separation. Inset: static rocking curve measured with a

high-resolution x-ray photodiode. The arrow indicates the shift of the SRO

peak due to the photoinduced thermal expansion. (b) Simulations of the

measured rocking curves without excitation (long-dashed black) and with

excitation by a pulse train having a uniform (solid blue) and non-uniform

(short-dashed red) pulse energy distribution. Inset: calculated strain pattern

130 ps after excitation with uniform (solid blue) and non-uniform (dashed

red) pulse energy distribution.

094101-2 Herzog et al. Appl. Phys. Lett. 100, 094101 (2012)

110



Paper V

curve (solid blue) exhibits sharp Bragg peaks at the experi-

mentally observed wavevector Dq ¼ 0:11 nm�1 and its higher

harmonics.

The experimental peak width is much broader than for

the idealized simulation. This may originate from varying

pulse energies at the probe area. For instance, a different

pointing of the individual optical pump beams due to non-

parallel glass plates of the mirror stack would generate dif-

ferent excitation densities at the fairly distant probe spot for

each pulse. To account for such effects, we further assumed

a non-uniform pump pulse energy distribution within the

pulse train which results in the dashed red curve in Fig. 2.

This rocking curve satisfactorily approximates the shape of

the experimental data. The individual pulse energies are pro-

portional to the corresponding amplitudes of the bipolar

strain pulses plotted in the inset of Fig. 2(b). Thus, a con-

trolled variation of the pulse energy distribution in principle

allows to generate arbitrary phonon spectra in addition to

the tunability of the central wavevector by the pulse

frequency �.

Finally, we analyze the time-dependence of the first-

order sideband of the phonon wavepacket. For this, we evalu-

ate the integrated intensity of the main part between

Dq¼ 0.08 rad/nm and Dq¼ 0.14 rad/nm for each measured

time delay. The result is given by the symbols in Fig. 3. We

fit this transient by an exponential function which is set to

zero before t¼ 0 and convoluted by a Gaussian representing

the limited time-resolution. The solid black line in Fig. 3

shows the best fit from which we extract a decay time sdata ¼
130 6 8 ps. If we perform an analogous evaluation on the

simulated data, we obtain the dashed red line. Here, the

decay time is ssim � 600 ps which is essentially determined

by (1) the x-ray absorption as the strain pulse propagates

deeper into the substrate (absorption length at 12 keV in STO

is � 54 lm) and (2) normal dispersion of the phonon wave-

packet. Since our lattice dynamics model does not include

anharmonic phonon interactions, ssim marks an upper limit.

The fact that sdata � ssim thus implies a rather efficient

attenuation of the phonon wavepacket. Combining ssim and

theoretical estimations including Akhiezer’s mechanism of

relaxation damping17,18 and thermoelastic damping19 yields a

decay time of � 200 ps which is close to our measured pho-

non lifetime. We also obtain very similar values (� 130 ps)

by extrapolation of previously measured sub-GHz sound

attenuation in STO (Refs. 30 and 31) according to sdecay �
x�2 given by Akhiezer’s damping.17–19 More insight in the

exact phonon attenuation dynamics could be gained by using

shorter x-ray probe pulses since the observed phonon lifetime

is close to the time-resolution of the experiment.

In conclusion, we presented UXRD data that evidence

the efficient generation of quasi-monochromatic coherent

LA phonon wavepackets at 140 GHz. We could explain and

successfully simulate the corresponding sidebands of the

STO substrate Bragg peak using a microscopic lattice dy-

namics model and dynamical XRD simulations. As the side-

bands originate from a scattering of x-ray photons from

selectively synthesized phonons with specific Q vector, the

transient intensity of the sidebands directly measures the life-

time of these sub-THz LA phonons which is in accordance

with theory and earlier acoustic experiments in the sub-GHz

range. We believe that the combination of continuously tuna-

ble selective excitation of monochromatic phonon-pulses

and UXRD will prove to be a versatile tool for investigation

of sound attenuation and anharmonic phonon-phonon inter-

actions in various materials with physically interesting cou-

pling mechanisms at hypersonic frequencies.
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We synthesize sub-THz longitudinal quasimonochromatic acoustic phonons in a SrTiO3 single crystal using
a SrRuO3/SrTiO3 superlattice as an optical-acoustic transducer. The generated acoustic phonon spectrum is
determined using ultrafast x-ray diffraction. The analysis of the generated phonon spectrum in the time domain
reveals a k-vector dependent phonon lifetime. It is observed that even at sub-THz frequencies the phonon lifetime
agrees with the 1/ω2 power law known from Akhiezer’s model for hyper sound attenuation. The observed shift
of the synthesized spectrum to the higher q is discussed in the framework of nonlinear effects appearing due to
the high amplitude of the synthesized phonons.
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I. INTRODUCTION

The increasing importance of coherent phonon spec-
troscopy in material science is related to the growing problem
of heat dissipation in modern nanoscale devices. This problem
is impossible to solve without detailed understanding of
underlaying phonon-phonon and phonon-electron interactions
on the nanoscale. One of the methods to study these processes
is coherent phonon spectroscopy, in which a particular phonon
spectrum is excited coherently in the sample and detected op-
tically. Research efforts in this direction resulted in significant
progress in generation and detection of coherent phonons in
various materials. The available phonon frequency has reached
the THz acoustic limit1 and basically the whole phonon fre-
quency range nowadays could be excited coherently. However,
convenient optical detection methods based on Raman2,3 or
Brillouin4 scattering allow for the observation of phonons
excited only in the vicinity of the Brillouin zone center. There-
fore, sub-THz acoustic phonons could be accessed optically
only in multilayer structures, in which the acoustic dispersion
branch backfolds many times inside a mini-Brillouin zone of
a multilayer.5 Modern progress in pulsed laser techniques as
well as in multilayer fabrication has led to a set of successful
experiments in which the coherent zone-folded superlattice
phonons have been optically excited and detected.5–7 However,
these optical methods are insensitive to the THz frequency
phonons which have propagated into the bulk of the crystal due
to the unfolding of the phonon dispersion curve. Convenient
optical methods based on Brillouin scattering in this case have
a detection limit in the 100 GHz range given by the wave
vector magnitude of the optical light.8,9 Recently, ultrafast
x-ray diffraction (UXRD) has become available to extend the
accessible phonon frequency range to above 100 GHz. It has
been used successfully to study both the time-domain structure
of optically excited zone-folded coherent acoustic phonons in
epitaxial multilayers,10 as well as to observe the propagation
of unfolded phonons into the bulk.11

In this paper we report our new UXRD experiments from
coherent quasimonochromatic longitudinal acoustic phonons

in SrTiO3 synthesized by fs-laser excitation of SrRuO3/SrTiO3

(SRO/STO) epitaxial multilayers. Using UXRD we determine
the laser excited phonon spectrum in SrTiO3 and monitor the
modification of the spectrum in the time domain. The epitaxial
multilayers were prepared using pulsed laser deposition.12 The
experiments are carried out at the BESSY EDR beamline using
a unique setup for a 1 MHz repetition rate UXRD experiments.

The experiments are done in a traditional scheme which
uses an optical delay line to change the time interval between
the optical pump and the x-ray probe pulses. We use infrared
optical pulses with the wavelength of 1.03 μm for pumping and
8 keV x-rays for probing the lattice dynamics. The important
feature of this setup is the simultaneous acquisition of the
x-ray photons scattered from the sample before and after
the pumping optical pulse. This makes the x-ray intensity
difference signal sensitive only to those changes in the crystal
lattice which were exclusively initiated by the optical pulses.
For further details we refer to a recent publication describing
the setup.13

II. THEORY

A. Synthesis of quasimonochromatic coherent
acoustic phonons

Recent studies showed that the optical excitation of a
metal transducer by a sequence of ultrashort laser pulses is
an efficient method to generate sub-THz quasimonochromatic
longitudinal acoustic (LA) phonons.14–16 In essence, the
repetitive generation of bipolar strain pulses by the laser-
excited transducer17 forms a phonon wave packet of narrow
spectral bandwidth propagating throughout the substrate. In
this report we consider a different approach which uses a
spatial repetition instead of a temporal one, i.e., the excitation
of a periodic metal-dielectric multilayer (superlattice) with
a single ultrashort laser pulse [see Fig. 1(a)]. This way
the so-called superlattice phonon mode is excited,10,18–21

which subsequently unfolds into the substrate thereby forming
LA phonon wave packets with similarly narrow spectral
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FIG. 1. (Color online) (a) Sketch of the five-period epitax-
ial SrRuO3/SrTiO3 multilayer on top of the SrTiO3 substrate.
(b) Calculated strain profile in the sample along the surface normal,
taken at 250 ps after the multilayer excitation. (c) Calculated spectrum
of the strain pulse in the wave vector and frequency domains induced
by the optical excitation. The vertical scale stands for the excitation
fluence of 6 mJ/cm2 used in the experiment.

bandwidth.11,20 In most cases the laser-induced coherent
lattice dynamics may be calculated using either a model of
a continuous elastic medium17 or a linear-chain model (LCM)
of masses and springs.20 Here we employ the latter approach
which will be more appropriate for short-period superlattices
and automatically accounts for the acoustic phonon dispersion.
The details of the numerical model can be found in Ref. 20.
The excellent agreement of such a linear-chain model with
related optical and UXRD experiments has been previously
demonstrated for various sample structures.16,19–23

Further we consider linear chain calculations for a five-
period SRO/STO multilayer with the spatial period D =
140 nm which is schematically shown in Fig. 1(a). The
structural parameters of the sample which are determined
by static high-resolution x-ray diffraction (HRXRD)24 are
collected in Table I. In addition, the longitudinal sound
velocities of the individual materials are shown.25 The results
of the linear-chain calculations using the parameters given in
Table I and the experimental pump fluence of 6 mJ/cm2 are
shown in Figs. 1(b) and 1(c).

The graph in Fig. 1(b) shows the calculated one-
dimensional strain profile in the sample 250 ps after the

TABLE I. Structural and mechanical properties employed in the
calculations.

Material Lattice constant Thickness Sound speed

Substrate STO 3.905 Å 10 μm 7.9 nm/ps
STO in ML 3.92 Å 127 nm 7.8 nm/ps
SRO in ML 3.95 Å 13 nm 6.3 nm/ps

excitation. Figure 1(c) plots the spectral amplitude of the
linear-chain eigenvectors (normal modes) as a function of the
eigenfrequency. This amplitude spectrum is solely determined
by the initial conditions.20 For the bulk STO substrate the
eigenvectors are plane elastic waves with wave vector q

satisfying the well-known dispersion relation of acoustic
phonons.26 As Fig. 1(b) illustrates, the optical excitation
of the metal layers of the multilayer system results in the
generation of a coherent strain wave packet propagating into
the STO substrate at the longitudinal sound velocity.20 The
resulting wave packet inside the STO substrate attains the
particular shape shown in Fig. 1(b), namely, five leading
compression pulses and five trailing expansion pulses which
are separated by λ ≈ 140 nm, respectively. In other words, the
metal/dielectric multilayer acts as the photoacoustic transducer
synthesizing the coherent LA phonon wave packet in the STO
substrate. The sharp static profile of the thermal strain inside
the multilayer [see Fig. 1(b)] remains unchanged with time
because the linear chain model neglects the effect of heat
diffusion. The heat diffusion in multilayers is a complicated
separate topic which lays out of the scope of this paper. In this
paper we focus on the coherent lattice dynamics in the STO
substrate which occur at a later timescale when the effect of
heat diffusion within the multilayer does not play a role. For
the detailed description of the wave packet strain profile and
its generation we refer to our earlier works.20

The calculated amplitude spectrum in Fig. 1(c) contains
several equidistant peaks. The most pronounced peak at q0 = 0
rad/nm is responsible for the overall bipolar shape of the wave
packet.17,20 The width of the peak is determined by the total
thickness of the multilayer (�q ≈ π/5λ). The peak around
q1 = 2π/λ ≈ 0.046 rad/nm corresponds to the characteristic
spatial period λ of the wave packet. The nonsinusoidal shape
of the wave packet gives rise to the higher harmonics at integer
multiples of q1.

Altogether, we find that using a periodic metal-dielectric
multilayer as photoacoustic transducer we can generate LA
phonon wave packets similar to the quasimonochromatic wave
packets produced by multiple-pulse excitation of a thin metal
film.14–16 In both cases the wave packets exhibit narrow
spectral bandwidth and higher harmonics of lower amplitude.

B. Ultrafast x-ray diffraction from sub-THz elastic waves

The x-ray diffraction from crystals which are subject to a
strong acoustic field is a well-established topic.27–29 However
most of the previous studies deal with strain fields generated
by surface acoustic wave (SAW) transducers. Such devices
normally generate acoustic waves with wavelengths longer
than either the x-ray extinction length or the x-ray coherence
length. The x-ray diffraction from a crystal lattice perturbed
by such waves results in modifications of the Bragg peak
shape within the Darwin width or in the appearance of diffuse
scattering contributions in the vicinity of the peak.30,31 The
description of the x-ray scattering from such waves usually
requires dynamical x-ray diffraction theory.

Here we consider quasimonochromatic coherent LA
phonons which in fact are elastic waves at hypersonic
frequencies. The corresponding wave vectors q are large
enough to allow for coherent Bragg-like scattering of x rays
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from the associated “moving gratings.” Due to the sufficiently
high q vectors of the quasimonochromatic phonons the x-ray
scattering contributes in the off-Bragg region in which the
x-ray scattering efficiency from the bulk of the crystal is small.
This allows us to probe the x rays exclusively scattered from the
wave packet with only minor perturbation by the bulk-scattered
x-ray wave field.

In this section we introduce the necessary theoretical
basis which allows a thorough interpretation of the UXRD
experiments. Since we intend to apply the following theory to
study the laser-induced structural dynamics in one dimension
we restrict ourselves to a one-dimensional formulation.

A plain elastic wave with wave vector q contributes to the
scattered x-ray intensity if the x-ray scattering vector Q is
given by

Q = G ± q, (1)

where G is a reciprocal lattice vector and Q = |k − ki | is the
x-ray scattering vector.16,32–34

From simulations of the scattered x-ray intensity using
dynamical theory of x-ray diffraction one finds that the x-ray
intensity scattered from the crystal perturbed by a bunch of
elastic waves can be well described by the equation

〈Ip(Q)〉t = Iup(Q) + αA(q)2, (2)

where Ip(Q) and Iup(Q) is the scattered x-ray intensity from
the perturbed and unperturbed crystal, respectively. The angle
brackets stand for time averaging. The function A(q) is the
spectral amplitude of the elastic wave with wave vector
magnitude q = |Q − G| and α is some constant. It is worth
showing here that formula (2) is equivalent to the expression
describing thermal diffuse scattering (TDS) from acoustic
phonons.35 To show this we need to relate the energy of a
classical plane elastic wave in the crystal with the phonon
population. The energy of plane elastic waves in the classical
linear theory of elasticity is proportional to the squared product
of the wave amplitude A and frequency ω

E(ω) ∝ A2ω2. (3)

In a crystal lattice this corresponds to the energy of the
corresponding vibrational normal mode which is associated
with a single harmonic oscillator. According to quantum
mechanics the energy of a harmonic oscillator with angular
frequency ω is

E(ω) = h̄ω
(
n + 1

2

)
, (4)

where n is the excitation level. That is, the energy of the
vibrational normal modes is quantized and n refers to the
number of phonons in the crystal having the angular frequency
ω. Therefore, the following relationship between the excited
classical amplitude spectrum of elastic waves and the phonon
population holds

A(qi)
2 ∝

(
n(ωi) + 1

2

)/
ωi ≈ n(ωi)

ωi

, (5)

in which index i identifies the normal mode. The combination
of Eqs. (2) and (5) yields

〈Ip(Q)〉t − Iup(Q) ∝ n(Q − G)

ω(Q − G)
, (6)

which is a one-dimensional equivalent of the relation for TDS
derived by Warren.35

We thus conclude that UXRD from a quasimonochromatic
strain pulse directly measures the squared spectral amplitudes
of the plane elastic waves constituting the strain pulse. As an
example we consider the reciprocal lattice vector G002 of STO
and rewrite Eqs. (2) and (6) into

A(q) ∝ √〈Ip(G002 + q)〉t − Iup(G002 + q) (7)

n(q) ∝ ω(q)(〈Ip(G002 + q)〉t − Iup(G002 + q)). (8)

In the standard θ -2θ geometry applied in our UXRD
experiments, the magnitude of the phonon wave vector q is

q = 4π

λX

|sin θ − sin θ0|, (9)

where λX is the x-ray wavelength, θ is the x-ray incidence angle
with respect to the sample surface [(001) crystallographic
plane], and θ0 is the Bragg angle.

To demonstrate that Eq. (7) is applicable to our case
we compare the calculated amplitude spectrum of the laser-
excited strain waves to the dynamical UXRD simulations
from the same acoustically perturbed sample.19 The calculated
spectrum for the laser fluence of 6 mJ/cm2 is plotted in Fig. 2
as a red solid line. The dynamical UXRD calculations are
performed for 200 time steps within the interval from 100 ps
to 300 ps after the excitation and then time averaged. The blue
symbols in Fig. 2 show the scaled time averaged square root of
the intensity differences [cf. (7)] obtained from the dynamical
UXRD calculations.

We see that the curves almost coincide although the fine
structure of the UXRD-related curve (blue symbols) slightly
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FIG. 2. (Color online) Comparison of the calculations of the
spectral strain amplitudes of phonons with the corresponding x-ray
intensity difference signal of perturbated-unperturbated structures.
The red solid line indicates the calculated phonon spectrum in the
sample in the q domain. The values in the vertical axis correspond to
the phonon spectral amplitudes calculated for the excitation fluence of
6 mJ/cm2. The blue bullets show the square root of the x-ray intensity
difference signal calculated for the perturbated and unperturbated
structures. The vertical scale factor for the UXRD signal is arbitrary.
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deviates from the actual spectrum (red solid line). This is due
to the fact that the scattered x-ray intensity from a propagating
strain wave packet actually oscillates in the time domain at
each fixed q vector with the frequency of the corresponding
phonon mode. These oscillations were successfully observed
in pioneering experiments with the advent of UXRD.32–34 The
classical explanation for the oscillations is the interference of
x rays scattered from a moving grating (elastic wave) and the
x rays scattered from the static component of the crystal lattice.
This is an x-ray analog of Brillouin oscillations in all-optical
experiments.36 In our case, as we can see, this interference is
not very strong. Therefore, the shape of the blue curve slightly
depends on the averaging time window. To eliminate these
artifacts, the averaging time window should be either much
longer than any phonon vibration period or we need to fit an
integer number of vibrations for each q. The averaging over
many vibrational periods is not possible in our case, because
the actual phonon lifetime is only several vibration periods as
we will see later.

To finish this section we briefly review the conditions at
which the approximation (7) should be valid:

(i) The interatomic displacement in the strain wave is much
less than the interatomic distance

|rm − rn| �m�=n |a(m − n)|, (10)

in which a is the interatomic distance, and m and n are the
index number of atoms. This is required by the perturbation
theory of x rays scattered from a dynamical lattice.35

(ii) The wave vector of a phonon is much smaller than any
reciprocal lattice vector:

q � G. (11)

This is necessary to avoid the signal overlap from the adjacent
Bragg reflections of the crystal.

(iii) The wavelength of a phonon mode is much smaller than
both the x-ray coherence and the x-ray extinction lengths:

q � 1

l
, (12)

in which l is either x-ray coherence or x-ray extinction lengths,
depending on which one is larger.

(iv) The x-ray intensity is time averaged over many
vibrational periods.

III. EXPERIMENTAL RESULTS

We performed UXRD experiments on the laser-excited
five-period SRO/STO multilayer with the structure param-
eters presented in Table I. In this section we present the
experimental results which evidence the presence of a prop-
agating quasimonochromatic LA phonon wave packet. We
discuss the dynamics of the first- and second-order transient
diffraction peaks and the corresponding dynamics of the strain
pulse.

In the experiment we acquire the x-ray photons scattered
from the sample 50 ns before each optical pulse and at a given
probe delay after each optical pulse. The corresponding scat-
tered x-ray intensities from the perturbated and unperturbated
sample are thus defined as Ip and Iup, respectively. The time
resolution of the experiments was 100 ps due to the limited
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FIG. 3. (Color online) (a) The solid dots show the UXRD
difference signal with an arbitrary vertical scale factor. Red is
the calculated spectrum of the synthesized wave packet. (b) The
integrated UXRD difference signal of the first two order phonon peaks
as a function of time. The solid lines indicate the exponential fit.

x-ray pulse length, therefore the measured x-ray intensity is
time averaged over multiple phonon vibrations.

Figure 3(a) shows the measured x-ray intensity difference
signal Ip − Iup (blue symbols) in the vicinity of the STO
(002) Bragg peak (not visible) at 100 ps after the laser-
pulse excitation. The experimental incidence angle θ has
been converted into the phonon wave vector using Eq. (9).
The vertical scale for the measured data is arbitrary. The
UXRD data exhibit the first- and second-order spectral
components of the synthesized quasimonochromatic phonon
wave packet inside the STO substrate at wave vectors q1 ≈
0.045 rad/nm and q2 ≈ 0.09 rad/nm, respectively. Given
the longitudinal sound velocity in STO (cf. Table I), the
linear phonon dispersion relation of acoustic phonons implies
the corresponding hypersonic frequencies ν1 ≈ 55 GHz and
ν2 ≈ 110 GHz. The nonvanishing contributions between the
phonon peaks are due to the diffraction from the laser-heated
multilayer. However, since the lattice constants throughout
the multilayer are larger than that of the substrate (cf.
Table I), the x-ray scattering from the multilayer is rather
weak in this angular range. The red solid line in Fig. 3(a)
shows the squared amplitude spectrum of the propagating
sound wave as obtained from the linear-chain model. The
shown spectrum includes the convolution with a Gaussian
resolution function having a full width at half maximum
(FWHM) of 15 × 10−3 nm−1 to fit the angular resolution of
the UXRD experiment. The main contribution to the XRD
peak broadening is due to the sample bending according to the
stationary laser heat load.13 The UXRD signal shows very good
agreement with the convoluted spectrum in terms of position,
relative intensity and width of the first and second-order
phonon peaks. This verifies the relation between the measured
x-ray intensity and the amplitude spectrum of the coherent
strain wave derived in Eq. (7).

In the following we discuss the intensity changes of the
measured phonon peaks with time. During the first 100 ps after
laser excitation the intensity of the phonon peaks builds up16

due to the unfolding of the initially excited superlattice phonon
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TABLE II. Comparison of the experimentally observed UXRD
intensity decay time τexp, the apparent decay time due to x-ray
absorption τabs, and the derived phonon lifetime τph for the first- and
second-order phonon peaks. The corresponding standard deviations
σexp/abs are also shown.

q, rad/nm τabs, ps τexp, ps τph, ns

0.045 450 373 ± 12 2.2 ± 0.5
0.09 450 235 ± 30 0.49 ± 0.13

mode into the substrate.11,20 Subsequently, the integrated
intensity of the phonon peaks decays exponentially as is
evidenced by the blue symbols in Fig. 3(b). The red solid
lines show fits according to the function

f (t) = �I0e
− t

τexp , (13)

where the two fitting parameters �I0 and τexp are the amplitude
and decay time of the measured signal. The data points
before 200 ps after the excitation were excluded from the fit
since the wave packet may not yet be fully propagated from
the multilayer to the substrate. The extracted decay times τexp

and standard deviations σexp are shown in Table II.
There are two major reasons for the observed decrease

of the UXRD peak intensities. First, the absorption of the
x rays by the crystal reduces the sensitivity of the x rays to
the wave packet as it propagates deeper into the substrate.
Second, the dissipation of energy from the elastic wave due
to the finite phonon lifetimes leads to a decay of the strain
amplitude.

Considering the first reason, the decay time of the UXRD
signal exclusively due to x-ray absorption is related to the x-ray
absorption coefficient μ = 0.056 μm−1 by

1

τabs
= 2μcs

sin θ
= 8πμcs

QλX

, (14)

where cs = 7.9 nm/ps is the longitudinal sound speed in the
substrate.25 The relative variation of the x-ray scattering vector
Q during the presented UXRD experiments is 10−3, which
implies that τabs is virtually independent of the observed
phonon wave vectors q. In the measured off-Bragg region
the x-ray extinction due to dynamical x-ray diffraction is
negligible, therefore only the angular independent x-ray ab-
sorption is relevant. Under the chosen experimental conditions
we estimate a signal decay time of τabs ≈ 466 ps due to the
x-ray absorption. Nevertheless, since this value is critical for
the correct interpretation of the experimental data, we have
performed dynamical XRD calculations based on results of
the linear-chain lattice dynamics in harmonic approximation
which excludes the effect of phonon damping.16,20 The
simulations yield the q-independent value of 450 ± 5 ps for
the decay constant due to x-ray absorption which we will use
in the following.

Regarding the second reason for the decay of the UXRD
phonon signals, we assume an exponential law for the decrease
of the phonon population n(q,t) and define the associated
decay time τph. According to Eq. (7) the corresponding
intensity of the scattered x rays possesses the same decay
constant. Therefore, the UXRD signal decay mechanisms
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FIG. 4. (Color online) (a) Transient first- and second-order
phonon diffraction peaks at various probe delays. The intensity decay
due to sound attenuation is accompanied by a continuous shift to
larger wave vectors as is indicated by the arrows. (b) First- and
second-order peak position determined by Gaussian fits as a function
of time delay. The solid lines show the linear fits to the experimental
points.

introduce the relationship between the phonon lifetimes τph,
x-ray absorption time constant τabs, and the experimentally
measured time constant τexp:

1

τexp
= 1

τabs
+ 1

τph
. (15)

The phonon lifetimes τph extracted from the UXRD exper-
iments according to Eq. (15) are given in Table II for the wave
vector magnitudes corresponding to the first- and second-order
phonon peaks. The standard deviations σph for the phonon
lifetimes are calculated from the standard deviations σexp of the
experimental time constants according to the error propagation
relation.

The important observation is the fact that the determined
lifetimes differ by a factor of ∼4 whereas the related phonon
wave vector differ by a factor of 2. In addition to the signal
decay we see a gradual drift of the phonon peak position to
higher values of q as the wave packet propagates. This is seen
from Fig. 4(a), in which the phonon spectrum is shown for
different time delays. In the following section we discuss the
physical interpretation of the described observations.

IV. DISCUSSION

The central observation from the transient phonon-induced
diffraction peaks presented in the previous section is the
apparent quadratic decrease of the phonon lifetime with
phonon wave vector q. This observation is in agreement with
the 1/ω2 law predicted by the Akhiezer’s sound attenuation
mechanism.37

There are basically two theories which explain the at-
tenuation of hypersonic waves in dielectric crystals due to
incoherent anharmonic phonon-phonon scattering. These are

184301-5

119



Direct time-domain sampling of subterahertz coherent acoustic phonon spectra in SrTiO3 using

ultrafast x-ray diffraction

ROMAN SHAYDUK et al. PHYSICAL REVIEW B 87, 184301 (2013)

the Landau-Rumer theory38 and the Akhiezer theory37 which
have different application limits:

ω � 1

τth
Akhiezer (16)

ω � 1

τth
Landau-Rumer, (17)

where ω is the angular frequency of the hypersonic wave
and τth is the mean thermal phonon relaxation time. That
is, in both cases the elastic energy of hypersound waves
decreases with time due to the interaction with incoherent
thermal phonons. The mean thermal phonon relaxation time
τth can be estimated from the thermal conductivity k, heat
capacity CV , average sound speed vs , and mass density ρ by the
relation26

k = 1
3ρCV v2

s τth. (18)

For STO at room temperature Eq. (18) yields τth ≈ 0.26 ps.
The experiments are performed at room temperature. More
precisely, the sample persisted at around 400 K during
the actual measurements due to the thermal load from the
laser.13 Condition (16) is fulfilled for this temperature range.
That is, for the presented experiments Akhiezer’s theory of
relaxation damping could be applied, hereby explaining the
observed ratio of the phonon lifetimes for the first- and
second-order phonon diffraction peaks. However the UXRD
data exhibit additional features which cannot be explained
within Akhiezer’s sound attenuation model. We extracted the
transient peak positions by Gaussian fits to the data shown in
Fig. 4(a), and the results are plotted as symbols in Fig. 4(b).
The solid lines indicate linear fits to the phonon peak positions
as a function of time. Clearly, a gradual shift of the first- and
second-order spectral components to higher q values can be
observed as the phonon wave packet propagates deeper into
the STO substrate.

A recent study revealed the nonlinear propagation of large-
amplitude sound wave packets in STO at room temperature.22

In addition to the Akhiezer-like attenuation of the coherent
LA phonons the authors observed transient changes of the
acoustic spectrum due to coherent anharmonic phonon-phonon
scattering within the wave packet. The lattice anharmonicity
gave rise to a strain-dependent longitudinal sound velocity. In
particular, the sound velocity of compressive (tensile) parts
of the wave packet was found to increase (decrease) with the
strain amplitude. This effect led to an anomalous dispersion
of the wave packet and the corresponding modification of the
phonon spectrum.

Accordingly, we expect the first compressive half of the
wave packet shown in Fig. 1(b) to propagate faster than the
second tensile half. Moreover, the individual pulses inside
the respective parts also exhibit different velocities due to
the exponential amplitude distribution determined by the
optical penetration of the pump light in SRO. For both the
compressive and tensile parts of the strain pulse the spatial
separation λ of the individual pulses of the wave packet
is reduced as it propagates, i.e., the wavelength of both
subpackets is decreased. This explains the observed shift of
the phonon peaks to larger q values.

