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Abstract
I provide an overview of magnetostriction theory and utilise X-ray diffraction to observe forced mag-
netostriction in TbFe2 as well as time resolved X-ray diffraction (UXRD) to examine the structural
dynamics of TbFe2 after laser excitation. I compare results from three complementary experimental se-
tups; a conventional micro-focus X-Ray tube of the UDKM group (MFXT), the XPP-KMC3-Beamline at
BESSY II and at a plasma X-Ray source of the UDKM group (PXS). Exposing TbFe2 to an external field
(MFXT and BESSY II) results in a distortion which depends on the relative orientation of the external
field and initial magnetization. An increasing strain is observed during the rotation of the external field,
vanishing when magnetization and field becomes antiparallel. The strain results from the tilt and eventu-
ally realignment of the sample magnetization due to the external field which I model by calculating and
minimizing the competing anisotropy energy EA and Zeeman energy EH in terms of the magnetization
direction and the external field. Exciting TbFe2 with a sub picosecond laser pulse (BESSY II and PXS)
results mainly in thermal expansion as the excited electrons thermally equilibrate with the lattice leading
to heat diffusion on the nanosecond time scale. On s picosecond time scale however, a bipolar strain
wave emerges at the surface and propagates through TbFe2. The evaluation of UXRD measurements
via the udkm1Dsim-toolbox suggests an ultrafast non-equilibrium heat diffusion in TbFe2, increasingly
effective with higher pump fluences, which is essential to model the slope of the observed strain wave.

Kurzdarstellung
Ich gebe einen Einblick in die Theorie von Magnetostriktion, nutze Röntgenbeugung um erzwungene
Magnetostriktion an TbFe2 zu beobachten und zeitaufgelöste Röntgenbeugung (UXRD) um die ultra-
schnelle Gitterdynamik in TbFe2 nach einer Laseranregung zu vermessen. Dabei benutze ich drei ver-
schiedene Aufbauten; eine konventionelle Mikro-Fokus Röntgenröhre (MFXT) aus der UDKM Arbeits-
gruppe, die XPP-KMC-3-Beamline am BESSY II und die Plasma Röntgenquelle (PXS) aus der UDKM
Gruppe. Setzt man TbFe2 einem externen magnetischen Feld aus (MFXT und BESSY II), resultiert dies
in einer Gitterverzerrung, abhängig von der Richtung des externen Feldes relativ zu der anfänglichen
makroskopischen Magnetisierung der Probe. Eine wachsende relative Gitterausdehnung wird bei Ro-
tation des externen Feldes beobachtet, welche verschwindet wenn die Magnetisierung und das externe
Feld antiparallel stehen. Das Verhalten der Ausdehnung kann auf die Neigung und schließlich Neuaus-
richtung der Magnetisierung parallel zum externen Feld zurückgeführt werden. Dies habe ich model-
liert, indem ich die konkuriende Anisotropieenergie EA und Zeemanenergie EH berechnet und bezüglich
der Magnetisierungsrichtung minimiert habe, abhängig von der Richtung des externen Feldes. Bei den
zeitaufgelösten Experimenten wird TbFe2 von einem sub-Pikosekunden Laserpuls angeregt (BESSY II
und PXS), was hauptsächlich in einer thermischen Ausdehnung resultiert. Die angeregten Elektronen
equilibrieren thermisch mit dem Gitter und es folgt eine Wärmediffusion im Gitter auf einer Zeitskala
von wenigen Nanosekunden. Außerdem weise ich auf einer Skala einiger Pikosekunden das Entstehen
einer bipolaren, kohärenten Schallwelle an der angeregten Oberfläche und ihre Propagation durch TbFe2

nach. Ferner weist die Auswertung der UXRD-Messung mithilfe der udkm1Dsim-toolbox darauf hin,
dass ein Prozess der ultra-schnellen Wärmediffusion in TbFe2 zu beobachten ist, dessen Einfluss effektiv
mit steigender Fluenz deutlicher wird.
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Introduction
Magnetostriction, i.e. the interplay of magnetic properties and distortions of crystal lattices, was described
first by J. P. Joule in the year 1847 [1]. Since his experiments on iron and steel bars, in which the
magnetostrictive effects at room temperature are only of the order of 10−6, 125 years elapsed until A. E.
Clark and H. S. Belson discovered ”giant” magnetostriction in TbFe2 and DyFe2 with up to 0.2% strain
at room temperature [2]. Beginning with the work of N. S. Akulov in the 1930’s [3], the development of
models for magnetostriction launched, which were strongly stimulated by the work of C. Kittel in 1949
[4]. The discovery of huge magnetostriction at room temperature in rare earth alloys however, spurred
the interest of the application driven research as it seemed now possible to utilise magnetostriction similar
to piezo-electricity as a magneto-acoustic transduction mechanism. This amplified the experimental and
theoretical coverage of magnetostriction, especially in rare earth alloys.