The presented UXRD data thus evidence the influence of
two different effects on the propagation of LA phonon wave

packets generated by periodic multilayers. First, the inevitable
attenuation of the wave packets by Akhiezer’s relaxation
damping and, second, the change of spatial and spectral shape
of the wave packet by nonlinear sound propagation. Both
effects influence the observed phonon lifetime, however, for
a quantitative determination of the respective contributions
additional measurements have to be performed. The results
of our earlier all-optical experiments having much stronger
excitation were successfully explained solely in the framework
of nonlinear acoustics.22 We believe that at the presented
experimental conditions the influences of both damping mech-
anisms, the nonlinear acoustic propagation and the Akhiezer’s
relaxation, are comparable.

UXRD has the advantage of measuring the lattice dynamics
directly and quantitatively, i.e., the absolute amplitude of the
lattice motion is determined. The wave vector range over
which acoustic phonons in bulk material are accessible is
very large. In particular resolving the second order phonon
peak as presented in this paper or higher orders is possible.
The extension of the UXRD detection of acoustic phonons
in amorphous materials is challenging the available x-ray
fluence, since the Bragg spots are dispersed in diffraction
rings.

On the other hand all-optical picosecond acoustics,3,4,7,8,17

in principle, do not require crystalline materials and for trans-
parent media, the propagation of strain pulses can be monitored
over longer distances. With current technology femtosecond
time resolution is standard in all-optical experiments, while
it is still a challenge in x-ray technology, which was essen-
tially resolved by free-electron lasers. High time-resolution
permits the determination of the wave-vector-dependent sound
velocity in addition to the damping time. We believe that
the UXRD-based methods and the all-optical methods do not
compete with each other but complete each other, together
providing a more complete picture of the complex coherent
phonon dynamics for a broader range of frequencies and wave
vectors and for a broader class of materials and experimental
conditions.

V. CONCLUSIONS

This report presents ultrafast x-ray diffraction (UXRD)
studies on laser-excited periodic SrRuO3/SrTiO3 multilayers
which are epitaxially grown on a SrTiO3 substrate. The
ultrafast heating of the metallic SrRuO3 layers by ultrashort
laser pulses generates coherent longitudinal acoustic phonons
which eventually propagate into the substrate as a quasi-
monochromatic coherent LA phonon wave packet at hyper-
sonic frequencies. We discussed the properties of such wave
packets in detail and derived equations which show that UXRD
is a powerful tool to measure the spectral phonon population
and its dynamics. The presented UXRD data evidence the
formation of a quasimonochromatic coherent phonon wave
packet. We extracted the phonon lifetimes of the first- and
second-order peaks of the phonon spectrum. The observed
quadratic decrease of the phonon lifetime with increasing
phonon wave vector q is in accordance with Akhiezer’s mecha-
nism of relaxation damping. Shifts of the peaks corresponding
to the excited phonons to larger q values are interpreted as a
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modification of the spatial shape profile due to the nonlinear
wave propagation leading to a strain dependent sound velocity.
This considerably modifies the observed phonon lifetimes. In
essence, UXRD provides a detailed and direct view on the com-
plex nonlinear evolution of phonon-wave packets, including
incoherent damping of the phonon amplitude by coupling to

other modes and specific coherent changes of the wave vector
spectrum.
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a b s t r a c t

We use broadband time domain Brillouin scattering to observe coherently generated phonon modes in
bulk and nanolayered samples. We transform the measured transients into a frequency-wavevector dia-
gram and compare the resulting dispersion relations to calculations. The detected oscillation amplitude
depends on the occupation of phonon modes induced by the pump pulse. For nanolayered samples with
an appropriately large period, the whole wavevector range of the Brillouin zone becomes observable by
broadband optical light scattering. The backfolded modes vanish, when the excitation has passed the
nanolayers and propagates through the substrate underneath.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The advent of mode locked laser systems has lead to the
exciting field of picosecond ultrasonics [1]. Coherently generated
phonons can be studied using this powerful technique [1–4]. In
contrast to frequency domain techniques, the spectral resolution
of time domain scattering is only limited by the observed temporal
range. The maximum frequency that can be resolved is limited by
the temporal width of the excitation and probing pulses. The
observable range of phonon wavevectors is primarily determined
by the probe light spectrum [5]. The fraction of the Brillouin zone
that can be covered by this spectrum, however, depends on the
sample structure. In a superlattice, backfolding of phonon branches
at the new Brillouin zone edge occurs due to the enlarged artificial
unit cell and the thus narrower Brillouin zone. This backfolding of
phonons has first been studied by Colvard et al. [6] using Raman
scattering techniques and later also using time resolved methods
[2–4,7]. More recent studies have concentrated on shaping the
excitation profile [3,8–12], designing suitable superlattices for
detection [9,13,14] and building phonon [15] and photon [8,16]
cavities to enhance the generation and detection mechanisms
[17]. The theoretical framework was given by Thomsen et al. [1]
and extended to multilayer samples by Matsuda and Wright [18].

In this paper we report on measurements in which a metal film
and metal-dielectric superlattices are used for the excitation of
phonon dynamics in the samples. By means of broadband optical
light scattering we detect a broad spectrum of the excited phonon
modes simultaneously. We show, how the detected phonons
determine the oscillatory features in transient optical reflectivity
measurements: near zero wavevector modes lead to oscillations
that are visible in all probe wavelength equally while the detection
of larger wavevector modes lead to an oscillation frequency depen-
dent on probe wavelength. In particular we discuss how the spatial
period of a superlattice determines which fraction of the Brillouin
zone becomes observable by optical light scattering. We show
measurements, in which the whole wavevector range of the super-
lattice Brillouin zone is observed.

2. Experiment

In phonon-light scattering experiments, the energy of phonons
is much smaller than the energy of the probing photons leading to
the approximation, that the absolute of the incident photon wave-
vector k is approximately equal to the absolute of the scattered
photon wavevector k0 : k � k0. Let us consider energy and momen-
tum conservation, as illustrated in Fig. 1(a). In the scattering event
the momentum component of the photons perpendicular to the
momentum of the phonon is unaltered. The parallel component
k cos h is changed by addition (or subtraction) of the energy and
momentum of a phonon. The energy and the parallel component
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of the resulting photon must again fulfill the dispersion relation of
light. Therefore, for a given photon there are two different solu-
tions for the phonon involved (i. e. two intersection points in the
figure) and thus two possible scattering regimes [19]. In the first
regime the momentum of the scattering photon parallel to the
travelling phonon is nearly unaltered (i.e. it is scattered in forward
direction) and the transferred phonon momentum q is approxi-
mately zero:

q � 0 ðforward scatteringÞ ð1Þ

The signature of this scattering regime is, that it occurs with
approximately the same characteristic frequency for all photons
independent of wavelength. It is usually detected in transmission
geometry. We observe this type of scattering also in reflection
geometry due to the reflection of the photons at different inter-
faces. In the second regime the momentum of the scattering pho-
ton parallel to the travelling phonon is reversed (i.e. it is
scattered in backward direction) and the wavevector of the scatter-
ing phonon is thus given by:

q � 2k cos h ðbackscatteringÞ ð2Þ

with internal angle of incidence with respect to the surface normal
h. Fig. 1(b) illustrates the vectorial nature of the momentum conser-
vation for both scattering mechanisms: the photon momentum par-
allel to the phonon momentum is either reversed or nearly
unchanged.

In time domain Brillouin scattering, the propagation of phonons
that are coherently excited by a short pump pulse (excitation mech-
anism see below) are monitored by a delayed probe pulse. Instead
of observing a spectral shift of the probe light as in ordinary (fre-
quency domain) Brillouin scattering, we observe the frequency of
the phonon in the time domain. Two effects modulate the light
reflected from the sample by the frequency of the scattering pho-
nons: one is, that the phonons present in the sample periodically

modulate the optical properties of the different layers leading to a
periodic modulation of the reflection from each interface (this is
presumably the dominant effect in the multilayers, where the opti-
cal properties of the individual layers differ) and the other one is
that the light field that undergoes Brillouin scattering from a pho-
non interferes with a static reference of the probe light reflected
from the sample surface and interfaces. In this latter case the rela-
tive phase of the interfering signals varies with the phase of the
scattering phonon or equivalently, the distance the lattice distor-
tion has propagated into the sample and thus with the time delay
between the pump and probe pulses, leading to constructive or
destructive interference (this is the effect in the substrate).

The modulation frequency is simply given by mðq � 0Þ for for-
ward scattering and mðq ¼ 2k cos hÞ for backscattering. For a linear
phonon dispersion 2pm ¼ v � q, with sound velocity v, follows for
backscattering:

m ¼ v � 2k cos h=ð2pÞ ¼ v � 2nðkÞ cos h=k ð3Þ

with vacuum probe wavelength k and refractive index nðkÞ.
In this paper we show measurements on phonon dynamics in

three different samples (compare Table 1): (a) a 37 nm (La0.7Sr0.3)
MnO3 (LSMO) transducer film on a SrTiO3 (STO) substrate, (b) an
LSMO/(Ba0.7Sr0.3)TiO3 (BST) superlattice with 15 double layers of
21 nm period and (c) a SrRuO3 (SRO)/STO superlattice with 5 double
layers of 140 nm period. The samples were prepared using pulsed
laser deposition [20]. Sketches of the samples are shown in the upper
insets of Fig. 2.

We use optical pump pulses with 800 nm wavelength and 120 fs
pulse duration derived from an amplified Ti–Sa laser system at a
repetition rate of 5 kHz to excite the absorbing layers (LSMO and
SRO) with a fluence of a few tens of mJ/cm2. The rapid electron pho-
non coupling and subsequent thermal expansion of the metal layers
launches strain pulses into the material. In the case of a single metal
film (sample (a)) on a transparent substrate, a bipolar strain pulse
[1] is generated and propagates into the substrate (compare
Fig. 2(a), lower inset, finite laser penetration depth neglected).
Exciting a superlattice (samples (b) and (c)), a pulse train is gener-
ated. In this case left and right propagating strain fronts start from
each metal-dielectric interface and lead to an oscillatory movement
of the layers (standing wave). These strain pulses eventually prop-
agate into the substrate where they build a train of strain pulses
[12] (compare Fig. 2(c), lower inset, finite laser penetration depth
neglected). The propagation of the coherently generated phonon
pulses is monitored by a delayed probe pulse, which scatters from
these phonons. In order to simultaneously probe several phonon
wavevectors we generate a white light continuum in a sapphire disc
which is detected in reflection geometry using a fibre-optic
spectrometer for broadband detection [11,21].

In Fig. 2 we show colour plots of the wavelength dependent
transient optical reflectivity for the three different samples. An
instantaneous electronic response and slow thermalization effects
have been subtracted. Sample (a) shows oscillations described by
Eq. (3). In this sample, the single LSMO layer expands and launches
a bipolar strain pulse (as depicted in the lower inset of Fig. 2(a))
into the STO substrate underneath. Because of good acoustic
matching between layer and substrate, the strain wave has

(a)

(b)

Fig. 1. (a) Illustration of energy and momentum conservation. A photon with given
energy and momentum (dashed dispersion) can combine with a phonon (dotted
dispersion, discussed in the next section) to form a new photon with approximately
the same energy and momentum (forward scattering) or reversed momentum
(backscattering). The energies are not drawn to scale, the light dispersion is much
steeper in reality. (b) Illustration of momentum conservation and scattering
geometry. In forward scattering the component of the incoming light parallel to
the propagating phonon is nearly unaltered, in backscattering the component is
reversed. The momenta are not drawn to scale. The changes in k and h are not
detectable in our experiment.

Table 1
Details of selected samples. Acronyms: interlayer (IL), amount of double layers (# DL),
thin film (TF), superlattice (SL).

Nr. Type Metal Dielectric IL # DL Substrate

(a) TF LSMO, 37 nm STO (100)
(b) SL LSMO, 7.3 nm BST, 13.7 nm 15 STO (100)
(c) SL SRO, 13 nm STO, 127 nm 5 STO (100)
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completely entered the substrate when the strain front starting
from the film-substrate interface has travelled once back and forth
in the film. Thus after about t ¼ 2dTF=vLSMO � 12 ps, where dTF is
the thickness of the film and vLSMO is the sound velocity in the film
(compare Table 2), there are no further coherent dynamics in the
metal film. We have therefore cut off the first 12 ps from our data
and only display the dynamics in the bulk STO underneath. For
sample (b) in Fig. 2(b) we also observe the probe-wavelength
dependent oscillations according to Eq. (3). Here, we focus on the
first 100 ps of the dynamics, in which the excited pulse train is still
present in the superlattice. In this comparatively short time win-
dow (compare: in Fig. 2(a), 600 ps are displayed), these appear as
slow oscillations (10–20 ps, dependent on wavelength). In addi-
tion, we observe the k-independent (forward scattering) signature

of the standing superlattice oscillation with period
s ¼ dSL=vb � 3 ps, with the appropriate period dSL ¼ 21 nm and
average sound velocity in the superlattice vb � 5:5 nm/ps. For
sample (c) forward and backscattering signals have similar period.
The sample is chosen such, that the energy of the standing super-
lattice phonon approximately coincides with the energy of the
longitudinal acoustic phonon in the centre of the frequency win-
dow, where Brillouin scattering is observable for visible light. Thus,
the k-independent oscillation and the oscillation dependent on k
are superimposed, leading to the complicated picture in Fig. 2(c).

3. Theory

The dispersion relation of a superlattice can be calculated using
the formula [22]

cosðqdSLÞ ¼ cos 2pm
d1

v1
þ d2

v2

� �� �
� 1

2
jq1v1 � q2v2j
ðq1v1q2v2Þ1=2

 !2

� sin
2pmd1

v1

� �
sin

2pmd2

v2

� �
; ð4Þ

where d1 and d2 are the thicknesses of the individual layers with
superlattice period dSL ¼ d1 þ d2; v1 and v2 are the sound velocities
and q1 and q2 the densities of materials 1 and 2. Since the cosine
is a periodic function, its value does not change when multiples of
2p are added to the argument: cosðqdSLÞ ¼ cosðqdSL � n2pÞ ¼
cosððq� nGÞdSLÞ, with positive integer n. Furthermore the function
is symmetric with respect to q ¼ 0. In a simple picture, the size of
the Brillouin zone extending originally to p=a, determined by the lat-
tice constant a is reduced to p=dSL when the larger period dSL is intro-
duced. Thus, points in the Brillouin zone beyond q ¼ p=dSL can be
displaced by multiples of the reciprocal lattice vector G ¼ 2p=dSL

in order to fit into the so called mini Brillouin zone. Graphically this
means that the acoustic phonon branch is backfolded into the mini
zone. Additionally, a gap in the dispersion curve opens at the edge
of the mini zone, scaling with the acoustic mismatch of the materials
[5]. When the acoustic mismatch is small, Eq. (4) simplifies to read

cosðqdSLÞ ¼ cos 2pm
d1

v1
þ d2

v2

� �� �
; ð5Þ

where the energy gap can be neglected.
The dispersion curves of our samples calculated according to the

parameters1 in Tables 1 and 2, are shown in Fig. 3(a)-(c). In (a) the
linear acoustic dispersion in bulk STO is displayed. The q-range acces-
sible in our experiment via backscattering is indicated. In sample (b)
the stacking of LSMO and BST layers with period dSL leads to a reduc-
tion of the Brillouin zone and thus to the backfolding of the acoustic
phonon branch. The frequency of the q � 0 superlattice phonon
should be visible in all probe wavelengths via forward scattering
and is therefore indicated as thin dashed line2 although the q-value

(a)

(b)

(c)

Fig. 2. Broadband transient reflectivity data at room temperature for different
samples (colour code: DR=R0 [a.u.], slowly varying background subtracted): (a) thin
LSMO film on bulk STO, (b) LSMO-BST superlattice with short period, (c) SRO–STO
superlattice with long period, as depicted in the upper inset. In all graphs, the
wavelength dependent oscillation period of the travelling phonon (seen via phonon
backscattering) is clearly visible. Note that the time scales are different in each
panel. In (b) and (c) the standing SL phonon showing a wavelength-independent
oscillation frequency (via forward scattering) is also discernible. The lower insets in
(a) and (c) show the excitation profiles. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Sound velocites employed in the calculations in nm/ps. vb and vc denote the average
sound velocities in the superlattices [5] of samples (b) and (c).

vSTO; layer vLSMO vBST vSRO vSTO; substrate vb vc

7.8 6.5 5.1 6.3 8 5.5 7.6

1 The parameters were checked by static X-ray diffraction.
2 The maximum detected phonon frequency in our experiments here is

m � 0:25 THz in forward scattering (compare Fig. 3(b), higher orders are too weakly
excited). If the phonon dispersion is assumed to be flat at the intersection (compare
Fig. 1(a)), the change in photon wavevector (and therefore q of the detected phonon)
amounts to 0.006 lm�1 and is by far too small to be displayed in the graph. This
underlines that q � 0 is a reasonable approximation for forward scattering in these
experiments.
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on the axis only holds for phonons observed in backscattering.
Fig. 3(c) shows the dispersion curve of the even larger superlattice
(140 nm period) with yet smaller Brillouin zone. In this case, the q-
range accessible to our probe technique via backscattering lies out-
side of the first Brillouin zone and we show an extended zone scheme,
where multiples of the reciprocal lattice vector GSL are added to each
point in the mini zone. Again, the q � 0 phonon observable for all
probe wavelengths is indicated as thin dashed line. In this superlat-
tice, nearly the whole q-range of the original (reduced) Brillouin zone
lies in the visible spectrum if a reciprocal lattice vector is added to

each point. This is possible if the detectable phonon bandwidth
Dq ¼ qmin � qmax with qmin and qmax the minimum and maximum
detectable phonon wavevector in backscattering, is at least the max-
imum wavevector in the Brillouin zone p=dSL. If one octave is covered
in probe bandwidth as approximately in our case: qmax � 2qmin, it fol-
lows that Dq � qmin. Thus, the whole q-range of the Brillouin zone can
in principle be covered with one octave, if qmin > p=dSL.

The occupation of each mode (i.e. the number of phonons in
each mode) can be calculated analytically using a linear chain
model [23,24]. We again chose the layer parameters according to
Tables 1 and 2 and built a substrate composed of 5000 unit cells
underneath. We assume an instantaneous heating and subsequent
rapid expansion of the absorbing metal layers [24,25]. Since no
anharmonic effects are included in the calculations the obtained
results scale with the excitation fluence. The results for the sam-
ples are shown in Fig. 3(d)–(f). In (d), a broad spectrum of modes
is excited around q ¼ 2p=dTF, with film thickness dTF [11]. In the
superlattices ((e) and (f)), modes around q ¼ GSL are dominantly
excited, which are backfolded to q ¼ 0.

4. Discussion

Now we compare the calculations with our measurements.
Fig. 4(a)–(c) shows temporal Fourier transforms of the original data
in Fig. 2 as colour maps. The k-axis has been converted to display the
phonon wavevector q ¼ 4pn cosðhÞ=k for backscattering and the cal-
culations are overlaid. Fig. 4(a) shows the linear acoustic dispersion
in bulk STO. In Fig. 4(b) we observe the linear dispersion of the
acoustic branch, traces of the first and second backfolded branch
and the k-independent signature of the q � 0 superlattice oscillation
via forward scattering. Fig. 3(e) reveals why the wavelength inde-
pendent oscillations dominate the signal: in this sample, the phonon
modes that can be observed via backscattering are only weakly
excited. Fig. 4(c) shows the diamond shape dispersion curve accord-
ing to the extended zone scheme (compare Fig. 3(c)). Here, the for-
ward scattering signal is nearly invisible. In the vicinity of the
preferentially excited modes at q ¼ nGSL many modes are populated
that can be observed by the white light probe in backscattering and
dominate the signal. When the phonon wavepacket has passed the
superlattice (after t � 2dSL=vc � 180 ps) and travels into the sub-
strate, the backfolded branches of the phonon dispersion unfold
[12,26] and the usual acoustic dispersion in bulk STO (with slightly
larger slope due to the larger sound velocity of vSTO ¼ 8 nm/ps com-
pared to vc ¼ 7:6 nm/ps that can be calculated for this superlattice)
is retrieved, as shown in Fig. 5 for sample (c). The amplitude is now
modulated by the wavevector selection rule q ¼ nGSL in agreement
with the simulations (Fig. 3(f)). The dispersion is identical to
Fig. 4(a). The remaining discrepancies between theory and experi-
ment, e.g. the intensity just below and above the first backfolded
zone centre mode for sample (c), might be due to sample inhomoge-
neities particularly at the sample surface or anharmonicity effects
that lead to changes in the spectrum of excited modes [11]. Addi-
tionally, the relative intensities of the frequencies in the Fourier
transforms depend on the time window chosen for the transform
and the high pass filtering that was performed in order to extract
the oscillations. Furthermore, the intensity detected for each q-vec-
tor also depends on the dielectric function of the samples, how this
changes with strain, and thus on the sample structure.

5. Summary

We have performed time resolved Brillouin scattering experi-
ments on different nanolayered samples. We explained the tempo-
ral profiles and assigned their multiple features to Brillouin
forward and backscattering processes. We extracted the dispersion

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. (a)–(c) Calculated dispersion relations for the three samples according to Eq.
(4). (a) Sample (a), unlayered, simple acoustic dispersion (black thick dashed line).
(b) Sample (b), small period, the acoustic dispersion (black thick dashed line) is
backfolded at the Brillouin zone edge p=dSL ¼ 140 lm�1 (not shown), yielding the
superlattice dispersion (black thin dashed line) with additional branches. The
frequency of the q � 0 superlattice mode is indicated as thin dotted horizontal line
(see main text). (c) Sample (c), the acoustic dispersion (black thick dashed line) is
backfolded at the Brillouin zone edge p=dSL ¼ 23 lm�1, yielding the SL-dispersion
(black thin dashed line). The first zone scheme can be extended by adding a
reciprocal lattice vector GSL ¼ 2p=dSL yielding the dispersion relation in the
Brillouin zone (blue dash-dotted line). q � 0 superlattice mode again indicated as
thin dotted horizontal line. The optically observable q-range in backscattering is
highlighted in rainbow colours in each plot. (d)–(f) Corresponding occupation of the
excited modes calculated in linear chain model. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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relation of the observed phonons by Fourier transforming the tem-
poral traces and compared these with theoretical calculations. In
particular, we presented measurements on a sample, in which
nearly the complete phonon wavevector range of the Brillouin
zone is accessible to optical light scattering.
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Fig. 4. Fourier transform of data in Fig. 2 for the three different samples. k-axis has
been converted to phonon wavevector for backscattering, calculations are overlaid.
Colour code: Fourier amplitude [a.u.]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Fourier transform of the first 1 ns transient reflectivity data from sample (c),
where the first 150 ps have been cut out (temporal trace not shown), calculated
dispersion overlaid. Colour code: Fourier amplitude [a.u.]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Wavevector-selective impulsive excitation of phonon-
polaritons by a spectrally broad femtosecond transient grating
produces wavepackets propagating in opposite directions. The
photons in spectrally narrow probe pulses are scattered from
these elementary excitations in lithium niobate (LiNbO3). Both
elastically and inelastically scattered photons are simultane-
ously detected in a spectrometer. The Stokes- and anti-Stokes

shifted probe pulses uniquely determine the propagation direc-
tion of the detected polariton wavepacket components and
correspond to creation or annihilation of phonon-polaritons.
Our experiments with spectrally broad pump and spectrally
narrow probe pulses allows dissecting the four-wave-mixing
process into two sequential stimulated Raman scattering events.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction In ionic crystals, the coupling of trans-
verse optical phonon modes and their electromagnetic dipole
field results in a quasiparticle excitation called phonon polari-
ton (PP) [1, 2]. First frequency domain observations of PP
were made with forward Raman scattering in GaP and
stimulated Stokes scattering in LiNbO3 crystals [3, 4]. Fem-
tosecond laser pulses permitted impulsive excitation of PPs
and vibrational modes [5, 6].

For impulsive generation of PP the pulse duration of the
excitation laser has to be shorter than the polariton oscillation
period. Consequently the spectral width Δλ of the excitation
laser pulses with carrier wavelengthλ is large enough to cover
the angular frequency ωpp of the PP: Δλ/λ2 > ωpp/2πc. For
low frequency PP the quasi-particle is essentially light like
and propagates at the velocity c/nTHz of far infrared light
with the appropriate refractive index nTHz. The generation
mechanism is described as the nonlinear optical process of
difference frequency generation (DFG). For high frequency
PP the quasiparticle is essentially phonon like, i.e., it cor-
responds to a Raman- and infrared active optical lattice
vibration. Near the transverse phonon resonance, the oscilla-
tion of the ionic lattice gains importance in the contribution to
the nonlinear susceptibility [7–9]. In this case the excitation

process is described in terms of impulsive stimulated Raman
scattering (ISRS) [10]. In both cases energy and momen-
tum conservation rules apply for three participating particles
[11]. The dispersion relation (introductory review [12]) sets
the group velocity of the quasiparticle, which identifies it as
light- or phonon-like. In the intermediate region the PP is a
quasiparticle associated with a light field as well as strong
optical lattice vibrations which propagate as a coupled entity
through the crystal at light-like speeds [13]. The PP field can
also be described as far-infrared Cherenkov radiation [7, 14].
Several research groups focused on the coherent excitation
of PP wave packets [13–17]. Excitation by a single laser
pulse supports PP generation with wavevectors limited not
only by the laser pulse bandwidth Δλ but also by the con-
vergence angle of the focused light. A wavevector selective
excitation of PP is achieved by two noncollinear laser pulses
which write a transient polarization grating into the sam-
ple. The complex polariton dispersion including the damping
rate was measured in the time domain [18]. The most com-
mon setup uses a boxcar geometry in which a probe laser
pulse is diffracted from the transient PP grating, where the
diffracted intensity depends on the time delay τ between the
two pump pulses and the probe pulse [5]. The Nelson group

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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explored coherent control of the excited PPs in time and
space by advanced laser shaping techniques [19]. The prop-
agation of PP can be visualized by ultrafast time resolved
phase-contrast microscopy (Schlieren-Imaging) [20], where
the movies show the wavelike behavior of PP such as interfer-
ence, focusing, diffraction, etc. [12, 21]. Moreover, PP can be
used for efficient generation of tunable narrow-band terahertz
light pulses [22].

Generally the entire process of polariton generation and
probing in a boxcar geometry is described as a single coher-
ent process of four-wave mixing (4WM). The process can
essentially be viewed as a transient grating composed of PPs,
which are impulsively generated by the interference of two
pump pulses at τ = 0 and the detection by impulsive stimu-
lated Raman scattering at later time τ, where the stimulation
is given by the light field associated with the PP. Despite
the general acceptance of this interpretation, there only exist
experiments where all pump and probe pulses are either spec-
trally broad and temporally short [17, 23] or temporally long
and spectrally narrow [4, 24]. In the former case the dynamics
can be resolved with high time resolution, but the expected
frequency shifts by the inelastic (Raman) light scattering with
creation or annihilation of PPs remains unresolved due to
the large bandwidth Δλ of the probe pulses. The spectrally
narrow pulses used to confirm the spectral shifts [4, 24] but
see the rapid propagation and decay of the PP indirectly as
contributions to the linewidth.

In this paper, we use ultrashort light pulses to impul-
sively excite PP with a wavevector selected by the angle Θ

between the two pump pulses. The excitation is probed with a
narrow band probe pulse which can resolve the Raman shifts
on the one hand, but with a pulse duration short enough to
follow the propagation and damping of the PP on the other
hand. This approach helps clarifying that the four wave mix-
ing experiment consists in fact of an inelastic scattering of
pump photons which impulsively excite phonon-polaritons
and a stimulated scattering of probe photons from this ele-
mentary excitation, which leads to annihilation or creation of
PP. Left- and right propagating PP are uniquely identified by
the Raman probe event, since they undergo only Stokes or
anti-Stokes scattering. The frequencies ωpp/2π and wavevec-
tors qpp of the right and left propagating PP are directly
determined with a high precision and the dispersion relation
ωpp(q) of the lower polariton branch of LiNbO3 is mapped out
to larger qpp values. We discuss that the wavelength resolved
detection of the diffracted light leads to an interference of
elastically scattered and inelastically diffracted light, which
gives rise to oscillations in the time domain data.

2 Method and idea We perform degenerate 4WM
experiments on PPs in LiNbO3 in the boxcar geometry
depicted in Fig. 1. A Ti:sapphire amplifier laser system pro-
vides FWHM = 60 fs pulses with a repetition rate of 1 kHz at
a central wavelength of 800 nm. Two pump pulses (≈20 mW)
with wavevectors k1 and k2 excite a transient grating com-
posed of PPs. A third optical pulse, k3, is diffracted by this
grating into the direction k4, where it is detected. The polar-

Figure 1 (a) Intensity profile detected on a CCD camera at the
sample position when both pump pulses (k1 and k2) interfere under
an angle of Θ = 1.5◦, given by the focal length of the spherical and
cylindrical lens and the spatial period of the phase mask ΛG. The
observed fringe period measures the component of the excited PP
q|| = qG parallel to the crystal surface. (b) Schematic illustration of
the boxcar arrangement for four-wave mixing (4 WM). Two laser
beamsk1 andk2 intersect in a transparent sample to create a transient
spatial modulation of the refractive index. A delayed third beam k3

is diffracted into the direction k4. (c) Top view of the 4WM setup.
The probe beam is displaced for clarity. Used abbreviations: BP-F,
bandpass filter; BST, beam stop; DM, D-shape mirror; L, lens; PM,
phase mask; S, sample. (d) Side view of the same setup.

ization of all three beams is set parallel to the ferroelectric
axis of the crystal. We excite and probe the lowest A1 trans-
verse optical mode of the lattice [25]. We use the optical setup
introduced by the Nelson group [26], in which a transmission
grating phase mask is imaged onto the sample by a spheri-
cal and a cylindrical lens, as shown in Fig. 1c. The pump
laser pulse is split into a +1st and −1st diffraction order at
the phase mask transmission grating, giving rise to the two
pump-pulses with wavevectors k1 and k2. This creates a tran-
sient excitation grating in the sample with an ellipsoidal cross
section as shown in Fig. 1. If we replace the sample by a CCD
camera, we can record the interference fringes (Fig. 1a) with
the transient grating period [27]

λtg = λ

2 sin(Θair/2)
, (1)
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Figure 2 (a) Energy level and momentum conservation diagrams
considered in the impulsive generation of PP. Two counter propa-
gating PPs qR and qL are excited within the bandwidth of the laser
pulses by ISRS. (b) The probe process is sensitive to the light scat-
tered from left and right propagating PP. The spectrometer position
selects the direction k4 along which light is detected and the spec-
trometer pixel fixes the wavevector magnitude |k4| of the detected
light.

where λ is the wavelength of the excitation pulses and Θair is
the intersection angle in air.

A time-delayed probe pulse derived from the same laser
is sent through the same transmission grating slightly below
the pump pulse and is imaged onto the sample in the same
way. However, the beam along k4 is blocked and only k3

is sent onto the sample, where it is diffracted into the k4

direction towards the detector, yielding a nearly background-
free signal. We have implemented two modifications of the
original setup [26]: The detecting photodiode is replaced by
a fiber-optic spectrometer, which spectrally resolves the light
waves emitted from the sample into the k4 direction with a
resolution of about 0.2 nm. In addition we can insert a band-
pass filter into the probe beam to cut down the bandwidth of
the probe pulse from 30 to 2 nm (centered at 795 nm), which
increases the pulse duration from 60 to 610 fs, as measured
by transient grating FROG [11].

This setup using narrow band probe pulses together with
a spectrometer which permits the time-resolved detection of
the frequency shift induced by the Stokes and anti-Stokes
Raman scattering events, and guarantees an unambiguous
discussion and interpretation of the processes involved. The
time resolution remains sufficient to measure the damping of
the PPs.

Figure 2 summarizes how we analyze the 4WM pro-
cess in terms of two sequential Raman scattering events, one
for exciting PP and one for probing them. We first discuss

the excitation of PP (Fig. 2a), for which the Stokes scat-
tering describing creation of PPs is the dominant Raman
process. 1 Hence, if |k1| > |k2| a right-propagating PP with
wavevector qR is created, whereas the generation of a left-
propagating polariton qL requires |k1| < |k2| (see Fig. 2a).
Since both pump-pulses possess the same frequency spec-
trum, both processes are equally likely. The directions of
the pump photon momenta are fixed by the parallel-beam
geometry with minimal angular divergence in the plane of
the optical table resulting from the combination of a cylin-
drical and a spherical lens [26]. The energy- and momentum
conservation of the Raman scattering event therefore lead to
PPs propagating in exactly two directions, to the right and the
left with a small component into the sample. The wavevector
is selected by the angle Θ between the crossed laser beams
[3] in the medium, which can be calculated from Snell’s law.
The magnitude of the wavevector is calculated using the law
of cosine in the wavevector diagram (Fig. 2):

qpp = n

c0

√
ω2

1 + ω2
2 − 2ω1ω2 cos(Θ), (2)

where n is in our case the extraordinary refractive index, ω1

and ω2 are the angular frequencies of the first and second
beam, and c0 is the speed of light in vacuum. The angular
frequency ωpp of the excited PP satisfies the conservation of
energy ωpp = |ω1 − ω2|. The relative bandwidth of the PPs
is given by the relative bandwidth of the laser pulses: Δωpp

ωpp
≈

Δqpp

qpp
≈ 3%. The magnitude of the excited wavevectors qpp ±

Δqpp and the corresponding frequencies ωpp ± Δωpp are set
by the transmission phase mask grating [26]. This choice also
determines the angle ϕ with respect to the bisector of incident
laser beams, at which the polaritons travel into the sample.

cos(ϕ) = nvpp

c0

cos

(
Θ

2

)
= nωpp

c0qpp

cos

(
Θ

2

)
, (3)

where vpp is the phase velocity of the PP. Because of this angle
ϕ, the wavelength λpp of the PPs is few percent smaller than
the transient grating λtg written by the laser pulses [28, 29].

In the probe process both Stokes and anti-Stokes
processes are relevant, since the pump-pulses lead to a
considerable population of the two well-defined modes. The
boxcar setup is highly symmetric, however, by blocking k4,
we break this symmetry. Therefore panel 2b only discusses
the situations, where only k3 is impinging on the sample. In
the Stokes scattering process this incoming photon with fre-
quency ω3 is inelastically scattered from the left-propagating
PP qL under the stimulated emission of a red shifted photon
with frequency ω4 and an additional PP with wavevector qL.
Anti-Stokes scattering in this geometry leads to annihilation
of a right-propagating PP qR under the emission of a
blue-shifted photon with ω4. Figure 2b shows these two

1At room temperature, PP modes in the THz frequency range have only
small thermal occupation numbers.
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a) d)

b) e)

c) f)

Figure 3 (a) Transient 4WM signals for excitation of PPs with
wavecector magnitude q = 1050 cm−1 in a standard boxcar con-
figuration, where pump and probe overlap, all pulses are short and
spectrally broad. The signals are integrated over the spectrum. (b)
Same, but with the probe spot displaced by 350 �m to the left side.
(c) Same, but with the probe spot displaced by 750 �m to the left
side. (d–f) Corresponding Fourier analysis of all three data sets is
presented in (d)–(f).

processes, which contribute to the signal detected in k4

direction on a certain pixel of the detecting spectrometer,
i.e., for a fixed wavevector magnitude |k4|. For a different
pixel on the spectrometer the schematic is simply scaled,
reconfirming that all PP have a wavevector parallel to either
qL or qR. If we would choose k4 as the probe beam with finite
bandwidth and detect with the spectrometer in k3 direction,
the roles of created or annihilated PPs would switch.

In the Section 4, we analyze the intensity at each
spectrometer pixel given by the interference of photons
generated in the two processes with the weak contribution
of light elastically scattered by impurities. We show how
the delay dependence of the observed signal emerges from
the phase shifts accumulated for a certain time-delay after
the pump pulse. First we describe and qualitatively discuss
experimental observations justifying this description.

3 Experimental results In Fig. 3, we examine the
propagation of PPs with a wavevector magnitude of q =
1050 cm−1 by probing in different spatial regions near
the elliptical excitation spot (70 �m × 800 �m).
Figure 3a shows transient 4WM data, where the pump
and probe pulses spatially overlap. The signal oscillates at
2(ωpp/2π) = 2.2 THz, which is attributed to the fact that the
transient grating is a standing wave composed of two counter
propagating polariton waves (see Section 4) [30]. The signal
decay can be partially ascribed to the propagation of the
PPs out of the probed region and partially to coupling with
phonon-modes. The ratio of the signal maximum and the
scattering background for τ < 0 is Imax/Is = 400. For Fig. 3c
the probe is displaced by 750 �m to be essentially separated
from the excitation region. Now the signal is modulated
at the fundamental polariton frequency ωpp/2π = 1.1 THz,
and we attribute this to the fact that the probe pulse can only
be scattered by the left propagating PP [31]. In this case

Figure 4 Transient 4WM data from LiNbO3 (thin black line) for
the selected wavevector magnitude q = 2090 cm−1 with short and
spectrally broad pump and probe pulses. The spectrally integrated
intensity detected at the spectrometer oscillates at twice the fre-
quency of the PP 2ωpp/2π (see text). The thick black line shows
the same signal when only the probe pulse is spectrally narrowed
to 2 nm which leads to a probe pulse duration of 610 fs. For com-
parison, the thick gray line shows a convolution of the signal with
spectrally broad probe with a Gaussian function with temporal width
of FWHM = 610 fs. Inset: Normalized power spectrum (black solid
line) as obtained after Fourier analysis of the oscillating 4WM data
and the same spectrum scaled by a factor of two (black dotted line).
It shows the same central frequency as the anti-Stokes spectrum
shift (black dashed line) as it is detected on the spectrometer for
narrow band widths probe pulses.

Imax/Is = 2. In the intermediate regime (Fig. 3b), where
the probe is displaced by 350 �m, the signal level is still
low, with Imax/Is = 3. We observe both frequencies ωpp/2π

and 2(ωpp/2π) and attribute this to the left propagating
PP moving through the observation spot whereas the right
propagating PP only leaves this region. Panels 3d–f show
the according Fourier spectra.

The use of short probe pulses allows us to resolve the
fast lattice dynamics in the time domain. The oscillation
frequency and PP damping time are well accessible. Con-
sequently, the dispersion relation of the quasiparticle could
be determined. However, the broad spectrum of the probe
pulses prevents the direct detection of the inelastic nature of
the Raman interaction, because the associated shift is much
smaller than the bandwidth of the probe pulse. In order to
directly observe the Stokes- and anti-Stokes shifted Raman
scattering contributions, we narrowed the probe spectrum
down to 2 nm. In principle, one could use radiation with even
better monochromatization at the expense of time resolution
and efficiency. Here we chose a compromise that still permits
the measurement of decay times.

The effect of narrowing the probe spectrum is exempli-
fied for a typical measurement with perfect spatial overlap of
pump and probe in Fig. 4 for a somewhat larger wavevector
magnitude q = 2090 cm−1. For τ < 0 negligible intensity Is

of light is diffracted or scattered into the detector. As dis-
cussed above, for τ > 0 the measured intensity oscillates at
twice the frequency of the PPs 2(ωpp/2π) imprinted into the
sample and decays as the polaritons propagate out of the

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 (a) Spectra of pump (solid line) and probe pulses (dotted
line). (b) Solid lines show intensities of the spectra observed along
k4, when the PP wavevector is tuned to the wavenumber indicated by
the intersection with the left axis. The maxima of these spectra are
indicated as open circles in theω(qpp) plot. The calculated dispersion
relation of PPs in LiNbO3 is shown by the gray dashed lines. The
parameters are taken from Ref. [25].

probed area and are damped by coupling to other modes
[18, 30]. The Fourier transform of the signal in the inset of
Fig. 4 peaks at 4 THz. We compare this result to a mea-
surement, where the spectrum of the probe pulse was cut
down to 2 nm. The signal decay (black line) is identical to
the one observed with short pulses, convoluted with a Gaus-
sian function with the temporal duration τpulse = 610 fs of the
spectrally narrow pulse (thick gray line). On the spectrome-
ter the probe pulse is clearly shifted by Δω = ±|ω4 − ω3| =
2 THz. The anti-Stokes case (positive shift) is indicated in the
inset of Fig. 4. The comparison experimentally proves that
the signal oscillates at 2(ωpp/2π) for broadband probe pulses.
The price for the higher spectral resolution, is a smeared out
signal rise at τ = 0 which is now limited by the probe pulse
duration.

Panel 5b summarizes the detected spectrometer signal
including Stokes and anti-Strokes shifted signal components
for polariton gratings tuned to different wavevectors qpp by
tuning the intersection angle Θ according to Eq. (2). The peak
position of the measured Raman shift ωpp/2π as a function of
qpp represents the dispersion relation of PPs in LiNbO3. The
dashed line is the calculated phonon polariton dispersion.
The data show an excellent agreement with the theory. The
measurement of the PP dispersion relation is extended to
higher wavevectors. Figure 5a compares the bandwidth of
the pump pulses (solid lines) to the bandwidth of the probe
pulses. We emphasize that the signal contribution without
frequency shift, i.e., elastic light scattering, is negligible.

In order to directly identify the propagating PPs, we
repeat the narrow probe band experiments with a probe beam
spatially displaced to the left. For reduced damping and
longer propagation lengths we choose a small wavevector
qpp = 700 cm−1 of the transient grating. In addition we min-
imize the probed region by a knife-edge which blocks the
flank of the probe pulse overlapping with the pump region.

We look at left-propagating PP qL. The probe pulse enters
along k3 and the detector is in k4 direction. In Fig. 6a we
reproduce the vector diagram from Fig. 2b consistent with

Figure 6 Detection of left propagating PP. The probe spot is dis-
placed by 500 �m and is spatially cut to prevent any overlap of pump
and probe areas. (a) Wavevector diagram for the case of Stokes scat-
tering from qL, when k3 is the incoming light and the spectrometer
detects light along k4. (b) Same for anti-Stokes scattering, how-
ever, now with incoming light along k4 and detection along k3. (c)
Transient Stokes lines indicating the creation of left propagating PP
with a wavevector magnitude of |qL| = 750 cm-1. The dashed line
shows the unshifted probe spectrum. (d) Same for anti-Stokes scat-
tering with annihilation of the PP. (e) Transients of Stokes (red line)
and anti-Stokes light (blue line) determined from data set shown
in (c) and integrated over wavelengths around λ = 797 nm and
λ = 793 nm respectively. (f) Light spectrum around τ = 0 ps (black
line) indicates scattering from left and right propagating PP. For
later times (3.8–7.8 ps) the spectrum (red line) shows only Stokes
scattering.

energy and momentum conservation in this case, i.e., only
a Stokes scattering accompanied by the creation of an addi-
tional polariton qL is allowed. The contour plot in Fig. 6c
verifies this. In fact, the cross sections in Fig. 6f shows that
immediately after pumping there are still small contributions
of an anti-Stokes scattering from right-propagating qR. The
cross sections for τ > 3 ps, however, exclusively show Stokes
scattering from qL. The time-dependence of the Stokes (red)
and anti-Stokes (blue) signal depicted in Fig. 6e shows a
sharp rise of both signals limited by the probe pulse dura-
tion. The blue signal associated with the right-propagating
polariton qR immediately fades out according to the damp-
ing and direction of propagation. In contrast, the red signal
keeps rising as the polariton qL moves more and more into
the probe region before it finally decays due to damping.

To verify our interpretation that Stokes and anti-Stokes
scattering can clearly distinguish qR and qL, we exchange
the roles of k3 and k4 by shining only k4 on the same probe
spot and detecting in k3 direction. Now the vector diagram in
panel 6b shows the only detected scattering process, which
is anti-Stokes scattering with annihilation of a PP qL. This is
confirmed by the experimental spectrum.
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Figure 7 (a) Visualization of the three components of light fields
that contribute to the signal intensity on a certain pixel of the spec-
trometer which detects light along a fixed direction of k4. The
spectrometer pixel selects |k4|. Incoming wavevectors along k3 have
different magnitude (wavelength). (b) Geometric representation of
the diffraction from the PP grating in the laboratory frame (dashed
vectors) and in the frame of reference co-propagating with the PP
at relativistic velocities (solid vectors) [32].

4 Discussion Up to now we have qualitatively
discussed the measured data, demonstrating that the narrow-
band probe pulses can uniquely identify left- and right
propagating polaritons via the red or blue shift they induce in
a Raman scattering event. In this section, we lay out the math-
ematical background for describing the Raman-scattering
probe process which detects the excited PPs [30], when the
scattered radiation is spectrally resolved by a monochroma-
tor. In particular we quantitatively explain the oscillation
periods and damping constants observed in the experimen-
tal data (Figs. 3 and 4) and show how the narrow-band
experiments are explained in the same mathematical frame-
work. We again choose the incoming light field E3 to have a
wavevector parallel to k3 and record the scattered light field
E4 in the k4 direction. We distinguish three contributions:
E4 = E+ + E− + Eel, where E+ and E− are the components
inelastically scattered from PPs (anti-Stokes and Stokes)
whereas Eel corresponds to light elastically scattered by the
sample, e.g., from inhomogeneities.

Figure 7a visualizes the origin of the three signal
contributions. Since the monochromator spectrally resolves
the detected light field, each pixel coherently adds up three
contributions yielding the same frequency ω4. They originate
either from the incoming frequency component ω3,el for the
field Eel which is elastically scattered or from ω3− for the field
E− which is Stokes scattered by a PP with frequency ωpp, or
from ω3+ for the field E+ which is anti-Stokes scattered. 2

This implies ω3± ± ωpp = ω4 and ω3,el = ω4. From the
discussion above we know that E+ leads to annihilation of
right-propagating polaritons and E− to the creation of a left-
propagating polariton, where the Raman probe processes are
stimulated by the polaritons which were previously excited

2As a good approximation we assume that ωpp=ωpp+=ωpp−.

by Raman pump pulses along k1 and k2. These inelastic scat-
tering processes can be described as a Bragg diffraction from
a moving grating where the frequency shift is explained by
the optical Doppler effect [32]. Unlike acoustic Bragg grat-
ings the high velocity of the PP and the correspondingly large
Raman shift lead to the situation, where the Bragg diffrac-
tion is not symmetric with respect to the PP wavefronts.
Figure 7b shows for the case of a left propagating PP, how
the incoming and inelastically scattered wavevectors have
to be transformed in the frame of reference co-propagating
with the PP at relativistic speed. In this frame of reference
the Bragg scattering is elastic (the grating is not moving) and
hence symmetric. Each scattering event can be analyzed in its
appropriate co-propagating frame of reference, since phase
differences are invariant under Lorentz transformations and
hence the explanation will hold in the laboratory frame [33].
We have discussed this relativistic transformation here, in
order to emphasize, that despite the asymmetric scattering,
the phases of the scattered waves are the same, irrespective
of the position in the sample, where the scattering takes
place. This is evident for symmetric Bragg diffraction.

We now discuss how the delay τ of the optical pulse
exciting the PP and the optical pulse probing the PP give
rises to the observed signals by changing the relative phase of
the contributing signals. We define the phases of the spectral
components of the incoming light fields E3(ω4), E3(ω3− =
ω4 + ωpp), and E3(ω3+ = ω4 − ωpp), to be φ3,el(0), φ3−(0),
and φ3+(0) for τ = 0, respectively. The relative phases
of the incoming spectral light components are fixed. The
inelastically scattered light fields detected on a pixel of the
spectrometer observing in the direction k4 are

E± = ±E±0 e−γτ ei(ω4 t+φ4±(τ)), (4)

where E±0 quantifies the inelastic scattering efficiency and
e−γτ describes the reduction of the scattered light field due to
the damping of the PPs. φ4±(τ) is the phase of the scattered
light fields. The elastically scattered contribution is

Eel = Eel0 ei(ω4 t+φ4,el) (5)

with Eel0 and φ4,el quantifying the efficiency and phase of
elastic scattering, e.g., from impurities. When the pump
pulse is delayed with respect to the probe by τ, the polariton
wavefronts advance by |r±| = vppτ = ωpp/qppτ in the
directions of the polariton propagation qR/L. The phase of
the scattered light wave is shifted to

φ4±(τ) = (r± · k3± − r± · k4) = ±ωppτ, (6)

where the second equality holds according to the wavevector
matching (k4 − k3+) = qR, −(k4 − k3−) = qL and the phase
velocity vpp = ωpp/qpp of the PP. The phase φ4,el of the elas-
tically scattered light is unaffected by τ.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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In general, the intensity detected on a pixel of the spec-
trometer,

I ∼ |E+ + E− + Eel|2, (7)

depends on τ via the phases φ4± an φel of the scattered light
fields.

(A) If we now investigate the experimentally detected
signal from Fig. 4a we may assume Eel << E±, since the
signal intensity for τ < 0 ps, which represents the elastically
scattered light, is very small. The detected light field intensity
on a pixel now is only given by the interference of E+ and
E−:

I ∼ |E+ + E−|2 = E2
±0 e−2γτ|ei(ω4 t)|2|eiφ4+(τ) − eiφ4−(τ)|2.

(8)

The intensity decays with twice the damping rate of the
PPs. For delays τ � 1/γ the intensity decays back to the time
independent background given by the weak elastically scat-
tered light field Eel,0. The term oscillating with the detected
light frequency ω4 is a pure phase factor dropping out in
the intensity measurement and the last contribution gives
rise to the oscillation of the signal with twice the polariton
frequency:

I ∼ (1 − cos(2ωppτ)) e−2γτ . (9)

This fully and quantitatively explains the observations in
Fig. 3a.

(B) If the probe pulse samples a region of the sample that
can only be reached by left-propagating PPs, as depicted in
Fig. 3c), we can neglect E+ which originates from the right
propagating polaritons. For larger wavevectors the strong
polariton damping leads to rapid decrease of E− as well, so
that it becomes comparable to the elastically scattered light
field: E− ≈ Eel. Now the detected intensity shows interfer-
ence of elastically and inelastically scattered light, notably
leading to the same light frequency ω4 after the scattering.

I ∼ |E− + Eel|2 = |E−0 e−γτ+iφ4−(τ) − Eel,0 eiφ4,el(τ)|2. (10)

This weak signal oscillates at the fundamental frequency
ωpp around the intensity level given by the elastically scat-
tered light field Eel0 and an inelastic scattering term which is
damped at the rate 2γ:

I ∼ E2
el,0+E2

−0 e−2γτ − 2Eel,0E−0 e−γτ cos(ωppτ + φ4,el).

(11)

Unlike case (A) the oscillation amplitude decays with the
damping rate γ of the PPs (not with 2γ), in full accord with
Fig. 3c. The relative intensity of the Eel and E± determines
the relative oscillation amplitude. Intermediate cases like in
Fig. 3b are explained analogously. Generally the interference
of the two inelastic contributions E± on the detector gives

rise to oscillations at 2ωpp, whereas the interference of one
inelastic contribution with Eel yields oscillations at ωpp, even
when the position of the probe pulse perfectly overlaps with
the pump. However, if the two interfering light fields have
very different intensities, the signal modulation is very weak.

For the narrow band probe pulses the situation is differ-
ent. Not only are the probe pulses too long to resolve the
beating. More importantly, the probe spectrum is so narrow
that for all except for the smallest wavevector polaritons in
Fig. 5 the inelastically scattered probe pulses do neither over-
lap with each other nor with the unshifted probe spectrum.
The time dependence of such signals for perfectly overlap-
ping pump and probe is plotted as a black solid line in Fig. 4.
The signal shows no oscillatory signature and exhibits the
double damping rate 2γ . Since the three signal contributions
E± and Eel are detected by separate pixels of the spectrom-
eter, they do not interfere and Eq. (8) must be modified:

I± ∼ E2
±0e

−2γτ|eiω4 t|2|eiφ4±|2 = E2
±0 e−2γτ . (12)

Now the delay τ only enters into the decay since the
absolute magnitude of the phase factors is unity.

5 Conclusions In conclusion, we have shown that the
4WM experiments on PP can be regarded as two sequential
processes: The first is an excitation of PPs by impulsive stim-
ulated Raman scattering and difference frequency mixing,
where both processes imply the same energy and momentum
conservation rules. The second process, namely the probe
process contains the same physics. Here the PP wave itself
leads to stimulated emission of the inelastically scattered
photon. We have shown that left and right propagating PP
can be distinguished by observing the sign of the frequency
shift: Stokes and Anti-Stokes scattering. Technically, the dis-
persion relation of PPs, e.g., in Lithium Niobate are measured
to higher wavevectors and we showed that narrowing down
the spectrum of the probe pulse only allows detecting the fre-
quency shifts connected with the Raman scattering directly.
We believe that our findings shed new light on four wave
mixing experiments on PPs and may help to design new fun-
damental and applied experiments in the field of polaritonics.
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We present an experimental setup of a laser-driven x-ray plasma source for femtosecond x-ray
diffraction. Different normalization schemes accounting for x-ray source intensity fluctuations are
discussed in detail. We apply these schemes to measure the temporal evolution of Bragg peak inten-
sities of perovskite superlattices after ultrafast laser excitation. © 2012 American Institute of Physics.
[doi:10.1063/1.3681254]

I. INTRODUCTION

Ultrafast x-ray diffraction (UXRD) allows for tracking
atomic motion on its specific time scale in various physical,
chemical, and biological processes.1–3 In most UXRD experi-
ments the pump-probe scheme is employed, in which the sam-
ple is excited repetitively by an ultrafast stimulus, e.g., a fs
laser pulse, and is probed subsequently at different time de-
lays between pump and probe pulses.

Besides accelerator-based x-ray sources with fs time
resolution,4–7 laser-driven plasma x-ray sources (PXS) proved
to be a practical alternative for UXRD experiments with no
beamtime limitation, relatively low costs for build-up and
maintenance as well as an intrinsic synchronisation between
the optical pump and x-ray probe pulses.8 In conventional
x-ray tubes electrons are accelerated onto a metal target to
generate characteristic line emission (K-shell ionization and
recombination) and a broad bremsstrahlung background.
This process can also be driven efficiently by focusing an
intense laser pulse of more than 1016 W cm−2 onto a metal
target. Under proper conditions free electrons are generated
and instantaneously accelerated back into the metal by the
next half-cycle of the laser’s electric field.9–15 The released
x-ray pulses typically have a duration of a few hundred fs
which is generally determined by the interaction time of the
electrons with the metallic target.

Even though sources working at kilohertz repetition rate
offer a relatively high flux of up to 3 × 106 ph/s on the sam-
ple using x-ray optics16, 17 long integration times are neces-
sary to acquire a sufficient signal-to-noise ratio (SNR) in most
UXRD experiments. Moreover, large intensity fluctuations of
PXS sources, compared to conventional x-ray tubes, call for
advanced normalization schemes.

In this review we present a brief description of the new
UXRD setup at the University of Potsdam. On the example of
ultrafast Bragg peak intensity oscillations of two perovskite
superlattices we discuss different normalization approaches
and their experimental applicability. In particular, we intro-

a)Electronic mail: bargheer@uni-potsdam.de.

duce a rapid scanning technique adapted from all-optical
experiments as well as a scheme which utilizes the single
reflection of a Montel x-ray optic to measure the incoming
x-ray flux directly.

II. SYSTEM CHARACTERISTICS

In recent years, different designs of laser-driven plasma
x-ray sources have been successfully applied to numerous
UXRD experiments.18–21 The PXS setup at the University of
Potsdam is a further development of the system introduced in
Ref. 22. In addition to its excellent degree of automation and
stability as well as its high standard of radiation safety, the
setup can be employed in various x-ray diffraction and reflec-
tion geometries.23–25

The PXS is driven by a two-stage Ti:sapphire amplifier
(Legend Duo, COHERENT) working at 1 kHz repetition rate
with a center wavelength of 800 nm and a pulse energy of
8 mJ compressed into a pulse duration of 40 fs. The laser
beam is split into a main part of 80% for the x-ray generation
and the remaining pulse energy is guided via a motorized
mechanical delay line to excite the sample at a defined time
before the probing x-ray pulse. The laser plasma is generated
on a copper tape running in an evacuated interaction chamber,
which can be moved within the fixed focal plane of the laser,
perpendicular to the spooling direction of the tape. Thereby
one can write multiple tracks onto one tape prolonging the
measurement time up to 10 h. Both the entrance and exit
window of the vacuum chamber are protected by plastic
tapes which catch most of the copper debris that is ejected
by the laser plasma. The generated x-ray pulses (dominantly
characteristic Cu Kα and Kβ lines) are collected, focused,
and monochromatized to only Cu Kα energies by a Montel
multilayer optic (INCOATEC) with a convergence of 0.3◦

and a focal spot size of only 200–300 μm FWHM at a
distance d = 1000 mm from the source. The selected x-ray
optic is adapted to the experimental needs which specify
the energy bandwidth, angular distribution, and spot size
of the x-rays at the sample. In most of our experiments

0034-6748/2012/83(2)/025104/7/$30.00 © 2012 American Institute of Physics83, 025104-1
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FIG. 1. (Color online) The laser is focused onto a copper tape inside a
vacuum chamber to generate fs x-ray pulses. Both copper tape and plastic
debris-protection tapes run perpendicular to the plane of drawing. To write
new tracks on the copper band, the entire vacuum chamber is translated. The
x-rays are collected, monochromatized, and focused onto the sample by a
multilayer Montel optic. The diffracted x-rays are detected by a fast read-out
CMOS 2D camera.

on epitaxial thin films and multilayers a symmetric θ–2θ

geometry is applied. Here, the sample is placed in the x-ray
focal plane to reduce time smearing effects due to a generally
inevitable non-collinearity between laser pump and x-ray
probe beam and to probe a homogeneously excited part of
the sample. The x-ray detector can be easily exchanged, but
we commonly use a fast read-out CMOS 2D camera (Pilatus
100 k, DECTRIS) to record diffracted x-ray photons. The
complete setup is sketched in Fig. 1.

The performance of the PXS can be characterized by
three main parameters: pulse length, photon flux, and inten-
sity stability. Since there is no detector that is fast enough
to measure the duration of ultrashort x-ray pulses directly
we rely on several successful experiments in our and other
groups21, 25 which evidence the sub-ps temporal resolution of
PXS machines.

The x-ray flux can be improved by an increase of the laser
intensity on the metal target, but only up to a certain saturation
limit.10, 12 From there on a further increase of the x-ray flux
can be achieved by a larger interaction volume of the laser-
produced electrons with the target, e.g., by larger foci, which
will increase the x-ray source size in return. At very high laser
intensities in the relativistic limit the efficiency rises again,
however, at the expense of a high background of high ener-
getic radiation. For our setup we achieved nearly 1011 ph/s
with Cu Kα energy in the full solid angle of 4π under optimal
conditions. Only 5 × 105 ph/s of the total flux are focused
onto the sample using the Montel x-ray optic at a normal per-
formance. Thus, the number of diffracted photons per pulse
for a typical Bragg peak with 1% peak reflectivity is well be-
low ten for our system. Consequently, we are within the single
photon counting regime for each detector pixel, because the
divergence of the diffracted x-rays yields 10–100 illuminated
pixels on the detector area depending on the exact sample-
detector-position.

Of course, the optimal performance of the PXS requires
extensive tuning of all mechanical and optical components.
Although we benefit heavily from the engineering knowledge
and skills which are included in the commercial and semi-
commercial components of our setup, we cannot avoid all me-

chanical and optical instabilities which cause x-ray intensity
fluctuations on several time scales. In general, we distinguish
short-term fluctuations and long term drifts. The latter ones
occur within minutes up to hours and can be explained by
contamination of the PXS interaction chamber by copper de-
bris, side shifts of the copper tape, and also by the increasing
roughness of the copper tape after writing multiple tracks with
the laser onto it. These long-term drifts can result in intensity
changes and jumps of up to 50% and are not periodic in time.

Short-term fluctuations include all intensity instabilities
typically within a few seconds down to pulse-to-pulse fluc-
tuations. They are caused by the driving laser, unstable opti-
cal components but mainly by the position instabilities of the
spooled copper tape with respect to the laser focus as well
as target material inhomogeneities. Under certain conditions
(which we usually avoid) very large intensity bursts can be ob-
served in the integrated energy range from 1–100 keV, which
may be assigned to electron beam generation26 and the subse-
quent bremsstrahlung creation in the surrounding aluminium
and lead walls of the vacuum chamber. These fluctuations can
be easily suppressed by any type of monochromator in the
setup, such as a Montel optic.

III. NORMALIZATION SCHEMES

As already described above only a few photons per pulse
are diffracted in a typical UXRD experiment. In order to mea-
sure temporal intensity changes of only a few percent with a
sufficient SNR it is necessary to accumulate thousands up to
millions of diffracted x-ray pulses over minutes and hours of
measurement time. In general, the short-term fluctuations of
the incoming x-ray flux increase the statistical error of the
recorded signal. A reliable normalization technique can help
to cancel the contribution of the intensity fluctuations to the
signal and to minimize the necessary averaging time. Nor-
malization is definitely mandatory in case of long-term drifts,
which describe the changing mean value of the fluctuating x-
ray intensity over absolute measurement time t. Because of
the non-periodic behaviour in time of these drifts it is not
easy to average them out. Hence, the measured signal would
mainly represent the intensity drift of the source rather than
the response of the sample under investigation if no normal-
ization is applied.

We choose two superlattice (SL) samples in order to
evaluate different normalization approaches. These artificial
heterostructures consist of NSL epitaxially grown double
layers made of a metallic and insulating perovskite material.
The spatial period dSL = dmetal + dinsulator of a double layer
leads to SL Bragg peaks at multiple integers of the reciprocal
SL vector gSL = 2π/dSL where we adapt the enumeration of
the SL peaks from Ref. 27. In the UXRD experiments an 800
nm fs-pulse excites the sample, but is only absorbed in the
metallic layers of the SL and thus induces a periodic stress
profile.28, 29 As a result, a coherent longitudinal phonon mode
is excited which corresponds to an anti-phase oscillation
of the individual layer thicknesses in each double layer.
These structural dynamics lead to a periodic intensity change
of most SL Bragg peaks. For many superlattice peaks the
intensity of the x-ray Bragg reflection is proportional to the
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amplitude of the superlattice phonon (i.e., expansion of the
metallic layers and compression of the dielectric layers in be-
tween), since the contribution of the two layer materials to the
structure factor of the reflections is varied linearly. In some
cases this x-ray interference leads to additional modulation as
for the peak SL+1 in Figs. 5 and 7 making the response even
faster.30 For both samples studied in this paper, the signal can
be well approximated by a cosine-like oscillation due to the
quasi-instantaneous stress. The oscillations are exponentially
damped as the energy stored in the superlattice phonons
propagates into the substrate.29 Since in the current paper we
only use the fast response for a demonstration of the setup,
we refrain from further discussion of the physics and settle
for observing the good applicability of the fit function. The
according oscillation period of the coherent phonon mode is
given by the double layer period dSL and the material-specific
sound velocities and is only a few ps for the considered sam-
ples. Thus, we can prove the sub-ps temporal resolution of
the PXS. In order to observe the coherent phonon oscillation
of the SL the integrated intensity of the diffracted x-rays
R(τ ) from a single SL Bragg peak has to be measured for
different time delays τ . In analogy to all-optical pump-probe
experiments we refer to R(τ ) as transient x-ray reflectivity.

In the experiment the measured signal S(τ , t) also de-
pends on the absolute time t because of the fluctuations and
drifts of the incoming intensity I(t):

S(τ, t) = R(τ ) I (t).

In order to extract the reflectivity R(τ ) from the real signal a
normalization scheme must provide a measure which is pro-
portional to I(t) and at the same time independent of the delay
τ . Obviously, this can be achieved by an additional detector
that monitors only I(t). For the observation of structure fac-
tor changes of a Bragg reflection we are only interested in the
relative reflectivity change

S(τ, t) − S0(t)

S0(t)
= [R(τ ) − R0] I (t)

R0 I (t)
= �R(τ )

R0
,

where R0 = R(τ < 0) denotes the unpumed reflectivity and
S0(t) = S(τ < 0, t) the measured unpumped signal. Here the
incoming intensity I(t) cancels out if S(τ , t) and S0(t) can be
measured simultaneously or within a sufficiently small time
interval �t in which I(t) can be assumed to be constant, e.g.,
for �t smaller than long-term drifts of the x-ray source, and
hence a direct measure of I(t) is not necessary.

However, the applicability of a certain normalization
method can be limited by various factors such as the x-ray
diffraction geometry or the investigated sample itself. In the
upcoming paragraphs we describe general approaches for nor-
malization and give examples of their implementation from
our and other groups.

A. Low-repetition rate normalization

The first SL sample consists of 11 double layers made
of 7.9 nm metallic SrRuO3 (SRO) and 14.9 nm dielectric
SrTiO3 (STO) epitaxially grown on a SRO buffer layer and
a STO substrate by pulsed laser deposition.31 This sample
was already studied intensively29, 32, 33 and has a SL phonon
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FIG. 2. (Color online) (a) The θ–2θ diffraction scan of the STO/SRO SL
features the sharp and intense STO substrate Bragg peak as well as several SL
Bragg peaks. The experimental 2D diffraction patterns of the 0th SL Bragg
peak are shown in two configurations. (b) The sample is placed in the focus
of the Montel x-ray optic. (c) The sample is illuminated by the direct PXS
emission without x-ray optics. The 0th SL Bragg peak appears as a Kα1, α2
doublet. The Kα2 Bragg reflection of the substrate is not within the divergence
of the x-rays on the sample.

oscillation period of 3.2 ps, which can be derived most easily
from the transient reflectivity change of the 0th SL Bragg
peak. The θ–2θ diffraction curve of the STO/SRO SL is
shown in Fig. 2(a). It was measured at the energy-dispersive
reflectometry (EDR) beamline of the storage ring BESSY
II of the Helmholtz-Zentrum Berlin at a photon energy of
8.82 keV. For better comparison with the PXS data the θ -axis
of the diffraction curve was rescaled for the Cu Kα energy of
8.05 keV.

PXS driven UXRD experiments generally feature a rather
large angular distribution of the incoming x-ray beam because
of the used focussing x-ray optics or, in case of no optics, be-
cause of the divergence of the nearly point-like x-ray emission
from the laser plasma. Thus, it is favourable to use 2D x-ray
cameras, or at least 1D arrays, in order to record the avail-
able angular information of the diffracted photons. In case of
a diode-like point detector angular information or even the to-
tal information of the diffracted intensity, which misses the
angular acceptance of the detector, is lost. Unfortunately, typ-
ical CCD x-ray cameras have a very low frame rate because
of their long dead-time up to several seconds, which is mainly
due to their long read-out time. Accordingly, the integration
time for a single diffraction image should be well above 1 min
in order to have a sufficiently high duty cycle of the detec-
tor. Otherwise a large fraction of the precious diffracted x-ray
photons cannot be detected. The drawback of slow frame rates
can be balanced by taking advantage of the large number of
CCD pixels in order to record simultaneously the signal and
normalization with the same CCD camera.21
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FIG. 3. (Color online) The relative reflectivity �R/R0 of the 0th SL Bragg
peak of the SRO/STO SL was measured with the substrate normalization
scheme. The error bars are determined by averaging 10 independent delay
scan.

As it can be seen from Fig. 2(a) the angular separation
between the 0th SL peak and the STO substrate peak is
smaller than 0.3◦. Thus, it is possible to record both peaks si-
multaneously within the convergence of our Montel optic, see
Fig. 2(b). The same situation can be achieved without the
use of an x-ray optics, where the divergence on the sample
depends on its distance to the x-ray source. In the latter case,
see Fig. 2(c), the sample is completely illuminated by the
direct PXS emission. Within the collected angular range the
0th SL peak is visible as a Kα1, α2 doublet, whereas the Kα2

contribution of the strong substrate is cut off by the finite size
of the sample.

The dielectric STO substrate is not optically excited by
the 800 nm pump pulse. For delays larger than the time for
sound propagation through the thin SL layers (in our case τ

> 35 ps) propagating sound waves originating from within the
SL influence the structure of the STO substrate.29, 34 Within
this defined delay window the substrate peak reflectivity Rsub

is constant. Consequently, the recorded signal of the substrate
peak Ssub(t) only depends on the absolute time t and can thus
be utilized as a measure of the incoming intensity I(t). Here
we directly benefit from the large detector area, since no ad-
ditional hardware is required to employ this normalization
scheme. The data shown in Fig. 3 were obtained with this
substrate normalization scheme while the sample was placed
in the direct emission of the PXS without x-ray optics. Due
to the repetition of the complete delay scan for several times
we are able to plot also statistical error bars. The substrate
normalization scheme strongly depends on the sample and the
available angular distribution of the incoming x-rays. Further-
more, this method cannot be applied for large delays because
of the transient change of the substrate reflectivity.

A more generally applicable normalization scheme is al-
ready indicated in Fig. 2(c) where the sample is placed in the
direct PXS emission without x-ray optics. For a sufficiently
large x-ray spot size on the sample also each point in the
diffraction pattern originates from a different position on the
sample. If the pumped region is smaller than the probe area on
the sample also the diffraction pattern will contain a pumped
and unpumped region. This situation can also be achieved
with x-ray optics, but here the sample should be placed out of
the x-ray focal plane in order to superimpose both areas more

easily. In this pumped-unpumped normalization scheme the
transient signal S(τ , t) and the unpumped signal S0(t) can be
measured simultaneously with the same CCD camera. We can
apply this scheme as a normalization to determine the tran-
sient reflectivity change �R(τ )/R0 for any crystalline sample.

However, a large fraction of the photons diffracted by the
0th SL Bragg peak does not contribute to the transient reflec-
tivity R(τ ). Moreover, the excitation on the sample is very in-
homogeneous, as it is indicated by the curvature of the SL
peak in Fig. 2(c). Another drawback of this scheme is the
rather large x-ray footprint on the sample, which gives rise
to an undesired time smearing and also maps different posi-
tions of the sample at once, which may be problematic for
low-quality samples that lack lateral homogeneity.

For this specific STO/SRO SL sample the substrate
normalization scheme is preferable compared to the pumped-
unpumped method, because the SNR mainly depends on
the total number of recorded photons, meaning the sum of
photons contributing to the signal and to the normalization.
This number is much higher for the intense substrate reflec-
tion. However, both normalization schemes can be applied
in the so-called low-repetition rate regime for slow detectors
without the need of additional hardware. It is even possible
to apply both methods with or without x-ray optics, although
one should prefer the use of the Montel x-ray optic because
of the higher flux on the sample and the smaller x-ray energy
bandwidth.

B. High-repetition rate normalization

The following normalization schemes are applied to a
similar SL sample. This SL is made of 15 double layers
of which each consist of 7.3 nm metallic (La0.7Sr0.3)MnO3

(LSMO) and 13.7 nm ferroelectric (Ba0.7Sr0.3)TiO3 (BST).
Again the SL is grown epitaxially on a STO substrate. The
θ–2θ diffraction curve is shown in Fig. 4 and was again mea-
sured at the EDR beamline of the storage ring BESSY II of
the Helmholtz-Zentrum Berlin.35 The ultrafast response of
this SL to an 800 nm fs pump pulse is very similar to the
STO/SRO SL discussed above but with a slightly different
period of the coherent SL phonon oscillation of 3.8 ps.

A common procedure to reduce statistical errors in
a pump-probe experiment is increasing the repetition rate
of the measurement. A well-known high-repetition rate

FIG. 4. (Color online) Several orders of SL Bragg peaks as well as an intense
substrate Bragg peak are observable in the θ–2θ scan of the LSMO/BST SL
sample.
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normalization scheme from all-optical experiments is chop-
ping. Here the pump beam is periodically blocked in order to
record the signal S(τ , t) and the unpumped signal S0(t) subse-
quently within a short time interval �t = 1/fchop where fchop

is the chopping frequency. In this case half of the diffracted
photons contribute to the signal and the other half to the nor-
malization. If �t is shorter than the time scale of long term
drifts we can assume I(t) = I(t + �t) to be constant within
this interval neglecting short-term fluctuations. Hence, we can
apply this scheme to measure the relative reflectivity change
�R(τ )/R0. If �t is even shorter than most of the characteristic
short-term fluctuations of the PXS, chopping can also dras-
tically reduce these sources of noise. Ideally, this requires a
shot-to-shot temporal resolution of the x-ray camera. Because
area detectors with kHz readout frequencies are just becoming
available we have not implemented the chopping scheme, yet.

A very elegant way of normalization is again adapted
from all-optical experiments and referred to as the rapid scan-
ning method.36 As the name suggests the complete delay
range of interest of a pump-probe experiment is scanned very
rapidly within a time interval �t in which the incoming in-
tensity I(t) can again assumed to be constant. Thus, a single
scan has to be faster than the time scale on which long-term
drifts occur. It is not possible to scan the complete delay in
a time shorter than all short-term fluctuations (�t < 5 ms).
Several of these fast delay scans are averaged to decrease the
statistical errors caused by the fluctuations of the incoming
intensity. With the rapid scanning method all diffracted pho-
tons contribute directly to the signal and no intensity is lost
for normalization.

Similar to the chopping technique, the performance of
rapid scanning is mainly limited by the frame rate of the x-ray
detector and additionally by the speed of the delay stage. A
complete delay scan has to be faster than the long-term drifts
of the PXS which occur typically on the time scale of minutes.
Hence, we do not have to utilize the Pilatus’ full frame rate of
up to 200 Hz but can work within a more easily controllable
regime of ∼1 Hz frame rate in order to scan a typical number
of 50 delays well within 1 min of scan time.

A measurement of reflectivity oscillation for different SL
Bragg peaks of the LSMO/BST SL is depicted in Fig. 5. The
data were recorded with a frame rate of 2 Hz of the Pilatus
camera and the complete scan was repeated up to 40 times.
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FIG. 5. (Color online) The rapid scanning technique was applied to mea-
sure the relative reflectivity �R/R0 of the SL-2, SL-1, and SL+1 Bragg peaks
of the LSMO/BST SL. The data for each SL peak was accumulated within
∼20 min per curve averaging over 40 complete delay scans with a frame rate
of 2 Hz.

The total integration time per curve was ∼20 min and we
achieved an average relative error for all data points of 5.3%.

Rapid scanning provides a normalization without mea-
suring the incoming intensity I(t) directly. It is not capable
of reducing short-term fluctuations in our implementation but
can only average them out. This normalization technique is
universally applicable. However, fast read-out x-ray detectors
are the key part of this high-repetition normalization scheme,
since one complete delay scan must be finished faster than the
time scale of long-term fluctuations.

C. Direct normalization

In order to provide a sample-independent and direct mea-
sure of the incoming intensity I(t) an additional detector is
required. This detector then has to measure the PXS flux be-
tween source and sample ideally with the same frame rate as
the x-ray camera records the diffraction signal. X-ray sensi-
tive diodes are generally fast enough for this purpose and have
a sufficiently high quantum efficiency to record also low x-ray
intensities. Since the integrated intensity over the whole PXS
spectrum is not proportional to the intensity of the character-
istic x-ray emission lines used in the diffraction experiments,
it is necessary to monitor the x-ray flux behind a monochro-
mator or with an according energy-dispersive detector.37 One
usually has to bypass some fraction of the incoming x-ray
beam onto the normalization detector which will reduce the
flux on the sample accordingly. Such direct normalization
schemes were already implemented, e.g., by placing an ion-
ization chamber38 or a thin diamond beam splitter24 into the
incoming x-ray beam.

In our setup the Montel x-ray optic acts as a monochro-
mator since it transmits only the Cu Kα energies which are
then diffracted from the sample. A detailed description of
Montel optics can be found in the literature.16, 39 The diver-
gent emission of the source is focused in two dimensions
by two sequential reflections from elliptically bent multilayer
mirrors. The transmission profile of the optic shown in the in-
set of Fig. 6 reveals that in addition to this monochromatic
focal region F there are two regions S which are produced by
x-rays undergoing only a single reflection from one multilayer
mirror. This radiation is monochromatic as well, and we can
assume a linear relation between the intensity in the S regions
and in the focus F. In a typical diffraction experiment the two
S-beams do not hit the sample and are therefore useless. In
our case we use an x-ray diode (CRYSTAL PHOTONICS) to
monitor the x-ray flux in one of the S regions to have a direct
and proportional measure of the monochromatic incoming in-
tensity I(t).

In order to verify the applicability of this normalization
scheme we measured the direct intensity of the Montel focus
F with the Pilatus camera in single-photon-counting mode and
the intensity of a single reflection S with the x-ray diode si-
multaneously. The ratio of the diode and the Pilatus signal
shown as red line in Fig. 6 proves the linear relation between
the two signals. Accordingly, the normalized signal contains
much less short-term fluctuations as compared to the origi-
nal intensity which improves the SNR for UXRD experiments
drastically. For very large fluctuations and drifts of about 50%
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FIG. 6. (Color online) The focus F of the Montel optic was measured with
the Pilatus camera (green square) simultaneously with the intensity of a single
reflection S of the Montel optic by an x-ray diode (blue circle). The ratio of
the Pilatus and diode signal (red line) features much less fluctuations than the
original data. The transmission profile of the Montel optic is shown in the
inset, where the direct transmission of the Montel optic is labelled as D.

of the PXS intensity a slight nonlinearity of the x-ray diode
signal causes deviations of the normalized signal. This nonlin-
earity is most likely caused by an electronic offset of the diode
itself and may be reduced by a suitable calibration routine.
The direct normalization scheme reduces short-term fluctua-
tions but cannot completely cancel large long-term drifts be-
cause of the diode’s nonlinearity. Therefore, we combine this
method with the rapid scanning technique to improve the SNR
even further.

We apply this combination of diode-normalization and
rapid scanning again for the measurement of SL Bragg peak
oscillations of the LSMO/BST SL (Fig. 7). In comparison
with the data shown in Fig. 5 the average relative error for
each data point is further reduced to 4.6% although the total
integration time per curve is reduced to only 10 min. This
normalization scheme requires extensive technical efforts
such as high-repetition x-ray cameras and an additional
x-ray diode as well as an x-ray optic. On the other hand,
this combined normalization technique is independent of the
investigated sample and does not decrease the number of
photons which account for the diffraction signal.
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FIG. 7. (Color online) The reflectivity oscillations of three different SL
Bragg peaks of a LSMO/BST SL were measured with a combination of the
x-ray diode normalization and rapid scanning. The frame rate of the Pila-
tus was 1 Hz and each curve was obtained within a total integration time of
∼10 min.

IV. CONCLUSIONS AND OUTLOOK

Even though PXS sources operated at kHz repetition rate
are easy to use and feature high stability, advanced normal-
ization schemes are necessary to achieve a sufficient SNR in
UXRD experiments. Here we presented a detailed overview
of low- and high-repetition rate normalization techniques as
well as a diode-based direct normalization scheme utilizing
the specific transmission profile of a Montel x-ray optic. With
the combination of the direct intensity normalization and the
rapid scanning we could drastically reduce short-term fluctu-
ations and cancel long term drifts of the PXS, respectively.
With the diode normalization scheme it is also possible to
record time-resolved θ–2θ scans over an angular range much
larger than the divergence of the x-ray optics. Thereby not
only peak intensity but also the position, width and shape of
a Bragg peak can be precisely observed on an ultrafast time
scale.
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A diffractometer setup is presented, based on a laser-driven plasma X-ray

source for reciprocal-space mapping with femtosecond temporal resolution. In

order to map out the reciprocal space, an X-ray optic with a convergent beam is

used with an X-ray area detector to detect symmetrically and asymmetrically

diffracted X-ray photons simultaneously. The setup is particularly suited for

measuring thin films or imperfect bulk samples with broad rocking curves. For

quasi-perfect crystalline samples with insignificant in-plane Bragg peak broad-

ening, the measured reciprocal-space maps can be corrected for the known

resolution function of the diffractometer in order to achieve high-resolution

rocking curves with improved data quality. In this case, the resolution of the

diffractometer is not limited by the convergence of the incoming X-ray beam but

is solely determined by its energy bandwidth.

1. Introduction
Reciprocal-space mapping (RSM) has been established as a

powerful tool for the nondestructive structural analysis of thin

films and heterostructures (Bauer et al., 1995; Fewster, 1997;

Bowen & Tanner, 1998; Holy et al., 1999). In addition to the

intense specular Bragg reflections, the surrounding diffuse

scattering covered by RSM gives access to microscopic infor-

mation on strain states, dislocations and mosaicity, as well as

the shape and size of the coherently scattering domain. The

common drawback of RSM experiments is the need for time-

consuming mesh scans in order to map out the reciprocal

space in two or even three dimensions.

So far, high-resolution RSM has been precluded from time-

resolved diffractometry such as in situ or pump–probe X-ray

diffraction (XRD), either because of the too long integration

time for a single reciprocal-space map or because of the

required long-term stability, respectively. Owing to the avail-

ability of modern position-sensitive X-ray detectors (PSDs)

with low noise and large dynamic range, several new

diffractometer setups for RSM have been implemented

(Kinne et al., 1998; Mudie et al., 2004; Masson et al., 2005;

Mariager et al., 2009). In these high-speed RSM setups, the

analysing part of the diffractometer has been replaced by a

PSD in order to record symmetrically and asymmetrically

diffracted X-rays simultaneously, resulting in a considerable

decrease in the total measurement time. Compared with a

conventional high-resolution diffractometer, the resolution in

reciprocal space of the above-mentioned high-speed RSM

setups is limited by the PSD used, which defines the analyser

acceptance by its pixel size and distance from the sample,

while the monochromator settings are unchanged. Recent

high-speed in situ RSM experiments during molecular beam

epitaxy by Hu et al. (2012) proved the power of this new

method.

In this contribution, we present a detailed characterization

of a diffractometer for time-resolved RSM utilizing a laser-

driven plasma X-ray source (PXS) providing femtosecond (fs)

temporal resolution in a pump–probe scheme. The low photon

flux at such exceptionally short pulse sources requires the

collection of as many photons as possible. Accordingly, the

resolution function of the PXS diffractometer is dominated by

the convergent incoming X-rays, including Cu K�1 and K�2
energies, in contrast with other high-speed RSM setups.

In the first part, we will derive the resolution function of the

ultrafast reciprocal-space mapping (URSM) setup in order to

prove its applicability for the multidimensional structural

analysis of thin films and heterostructures. As an example of a

time-resolved URSM experiment, we present data from a

double-layer structure made up of a ferroelectric PbZr0.2-

Ti0.8O3 (PZT) layer grown on a metallic SrRuO3 (SRO) layer

on top of a dielectric SrTiO3 (STO) substrate, which exhibits

in- and out-of-plane lattice dynamics on a picosecond (ps)

timescale after photo-excitation (Schick et al., 2013). For

laterally nearly perfect samples, the resolution function of the

URSM setup dominates the in-plane broadening of the reci-

procal lattice points (RLPs), and no lateral structural infor-
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mation is resolvable by RSM. In order to access only the out-

of-plane structural information we can correct the URSM data

for the known resolution function of the setup, in order to

collect one-dimensional time-resolved XRD data with high

resolution and increased data quality compared with

conventional XRD. The resolution of such rocking curves is no

longer limited by the convergence of the incoming X-ray beam

but solely by its energy bandwidth.

2. Experimental setup

The hardware constituting the experimental setup of the PXS

has been described recently (Zamponi et al., 2009; Schick et al.,

2012). In short, we use a two-stage Ti:sapphire amplifier

operating at a repetition rate of 1 kHz with a centre wave-

length of 800 nm and a pulse energy of 8 mJ compressed into a

pulse of 40 fs duration to generate X-ray pulses (predomi-

nantly characteristic Cu K� and K� lines) by focusing the

main part (80%) of the laser light onto a moving copper tape

in a vacuum chamber. The emitted X-ray bursts are further

collected, focused and monochromated to only Cu K� ener-

gies (EK�1
= 8047 eV, EK�2

= 8027 eV, �E/E ’ 0.25%) by a

Montel multilayer optic with a convergence of �! = 0.3� (full
width at half-maximum, FWHM) in both dimensions and a

focal spot size of only 200–300 mm (FWHM) at a distance d =

1000 mm from the source. From the maximum X-ray flux of

approximately 5 � 105 photons s�1, the brilliance B of the

X-ray focus can be estimated as

B ¼ 1:1� 105
photons

smm2 mrad2 0:1%BW
; ð1Þ

which is much lower than for standard X-ray tubes (BW

denotes bandwidth). However, considering the PXS pulse

length of only 200 fs, the resulting peak brilliance per pulse

becomes

Bpeak ¼ 5:7� 1014
photons

smm2 mrad2 0:1%BW
: ð2Þ

Owing to the limited photon flux of the PXS, it is not

reasonable to increase the brilliance of the source by addi-

tional monochromators and/or collimators since time-resolved

experiments require high counting statistics.

The remaining 20% of the optical laser light is used to excite

the sample. The relative timing of the optical pump pulses to

the X-ray probe pulses is set by a mechanical delay stage and is

inherently jitter free. The temporal information is extracted by

performing XRD scans for different delays between optical

pump pulses and X-ray probe pulses.

The sample is mounted in the centre of a two-circle goni-

ometer which is placed in the focal plane of the X-ray optics.

Thus, the X-ray footprint on the sample is minimized in order

to reduce time-smearing effects due to the inevitable non-

collinearity between laser pump and X-ray probe beam, and in

order to probe a homogeneously excited part of the sample.

The fast read-out CMOS (complementary metal-oxide semi-

conductor) two-dimensional X-ray detector is mounted on the

outer circle of the goniometer at a distance of approximately

700 mm from the centre. The pixel size of the detector is

approximately 200 mm in both dimensions, resulting in an

angular acceptance in the scattering plane for each pixel of

�� = 0.016�.
In order to account for both long- and short-term fluctua-

tions, the PXS intensity is monitored directly by recording the

unused intensity of a single reflection of our Montel X-ray

optic with an integrating fast X-ray diode (Schick et al., 2012).

The nonlinear dependence between the diode response and

the number of X-ray photons at the focus have been calibrated

to determine the absolute number of X-ray photons per

second at the focus during real experiments. Accordingly, the

recorded rocking scans/RSM reflect the absolute diffracted

intensity of the investigated sample.

3. Resolution area

Here, we discuss the resolution of the URSM setup, which is

given by the smallest volume element in reciprocal space that

is resolved by the X-ray diffractometer. Since we are carrying

out only two-dimensional RSM, this volume element is

reduced to an area and we can integrate the diffracted

intensity on the two-dimensional detector along the dimension

that is normal to the diffraction plane during the actual XRD

scans. Accordingly, it would be sufficient to use a one-

dimensional pixel array with a large pixel height to detect the

diffracted X-rays. Knowledge of the resolution area is essen-

tial for the applicability of the diffractometer setup, since it

determines the structural details of a sample which can be

identified by RSM.

We carried out an !/2� scan with the area detector in order

to measure symmetric Bragg reflections with the URSM setup

(see Fig. 1). The !/2� scan (! = �) corresponds to a scan along

qz in reciprocal space (inset in Fig. 1). However, the PSD

records symmetrically and asymmetrically diffracted photons

at the same time, which corresponds to a scan of the detector

angle � at a fixed incoming angle ! (2� scan). Accordingly, we

can assign an angle � to each individual pixel column of the

PSD for a fixed !, if the centre column of the region of interest

(ROI) on the PSD is always at � = !. The angles of the

surrounding pixel columns at position x (positive integer)

follow from

�ðxÞ ¼ �� ðx� xcÞ þ !; ð3Þ
where xc is the position of the central pixel column in the ROI

and �� is the angular acceptance of each pixel column.

The diffracted intensities measured in (!, �) space can be

converted into q space by the following coordinate transfor-

mation (Holy et al., 1999):

q ¼ qx
qz

� �
¼ k

cos � � cos!
sin!þ sin �

� �
; ð4Þ

where k = 2�/� is the magnitude of the incoming and outgoing

X-ray wavevectors, since only elastic diffraction is considered;

� is the wavelength of the radiation. The resolution area of the

diffractometer depends on various parameters but we discuss

only the most prominent ones here. We can neglect any
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broadening on the reciprocal-space map due to a finite X-ray

spot size on the sample, since we use a convergent beam with

the sample in the focus of the X-ray beam path, and hence the

X-ray footprint is comparable to the size of the individual

pixels of the PSD. We consider the convergence of the

incoming X-rays �!, the acceptance of the detector pixels��
and the wavevector spread due to the energy bandwidth of the

X-ray photons �k/k = �E/E as sources of instrumental

broadening. As a linear approximation, both the magnitude

and direction of the instrumental broadening in q space can be

determined by the partial derivative of q multiplied by the

change in the deviating parameter:

�q! ¼ @q

@!
�! ¼ sin!

cos!

� �
k!�!; ð5Þ

�q� ¼
@q

@�
�� ¼ � sin �

cos �

� �
k ���; ð6Þ

�qk ¼
@q

@k
�k ¼ cos � � cos!

sin!þ sin �

� �
�k: ð7Þ

For a symmetric Bragg reflection, the inclination of �q! with

respect to the qz axis is !. This is referred to as the mono-

chromator streak (Holy et al., 1999). The so-called analyser

streak originates from �q� and is inclined by ! ’ � in the

opposite direction. Since the magnitude of �q! is approxi-

mately 20 times larger than the magnitude of �q� for the

URSM setup, we neglect the latter in the following discussion.

Fig. 1 shows the graphical analogue of the theoretical deri-

vation of the instrumental broadening of the URSM setup.

Owing to the convergence �! of the incoming X-rays kin , a

distribution of nonconcentric Ewald circles is illuminated in

reciprocal space. A single detector pixel at a fixed angle � with
an infinitesimally small acceptance ��!0 integrates the

diffracted intensity along the vector |�q!|, which is

constructed by a parallel translation of kout to the origins of all

incident kin (thin dashed lines in Fig. 1). This resolution streak

is inclined by ! with respect to the qz axis (monochromator

streak). The energy spread of the incoming X-rays leads to an

additional broadening along qz , which is approximated as an

ellipsoidal resolution area in Fig. 1 for a Gaussian distribution

of �! and �E.

The resolution function of the URSM setup can be deter-

mined experimentally by measuring the reciprocal-space map

around an RLP of an almost perfect bulk crystal. The

measured data correspond to a convolution of the resolution

function with the RLP, which can be approximated as a �
function for the case of a perfect bulk crystal. Fig. 2(a) shows

the experimental reciprocal-space map of the (002) Bragg
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Figure 1
The reciprocal-space coordinate system (qx, qz) of the sample. The angles
between the sample surface and the incoming and outgoing X-rays, kin
and kout , are denoted ! and �, respectively. Owing to the convergence�!
of kin , a range of nonconcentric Ewald circles is illuminated simulta-
neously (dotted lines). The angle-resolving detector is represented as a
tangent at the intersection of an Ewald circle and the qz axis (thick dashed
line). The resolution is dominated by the convergence�! and we neglect
the acceptance of the detector pixels ��!0 here (see text). A pixel at a
fixed angle � then integrates over the resolution area, which is inclined by
! with respect to the qz axis. The thin dashed lines are parallel to kout
(fixed �) but originate at different kin vectors, determined by the
convergence �!. The energy spread leads to a broadening along qz. The
resolution area is approximated as an ellipsoid, assuming a Gaussian
distribution of �! and �E. The inset shows the different scan types for
RSM: the !/2� scan goes along the qz axis, the ! scan is approximately
parallel to the qx axis and the 2� scan goes along the Ewald circle.

Figure 2
(a) The measured reciprocal-space map of the (002) Bragg reflection of a
nearly perfect STO substrate. The data are plotted with equidistant axes
and reveal the resolution area of the time-resolved RSM setup. The
inclination of the resolution area with respect to the qz axis is ! and is
represented by the grey dashed lines. The peak doubling and the
broadening along qz are caused by the CuK� doublet and the natural line
width of each K� line, respectively. (b) The theoretical resolution area at
! = 23.23� is plotted, accounting for the convergence �! and the energy
bandwidth of the incoming X-rays kin. Broadening due to the finite
acceptance of the detector is neglected here.
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reflection of a nearly perfect STO substrate. The inclination of

the resolution area with respect to the qz axis can be deter-

mined as ! = 23.23�, which is represented by the grey dashed

lines. The doubling of the RLP originates from the Cu K�
doublet and corresponds to a separation of approximately

�qz = k�E/E ’ 0.01 Å�1. The broadening along qz is caused

by the natural line width of each K� line, which is approxi-

mately 2 eV (Krause & Oliver, 1979). The diffuse background

along the qz axis indicates the crystal truncation rod of the

substrate. In Fig. 2(b), the theoretical resolution area of the

URSM setup is plotted, which is derived from equations (5)–

(7). The resolution area is approximated as two two-dimen-

sional Gaussian functions with one main axis along �q!. The

intensities are normalized to the maximum of the experi-

mental data shown in Fig. 2(a), and the ratio of the maxima of

the two Gaussians equals the intensity ratio of the Cu K�1 and
K�2 lines. The good agreement between the experimentally

determined and theoretically derived resolution functions of

the URSM setup allows one to distinguish between instru-

mental and structural broadening of RLPs in actual time-

resolved RSM experiments. Furthermore, neglecting addi-

tional sources of instrumental broadening proved to be valid.

4. Time-resolved reciprocal-space mapping

In order to prove the applicability of the diffractometer setup

for time-resolved RSM, we have chosen an epitaxial thin-film

sample that consists of a ferroelectric PZT layer and a metallic

SRO transducer layer which were grown onto an STO

substrate by pulsed laser deposition (Vrejoiu et al., 2006).

From the detailed characterization of the sample by trans-

mission electron microscopy (TEM) and static XRD, we

derived layer thicknesses of dPZT = 207 nm and dSRO = 147 nm,

and average lattice constants normal to the sample surface of

cPZT = 4.130 Å, cSRO = 3.948 Å and cSTO = 3.905 Å (Schick

et al., 2013). The ferroelectric PZT layer exhibits large defects

such as threading and misfit dislocations, due to the intrinsic

domain formation of this material. This gives rise to structural

in-plane broadening of the corresponding RLP.

The resulting time-resolved reciprocal-space map is

depicted in Fig. 3 and features the dominant broadening of the

PZT RLP along qx. The broadening of the SRO and STO

RLPs is dominated by the resolution area of the diffract-

ometer, which is indicated by their size and inclination. The

SRO RLP also features a slight diffuse broadening in the qx
dimension due to its lower crystal quality compared with the

STO substrate. The adoption of the high-speed RSM tech-

nique allows one to measure a time-resolved reciprocal-space

map within minutes, providing good photon statistics. For the

femtosecond variant of RSM at PXS machines this is parti-

cularly important, because the reciprocal-space maps for

different time delays after excitation have to be compared,

and long-term drifts of the setup are often inevitable. The

unpumped data set shown in Fig. 3 was recorded within

30 min. The red contour lines at a constant reflectivity of 10�3.5

in Fig. 3(a), and the red lines in Figs. 3(b) and 3(c), show the

result of the RSM probing 75 ps after excitation of the sample

with an 800 nm femtosecond laser pulse. The changes in the

positions and widths of the material-specific Bragg peaks in

the reciprocal-space map can be analysed in order to study the

photoinduced in- and out-of-plane lattice dynamics with

femtosecond temporal resolution (Schick et al., 2013).

5. Rocking scans

For laterally nearly perfect crystalline samples, the structural

Bragg peak broadening in-plane is well below the resolution of

our URSM setup. As an example, we show the URSM data of

a superlattice (SL) in Fig. 4(a). The SL is composed of 15

double layers, each consisting of 7.3 nm metallic

(La0.7Sr0.3)MnO3 (LSMO) and 13.7 nm ferroelectric

(Ba0.7Sr0.3)TiO3 (BST). The SL is grown epitaxically on an

STO substrate with very high crystalline quality. Here, we wish

to derive a means of benefitting from the URSM setup for

such highly perfect crystalline samples. Since we cannot

resolve the in-plane Bragg peak broadening for this sample,

we are limited to out-of-plane structural information, which

can be achieved by standard rocking scans (!/2� scan for

symmetric Bragg reflection). Thus, it would be sufficient to use

a one-dimensional point detector in the diffractometer setup.

The corresponding rocking curve for a point detector with a

large acceptance �� >> �! is plotted in Fig. 4(c) as a red line

(the data are imitated by integrating the original data from the

PSD detector along the scattering plane). The rocking curve
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Figure 3
(a) The measured reciprocal-space map of the (002) Bragg reflections of
the PZT/SRO double layer on an STO substrate. The red contour lines
(constant reflectivity of 10�3.5) and the red lines in parts (b) and (c)
indicate the changed RSM at a delay of t = 75 ps after excitation of the
sample with an 800 nm femtosecond laser pulse. (b), (c) Integrated
reciprocal-space maps over the qx and qz dimension, respectively. In (c),
the integration is carried out only over the qz range of the PZT peak.
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exhibits good statistics, since nearly all diffracted photons are

collected by the detector, but the resolution of the individual

Bragg peaks is very low because �q� can no longer be

neglected. Accordingly, all peaks are broadened and no CuK�
doublet is observed.

If we use a point detector with the same acceptance �� as

for a single pixel of the PSD, e.g. by the use of slits, we obtain a

much higher resolution of the rocking curve, shown as a blue

line in Fig. 4(c). This plot is equivalent to a cut along qx of the

data shown in Fig. 4(a). However, since we discriminate all

asymmetrically diffracted X-ray photons with this slit setup,

the counting statistic of the resulting rocking curve is

approximately 14% that of the large-aperture detector (red

line) and is thus not applicable for time-resolved experiments

with PXS machines.

Since we know that the broadening of the RLP for such

highly perfect samples originates primarily from the resolution

function of the URSM setup, we can correct the data

accordingly. By rotating each ellipsoidal RLP that intersects

the qz axis at qz = 2ksin! by an angle of � = (90� � !), we can
assign all asymmetrically diffracted X-ray photons to the

correct qz value of the symmetric RLP by integrating over the

qx axis. The coordinate transformation is derived in Appendix

A and the result is shown in Fig. 4(b), where all RLPs are now

aligned parallel to the qx axis. The integration of these

corrected data along qx is shown as a black curve in Fig. 4(c)

and combines the high resolution of the slit-like blue curve

and the good statistics of the large-aperture-like red curve.

6. Conclusions

The implementation of the high-speed RSM technique using

position-sensitive X-ray detectors allows the implementation

of time-resolved RSM at PXS setups. The instrumental and

structural broadening of the URSM can be distinguished by

the inclination and width of the measured RLPs. The method

has been applied to study the in- and out-of-plane lattice

dynamics in a ferroelectric thin film after photoexcitation on a

picosecond timescale (Schick et al., 2013). For nearly perfect

crystalline samples, the experimental routine can be applied

with an adapted data-processing routine in order to correct

the measured RLPs for the known resolution function of the

diffractometer. This procedure allows for the recording of

high-resolution rocking curves without discriminating

diffracted X-rays, since the resolution is no longer limited by

the convergence of the incoming X-ray beam, but solely by its

energy bandwidth.

APPENDIX A
Resolution area correction

Fig. 5 sketches the RLP in the reciprocal-space map for a

highly perfect crystalline sample, so the RLP is primarily

broadened by the resolution area of the URSM setup. As was

derived in x3, the ellipsoidal RLP is inclined by ! with respect

research papers

1376 Daniel Schick et al. � Ultrafast reciprocal-space mapping J. Appl. Cryst. (2013). 46, 1372–1377

Figure 4
(a) (Original) reciprocal-space map for the BST/LSMO SL on an STO
substrate, revealing several SL reflections and the most intense STO
substrate (002) reflection. (b) (Corrected) reciprocal-space map after
translational/rotational transformation. (c) The red curve imitates a
measurement using a large point detector with an acceptance �� much
larger than the convergence �!. The blue curve imitates the use of a slit
in front of a point detector ��!0, i.e. a cut at qx = 0 from (a). The black
curve is the integration over the complete qx range of the corrected data
shown in (b). The curves are offset in intensity for better visualization.

Figure 5
The ellipsoidal RLP is inclined by ! and intersects the qz axis at point D.
The intensity along the ellipsoidal RLP, e.g. at point B, is recorded for an
incoming angle ! 0 at a pixel at � 0 6¼ ! 0.
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to the qz axis when the intersection of the RLP with the qz axis

is at the point D = (0, 2ksin!). In order to correct the data for

the resolution function of the diffractometer, one has to rotate

the ellipsoidal RLP around the point D by an angle of � =

(90� � !). For any point B along the RLP, this is done by

translating point B by the vector �OD, in order subsequently

to rotate B counterclockwise by � around the origin O of the

coordinate system, and translating it back by the vector OD.

However, the intensity at point B is measured at an

incoming angle ! 0 with a pixel at an angle � 0 6¼ ! 0. Thus, it is
nontrivial to determine the coordinates of the corresponding

intersection point D(!) from the point B(! 0, � 0). If ! 0 ’ !,
which holds for a small convergence�!, one can approximate

that DC ¼ CA and one can derive the qz coordinate of point

D as

Dz ¼ OA� 2CA ¼ 2ðBz � k sin!0Þ; ð8Þ
where Bz is the qz coordinate of the point B(! 0, � 0) given by

the general transformation q(!, �) into q space, cf. equation

(4).

The complete coordinate transformation for the correction

of the URSM data for laterally nearly perfect samples can

then be written in matrix form as a combination of translation

and rotation:

qc ¼R � qð!; �Þ �OD½ � þOD

¼ cos � � sin �

sin � cos �

� �
� qð!; �Þ � 0

Dz

� �� �
þ 0

Dz

� �
; ð9Þ

where R is a rotation matrix.
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We employ the ultrafast response of a 15.4 nm thin SrRuO3 layer grown epitaxially on a SrTiO3

substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage

ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and

compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed

Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray

pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the

synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4769828]

Ultrafast x-ray diffraction (UXRD) performed at syn-

chrotron sources is an ideal tool for detecting atomic motion

in solids, due to the large brilliance and stability of these

sources.1,2 In particular, the utilization of nanostructured

samples, which are excited and measured in a pump-probe

scheme, has led to a deeper understanding of the propagation

of coherent acoustic sound waves in layered structures.3 In

this way, coherent optical superlattice phonons, which corre-

spond to back-folded acoustic phonons have been excited

and studied in detail.4,5 Such systems show modulations of

superlattice Bragg peaks on a picosecond (ps) timescale6 and

may eventually lead to the development of new devices such

as an ultrafast x-ray switch.7,8 On a more fundamental level,

it has been shown recently that thin layer transducers can be

used to excite quasi-monochromatic strain waves, which

allow for studying coherent acoustic phonon dynamics.9 In

typical pump-probe measurements, a sample is excited by an

ultrafast laser and subsequently probed by a time-delayed

ultrashort probe pulse. For each time delay s, a snapshot of

the sample is recorded. However, the complete dynamics in

the sample can only be reconstructed through a series of

snapshots if the probe pulses are at least twice as short as the

inverse of the highest frequency that is contained in the sam-

ple response. In general, a pump-probe signal Ipp corre-

sponds to a cross-correlation measurement of the delayed

probe pulse Pðtþ sÞ with the time-dependent response of the

sample S(t).10

IppðsÞ ¼
ð1
�1

dt � SðtÞPðtþ sÞ: (1)

In the limit of infinitely short probe pulses PðtÞ ! dðtÞ, the

pump-probe signal directly yields the sample response S(t).
Therefore, a good knowledge of the temporal structure of the

probe pulse is crucial for a correct analysis of the data

obtained in a pump-probe scheme. X-ray pulses generated at

synchrotron sources are typically characterized by streak

camera measurements, which can provide time-resolutions

below 1 ps.11,12

In this letter, we present a cross-correlation measurement

of a 100 ps x-ray probe pulse delivered by a synchrotron stor-

age ring and the ultrafast response of a laser excited sample.

The idea of the experiment together with the experimental

setup is explained in Figures 1(a) and 1(b), respectively. An

x-ray probe pulse (black), delivered from the ESRF storage

ring is diffracted by a sample (red) exhibiting a dynamic

response upon excitation, which is much shorter than the dura-

tion of the probe pulse. The sample dynamics is such that it

turns the x-ray diffraction (XRD) efficiency on and off on an

ultrafast timescale. The transient shown in red in Figure 1(a)

is a simulation of the x-ray response of the actual structure

that was used in the experiment and which is described below.

By delaying the optical excitation pulse against the x-ray

probe pulse, different sections of the latter are diffracted. The

black transient in Figure 1(a) shows the x-ray probe pulse as

determined by streak camera measurements.14 The ESRF

x-ray pulse shows a slight asymmetry. Due to the finite dif-

fraction efficiency of the unexcited sample, a fraction of the

x-ray probe pulse is also diffracted when the sample is not

excited. We call this fraction the diffraction background.

Figure 1(b) shows the experimental setup. Time-resolved

measurements were done at the undulator beamline ID09B at

ESRF. A general description of the setup can be found in

Ref. 13. The storage ring was running in 16-bunch mode15

delivering monochromatized x-ray pulses at an energy of

12 keV and a duration of 90-120 ps, depending on the charge of

the electron bunch. The beamline is equipped with a commer-

cial laser system (Coherent Legend), which yields 800 nm

optical pulses with an energy of 1.5 mJ and a duration of 600 fs

at a repetition rate of 1 kHz.

In the following, we characterize our sample and explain

the nature of the ultrafast response that is later applied toa)Electronic mail: peter.gaal@helmholtz-berlin.de.
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sample the synchrotron x-ray pulse. For the cross-correlation

measurement, we used a d¼ 15.4 nm thin layer of metallic

SrRuO3 (SRO) grown epitaxially on an SrTiO3 (STO) sub-

strate. The relevant parameters of these materials are well

known.16–19 While the SRO layer is opaque for the optical

pump light, the STO substrate is transparent. Therefore,

energy from the pump pulse is only deposited in the thin

layer. Figure 2(a) shows a measurement of the ultrafast sam-

ple dynamics upon excitation with a 800 nm optical pump

pulse of a duration of 50 fs. The measurement was per-

formed at the plasma X-ray source (PXS) at University of

Potsdam which delivers x-ray pulses of �150 fs duration at

the characteristic copper Ka energy of 8.047 keV.20,21 The

pump fluence was set to 30 mJ=cm2. The h-axis in Figure

2(a) has been converted to match the measurements from

ESRF. Upon optical excitation, the layer peak shifts to

smaller angles and reaches a minimum angle of h ¼ 15:02�

after 2.5 ps. At later times, the peak shifts back to a quasi-

stationary position around an angle of 15:1�. This position is

reached at a delay of 5 ps. The timescale of the peakshift

results from the ratio of the sample thickness and the veloc-

ity of sound in the sample. The sample thickness of 15.4 nm

represents a good trade-off between the duration of coherent

phonon propagation and diffraction efficiency from the SRO

layer. Figure 2(b) shows a static XRD measurement of the

structure. The STO substrate peak appears at an angle of

15:33�. Due to the small layer thickness, the layer peak has a

width of 0:12�. The dynamics in the sample, which leads to

the observed peak shift, is illustrated in Figure 2(c). This

graph shows a simulation using a masses and springs

model,22 which accounts for coherent phonon propagation

and for heat diffusion from the excited layer to the substrate.

Optical excitation triggers coherent expansion waves which

are launched at the layer-substrate and layer-air interface,

respectively, and propagate into the SRO layer. The lattice

expansion is shown in red colors. At the same time, a com-

pression wave, which is shown in dark blue colors, is

launched at the layer-substrate interface. This compression

wave directly propagates into the substrate. At a delay of

roughly 1.3 ps, the layer peak shifts across the angle of the

quasi-stationary peak position. The reason is the interference

of the excited strain waves from both interfaces, as shown in

Figure 2(c). The maximum shift occurs at 2.5 ps, when both

expansion waves have propagated through the layer. While

the strain wave that was launched at the sample surface now

propagates into the substrate, the other strain wave is

reflected at the sample surface and propagates back through

the layer. Reflection at the surface also converts the expan-

sion wave into a compression wave. Therefore, the layer

peak position is shifted to larger h-angles for delays larger

than 2.5 ps. The quasi-stationary peak position is reached,

FIG. 1. (a) Cross-correlation of an ultrafast sample response against a

100 ps x-ray probe pulse. The calculated sample diffraction efficiency is

modulated by optical excitation of the sample at different delay times s.

Since the sample dynamics last for roughly 5 ps, it is much shorter than the

x-ray pulse. (b) Experimental setup at ID09B at the ESRF storage ring

(for details see Ref. 13): A Ti:sapphire laser is synchronized to the RF signal

from the storage ring. The synchronization allows to delay the laser pulse

against the x-ray probe pulse with ps resolution. Diffracted x-ray photons

from the sample are captured in a combined scintillator/photomultiplier

(PMT) detector and counted in a time-correlated single-photon-counting

(TCSPC) module.
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FIG. 2. (a) Measurement (black dots) and simulation (red solid line) of the

center of mass shift of the SRO layer peak upon excitation with an ultrashort

optical pump pulse. The measurement is performed at the PXS at University

of Potsdam. (b) Measurement (black solid line) and simulation (blue dotted

line) of the static x-ray diffraction curve of a 15.4 nm thin SRO layer grown

epitaxially on an STO substrate. (c) Simulation using a masses and springs

model of the coherent phonon dynamics upon impulsive optical excitation

of the SRO layer.
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when both strain waves have propagated into the substrate.

The layer peak relaxes to its equilibrium position via heat

diffusion from the hot layer to the substrate. This process is

much slower than the coherent phonon dynamics and occurs

on a nanosecond timescale.23 Hence, after the layer peak has

shifted to its quasi-stationary position, the diffraction effi-

ciency is constant on the timescale of the incident x-ray

pulse. Due to the constructive interference of both expansion

waves, there is an angular range, where the peak shift is gov-

erned exclusively by the propagation of coherent phonons in

the sample. Therefore, in the appropriate angular range, the

sample shows a modulation of its x-ray diffraction efficiency

which lasts for only 5 ps. We exploit this feature as an ultra-

fast probe of the x-ray pulse from the synchrotron.

Measurements of the cross-correlation signal between the

ESRF x-ray pulse and the ultrafast sample response are shown

in Figure 3(a) for Bragg angles from 14:89� to 15:03�. The ex-

citation fluence was set to 15 mJ=cm2. Since the duration of

the optical pulse is 600 fs, which is significantly faster than the

propagation time of the coherent phonons through the layer, it

can be omitted in the analysis of the correlation signal. Figure

3(b) shows a simulation in the same angular range that repro-

duces the measurement. A cut along the delay time axis is

shown in Figure 3(c) for a Bragg angle of 14:9�. The measured

transient has a full width at half maximum (FWHM) duration

of 100 ps. Together with the experimental data, we plot a cal-

culated pump-probe signal that was obtained by cross-

correlating the simulated sample response with an ESRF probe

pulse. The simulation shown in the red dotted line was

obtained by using the ESRF pulse profile as measured by a

streak camera. It is shown in Figure 1(a) and in the red solid

line in Figure 3(d), respectively. This pulse has a FWHM dura-

tion of �100 ps. The blue solid line in Figure 3(d) shows the

shape of the ESRF x-ray pulse as extracted from a deconvolu-

tion of the simulated sample response out of the measured

data. The data have been slightly smoothed for that procedure.

This pulse, which has a FWHM duration of 85 ps, was used to

calculate the blue dashed transient shown in Figure 3(c). It

yields an even better representation of the data compared to

the red transient that was calculated using the measured ESRF

pulse. This concurs with the observations from previous

experiments at the ID09B beamline at ESRF, which indicate a

pulse length of the order of 80 ps in 16-bunch mode. Hence,

the determination of the x-ray pulse length using our cross-

correlation technique seems to characterize the x-ray pulse

more accurately than the streak-camera measurement.

The green transient in Figure 3(c) shows a measurement

where the Bragg-angle on the sample was set to h ¼ 14:95�.
The slow decay at positive pump-probe delays stems from

thermal relaxation from the excited layer to the substrate and

the subsequent shift of the layer peak to larger angles. This

effect deteriorates the temporal resolution in the cross-

correlation measurement. Note that the rising edge coincides

with the red and blue curves, since in all cases the rise of the

pump-probe signal is determined by coherent phonon dy-

namics. However, the relative background at negative delays

of the green dashed line in Figure 3(c) appears smaller com-

pared to the other transients. This results from the fact that

the diffraction background at negative delays is constant for

all Bragg-angles, while the peak diffraction increases for

increasing h-angles of the sample.

In conclusion, we performed a time-domain sampling

measurement of a 100 ps x-ray probe pulse using the ultra-

fast response of a laser-excited thin SRO film grown on an

STO substrate. Excitation of the film with an ultrashort opti-

cal pulse triggers the propagation of coherent phonons,

which modulate the diffraction efficiency in the sample.

Already 5 ps after optical excitation, the sample reaches a

quasi-equilibrium state that is stable for the remaining dura-

tion of the incident x-ray pulse. Our experiment is easy to

reproduce and may be used for efficient time-zero determina-

tion and for measuring the shape of the x-ray probe pulse.

We thank the BMBF for funding the project via

05K10IP1.
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A new concept for shortening hard X-ray pulses emitted from a third-generation

synchrotron source down to few picoseconds is presented. The device, called the

PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-

excited thin film. A characterization of the structure demonstrates switching

times of � 5 ps and a peak reflectivity of �10�3. The device is tested in a real

synchrotron-based pump–probe experiment and reveals features of coherent

phonon propagation in a second thin film sample, thus demonstrating the

potential to significantly improve the temporal resolution at existing

synchrotron facilities.

Keywords: ultrafast X-ray diffraction; thin film; coherent phonons; X-ray switching;
pulse shortening; optical pump X-ray probe; time-resolved.

1. Introduction

Ultrafast structural dynamics can be monitored by time-

resolved X-ray techniques, provided that the probing X-ray

pulse is sufficiently short (Bargheer et al., 2006; Rousse et al.,

2001). Unfortunately, large-scale facilities like synchrotrons,

which offer the best experimental conditions in terms of

stability, tunability and brilliance, typically do not deliver

pulses shorter than 100 ps. An exception is the so-called low-�
mode (Abo-Bakr et al., 2002), where the synchrotron is able to

generate pulses as short as 5 ps. However, the low-� mode is

only available for a few weeks per year, since it reduces the

X-ray intensity at all beamlines connected to the storage ring.

To date, various schemes exist that can manipulate or resolve

the time structure of a synchrotron X-ray pulse. All of them

are indirect in the sense that they do not act on the X-ray pulse

itself. Either the electron bunch in the storage ring is

manipulated [e.g. femtoslicing (Schoenlein et al., 2000; Beaud

et al., 2007) or orbit deflection using RF cavities (Zholents

et al., 1999)], or electrons generated in photocathodes are used

to spatially map the temporal structure of the synchrotron

pulse on a screen (Enquist et al., 2010; Chang et al., 1996). The

highest temporal resolution at synchrotron sources is obtained

by using electron slicing schemes, which leads to 150 fs pulses

(Schoenlein et al., 2000; Beaud et al., 2007). However, these

schemes result in a rather low photon flux. Highly improved

experimental conditions are found at new facilities like free-

electron-laser (FEL) sources (Emma et al., 2010; Pile, 2011;

Geloni et al., 2010). However, the large demand for ultrashort,

brilliant and stable X-ray pulses from the ultrafast community

is not yet satisfied.

Several early attempts were made to manipulate the time

structure of the synchrotron X-ray pulse directly. Early

experiments reported switching of hard X-rays resulting in

pulses of 100 ps duration and more (Wark et al., 1989; Zolo-

toyabko & Quintana, 2004; Allam, 1970; Grigoriev et al., 2006;

Navirian et al., 2011). A promising concept is based on optical

phonons (Bucksbaum & Merlin, 1999); however, this could

not yet be realised experimentally (Sheppard et al., 2005). A

modified approach exploiting zone-folded acoustic phonons in

a superlattice (Herzog et al., 2010) demonstrated a modulation

of the switching-contrast ratio of �R/R = 24.1 during 1 ps.

However, the first modulation maximum is followed by several

post-pulses that result from the generation of multiple sound

waves at interfaces between the superlattice layers. This leads

to a significant protraction of the switching time.

Here we present a new concept that builds on the experi-

ence of previous approaches. We excite coherent strain waves

in a thin metallic oxide film in order to modify the diffraction

efficiency of the structure at a fixed Bragg angle on a pico-

second time scale. An exemplary gate is shown in Fig. 1. A

good switch provides short rise and fall times tr and tf and a

short on-time �T. Also the diffraction efficiency before (�0)

and after (�1) the switching should be low, whereas it should

be high in the on-state (�max). This automatically increases the

switching contrast C0 and C1. The contrast is defined as Ci =
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ð�max � �iÞ=�i (i = 0, 1). After introducing the experimental

method of ultrafast X-ray diffraction (UXRD) in the next

section, we present a full characterization of the PicoSwitch

both experimentally and theoretically in x3. In x4 we apply our

approach to a real synchrotron-based ultrafast pump–probe

experiment. Results of this experiment are discussed in x5.

2. Experimental set-ups

We performed UXRD experiments at the Plasma X-ray

Source (PXS) (Schick et al., 2012, 2013) at the University

of Potsdam and at the ID09B beamline at the European

Synchrotron Radiation Facility (ESRF) in Grenoble, France.

Schematics of the set-ups are shown in Figs. 2(a) and 2(b),

respectively. A high-power laser yielding ultrashort laser

pulses is employed to excite the sample and the PicoSwitch,

respectively. At the University of Potsdam we use a

commercial Coherent Legend Duo system which provides

optical pulses (� = 800 nm, pulse energy = 8 mJ) with a

duration of 40 fs at a repetition rate of 1 kHz. For X-ray

generation, the laser pulses are focused onto a copper target in

a vacuum chamber. The target is wrapped on a system of

spools together with debris protection tape. Interaction of the

highly intense laser pulses with the copper target leads to the

emission of characteristic Cu K� X-ray (E = 8.047 keV) bursts

of 150 fs duration (Schick et al., 2012; Zamponi et al., 2009).

The temporal delay between optical pump and X-ray probe

pulses is realised by a mechanical delay stage. Since the X-ray

probe pulse is generated by the same laser as the pump beam,

both are perfectly synchronized. X-ray photons, which are

emitted in a solid angle of 4�, are collected using a Montel

X-ray focusing mirror having an image ratio of 1 :7. The mirror

is mounted 875 mm from the sample. The 4� emission angle,

the energy bandwidth and the focal distance reduce the

angular resolution to approximately 0.1� in a diffraction

experiment in convergence correction mode (Schick et al.,

2013), as indicated by the gray shaded area in Figs. 4(d) and

4(e). Reflected X-ray photons from the sample are detected

with a CMOS hybrid-pixel area detector (Dectris Pilatus

100K).

For the experiments at the ID09B beamline at the ESRF the

storage ring was running in 16-bunch mode, delivering

monochromated X-ray pulses at an energy of 12 keV and a

duration of 90–120 ps (Cammarata et al., 2009). The beamline

is equipped with a commercial laser system (Coherent

Legend) which yields 800 nm optical pulses with an energy of

1.5 mJ and a duration of 600 fs at a repetition rate of 1 kHz.

The laser oscillator was electronically phase-locked to the

synchrotron repetition rate, which allows for timing the delay t

between the amplified optical and X-ray pulses with an

accuracy of better then 5 ps. This is significantly shorter than

the X-ray pulse duration. The gated probe pulse reflected by

the PicoSwitch is inherently synchronized to the pump laser

after switching. For the second optical path, a mechanical

delay stage has been introduced to realise the pump–probe

delay �. X-ray photons have been detected with a plastic

scintillator (BC408, Saint-Gobain) attached to a Hamamatsu
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Figure 2
(a) Typical UXRD set-up. The PXS at the University of Potsdam delivers 150 fs X-ray pulses at an energy of 8.047 keV. A detailed description of the PXS
is given by Schick et al. (2012) and Zamponi et al. (2009). Laser parameters are: pulse energy 8 mJ, pulse duration 40 fs and repetition rate 1 kHz. The
pump fluence was set to 30 mJ cm�2. (b) Synchrotron-based pump–probe experiment. A Ti : sapphire laser system (Coherent Legend) is synchronized to
the repetition rate of the ESRF storage ring with an accuracy of �5 ps between the X-ray and laser pulses. Laser parameters are: pulse energy 1.5 mJ,
pulse duration 600 fs and repetition rate 1 kHz. The pump–probe scheme is shown in Fig. 4(a) in detail. X-ray photons diffracted from the sample are
captured in a photomultiplier (PMT) and counted in a single-photon-counting (SPC) unit.

Figure 1
Gate parameters defining the performance of an X-ray switch: turn-on
time �T, rise- and fall-time tr and tf , respectively, diffraction efficiency
before (�0), during (�max) and after (�1) switching and contrast before
(C0) and after (C1) switching.
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photomultiplier tube (H7422). The detector signal was fed to a

single-photon-counting unit controlled by computer.

It is important to note that the different X-ray energies used

during the PXS and the ESRF experiments lead to two

different angular ranges in the diffraction data presented in

this contribution. We preserved the original angular scales to

clearly distinguish the different experiments. The X-ray

response of the sample is essentially the same for both X-ray

energies used in the experiments. All diffraction data shown

were recorded on the (002) reflection of SrTiO3 (STO)

(substrate peak) and SrRuO3 (SRO) (layer peak). At an X-ray

energy of 12 keV, the maximum of the (002) reflection of SRO

appears at 15.2� (Fig. 3a). These data were recorded at the

ESRF. At an X-ray energy of 8.047 keV, the SRO layer peak

appears at 23.03� (Fig. 3b). These data were recorded at the

PXS at the University of Potsdam.

3. PicoSwitch characterization

The PicoSwitch consists of a thin SRO layer with a thickness

of dSRO = 15.4 nm which was epitaxically grown on an STO

substrate (Vrejoiu et al., 2006). A static �/2� scan recorded at

the ID09B beamline at the ESRF is shown by the green line in

Fig. 3(a). Note in particular that the peak reflectivity of the

(002) SRO reflection at X-ray energies from 8 keV to 12 keV

is �10�3. This corresponds to the highest achievable diffrac-

tion efficiency in the on-state, as defined in Fig. 1. The black

line is a simulation of the diffraction profile from the structure

using dynamic diffraction theory (Als-Nielsen, 2011).

To record the ultrafast response of the PicoSwitch to the

optical excitation, we resort to the UXRD set-up at the PXS at

the University of Potsdam (Schick et al., 2012). Fig. 3(b) shows

the shift of the SRO layer peak as a function of the delay after

excitation of the PicoSwitch with an ultrashort 800 nm pump

pulse. The interpretation of coherent phonon dynamics of an

excited layer is straightforward (Sokolowski-Tinten et al.,

2001) and the red solid line shows a simulation using a linear-

chain model (Herzog et al., 2012b). Excitation of the Pico-

Switch with an ultrashort optical pulse launches coherent

expansion waves starting at the air/SRO and SRO/STO

interfaces through the SRO layer, shifting the layer Bragg

peak to lower angles. The expansion waves propagate at the

sound velocity in SRO of vSRO = 6.3 nm ps�1 (Herzog et al.,

2012a; Schick et al., 2014). Reflection of the strain wave at the

surface converts the expansion that was launched at the SRO/

STO interface into a compression wave, which propagates

back through the layer and into the substrate, thus shifting the

Bragg peak back to about two-thirds compared with the

maximum expansion. Due to the perfect matching of the

acoustic impedances of SRO and STO (Herzog et al., 2012a),

there is no reflection at the interface. The coherent dynamics

in the SRO film last for �switch = 2dSRO =vSRO � 5 ps, i.e. the

time it takes for the strain waves to propagate back and forth

through the layer. For later times the peak position is given by

the remaining heat expansion, and heat conduction cools the

layer on a nanosecond timescale (Shayduk et al., 2011). Hence,

there is an angular range, which extends from 22.85� to 22.75�

in Fig. 3(b), where the ultrafast coherent phonon propagation

is responsible for the rise and fall of the diffraction efficiency.

This range can be exploited for ultrafast X-ray switching. For

the experiments conducted at the ESRF at an X-ray photon

energy of 12 keV, this angular range extends from 14.9� to

14.75� (Fig. 3a). In order to quantitatively compare the

experimental signal with theory we feed the spatio-temporal

strain map calculated in a linear-chain model into a simulation

of the dynamical X-ray diffraction, yielding the X-ray

response of the PicoSwitch Rðt; �Þ (Herzog et al., 2012b; Schick

et al., 2014). The result shows excellent agreement with the

measured dynamics of the peak shift demonstrated in

Fig. 3(b) and the corresponding intensity change plotted in

Fig. 3(c) when keeping the angle of the PicoSwitch fixed.

Fig. 3(a) shows the simulations in a broader angular range for

an X-ray energy of 12 keV. The red curve represents a simu-

lated rocking curve at a time delay of 2.25 ps after excitation.

At this moment the thin SRO layer is maximally expanded.

The blue curve, which is simulated for a delay of 4.74 ps,

depicts the situation where the coherent compression wave

has propagated into the substrate and thus terminates the

coherent dynamics in the PicoSwitch.
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Figure 3
Characterization of the PicoSwitch. (a) Green: measured diffraction
curve of the PicoSwitch. The data were recorded at the ID09B beamline
at ESRF at an X-ray energy of 12 keV. Black: simulation of the unexcited
structure; red: simulation for maximum layer expansion 2.25 ps after
optical excitation; blue: simulation at t = 4.75 ps after optical excitation.
At this delay all coherent sound waves have propagated into the
substrate. (b) Ultrafast shift of the layer peak measured at the PXS at the
University of Potsdam with an X-ray energy of 8.047 keV. The red curve
shows a simulation of the coherent phonon dynamics. (c) Measurement
(red bullets) and simulations (green and black solid lines) of the
PicoSwitch. The measurement was performed at the Plasma X-ray Source
(PXS) at the University of Potsdam. The simulation (green line) shows
excellent agreement with the measured data. A larger contrast and
switching efficiency is predicted for higher pump fluences (black line).
The angle �PS is the X-ray diffraction angle as defined in Fig. 2(a).
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4. Synchrotron-based pump–probe experiment

Now we apply the PicoSwitch, which was characterized in the

previous section by simulations and measurements at the

University of Potsdam, to a real synchrotron-based pump–

probe experiment in order to study the impulsive expansion of

a photo-excited metallic layer. These experiments were

performed at the ID09B beamline at ESRF. The output of a

Ti :sapphire laser amplifier is split into two beams in order to

pump the PicoSwitch and the sample separately with delays t

and �, respectively. The pump fluence was set to 15 mJ cm�2

on both the PicoSwitch and the sample. A detailed schematic

of the experimental set-up is shown in Figs. 4(a) and 2(b). The

electronic delay t is set so that the diffraction efficiency of the

switch is turned on and off approximately when the maximum

of the 100 ps X-ray pulse from the synchrotron impinges on

the PicoSwitch. It is held constant during the experiment. The

X-ray flux incident on the PicoSwitch was 3.4 � 1010 photons

s�1. The pump–probe delay � shifts the optical pump pulse for

the sample against the shortened X-ray pulse. The sample

under investigation was a 70 nm metallic SRO layer grown on

an STO substrate (Vrejoiu et al., 2006). The dynamics in the

sample can be understood in the framework of coherent

phonon propagation as described before. We employ this

structure as a reference to test the achievable time resolution

with the gated X-ray probe pulse. The diffraction angle of the

sample �S is set to the maximum of the SRO layer peak. After

excitation of the sample with the incident optical pulse, the

diffracted intensity decreases with a decay

time of 4.5 ps, comparable with the duration of

the gated X-ray pulse. Hence, the sample

response is essentially a step function. Fig. 4(b)

shows the measured relative change of the

diffracted X-ray intensity (black bullets) as a

function of the pump–probe delay �. The green

dash-dotted, black solid, red dotted and blue

dashed lines represent simulations of the X-

ray response assuming the simulated shor-

tened probe pulses depicted in Fig. 4(c) with

the same color code. The shape of the switched

pulse is determined by the Bragg angle �PS

chosen on the PicoSwitch and by the pump

fluence. The simulated signals plotted as lines

in Fig. 4(b) depict the normalized correlation

of the sample X-ray response RðtÞ at the fixed

angle �S with the shortened probe pulse

Pðt; �PSÞ for various diffraction angles �PS of

the PicoSwitch,

Xcð�; �PSÞ ¼
R1
�1 Pðt; �PSÞRð� þ tÞ dt
R1
�1 Pðt; �PSÞRð�1Þ dt

: ð1Þ

5. Discussion

In the following we explain the impact of

different probe pulse shapes on the measured

signal. For a better understanding we divide

the gated probe pulse shown in Fig. 4(a) into

three sections: (1) and (3) are determined by

the initial and final contrast C0 and C1,

respectively, while (2) represents the ultrafast

gate from the PicoSwitch. Figs. 4(b)–4(e)

present the main results of the synchrotron-

based optical-pump–X-ray-probe experiment

with the shortened X-ray probe pulse.

Experimental data are presented in Fig. 4(b)

(black bullets).

Figs. 4(d) and 4(e) show the angle depen-

dence of the initial and final contrast ratio C0
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Figure 4
Synchrotron-based time-resolved experiment. (a) Sketch of the experimental set-up
showing the fixed timing t of laser and X-ray pulses and the pump–probe delay �. If the
optical excitation pulse arrives earlier at the sample than the gated section of the X-ray
probe pulse, the pump–probe delay � is positive. The probe pulse is divided into three
sections: leading edge (1), ultrafast gate (2) and trailing edge (3). (b) Measured (black dots)
and simulated (green dash-dotted, black solid, blue dashed and red dotted lines) pump–
probe correlation signal Xc. The error bars indicate a confidence interval of �32%. The
simulations were obtained using equation (1). The angle �PS is color-coded. All simulations
are for the fluence F = 15 mJ cm�2 used in the experiment. Only the red dotted curve is
simulated for an optimized fluence of 20 mJ cm�2. (c) Shortened X-ray probe pulses for
different incident angles on the PicoSwitch color-coded as in (b). The black dashed line is
the original X-ray probe pulse. (d) Simulated initial (C0) and (e) final (C1) contrast as
defined in Fig. 1 for different Bragg angles on the PicoSwitch. The black solid lines show
simulations for a pump fluence of 15 mJ cm�2. The red dotted lines show a contrast for
stronger excitation with a fluence of 20 mJ cm�2. The colored vertical arrows mark the
angles where the probe pulses in (b) and (c) were calculated. The gray shaded area marks
the angular resolution of the PXS measurement.
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and C1, respectively. The angles �PS used in the simulations

shown in Figs. 4(b) and 4(c) are marked by color-coded

arrows. The black solid line is calculated for a pump fluence of

15 mJ cm�2; the red dotted line shows the contrast for a

fluence of 20 mJ cm�2. Note that features appearing in Xc at

positive pump–probe delays stem from badly suppressed

background photons in the leading edge of the probe pulse

marked (1) in Fig. 4(a). Features at negative � originate from

the trailing edge of the probe pulse, which is marked (3) and is

determined by the thermal relaxation of the PicoSwitch after

optical pumping (Shayduk et al., 2011). The sharp drop in Xc,

which is observed in the red, blue and black simulation in

Fig. 4(b), is caused by the short and intense section of the

probe pulse and is marked (2).

Our experimental data are best reproduced by the simula-

tion shown by the black solid line in Fig. 4(b). It shows a rather

slow initial decay (3) and it is flat after the gated probe pulse

(1), i.e. for positive �. This indicates a large initial contrast C0,

which is marked by the black arrow in Fig. 4(d). The sharp

drop from Xc = 0.4 to Xc = 0.25 at � = 0 ps indicates the

response to the ultrafast switching (2).

The simulation for larger �PS (blue dashed line) shows a

lower initial and higher final contrast, leading to deviations

from the observed correlation (black bullets). The dash-dotted

green line shows a case where both the initial and final

contrast C0 and C1 are lower. The dash-dotted green probe

pulse in Fig. 4(c) shows almost no ultrafast switching char-

acteristics. Instead, the contrast ratio changes abruptly from

C0 to C1. Hence, the ultrafast feature at � = 0 ps disappears

and in addition there are deviations from the measured signal

at negative �. The best simulated performance could be

obtained by increasing the pump fluence, as shown by the red

dotted line in Figs. 4(b) and 4(c). Due to limited beam time, a

corresponding measurement could not be realised. In essence,

Fig. 4 shows that we have performed an ultrafast X-ray

diffraction experiment with a synchrotron probe pulse which

was shortened to approximately 2 ps as indicated in Fig. 4(c)

by the black line.

For an optimized performance in future applications the

PicoSwitch must be pumped with about 33% higher optical

pump fluence. The simulation shown by the red dotted line in

Figs. 4(b) and 4(c) demonstrates an increased initial and final

contrast at the �PS chosen in the experiment. This parameter

setting on the PicoSwitch would result in a correlation signal

Xc shown by the red dotted line in Fig. 4(b). The corre-

sponding probe pulse is shown in Fig. 4(c). The essential

difference from the pulse used in the experiment is the higher

contrast. The switching time is identical. For comparison, the

X-ray flux of the gated pulse incident on the sample as well as

the relative proportions of the sections (1)–(3) according to

Fig. 4(a) are listed in Table 1.

While the PicoSwitch already allows for a significant

reduction of the X-ray pulse duration, it still requires further

development. In particular, the contrast ratio needs

improvement in order to sufficiently suppress background

photons that are reflected by the PicoSwitch in the off-state.

As shown in Figs. 4(c) and 4(d), the contrast can be optimized

through the diffraction angle on the PicoSwitch and through

the excitation fluence on the device. The main impediment to

increasing the contrast is the lattice expansion due to laser

heating of the device. Hence, the final contrast C1 is the

limiting parameter. The contrast can be improved by changing

the PicoSwitch structure from a thin film to a heterostructured

multilayer. In such a structure one layer could be employed

for the generation of a coherent expansion and compression

wave that would propagate into neighboring layers. There,

the central angle of the Bragg reflection would be shifted

according to the modification of the lattice spacing, allowing

for the same type of switching as was demonstrated in our

experiment. Since the propagation of the strain wave occurs

significantly faster than thermal diffusion, the switching would

be almost free of thermal background distortion.

However, our experiment shows that the PicoSwitch is

suitable for generating probe pulses that are capable of

resolving ultrafast dynamics on a few-picosecond timescale.

We would like to point out that the PicoSwitch can sustain

even higher fluences up to 40 mJ cm�2 without degradation.

The generated X-ray pulses are limited in duration to a few

picoseconds and are therefore longer than the pulses obtained

through slicing of the electron bunch. The achievable photon

flux is comparable. However, the PicoSwitch experiment is

significantly easier to implement. The temporal stability and

angular resolution of the gated X-rays are determined by the

synchrotron source. This is a significant advantage compared

with laser plasma sources, such as the PXS at the University of

Potsdam. We think that the PicoSwitch could by employed to

improve the performance of synchrotron sources for time-

resolved experiments in the future.

6. Conclusion

In conclusion, we have characterized and applied an ultrafast

X-ray switch for gating synchrotron X-ray pulses on pico-

second timescales. The shape of the shortened pulse can be

adjusted by selecting the Bragg angle on the switch and by

tuning the pump fluence. The switching relies on coherent

phonon dynamics which modulate the diffraction efficiency.

The rise and fall times tr and tf are determined by the layer

thickness and the speed of sound in the material. We

demonstrated a high switching contrast with a maximum

diffraction efficiency of �max ’ 10�3. The structure allows for

repetitive switching and no long-term degradation effects have

yet been observed. Hence, the device is suited for permanent

installation in time-resolved beamline set-ups. The applic-

ability of the PicoSwitch was demonstrated in a synchrotron-
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Table 1
X-ray flux (photons s�1) and relative proportions according to Fig. 4(a) of
the gated X-ray pulse for the simulations shown in Fig. 4(b).

X-ray flux (1) (2) (3)

Black solid 0.15 � 106 8% 22% 70%
Blue dashed 0.18 � 106 22% 38% 40%
Red dotted 2.8 � 106 7% 48% 45%
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based pump–probe experiment where we measured coherent

lattice dynamics in a nanostructured sample with picosecond

resolution.
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Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The
anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal
expansion or thermal conductivity, and a detailed understanding becomes increasingly important for
functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector
diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing
these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only
a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the
wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe
nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-
sensitive Brillouin scattering with x-rays and optical photons.

DOI: 10.1103/PhysRevLett.115.195502 PACS numbers: 62.25.-g, 63.20.-e, 78.20.hc, 78.47.J-

Basic physics lectures introduce phonons as uncoupled
quanta of the lattice excitation, i.e., delocalizedquasiparticles
with certain energy and momentum. The low-temperature
heat capacity of insulators and blackbody radiation are
fundamental macroscopic consequences of quantum
mechanics. Anharmonic effects are introduced to dis-
cuss heat expansion and thermal transport, where only
thermally activated phonons contribute to these phenom-
ena. Typically, theory averages over thermally excited
quantum states before properties of the “mean heat carrying
phonon” are compared to macroscopic measurements like
the temperature of a solid. Our Letter shows a route towards
detailed experimental information on mode-specific non-
linear interactions. This will facilitate fundamental tests of
the theory avoiding the calculation of thermal averages,
which inevitably obscure the full information.
Such progress is of high relevance for the “hot topic” of

heat transport manipulation in nanostructures which is
driven by the enormous size reduction of integrated circuits
[1–6] and the field of thermoelectrics. Recent work aims at
improving the conversion of waste heat into usable energy
by tailored phonon-phonon interaction processes [7–9].
Nonlinear effects have been predicted to yield efficient
thermal diodes [10]. Only in a few cases has the full phonon
dispersion relation including the linewidth (inverse life-
time) been measured by inelastic scattering [11–13], and at
low wave vectors the instrumental resolution currently sets
limits. Linewidth measurements yield mode-averaged dis-
sipation, but experimental knowledge about the dominant
coupled modes is unavailable. The free-electron lasers hold
great promise to access the coupling in the femtosecond
time domain using diffuse scattering and inelastic x-ray
scattering [14,15]. Recently, the coupling of terahertz
excited optical phonons with other optical phonons was

observed and presented as one example of nonlinear
phonon interactions [16].
Nonlinear phononics as discussed here shows many

analogies to nonlinear photonics in transparent media where
high electromagnetic wave fields yield nonlinear polariza-
tions. These processes are described by interacting photons
that fulfill momentum and energy conservation. The descrip-
tion of these optical phenomena is robust and extremely well
tested by an enormous number of experiments such as sum-
and difference-frequency generation or four-wave mixing.
The first analogous experiments on nonlinear phononics date
back to the 1960s, when collisions of two ultrasound beams
were studied in real time and space [17]. These experiments
somewhat resembled nonlinear optics before the utilization
of the laser. The required interaction volume was in the
centimeter range, and the time resolution was limited by the
10 MHz ultrasound frequency. The phonon analogue of
optical supercontinuum generation by femtosecond lasers
was studied in seminal picosecond-ultrasonics experiments
on the self-steepening of the strain-pulse fronts [18,19]
which finally lead to acoustic solitons [20–22]. In these
experiments, the excitation of nanometric strain waves was
not wave-vector specific. Recent progress in the creation and
detection of gigahertz and terahertz phonon wave packets
also known as hypersonic strain waves makes them a perfect
test ground to investigate phonon-phonon interaction proc-
esses on the nanoscale [23].
In this work, we combine the selective excitation of

longitudinal acoustic phonon wave packets with time-
resolved variants of x-ray and broadband Brillouin scattering
[23] to investigate the nonlinear interaction of phononswith a
specific wave vector. The experiments provide a high
temporal and spatial resolution for observing phonon dynam-
ics in real time over a broad range of wave vectors which

PRL 115, 195502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 NOVEMBER 2015

0031-9007=15=115(19)=195502(5) 195502-1 © 2015 American Physical Society

175



Second Harmonic Generation of Nanometric Phonon Wave Packets

correspond to the nanometer length scale. As the basic
example of nonlinear phononics, we shaped giant and ultra-
short phonon wave packets with well-defined momenta and
observed the generation of their second harmonic (SH).
To create such giant amplitude strain waves, ultrashort

laser pulses excite a metallic strontium ruthenate (SRO) film
deposited on a bulk strontium titanate (STO) substrate, a
system where we know the first-order lattice anharmonicity
[19] and where the acoustic impedances of the thin film and
substrate are nearly matched [24]. The metal film expansion
induced by each laser pulse launches a bipolar strain pulse
into STO [24]. A train of several laser pulses [Fig. 1(b)] with
a defined temporal delay τ creates a phonon wave packet
with a fundamental frequency of Ω ¼ 2π=τ [23,25,26]. If
the laser-pulse train is composed of femtosecond pulses
(blue lines in Fig. 1), the phonon wave packet exhibits

several sharp strain fronts [Fig. 1(c)], corresponding to the
excitation of higher harmonics n ·Ω. These harmonics are
identified in ultrafast x-ray diffraction (UXRD) experiments
from their wave vectorQ according to the dispersion relation
of longitudinal phonons [ω ¼ vLq, plotted in Fig. 1(d)]. For
small wave vectors, vLðqÞ is a constant describing the
longitudinal sound velocity. The UXRD data in Fig. 1(e)
were obtained with an ultrathin SRO transducer layer
(d ¼ 15 nm). The green curve displays the relative diffrac-
tion intensity before the four pump pulses (τ ¼ 11 ps) reach
the sample. The peak at G corresponds to the reciprocal
lattice vector (002) of the STO substrate. When the 100 ps
x-ray pulse was probing the sample shortly after the gen-
eration of the wave packet, additional diffraction intensity at
G� n ·Q ¼ n · 0.071 nm−1 was detected (blue curve). The
diffraction intensity is a direct measure of the spectral energy
distribution of the imprinted coherent phonon modes [27].
When we increased the width of the pump pulses from
ΔτFWHM ¼ 0.9 to 3.4 ps, the diffraction of higher orders ofQ
was suppressed and we observed only the additional scatter-
ing from G�Q (black curve) as suggested by the wave
vector diagram in Fig. 1(a). High-frequency components of
an oscillator can be excited only by stimuli which contain
these frequencies.
To demonstrate second harmonic generation (SHG) of

monochromatic phonon wave packets, we repeated the
UXRD experiment with a 70 nm SRO transducer, which
absorbs more optical energy. We used only two long laser
pulses (τ ¼ 17.7 ps and ΔτFHWM ¼ 5.3 ps) while keeping
the total incident laser fluence constant. This doubles the
local atomic displacement and quadruples the acoustic
energy density E ¼ E=V of the wave packet in the volume
V—defined by the beam area and the length of the wave
packet. This increased the up-conversion efficiency of
phonons at the expense of monochromaticity according
to the higher wave packet localization in space.
Figure 2(a) shows the fundamental phonon peak around

Q ¼ 0.044 nm−1 which was observed in the UXRD experi-
ment when the x-rays probed the sample immediately after
excitation. For time delays around 200 ps, a tiny peak at
2Q ¼ 0.088 nm−1 occurred. This rising SH is enhanced in
Fig. 2(b), where the measured diffraction signal is multi-
plied by q2 for better visibility. Figure 2(c) quantifies the
transient change of the peak area Σi in the vicinity of 0.044
and 0.088 nm−1 [28]. Σi ∼ Ei is proportional to the energy
density Ei ∼

R
ρEðq; tÞdq of the phonons around q ¼ iQ,

obtained from integrating the spectral energy density
ρEðq; tÞ over the bandwidth of the fundamental (i ¼ 1)
and the SH (i ¼ 2), respectively [27].
The signal Σ1 of the excited fundamental mode (red

diamonds) increased immediately after excitation, followed
by a nearly exponential decay. Σ2 describing the SH (cyan
dots) was delayed by approximately 200 ps. Thus, the SH
was not directly excited by the laser pulses but was only
generated by the propagation of phonons in the anharmonic
lattice of STO. The delay was longer than the 100 ps time
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FIG. 1 (color). Preparation and observation of phonon wave
packets. (a) X-rays with wave vector k are scattered (k0) by the
reciprocal lattice vector G plus a phonon with wave vector Q.
(b) A metal film is excited by a laser-pulse train with short (blue)
and long (black) pulses. (c) Short pulses excite phonon wave
packets at the fundamental and higher harmonics [rectangular
wave packet (blue)]. Excitation with long pulses suppresses
higher harmonics and generates a sinusoidal wave (black).
(d) The phonon dispersion relation connects the central frequency
Ω ¼ 2π=τ of the excited phonon wave packet with its corre-
sponding wave vector Q ¼ 2π=λ. (e) Experimental data of
ultrafast x-ray diffraction from the unexcited sample shows the
(002) substrate reflection (green). After excitation with short
pulses (blue), peaks at G�Q and G� 2Q occur. These peaks
originate from inelastic scattering by the induced phonon wave
packet. For longer pump pulses (black), the scattering at G� 2Q
is suppressed. This evidences that a narrow band phonon wave
packet without its higher harmonics was excited.
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resolution of this synchrotron experiment [37] and is a
direct evidence for the SHG of phonons. Although the SH
is continuously generated, it reaches its maximum very fast,
since the damping of phonons scales with the square of the
frequency.
The SH phonons damped out faster than the fundamental

as expected for the frequency dependence of the damping rate
Γ ∼ ω2 [27]. The gray lines in Fig. 2(c) show the damping
of both phonons corrected for effects of x-ray absorption in
STO [27]. The corrected exponential decay times for the
fundamental and the SH are 1056 and 300 ps, respectively, in
good agreement with the literature values [27,38].
To confirm our result and to explore the SHG of phonons

in the same sample in more detail, we performed broadband
time-domain Brillouin-scattering (TDBS) experiments,
which measure a substantial fraction of the phonon spectrum
from 0.035 to 0.06 nm−1 in STO [23]. We set the pulse
separation to τ ¼ 30 ps to let the SH phonon emerge at
2Q ¼ 0.052 nm−1, in the center of the spectrum accessible
by TDBS. The black line in Fig. 3(a) shows the time-
dependent optical reflectivity change at λ ¼ 580 nm which
corresponds to this wave vector. The reflectivity increases in
two steps from the two-pulse heating of SRO. We define the
time zero as 7.5 ps after the maximum of the second pump
pulse, confirmed by optical cross-correlation. The amplitude

of the small superimposed oscillations with the phonon
period 2Ω are a measure of how many second-harmonic
phonons are present in the sample [23,39]. The rising
oscillation amplitude indicates the nonlinear phonon inter-
action generating the SH of Q. The green line in Fig. 3(a)
shows almost no SH phonons just after the two pump pulses
with a pulse width of ΔτFWHM ¼ 15 ps. The maximum
number of these phonons is observed after approximately
600 ps. In the UXRD data of Fig. 2(c), the maximum is
observed earlier, because the phonons with larger wave
vector Q ¼ 0.088 nm−1 suffer a much stronger damping.
The broadband detection scheme allowed us to evaluate

the spectral content of this SH phonon wave packet
even more precisely. The relatively broad wave vector
spectrum that extends over a large fraction of the visible
range [Fig. 3(b)] results from the spatial confinement of the
excited strain wave to two oscillation cycles [23]. We
extracted the oscillation amplitude aðq; tÞ of the relative
reflectivity change as a function of the time delay for each
probe wavelength λ corresponding to the different wave
vectors q which compose the wave packet in the vicinity of
2Q [28–36,40].
In these experiments, the spectral energy density of the

acoustic wave packet ρEðq; tÞ is proportional [39] to the
square of the reflectivity modulations aðq; tÞ2 divided by
q2: ρE ∼ aðq; tÞ2=q2. The experimentally derived energy
proportional quantity aðq; tÞ2=q2 is plotted in Fig. 4(a) as
contour lines and compared to the transiently changing
spectral energy density ρEðq; tÞ calculated on the basis of a
Fermi-Pasta-Ulam (FPU) α-β chain with an empirical
damping term. The FPU chain is widely used in theory
to investigate phonons in the nonlinear lattice as well as
heat transport in 1D [41–44]. In fact, we simulated a chain
of oscillators with masses describing SRO and STO
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FIG. 2 (color). Transient x-ray diffraction from photoexcited
phonons and their SH. (a) X-ray diffraction signals around the
(002) lattice plane of the STO substrate. (b) Diffraction signals on
the right shoulder of the STO substrate peak weighted by q2 for
better visualization. The peak around Q ¼ 0.044 nm−1 after time
zero reflects the optically excited coherent phonon wave packet
with the central wave vectorQ. After a delay of 200 ps, additional
diffraction intensity around 2Q heralds the SH ofQ generated via
anharmonic phonon phonon interaction. (c) The gray (black)
lines quantify the transient change of the integrated peak
intensities of the fundamental and its second harmonic with
(and without) a correction for the x-ray absorption.
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FIG. 3 (color). SHG of phonons observed by TDBS. (a) Tran-
sient relative reflectivity change at 580 nm (black line). The
stepwise increase indicates the laser excitation of the metal film
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(green line) originate from the SH phonons. The oscillation
amplitude grows with the number of phonons up-converted to
their SH. (b) Measured reflectivity oscillations across the white
light probe spectrum. For each wavelength, the oscillation
amplitude measures the occupation of a certain phonon q.
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unit cells connected by anharmonic springs, where the
second-order elastic constants along the [001] direction
were derived from the speed of sound determined by time-
resolved measurements [19,24,28]. From the comparison
of the experimental data to the simulation, we found a third-
order elastic constant describing the lattice anharmonicity
in STO C111 ¼ −3.9 × 1012 N=m2 consistent with single-
pulse time-resolved Brillouin scattering experiments [19].
It is 20% smaller than the value measured by megahertz
acoustics at a frequency which is 3 orders of magnitude
smaller [45]. In the calculation, the first few oscillators
representing the opaque SRO film experience quasi-
instantaneous [46] forces which describe the ultrafast
heating by the two laser pulses. The force amplitude is
known from previous UXRD measurements of the ultrafast
lattice dynamics of SRO films [24].
Figure 4(b) shows ρEðq; tÞ on a logarithmic scale over a

broader wave vector range. The fundamental mode at
0.025 nm−1 is indeed excited at t ¼ 0 ps, and subsequently
phonons at the second and third harmonics are generated.
The second harmonic is generated earlier than the third
harmonic. This is an intrinsic feature of this linear chain
calculation. By considering only the third order of the
lattice potential as the nonlinear term, only three phonon

processes are allowed [47,48], and the third harmonic can
only be generated via two sequential scattering processes.
By observing the very weak third-harmonic generation, one
could get information about the importance of higher orders
of the lattice potential.
A pronounced feature of the measured data is the slow

shift of the spectral distribution towards smaller wave
vectors. The physical origin is uncovered by the simula-
tions which show that the compressive strain front travels
faster than the expansive strain. Since the wave packet
contains only two strain cycles, this leads to a slightly
increasing central wavelength of the wave packet [19,28].
This effect is much less pronounced for wave packets with
more cycles.
Finally, the solid lines in Fig. 4(c) show the square root

of the energy density E2 of the generated SH as a function
of time for three different initial energy densities E1 of the
excited fundamental mode. The initial linear increase and
the linear dependence

ffiffiffiffiffi

E2

p
∼ E1 are characteristic for this

second-order nonlinear process of sum frequency gener-
ation or three-phonon scattering in general [48]. The
corresponding experimental data obtained from integrating
aðq; tÞ2=q2 over the samewave vector range show excellent
agreement. Both the experimental and simulated energy
density in Fig. 4(c) take into account that, for the same total
energy deposited, the energy density is larger for higher
wave vectors. To achieve the highest energy density, it was
necessary to increase the wave vector to q ¼ 0.03 nm−1 in
order to avoid multishot damage of the sample.
Conclusion.—With the generation of the SH of a certain

well-defined phonon wave packet, we have demonstrated a
first conceptually simple experiment that monitors an
elementary process of nanoscale nonlinear phononics in
real time. The observed damping of the fundamental and
SH to other modes is proportional to the square of the wave
vector. We strongly believe that these experiments stimulate
a series of new experiments ranging from simple extensions
such as difference-frequency mixing to more complex
experiments which are analogs of four-wave mixing, well
known in experimental photonics. Future investigations
may address the coupling of optical phonons to acoustic
phonons and extend the phase-matching considerations by
including also transverse polarisation of phonons and by
going to larger wave vectors where the dispersion relation
is bending over. Improvements of the signal-to-noise ratio
may eventually permit studies on the single quantum level.
A similar stimulus may be expected for theory. The Fermi-
Pasta-Ulam chain can well predict effects related to
longitudinal phonons. Modeling anharmonic phonon
propagation and interaction in three dimensions including
longitudinal and transverse phonon polarization in detail
remains a major challenge. Exploring the physical nature of
phonon damping processes and describing soft mode
behavior in the vicinity of structural phase transitions by
simulations and analytical theories can now be compared in
detail to experimental results on a microscopic level.
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FIG. 4 (color). Comparing SHG experiments to the theory.
(a) The color code shows the calculated transient change of the
spectral energy density ρE around the SH of the excited phonons.
The square of the measured relative reflectivity oscillation
amplitude divided by q2 in units of 10−7 nm−2 is overlaid as
contour lines. (b) Calculated ρE over a broader range of wave
vectors in the log scale. The photoexcited fundamental is trans-
formed into the second and third harmonics. (c) visualizes
the measured transient energy density change of the SH for
different initial energy densities E1 (red ¼ 13, blue ¼ 67, and
black ¼ 235 nJ=cm3) of the wave packet and compares this with
theoretical calculations (solid lines). The wave vector for the
highest energy density was q ¼ 0.03 nm−1, somewhat larger than
the q ¼ 0.025 nm−1.
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Epitaxially grown metallic oxide transducers support the generation of ultrashort strain pulses in SrTiO3 (STO)
with high amplitudes up to 0.5%. The strain amplitudes are calibrated by real-time measurements of the lattice
deformation using ultrafast x-ray diffraction. We determine the speed at which the strain fronts propagate by
broadband picosecond ultrasonics and conclude that, above a strain level of approx. 0.2%, the compressive and
tensile strain components travel at considerably different sound velocities, indicating nonlinear wave behavior.
Simulations based on an anharmonic linear-chain model are in excellent accord with the experimental findings
and show how the spectrum of coherent phonon modes changes with time.

DOI: 10.1103/PhysRevB.86.144306 PACS number(s): 43.35.+d, 43.25.+y, 61.05.cp, 63.20.kg

Acoustic wave propagation and the deformation of solids
are usually analyzed within the approximation of harmonic
interatomic potentials leading to the concept of decoupled
acoustic phonons including their dispersion relation which is
nearly linear for small wave vectors kP . An anharmonicity
must be introduced into the interaction potential in order
to describe deformation under very high stress. But also
small-phonon-amplitude phenomena are connected to phonon-
phonon interaction processes, such as heat expansion and
heat conduction.1 For the material investigated in this paper,
SrTiO3 (STO), all these properties have been studied in detail,
since STO is the generic dielectric (quantum paraelectric)
perovskite oxide with a variety of interesting properties near
its structural phase transition at 105 K. The elastic constants
were determined by ultrasound measurements,2 the damping
of acoustic phonons was investigated by the linewidth of
Brillouin scattering3 and apparent deviations of the acoustic
dispersion were discussed in the context of picosecond
ultrasonics measurements.4 Recently ultrafast x-ray diffraction
(UXRD) was used to accurately measure the propagation
and decay of quasimonochromatic strain pulses in STO.5 In
general, UXRD data yield unambiguous information on the
ultrafast lattice response, which is helpful for the interpretation
of optical pump-probe investigations concerning complex
problems in solids.6–8

In theory, the changes in the occupation of phonon modes
are described as phonon damping due to scattering from
defects or anharmonic interaction with thermally activated
phonons.9–12 For high strain amplitudes also interactions
among coherent phonons are possible, which leads to a
shape change of coherent phonon pulses. In particular, the
self-steepening of strain pulses in sapphire giving rise to
N-waves, shock waves, and soliton pulse trains were measured
after a long propagation length of more than one hundred
microns.13–16 These solitons were observed at low tempera-
tures where phonon damping is weak and were discussed by
nonlinear wave equations.16–18

In this paper we investigate the nonlinear propagation
of giant longitudinal acoustic (LA) bipolar strain pulses in
SrTiO3. We calibrate the strain amplitude by UXRD and
show how the mode spectrum constituting the wave changes

as a function of time. Simulations based on an anharmonic
linear-chain model yield excellent agreement with ultrashort
broadband optical reflectivity measurements and show that
compressive strain components propagate faster than tensile
strain components. The dependence of the sound velocity on
the strain gives rise to a self-steepening of the strain fronts. We
analyze the experiments in a linear-chain model with atomic
resolution, although for the presented results a continuum
model would also be applicable. There are several advantages
of this approach and the discussion of sound waves in terms
of phonons. First we anticipate experiments for very high
wave vectors approaching the Brillouin zone boundary. At
a temperature of 110 K, STO undergoes an antiferrodistortive
phase transition connected to an optical phonon mode which
softens near the zone boundary.19 For connecting the nonlinear
parameters derived in the present paper with the physics near
the phase transition our approach will be very helpful. Finally,
ultrafast x-ray diffraction naturally supports simulations with
unit cell accuracy, and we show in Eq. (1) that in our
picosecond ultrasonics experiments the different wavelengths
of the reflected photons are sensitive to particular wave vectors
of phonons.

We use an epitaxially grown La0.7Sr0.3MnO3 (LSMO)
transducer film on a SrTiO3 (001) substrate, fabricated by
pulsed-laser deposition. The red symbols in Fig. 1(a) show
a θ -2θ scan of the sample recorded at the energy dispersive
reflectometer (EDR) beamline of the synchrotron BESSYII
of the Helmholtz-Zentrum-Berlin. The bright substrate peak
at θ = 23.25◦ is cut off to show the less intense layer peak
(LSMO) at 23.58◦ more clearly. The excellent agreement
with the simulation (black solid line) confirms the crystalline
perfection of the epitaxial film with a thickness of dLSMO =
36 nm, which is very robust against high excitation densities
and supports high strain amplitudes. To calibrate the amplitude
of the strain wave we measure the expansion of the metallic
layer via the shift of the x-ray diffraction signal [Figs. 1(b)
and 1(c)] after optical excitation by 50 fs laser pulses around
800 nm wavelength with a fluence of 20 mJ/cm2. To probe
the structural dynamics we use an x-ray plasma source
which provides jitter-free x-ray pulses with a duration of
approximately 200 fs.20 The transient angular shift �θ of the
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FIG. 1. (Color online) (a) Static θ -2θ scan of the (002) peaks of
the LSMO-STO sample showing a weak and broad layer (LSMO)
peak and a much brighter and narrower STO substrate peak.
(b) Transient UXRD signal after pumping with a laser pulse. The
layer peak shifts to smaller angles indicating the expansion of LSMO
within 6 ps (logarithmic color code). (c) Two cuts of panel (b) with
pump-probe delays −2 ps (before pumping) and 12 ps (when the
strain pulse has left the layer).

LSMO Bragg peak can be read from Fig. 1(b) for time delays
up to 15 ps. The shift is connected to the layer strain ε by
Bragg’s law. Figure 1(c) shows the diffraction curve for a time
delay of 12 ps yielding an induced LSMO strain of ε = 0.2%.

The observed time dependence of the LSMO Bragg
peak can be understood as follows:21,22 The absorbed pump
pulse induces a quasi-instantaneous thermal stress which
is unbalanced at the layer boundaries. This leads to two
strain fronts which propagate away from the air-LSMO and
LSMO-STO interfaces eventually building up a bipolar strain
pulse in the STO substrate.23 The maximum expansion occurs
at T = dLSMO/vLSMO = 6 ps after the excitation, when the
expansion waves starting from the surface and the interface
have traveled through the film at the velocity of sound in
LSMO, vLSMO.24 After 12 ps the coherent strain wave has
completely left the LSMO layer and entered the STO substrate.
Reflections of the sound wave at the interface with good
acoustic impedance matching can be neglected.21,24,25

In previous experiments we confirmed that the layer
strain depends linearly on the excitation fluence26 and
that the corresponding bipolar strain wave propagates
into the STO substrate.21 Hence we conclude a cal-
ibration factor of 0.01% LSMO strain per 1 mJ/cm2

fluence. The strain amplitude of the bipolar pulse in
the STO is half of the LSMO strain after 12 ps
weighted with the ratio of the layer and substrate sound

velocities which considers the bipolar pulse stretching in the
STO.21,24,25

Having calibrated the amplitude of the lattice response,
we follow the propagation of the bipolar strain pulse by
optical pump-probe measurements. The setup is very similar
to the broadband picosecond ultrasonics setup reported by
Pontecorvo et al.27 We split the 800 nm laser light into two
parts. The intense part is used to pump the sample with fluences
ranging from 14 to 47 mJ/cm2 and the smaller part is focused
into a sapphire plate to generate a white light supercontinuum
pulse. This spectrally broad light pulse ranging from 470 to
700 nm is reflected from the sample under an angle α = 45◦
with respect to the surface normal. We measured the relative
transient reflectivity change �R/R0 of the sample for four
different fluences at pump-probe delays up to 1 ns with
a resolution of 1 ps. Figure 2 shows the response of the
sample after correction for the chirp of the white light probe
pulse and after subtraction of the slowly varying background
which is associated with the transient heat in the LSMO film.
Figure 2(a) shows the relative change of reflectivity for the
lowest fluence (14 mJ/cm2) and Fig. 2(b) shows the same for
the highest fluence (47 mJ/cm2).

All measurements show pronounced oscillations which
exhibit a period increasing with the probe wavelength λ.
At high fluences we additionally observe a wavelength-
dependent beating of these oscillations. The oscillations can
be understood as an interference of the light wave reflected
by the sample surface with the light wave reflected due to
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FIG. 2. (Color) Relative optical reflectivity change of the LSMO-
STO sample for a pump fluence of (a) 14 mJ/cm2 and (b)
47 mJ/cm2. The low-frequency background was subtracted by high
pass filtering. The probe pulse wavelength is given by λ (left
axis). Both measurements show oscillations which are attributed to
Brillouin backscattering of a photon from a phonon with wave vector
kP (right axis). For strong excitation conditions (b) we observe a
beating in these oscillations.
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the refractive index change induced by the propagating strain
wave.23

In order to explain how a photon with wave vector kL is
selectively probing a certain phonon with wave vector kP ,
we describe the propagating wave front as a superposition
of longitudinal acoustic (LA) phonons with wave vector kP .
Then the “reflection” of the probe light from the strain pulse
can be understood as Brillouin backscattering of optical light
with wave vector kL. Therefore, such oscillations are often
denoted as “Brillouin oscillations” in the literature.28 The
observed frequency ωP of the signal oscillation corresponds
to the eigenfrequency of the LA phonon with wavevector
kP . According to energy and momentum conservation the
latter is related to the probe wavelength λ by the Brillouin
backscattering condition

kP = 2k⊥
L = 4π

λ
n(λ) cos(β), (1)

where k⊥
L is the internal optical wave vector component along

the surface normal and n(λ) is the refractive index of STO
which is taken from the literature.29 The internal angle β is
related to α by Snell’s law. Equation (1) implies that the probe
wavelength is specific for a certain wave vector of LA phonons.
The amplitude of oscillations at each wavelength λ and time
interval is a measure of the phonon amplitude of a specific
phonon wave vector kP . The beating observed in Fig. 2(b) is
therefore interpreted as a change of the phonon spectrum in
time. In particular, the beat node indicates the absence of a
certain wave vector kP at a certain time delay after excitation.
This will be discussed in the context of Fig. 4.

Now we discuss how to derive the sound velocity from
the measured data shown in Figs. 2(a) and 2(b). The linear
dispersion relation of acoustic phonons near the Brillouin
zone center is given by ωP (λ)/kP = vs and thus relates the
observed oscillation frequency ωP (λ) to the speed of sound
vs for the LA phonons in STO:

vs = ωP (λ)λ

4πn(λ) cos(β)
. (2)

We then calculate the fast Fourier transform I (ωP ,λ) along
the time axis for each probe wavelength λ. This yields a
relation between λ and the related oscillation frequencies
ωP (λ), which implies a dependence of the sound velocity
vs on the phonon wave vector kP according to the Brillouin
backscattering condition. We use Eq. (2) as a coordinate
transformation vs(ωP (λ),λ) which transforms our Fourier-
transformed data into a wavelength-dependent sound velocity
distribution I (vs,λ). By integration of the calculated result over
all wavelengths we obtain Fig. 3, which shows the measured
sound velocity distributions for different photoinduced LSMO
strains calibrated by the results of the UXRD measurement.
At low strain (0.14%) we observe a single peak around 8
nm/ps which is in a good agreement with the known sound
velocity of the LA phonons in STO.25 This peak validates
the linear dispersion at low fluence. A nonlinear dispersion
(kP -dependent sound velocity) would lead to a broadened
distribution.

However, with increasing strain amplitude we find a
splitting in the sound velocity distribution. This implies that,
for large strains, the speed of sound depends on the strain
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FIG. 3. (Color online) Measured sound velocity distribution of
the induced strain pulse in STO. The different pump fluences were
calibrated with the UXRD measurement to the resulting induced
strains of the LSMO layer which is directly linked to the strain ampli-
tude of the bipolar strain pulse in the STO. The narrow distribution for
0.14% strain implies that the entire strain pulse essentially propagates
with a speed around 8 nm/ps. With increasing strain amplitude the
sound velocity distribution gets broader and eventually a double-peak
distribution is established. At high excitation levels different parts of
the strain pulse propagate with different velocities. The stars indicate
the sound velocities of the self-steepened sound pulses simulated in
Fig. 4(a).

amplitude. The strain amplitude itself modulates the sound
velocity of the medium.

To verify these assignments and to understand the un-
derlying excited phonon spectrum, we simulate the lattice
dynamics in a linear-chain model which was successfully
tested against UXRD data in several cases.21,30 In addition
to the model proposed in Ref. 21, we introduce an anharmonic
potential between adjacent oscillators in order to describe the
nonlinear wave propagation. Moreover, we add an empirical
phonon damping term proportional to the velocity difference
of adjacent oscillators. Mathematically the system is described
by N coupled oscillators where each oscillator describes one
lattice plane (half unit cell) of the LSMO thin film or the
STO substrate. The set of N coupled second-order ordinary
differential equations is

miẍi = kM (�i − �i−1) + aM

(
�2

i − �2
i−1

)
+ miγM (�̇i − �̇i−1) + Fi(t), (3)

where �i = xi+1 − xi and i = 2, . . . ,N − 1. The potential
is nearly harmonic with a small cubic term. This leads to
the linear and parabolic force terms in the coupling force of
Eq. (3), where mi is the mass of the oscillator, kM is the
spring constant, aM is the anharmonicity parameter, and γM

is a material specific damping constant.31,32 At the interface
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of LSMO and STO the differential equation is asymmetric,
since kM , aM , and γM cannot be factored out as in Eq. (3). The
first and the last oscillator have no opponent. This defines the
boundary condition. We used N = 48182 oscillators, i.e., the
first 9.4 μm of the STO substrate are included in the lattice
dynamics simulations.

The elastic properties of LSMO and STO were taken from
the literature.24,25 For the anharmonicity of STO we made a
first approximation from the hydrostatic pressure dependence
of the elastic constants, which leads directly to a qualitative
agreement.2 We then varied the anharmonicity of STO and
LSMO to find quantitative agreement of the theory with the
experimental data. The final value of the anharmonicity of STO
reads 1.8 × 1013 kg s−2 m−1, which is only 10% smaller than
the first guess. The anharmonicity in the LSMO transducer
film has only little influence on the dynamics because of the
short propagation length. For this we finally used a value of
3 × 1013 kg s−2 m−1. For the damping parameter γi we used
a value which yields good agreement for phonon damping in
STO observed by UXRD.5

Fi(t) describes the driving force of the oscillators due to
the optical excitation process. We assume an instantaneous
force step Fi(t) at time zero according to the strong electron-
phonon coupling in the metallic oxides.8 The spatial excitation
profile Fi(t) follows an exponential decay determined by the
penetration depth of the optical pump light. Accordingly,
deeper-lying unit cells exhibit less expansion.21

Figure 4(a) shows the simulated strain profile for different
times after excitation of the sample with the smallest
(black line) and largest (blue line) strain amplitude in the
copropagating frame of reference. The center of the bipolar
pulse which has a strain level close to zero propagates with the
normal speed of sound, which is only valid in the harmonic
approximation. In the regions with high amplitude the strain
modulates the elastic constants. This nonlinear interaction
between the masses changes the shape of the bipolar pulse, in
particular leading to a self-steepening pulse front and tail. The
tensile part is slower and the compressive part is faster than
the sound velocity vs of the harmonic linear chain. The speed
of the pulse front propagation is read from the simulation and
indicated in Fig. 3 as stars. The good agreement verifies the
interpretation of the measured splitting of the sound velocity
distribution.

For further comparison to the measurement and to interpret
the impact of the anharmonic interaction on the classical
decoupled oscillators called phonons, we analyze the simu-
lated strain profiles in Fig. 4(a) by calculating the Fourier
amplitudes A(kP ,t) of sinusoidal waves composing the wave
packet for each time delay t . This is essentially an amplitude
of phonons (decoupled modes) which describes the wave
packet. For better comparison to the experimental observable
we plot A/λ in Fig. 4(c), because for a transparent medium
the reflectivity modulations scale inversely with λ according
to equations (35–38) in the seminal paper of Thomsen et al.23

The distribution of coherently excited phonons rapidly shifts
to smaller kP vectors.

Figure 4(b) shows the amplitude of the measured Brillouin
oscillations [Fig. 2(b)], which is proportional to the phonon
amplitude of the phonon with wave vector kP .23 During the
time sequence 240, 320, and 410 ps the first minimum of
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FIG. 4. (Color) (a) Spatial profile of the bipolar strain pulse in
the STO for different propagation times in a frame of reference
propagating with the speed of sound vs for high amplitude (blue
line, 0.47% strain) and low amplitude (black line, 0.14% strain).
For large amplitude, the tensile part of the pulse propagates with
subsonic speed and the compressive part propagates with supersonic
speed indicated by the stars in Fig. 3. (b) Measured amplitude of
oscillations for each wavelength connected to the wave vectors by the
Brillouin backscattering condition. The region between the vertical
black lines indicates the wave vectors that can be accessed by the
optical white light. (c) Phonon amplitude divided by the wavelength
λ (see text) as a function of wave vector calculated from Fourier
transforms of the simulated strain profile, showing good agreement
with the measurement in panel (b).

the phonon amplitude is moving through the experimental
window of observation given by the Brillouin backscattering
condition [Eq. (2)]. These minima represent the fact that,
at a certain point in time, these phonons are not occupied.
This is the fundamental interpretation of the beating of the
measured oscillations. The simulation reproduces also the
second measured amplitude minimum [Fig. 2(b)], which
moves into the observed wavelength range about 700 ps after
excitation (not shown).

We now discuss the physics behind the anharmonic linear-
chain model leading to the excellent agreement of theory
and experiment. Deformations are only reversible if they
are infinitely slow and if the thermodynamic system is in
equilibrium at any time. This is not the case for phonons
which have a finite oscillation period. The phonon has to damp
out because of the intrinsic irreversibility of the oscillation.
In other words, the coherent phonon amplitude goes down
by dissipating energy to the heat bath.5,9–12 In our model we
consider this fact by the hydrodynamic damping term γM in
the second line of Eq. (3).

The force term to second order in strain [aM in Eq. (3)]
is given by the anharmonic interactions of atoms which
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contribute only for large strain amplitudes. The set of differen-
tial equations [Eq. (3)] can be approximated by a Korteweg–de
Vries–Burgers equation (KdVB) if the phonon wavelength is
much larger than the lattice constant.33 This is advantageous
to find asymptotic solutions such as solitons. Our approach is
useful for the calculation of solutions with certain excitation
conditions and for considering acoustic mismatches of differ-
ent materials. We can account for dispersion higher than third
order and compute solutions with phonon wavelengths close
to the lattice constant.

In conclusion, we determined the transient phonon spectra
of nonlinearly propagating strain pulses in strontium titanate

by transient reflectivity measurements for different fluences,
which are experimentally calibrated by time-resolved x-ray
diffraction. An anharmonic linear-chain model with phonon
damping reproduces the measured spectra in a quantitative
way and verifies the interpretation of the transient reflectivity
measurements. The anharmonicity thus changes the phonon
occupation in time and leads to compressive and tensile strain
fronts traveling at 1% faster and slower speed, respectively.

We thank the DFG for supporting the project via BA 2281/3-
1 and SFB 762.
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We study the linear and nonlinear acoustic response of SrTiO3 across its ferroelastic transition at
Ta ¼ 105 K by time domain Brillouin scattering. Above Ta we observe that for a strain amplitude of
∼0.18% the sound velocity for compressive strain exceeds the tensile strain velocity by 3%. Below Ta we
find a giant slowing down of the sound velocity by 12% and attribute this to the coupling of GHz phonons
to ferroelastic twin domain walls. We propose a new mechanism for this coupling on the ultrafast time
scale, providing an important new test ground for theories used to simulate atomic motion in domain
forming crystals.

DOI: 10.1103/PhysRevLett.114.047401 PACS numbers: 78.35.+c, 62.25.Fg, 63.20.Ry, 78.20.hc

SrTiO3 (STO) is a dielectric perovskite which exhibits
quantum paraelectric behavior at low temperatures [1]. It is
widely used as a substrate material for the growth of
perovskite thin films, e.g., to create novel nanoelectronic
phenomena and applications. Hence, understanding the
dynamics of the domain pattern in the substrate is crucial
[2,3]. The various structural phase transitions and the
domain pattern of STO have been subject to extensive
research [4–12]. The elastic behavior of STO has been
studied since the 1960s [13–16] and has recently attracted
attention due to the observation of a very high mobility of
domain walls in the antiferrodistortive phase [5,17].
STO undergoes an antiferrodistortive phase transition at

Ta ¼ 105 K, where the oxygen octahedra in adjacent unit
cells rotate against each other around one of the cubic axes
[18]. This motion is described by a triply degenerate optical
zone edge mode, which softens towards the phase transition
[11,19]. It is accompanied by a doubling of the unit cell and
a small tetragonal elongation of the c axis oriented parallel
to the rotational axis of the octahedra [4,11]. Domains are
formed with the elongated axis oriented in one of the three
possible directions. The formation of these so-called twin
domains can be suppressed by external pressure [17,20], is
altered near the crystal surface [12], and is strongly
influenced by the presence of a surface layer [10]. The
coupling of acoustic phonons to the soft optic mode leads to
an anomaly in the acoustic properties [13,21] of the
material and to an increased dissipation at the phase
transition [15,16,22]. The induced softening of the acoustic
modes at the transition is superimposed by an even larger
softening below Ta that can be attributed to the coupling of
phonons to domain walls between areas of differently
oriented c axes (twin walls) and has been termed supere-
lastic behavior [17]. This additional softening is minimized,
when the domain formation is reduced, for example by
external pressure [17,20]. The data compilation by

Carpenter shows a large variation of the sound velocity
below Ta [9]. However, all data obtained by Brillouin
scattering, i.e., experiments sensitive to GHz phonons,
show only the small drop in sound velocity at Ta that is
attributed to the coupling to the soft mode [22–24].
In this Letter we study the elastic behavior of STO by

time domain Brillouin scattering (TDBS) [25]. We start in
the regime of linear response and extend our measurements
into the regime of nonlinear sound propagation. The
amplitude of the strain pulses is calibrated using ultrafast
x-ray diffraction (UXRD) [26,27]. When the hypersound
strain amplitude exceeds ∼0.1%, we observe a giant
reduction of the sound velocity below Ta, similar to the
superelastic behavior observed for low frequency strain.
This was previously thought to be impossible for GHz
frequencies [17,28,29]. Our experiments suggest that this
phenomenon occurs for GHz sound only when the strain
amplitude is large enough to establish a new mechanism for
coupling to the twin walls. It is enabled when the transient
unit cell deformation exceeds the tetragonal distortion. We
argue that under these conditions the velocity of the domain
wall motion approaches the sound velocity and that the
relevant time scale enabling full superelastic behavior is
determined by the time τ ¼ D=vs it takes lattice deforma-
tions to propagate through the average size D of the
domains at the speed of sound vs.
We use optical pump pulses with a wavelength of

800 nm and 120 fs pulse duration at a repetition rate of
5 kHz to excite few nanometer thick metal transducer films
on STO substrates. We use excitation fluences in the range
between 15 and 45 mJ=cm2. The rapid expansion of the
metal film launches bipolar strain pulses into the STO
which are probed by TDBS: an ultrashort white light
continuum pulse generated in a sapphire disc is reflected
from the sample and spectrally resolved by a fiber-optic
spectrometer for broadband detection [25,26]. This method
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relies on the interference of the probe light reflected from
the sample surface with a component reflected from the
traveling strain pulse. Constructive interference is given
when the optical path difference between the interfering
light beams amounts to integer multiples of the light
wavelength. This leads to a transient reflectivity signal
which oscillates at the frequency

νðλÞ ¼ vs2nðλÞ cosðβÞ=λ; ð1Þ

where λ is the probe wavelength, β is the internal angle of
incidence with respect to the surface normal, and nðλÞ the
wavelength dependent refractive index extracted from the
literature [30]. The measured oscillation frequency νðλÞ is
equal to the frequency νphðkphÞ of the observed phonon
with wave vector kph ¼ 2π=λph ¼ 2π2nðλÞ cosðβÞ=λ, for
which the Brillouin backscattering condition is fulfilled
[25]. Here, λph is the wavelength of the detected phonon.
The sample is mounted in a closed cycle refrigerator
allowing for a temperature dependent series of
measurements.
We mainly discuss experimental data obtained from a

37 nm thick (La0.7Sr0.3)MnO3 (LSMO) transducer grown
by pulsed laser deposition onto a single-crystalline
(100)-STO substrate (CrysTec, Berlin, miscut angle of
0.1°) [31]. Several similar samples have been measured
in order to verify the conclusions, as will be discussed in the
text below. Figure 1 shows high fluence data for three
selected probe wavelengths at room temperature. The raw
data are cut shortly after the fast electronic response at
t ¼ 0 and a slowly varying background is subtracted. The
remaining signal oscillates at the frequency given by
Eq. (1). In addition, the signal oscillations are modulated
by a slow beating

νbeating ¼ Δvs2nðλÞ cosðβÞ=λ; ð2Þ

which can be attributed to the difference Δvs of the sound
velocities present in the material [26]. In this case, for large

amplitude strain in STO at room temperature, the sound
velocity for compressive strain is larger than that for tensile
strain. This is supported by calculations using an anhar-
monic linear chain model [26] and by UXRD experiments
using acoustic pulse trains [32]. In Fig. 2 the beating is only
present for large strain amplitudes (red curves). In the linear
regime (low fluence, blue curves), we obtain a single
Brillouin oscillation frequency νðλÞ, i.e., a single value
for the sound velocity. The amplitude of the generated
sound pulse in STO has been calibrated by measuring the
maximum expansion of the LSMO film after 6 ps using
UXRD with 200 fs time resolution [26]. The strain
amplitude in the STO amounts to half of the maximum
strain in the LSMO weighted by the ratio of the sound
velocities [13,26,33]. Figure 2(a) shows two measurements
at room temperature. Figure 2(b) shows the same traces for
T ¼ 25 K, which look similar to the room temperature data
for small strain amplitudes. The beating frequency for high
excitation, however, is strongly temperature dependent.
Additionally, we note that in the high excitation regime the
oscillations are damped out comparatively fast. The Fourier
transform of the signal yields the oscillation frequencies
from which the sound velocity can be computed according
to Eq. (1). The result is a velocity distribution [26], which
reflects the fact that for large amplitude waves, compressive
and tensile strains propagate at different sound velocities
[32,34]. We extract the sound velocities for all temperatures
at small and large strain levels. Figure 3(a) shows the sound
velocity distribution for high excitation at four different
temperatures computed from the the signal at λ ¼ 528 nm
(ν ≈ 70 GHz). Figure 3(b) collects the maxima of the
sound velocity distributions for low (open circles) and high
(full circles) excitation as a function of temperature. In the
linear regime, a sudden softening at the phase transition is
observed in quantitative agreement with the literature
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FIG. 1 (color). Transient reflectivity change at room temper-
ature for high excitation fluences, plotted for different probe
wavelengths. The curves are shifted vertically for clarity.
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FIG. 2 (color). Transient reflectivity traces for (a) T ¼ 300 K
and (b) T ¼ 25 K and two different strain amplitudes evaluated at
λ ¼ 528 nm (ν ¼ 71 GHz). The curves are shifted vertically for
clarity.
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[14,22]. This softening close to the phase transition
originates from the coupling of the strain wave to the soft
mode describing the structural phase transition at Ta [9]. In
the nonlinear regime and at temperatures above Ta we
observe a temperature independent, symmetric splitting,
which can be explained by the anharmonicity of the
interatomic potential, as discussed in detail for the room
temperature data [26]. Below Ta a giant reduction of the
sound velocity is observed that exceeds the symmetric
splitting and cannot only be explained by anharmonicity
[35–37]. This reduction is comparable to the superelastic
softening of the elastic constants in STO which has so far
only been found for lower frequency phonons in the Hz to
MHz regime and is attributed to the coupling of phonons to
(twin) domain walls [5,17,20,28,29]. It is accompanied by
an increased damping, which is observed for the low T high
fluence data in Fig. 2. The scattering of the data at low T in
Fig. 3 might be due to additional phase transitions
discussed in the literature [4,5,17].
We confirm that the giant softening for large amplitude

GHz strain waves originates from the coupling to twin
walls by repeating the experiments for similar samples with
different epitaxial strain conditions: we used two STO
samples with 15 nm and 70 nm thick SrRuO3 (SRO)
transducer films and 20, 37, and 90 nm thick LSMO films.
SRO transducers lead to a tensile strain at the interface, and
therefore to a compressive out-of-plane strain in the STO
substrate material. This suppresses the formation of
domains with the elongated tetragonal c axis parallel to
the direction of the strain pulse traveling perpendicular to

the surface in a similar way [38] as observed for static
external stress [17,20,39].
In contrast, x-ray diffraction measurements on STO with

a thin YBa2Cu3O7 top layer prove that a transducer with a
smaller lattice constant, such as LSMO, leads to mixed
domains with the c axis aligned either parallel or
perpendicular to the surface within the first micrometers
of the STO substrate [10]. Indeed, all samples with LSMO
transducers show a giant softening due to the interactions
with the twin walls, while samples with SRO transducers
should not. Low fluence TDBS data for the samples with
SRO transducers (not shown) yield sound velocities in
agreement with LSMO transducers for small strain levels
[open symbols in Fig. 3(a)]. For large strain amplitudes the
data obtained from SRO transducers (black stars in Fig. 3)
are in accord with the results for LSMO transducers only
for temperatures above Ta. Below Ta the sound velocity
exhibits the same small but symmetric splitting of the
sound velocities observed above Ta. These experiments
with SRO tranducers show that the alignment of the long c
axis relative to the sample surface also removes the
coupling of large amplitude GHz strain to the domain
walls. The measurements with LSMO samples of different
thicknesses (20 and 90 nm) confirm the results for the
37 nm LSMO film reported above.
Figure 4(a) visualizes a twin wall in STO according to

the literature [2,3]. The shaded grey area visualizes the
stress in the crystal in the vicinity of a kink in the wall as
observed in simulations [7,8]. In the following we call the
region on the upper left side of the domain wall Awhere the
long c axis is perpendicular to kph. The region on the lower
right with the c axis oriented along kph is addressed as B.
For a slow and small expansion of the crystal, the domain
wall travels by moving the kink parallel to the wall along
the thin black arrow [7,17]. This increases domains with the
c axis along kph and decreases region A. In total, the crystal
is expanded more along kph than without domain wall
motion. The crystal appears to be softer; i.e., it has a
reduced sound velocity. This process requires a contraction
of the crystal perpendicular to the applied stress by the
Poisson effect and additionally due to the decreasing
number of unit cells with the long c axis perpendicular
to the stress. For a homogeneous expansion over the
diameter dL ¼ 100 μm, given by the laser excited area,
the in-plane contraction would take place on a time scale
exceeding τ ∼ dL=vs ∼ 12 ns, determined by the time it
takes to relax the strain at the sound velocity vs. This
restricts the superelastic regime to the 80 MHz range on a
100 μm length scale. For GHz phonons or picosecond
strain pulses in the linear regime, twin wall motion is fully
suppressed [28,29].
In the nonlinear regime we propose the following

mechanism: The transducer with thickness d generates
strain waves with wave vector kph perpendicular to
the sample surface. The fundamental wavelength

100 200 300
6.5

7

7.5

8

8.5

Temperature [K]

(b)

0.18% strain (LSMO)

0.06% strain (LSMO)

0.18% strain (SRO)

0.2 0.4
6.5

7

7.5

8

8.5

Velocity Distr. [a. u.]

S
ou

nd
 V

el
oc

ity
 [n

m
/p

s]

(a)

300K

105K

100K

25K

FIG. 3 (color). (a) Sound velocity distribution extracted from
the Fourier transform of the transient reflectivity data shown in
Fig. 2, for 0.18% strain amplitude in STO at selected temper-
atures generated by excitation of an LSMO transducer. (b)
Extracted maxima from panel (a) as a function of temperature.
Red open and full circles: sound velocities in STO for the LSMO
transducer; black stars: sound velocities in STO for the SRO
transducer. For strain amplitude refer to legend.
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λph ¼ 2π=kph ≤ 2d of the strain wave is limited by the
thickness d or the optical penetration depth ξ of the exciting
light in the transducer. The strain fronts are plane waves
since the spot size of the exciting laser light
dL ¼ 100 μm ≫ d. We first discuss the effect on twin
wall motion induced by the expansive part of the bipolar
strain pulse. Strain with an amplitude (here 0.18%) much
larger than the tetragonal distortion [4,18] (½c − a�=a ¼
5 × 10−4) leads to expanded tetragonal unit cells [40] in
region A with the longer unit cell axis now parallel to kph,
as schematically shown by the solid grey rectangle in
Fig. 4(b). These expanded unit cells in Awant to contract in
all three dimensions in order to recover their original
volume (dotted grey rectangle). Within the domains, all
stresses are balanced by adjacent unit cells. In region B the
unit cells feel compressive stress (blue arrows) only along
kph. Thus, at the domain wall the stress perpendicular to
kph is unbalanced and leads to a motion of the domain wall
and the connected strain fields such that region B increases.
The reverse effect would be expected for the compressive
part of the strain pulse. However, since space is required for
the atoms at the domain boundary to rearrange, the
coupling is mainly observed for tensile strain.
Figure 4(b) suggests complex microscopic dynamics.

The moving domain walls do not separate domains in their
equilibrium structure, but rather domains of the crystal with
tetragonal nonequilibrium strain. The increased damping
and the superelastic effect are intimately connected to
propagation of nonequilibrium strain fields around kinks
in the twin walls. The importance of lattice inhomogene-
ities for the propagation of strain waves is emphasized in
related experiments: in ferroelectric PbðZr0.2Ti0.8ÞO3 we
have observed by UXRD that the sign, amplitude, and
frequency of the strain pulses alter the interaction with
domain boundaries and dislocations [41]. Similar depend-
ences on the frequency and amplitude of the applied strains

are reported for the velocity of ferroelastic [42] and
ferroelectric [43] domain wall motion.
The considerable additional softening at 70 GHz indi-

cates that the twin walls propagate a substantial fraction of
the domain size [6] D ∼ 100 nm within a half period τ of
the sound wave. Therefore, the domain wall velocity must
be on the order of the sound velocity. Computer simulations
on the terahertz time scale have indicated kink-propagation
velocities exceeding the sound velocity [8]. Our 12%
reduction in sound velocity for 70 GHz large amplitude
strain compares to a 50% reduction of the Young's modulus
measured at 10 Hz [17]; i.e., we observe about half the
softening effect.
In summary, we have performed time domain Brillouin-

scattering experiments and measured the sound velocity in
STO at different temperatures for various strain amplitudes.
In the nonlinear regime of ∼0.18% strain the sound velocity
of compressive strain exceeds the velocity for tensile strain
by 3% for temperatures above Ta ¼ 105 K. Below Ta a
substantial softening of 12% is observed, which is attributed
to a coupling of the GHz longitudinal phonons to twin
domain walls. This behavior is observed for transient strains
exceeding the tetragonal distortion in the low temperature
phase, suggesting a different mechanism inducing the
domain wall motion than for lower, Hz to MHz frequency
sound. Our observations highlight the importance of under-
standing the coupling of strain waves to domain walls in
domain forming samples. Our UXRD calibrated measure-
ments provide a good testing ground for simulations
attempting to predict the domain dynamics accompanying
structural phase transitions in complex oxides.

We thank I. Vrejoiu and D. Schlom for providing the
samples. We acknowledge the financial support by the
Leibniz Graduate school DinL and the BMBF via
05K2012–OXIDE.

FIG. 4 (color). (a) Schematic of the STO crystal in the tetragonal phase near a kink in a twin wall according to literature [2,3,7,8].
Tetragonal distortion and twinning angle are exaggerated. The shaded grey region highlights the strain field near the kink. (a) Black line:
twin wall with kink. Grey rectangles: unit cells of tetragonal phase. Details of these unit cells are shown with oxygen octahedra as
enlarged insets. For slow vertical expansion the kink would move along the thin black arrow. (b) Snapshot for ultrafast uniaxial
expansive strain along kph with amplitude exceeding the original tetragonal distortion (see text). No contraction perpendicular to kph can
occur for this time scale. Blue narrow arrows: compressive forces that counteract the external uniaxial expansion.
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We investigate coherent phonon propagation in a thin film of ferroelectric PbZr0:2Ti0:8O3 (PZT) by

ultrafast x-ray diffraction experiments, which are analyzed as time-resolved reciprocal space mapping in

order to observe the in- and out-of-plane structural dynamics, simultaneously. The mosaic structure of the

PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a

picosecond time scale, which is not observed for out-of-plane compression.

DOI: 10.1103/PhysRevLett.110.095502 PACS numbers: 61.72.Hh, 07.85.Jy, 61.05.cp, 63.22.Np

Oxides are attractive constituents of future nanoelec-
tronic devices because of their broad spectrum of outstand-
ing physical properties, such as ferroelectricity and
ferromagnetism, and owing to the progress made in the
fabrication of high quality epitaxial heterostructures [1].
Epitaxial strain engineering and the careful choice of
mechanical and electrical boundary conditions enable a
direct influence on these functionalities [2–6]. Structural
defects and nanoscale inhomogeneities, such as disloca-
tions and domains, typically affect the properties of func-
tional oxides and have been extensively studied by
experiment and theory [7,8]. Ultrafast x-ray diffraction
(UXRD) emerged as a powerful tool to observe lattice
motion in real time [9–11] and has provided a deeper
insight in the structure-property relations of functional
oxides on ultrashort time scales. Recent femtosecond
x-ray scattering experiments on ferroelectric oxides
showed that electron screening induces an ultrafast piezo-
electric response of the lattice [12] and that in turn, the
deformation leads to a change of the polarization [13].
However, these experiments were conducted on rather
perfect epitaxial crystals. The influence of nanodomains
has been considered in experiments on transient phases
[14], but the role of static structural defects remained
unexplored on such an ultrafast time scale.

Here, we exemplify how ultrafast reciprocal space map-
ping (URSM) using a laser-based plasma x-ray source
yields direct additional information on the reversible
in-plane structure dynamics in a ferroelectric perovskite
PbZr0:2Ti0:8O3 (PZT) film which is solely induced by the
existence of dislocations typical of such materials. In
particular, the width of the PZT Bragg reflection reports
that tensile out-of-plane strain leads to drastically
increased damping. The energy dissipates into in-plane
strain which is evidenced by the in-plane component of
the reciprocal space map. Our results indicate that in mis-
matched epitaxial films of oxide materials, with their high

susceptibility to the formation of domains and dislocations,
in-plane phenomena emerge on a hundred picosecond time
scale. URSM yields the relevant information on lateral
lattice dynamics in such materials in which nanoscale
inhomogeneities inherently broaden the peaks in reciprocal
space. It is important to realize that such inhomogeneities
are a natural paradigm in oxides originating from compet-
ing phases with similar free energy rather than a result of
imperfect crystal growth [7]. A better understanding of
such time-domain effects in novel functional oxide mate-
rials will be important for studying the influence of struc-
tural defects on the ultrafast response of collective
phenomena, such as piezoelectricity.
As a typical structure, we grew a ferroelectric layer of

PZT and a metallic SrRuO3 (SRO) electrode layer onto an
SrTiO3 (STO) substrate by pulsed laser deposition (PLD)
[15]. The transmission electron micrograph (TEM) image
[Fig. 1(a)] shows layer thicknesses of dPZT ¼ 207 nm
and dSRO ¼ 147 nm, respectively. The average lattice

FIG. 1. TEM and AFM images of the PZT-SRO double layer
grown onto an STO substrate by PLD. (a) The cross section TEM
micrograph reveals that a minority of 90� a-domains are em-
bedded in the matrix of the c-axis grown tetragonal PZT film, as
proved by the AFM topography image in b) as well. Misfit
dislocations (MD) and threading dislocations (TD) formed at
the SRO-PZT interface and across the PZT film account for the
lateral inhomogeneity on a sub-100 nm length scale.
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constants normal to the sample surface derived from static

x-ray diffraction are cPZT ¼ 4:130 �A and cSRO ¼ 3:948 �A.
The TEM image [Fig. 1(a)] features only a few a-domains
in the PZT layer, which are domains with a polarization
vector pointing normal to the c-axis of the layer [15].
Accordingly, out-of-plane polarized domains are called
c-domains. The small amount of a-domains is confirmed

by the very weak scattering observed around 3:12 �A�1 in
the static and transient rocking curves in Figs. 2(a)–2(c).
We neglect these ferroelastic domains and the switching
between the 90� polarizations states in the further discus-
sion. Due to stress relaxation in the mismatched epitaxial
PZT film, misfit dislocations (MD) at the SRO interface

and threading dislocations (TD) expanding through the
entire layer are visible in Fig. 1(a) [15]. As a result, lateral
regions below 100 nm size are observable in PZT, whereas
the SRO layer is free of such inhomogeneities.
Nevertheless, the AFM topography in Fig. 1(b) reveals
that the mean roughness of the PZT surface is below 2 Å.
In order to characterize the response of the PZT film to

ultrashort stress pulses, we excited the SRO electrode
with near-infrared (800 nm) femtosecond light pulses
with a pulse duration of �opt ¼ 40 fs and monitored the

induced lattice dynamics by UXRD experiments at a laser-
driven plasma x-ray source (PXS) [16,17] in a pump-probe
scheme. The generated hard x-ray pulses [E ¼ 8:05 keV
(Cu K�), �x�ray ¼ 150 fs] were collected by a Montel

multilayer mirror and focused onto the sample with a
convergence of 0.3�. The diffracted photons were accumu-
lated with a CMOS hybrid-pixel area detector in classical
�-2� geometry. This allowed for detecting symmetrically
and asymmetrically diffracted x-ray photons at the same
time, avoiding time-consuming mesh scans in order to
measure reciprocal space maps (RSM) around specific
Bragg reflections [18–21]. Consequently, we acquired
information both on in-plane and out-of-plane structure
dynamics utilizing this time-resolved version of RSM.
The temporal overlap of the optical pump and x-ray probe
pulses was determined in an independent cross correlation
experiment [22] and was set to the delay 0 ps.
First, we discuss the conventional x-ray diffraction from

lattice planes parallel to the surface. Figure 2(a) shows the
�-2� scans for three different time delays between optical
pump and x-ray probe pulses. The black line represents the
unexcited lattice and we can confirm the lattice constants
of the three constituting materials from the respective
Bragg angles. The photoinduced dynamics are evident
from the changes of the three material specific Bragg
reflections, which are shown in Fig. 2(b). By fitting each
Bragg reflection for each material with a Gaussian, we can
extract the peak widthwzðtÞ (FWHM) and peak center czðtÞ
for each delay t in the qz dimension. For the later analysis,
it is convenient to introduce the peak shift szðtÞ ¼ czðtÞ �
czð0Þ. The absorption of the pump pulse takes place
exclusively in the SRO electrode layer, leading to a
quasi-instantaneous temperature rise. The heat expansion
of SRO by 0.35% is limited by the speed of sound in the
material and proceeds within 24 ps, evidenced by the shift
to smaller Bragg angles [23]. On the same time scale, the
substrate shows a tiny shoulder at the high-angle side
according to the compression of STO adjacent to the
expanding metal layer. Similarly, the PZT film is first
compressed by the strain imposed from the expanding
SRO; however, it expands after the strain wave is reflected
from the sample surface [24]. A detailed evaluation and
discussion will be given below.
While this evaluation of UXRD signals is straightfor-

ward and the example shows the power of the method, we
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FIG. 2 (color). Transient x-ray diffraction measurements and
static reciprocal space map of the PZT-SRO sample. (a) �-2�
scans of the structure around the (0 0 2) Bragg reflections of
PZT, SRO, and STO before excitation (black) and at delays of
maximum peak shift sz of PZT, at t ¼ 35 ps (red) and t ¼ 75 ps
(blue). (b) Transient �-2� scans for continuous variation of
�10< t < 125 ps. The horizontal dashed lines indicate the
delays of the selected plots shown in panels (a) and (d).
The solid black lines indicate the center of the Bragg peaks.
(c) The reciprocal space map of the PZT-SRO double layer
sample before excitation features a rather broad PZT peak in qx
direction. All peaks widths suffer from an additional broadening
due to the convergence and energy bandwidth of the incident
x-rays. (d) Intensity of the PZT peak integrated over the qz
dimension before excitation (black) and at delays of change of
peak width wx of PZT, at t ¼ 35 ps (red) and t ¼ 95 ps (blue).
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now discuss how to gain the information on the in-plane
dynamics. The RSM before excitation is shown as a con-
tour plot in Fig. 2(c). In general, the size of the reciprocal
lattice points in the RSM is inversely proportional to the
length scale of coherently scattering regions of the crystal
in the according in-plane and out-of-plane directions. The
additional broadening due to the instrument function of the
x-ray diffraction setup, which is mainly given by the 0.3�
convergence and Cu K� energy bandwidth of the incident
x-rays, can be seen in the peak profile of the structurally
perfect STO substrate in the RSM. Figure 2(d) shows the
diffraction signal integrated over the qz range of the PZT
peak. Similar to the convention above, we define the width
(FWHM) and shift for the qx dimension as sxðtÞ and wxðtÞ.
The large static value ofwPZT

x is consistent with the average
size of the lateral regions in the PZT layer of about 50 nm
observed in the TEM image [Fig. 1(a)]. In crystallography,
this broadening of wx can be described by the model of
mosaicity [25], assuming the crystal to consist of small
mosaic blocks. These blocks are homogeneous in them-
selves but the x-rays scattered from different blocks do not
sum up coherently. The in-plane size of the blocks defines
the lateral correlation length which is inversely propor-
tional to the broadening of the RSM in qx. Tilting of the
blocks can give rise to an additional broadening. These two
effects may be distinguished by measuring a RSM around
an asymmetrical Bragg reflection [18]. Figure 2(d) shows
that wx increases considerably for snapshots recorded after
the reflection of the strain wave at the sample surface.

In order to discuss our experimental results, we apply a
1D model of the sample structure to simulate the lattice
dynamics by a linear chain model of masses and springs
[26]. These simulations are well established to predict the
out-of-plane dynamics but do not consider the in-plane
dynamics directly. Therefore, we employ the out-of-plane
phonon damping as an adjustable parameter to couple
energy to in-plane motion. First, we calculate the tempera-
ture rise in the SRO after optical excitation [Fig. 3(a)] from
the laser fluence, absorption depth, and heat capacity of
this metal. The quasi-instantaneous thermal stress excites
coherent acoustic phonons (strain waves) which are
launched from the interfaces to the PZT layer and STO
substrate. Calculated strain profiles for different delays are
depicted in Fig. 3(b). Since heat diffusion from the SRO
into the PZT layer can be neglected on this short time scale
(�100 ps) [27], the PZT lattice dynamics are exclusively
determined by the compression wave traveling from the
SRO-PZT interface to the PZT-air interface. Here, the
strain wave is reflected and converted into an expansion
wave traveling back to the SRO layer and further into the
STO substrate. Due to the good acoustic impedance match-
ing of the three materials, we neglect reflections at layer
interfaces.

From the simulated spatiotemporal strain map, the
resulting transient changes of the x-ray diffraction profile

in qz dimension for the PZT and SRO layers are calculated
by dynamical x-ray diffraction theory [28]. Taking the
elastic constants of each material, we can use the damping
of coherent phonons by impurities and coupling to in-plane
motion as adjustable parameters. Figures 4(a), 4(b), 4(d),
and 4(e) show the excellent agreement of the simulated
x-ray diffraction data with the measured values for sz
and wz.
The peak shift sz is a measure of the change of the

average c-axis lattice parameter of the PZT and SRO
layers, which was qualitatively discussed above. The
change ofwz essentially reflects the inhomogeneous strain,
which in SRO is given by the short absorption length of the
optical pump light leading to a stress exponentially decay-
ing with z. Initially, SRO only expands near the PZT
interface. At 12 ps after excitation, the expansion wave
has propagated through half the SRO layer, which leads to
a maximum wSRO

z [Fig. 4(d)], that in fact reflects a splitting
of the SRO Bragg peak [23,26]. Due to the peak splitting,
the Gaussian fit indicates a compression of the SRO layer
for sSROz as long as only a small fraction of SRO is
expanded. Similarly to SRO, wPZT

z rises and the peak shifts
to larger angles as the compression travels through the PZT
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FIG. 3 (color). Simulation results for the temperature gradient
and lattice dynamics after optical excitation. (a) The optical
pump laser causes a quasi-instantaneous temperature increase
only in the metallic SRO layer at delay zero. (b) The excited
lattice dynamics are calculated by a 1D linear chain model. The
strain profiles show a coherent sound wave with a sharp leading
edge traveling from the PZT-SRO interface to the PZT-air inter-
face. It is converted to an expansion wave that undergoes much
stronger damping transforming it into a smooth and broad strain
profile.
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layer [Figs. 4(b) and 4(e)]. Later, sPZTz becomes negative
when the sound wave is reflected at the surface (t > 50 ps)
and propagates back to the substrate. wPZT

z is much smaller
for t > 50 ps although the tensile strain during expansion,
sPZTz , has nearly the same magnitude as the preceding
compression. This implies that the strain pulse in PZT
broadens in space rendering the layer less inhomogene-
ously strained when the layer expands.

In order to fit these four transient data sets for PZT
and SRO [Figs. 4(a), 4(b), 4(d), and 4(e)] simultaneously
in our simulations, we have introduced phonon damping in
PZTas the only free parameter. The best fit for the four data
sets was achieved when the damping factor in PZT is
chosen 50 times larger for expansive out-of-plane strain
compared to compressive strain of the same magnitude.
The according results are plotted as solid black lines in
Figs. 4(a), 4(b), 4(d), and 4(e). The grey dotted lines
represent the results for a constant damping factor in
PZT for expansion and compression. We can exclude
pure surface scattering as the reason for the asymmetric
damping behavior since this would lead to a much smaller
amplitude of sPZTz in order to achieve the same decrease of
wPZT

z for the expansive strain. The increase of the damping
in PZT is visualized in Fig. 3(b) where the colored lines
(t > 50 ps) show a smooth out-of-plane expansion,
whereas the greyish lines (t < 50 ps) show the inhomoge-
neous compression before the reflection at the surface
changes the sign of the strain wave.

From our lattice dynamics simulations, we can also
determine the kinetic (dashed-dotted blue), potential
(dashed red), and total (solid black) energy density of the

out-of-plane coherent phonons in each layer [Figs. 4(g)
and 4(h)]. We introduced the phonon damping in PZT to
couple energy to lateral phonons. This energy is essentially
the difference of the total energy of out-of-plane coherent
phonons in PZT with and without damping. The result is
plotted in Fig. 4(i) where the grey dotted line corresponds
again to the case of constant damping. The increase of the
lateral energy density in PZT [Fig. 4(i)] goes along with a
considerable increase of wPZT

x that reflects a change of the
inhomogeneity in-plane, probably because the lateral
blocks develop an inhomogeneous in-plane strain that is
dynamically coupled to the out-of-plane motion according
to the Poisson ratio [Fig. 4(f)]. We do not observe the
converse effect during the compression of the PZT layer
(t < 50 ps). The horizontal arrow in Fig. 4(f) indicates the
time scale of the buildup of the lateral strain of approx.
50 ps. We can link this time scale to a lateral length scale of
approx. 200 nm via the sound velocity of PZT of
4:6 nm=ps. This time scale agrees well with the in-plane
block size observed in the TEM image in Fig. 1(a) and
wPZT

x of the static RSM in Fig. 2(c).
The analysis of the measured signal alone already sug-

gests the following interpretation: The expansion of SRO
sends a compression wave into PZT. The in-plane mosaic-
ity or nanoinhomogeneity is unchanged during this period.
When the strain changes sign upon reflection at the surface,
PZT expands and according to Poisson ratio, the mosaic
blocks must now laterally contract. The in-plane inhomo-
geneity is increased as millions of in-plane contraction
waves start at all the lateral dislocations. We conclude
that only out-of-plane expansion of PZT couples energy
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to in-plane dynamics and that this effect is essentially
suppressed for out-of-plane compression since this would
have to expand the mosaic blocks, which is sterically
forbidden by the adjacent blocks. This compares favorably
with our simulations of the out-of-plane lattice dynamics,
requiring an increased damping for the expansion wave in
the PZT, which can be understood as an increase of the
coupling between in-plane and out-of plane lattice
motions.

In conclusion, we have demonstrated the first measure-
ment of the lattice dynamics in a structurally imperfect thin
film by ultrafast reciprocal space mapping (URSM). We do
not only extract the changes of the lattice constants, i.e., the
expansion and compression of materials perpendicular to
the surface. In addition, we quantify the coupled response
in plane, which turns out to be significantly enhanced for
out-of-plan expansion, as it provides the in-plane contrac-
tion necessary for the atoms to start moving. URSMwill be
an important method for understanding the ultrafast
response of oxide crystals with their natural tendency to
form nanoscale inhomogeneities.
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