1. Motivation of my work

The ultrafast dynamics group (UDKM) in Potsdam has worked on this topic, especially on the ultrafast
demagnetization by photo excitation and associated magnetostriction in dysprosium and holmium, cf. J.
Pudell and A. von Reppert [5, 6]. The understanding and observation of magnetically induced magne-
tostriction by selectively manipulating the magnetic system has been less developed in the UDKM since
they had focussed on the excitation of the electronic or phonon systems of ferromagnetic solids by light.
Forced magnetostriction, i.e. the direct lattice distortion as a response to an applied external magnetic
field is well documented by Clark since the 70’s [7] and a theoretical description of the mechanics is well
known as G. Engdahl summarises it in his book [8]. Nevertheless, an in depth study of the ultrafast
magnetical and structural dynamics of TbFe2 is, to my knowledge, yet to be presented. With the aim
to develop faster and more efficient digital data processing and memory devices, ultrafast magnetic re-
sponse and magnetostriction as a control or observation mechanism is a promising topic for future and
contemporary storage devices [9, 10].

Eventually, a comprehensive understanding of the entirety of the solid’s subsystems, including the elec-
trons, magnons and phonons, is intended. In particular with respect to the future examination of newly
approached multiferroic materials, such as BiFeO3 [11]. The latter exhibit a combination of ferromagnetic
and ferroelectric properties. Thus they can be treated with electric and magnetic fields to independently
manipulate the specific subsystems so that the lattice is eventually indirectly distorted. Therefore, I
engaged an extensive search at the beginning of my thesis work, concerning relevant literature about
magnetostriction in TbFe2 and the theory of static magnetostriction in general to provide a theoretical
foundation for further advances in current magnetostrictive research in our group.

2. Structure of the thesis

This section presents an overview over the structure of this thesis:

Part I In the beginning I focus on providing a theoretical foundation for the subsequent parts of the
thesis. I give an introduction to the formalisms of crystallography and X-ray diffraction as it is the ex-
perimental method of choice, employed to observe the crystalline distortions in of TbFe2. After shortly
discussing the magnetic properties of TbFe2, I end the first part with an evaluation of literature concern-
ing magnetostriction, especially in TbFe2 resulting in a summary of the usual and relevant modelling
approaches. Note that not the entire presented and summarized magnetostrictive theory and data are
used during the remaining course of this thesis. Part I functions also as a compendium concerning mag-
netostriction in general to provide a concise description of magnetostriction for future research projects
in the group.
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Part II In the second part, I describe the experimental setups, the measurement routines and the data
evaluation for the slow magnetostriction experiments which do not use laser excitation. As two experi-
mental setups are used to perform forced magnetostriction, i.e. to distort TbFe2 by the exposure to an
external magnetic field, I compare data sets collected by X-ray diffraction and associate the findings with
the characteristics of magnetostriction condensed in Part I. Furthermore, I discuss a model to predict the
magnetostrictive response of our samples by calculations and simulations based on the magnetostrictive
theory. In this framework I interpret the measurement results.

Part III In the final part I describe the experimental setups and data handling routines which are
employed to describe time resolved pump probe measurements. The TbFe2 sample is exposed to an
ultrashort laser pulse as an excitation and subsequently and ultrashort X-ray pulse is diffracted which
probes the lattice. Thus, the dynamics of the lattice after photo excitation is recorded and evaluated
utilising a modelling tool provided by the UDKM group, the udkm1Dsim-toolbox.
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Part I.

Theoretical basis and tools
To achieve a detailed understanding of physical effects, it is essential to be familiar with the underlying
principles resulting in observed effects. I review some essentials, such as crystallography, continuum me-
chanics, magnetism, magnetostrictive theory and X-ray diffraction as my choice of the basic experimental
method in this work and relate them to TbFe2.

Magnetostriction is the change of length or volume of a material under variation of the magnetization. I
start with a description of the crystal structure of TbFe2and describe the principles of X-ray diffraction
which is a useful tool to determine the crystalline structure. Together with magnetic properties of Rare
Earth alloys in particular the relevant magnetostrictive theory is illustrated with many references to the
literature.
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3. Crystallographic basics

3.1. Description of crystals (cf. [12])

The heavy rare earth transition metal alloy TbFe2 consists of Terbium (65Tb) and Iron (26Fe). Terbium
is a rare earth element of the lanthanoid series, neighboured by Gadolinium and Dysprosium. Iron is a
transition metal which is one of the few ferromagnetic elemental metals at room temperature. Many of
the heavy rare earth transition metal compounds have been studied because of their magnetic properties,
for instance the observed giant magnetostriction in TbFe2 in 1972 [2].

TbFe2 crystallises in the cubic binary C15 Laves phase1, which has a cubic conventional unit cell as
depicted in Fig. 3.1. The lattice constant is aTbFe2 = 7.347 ± 0.001 Å [17, 18] and TbFe2 has a density
of ρTbFe2 = 9.0 g

cm3 [19] when forming a single crystal. A single crystal consists of plenty units cells
which are equally oriented and sharing the atoms located at the border of a unit cell with its neighbours.
Thus one corner ion of the unit cell will also be part of seven other neighbouring cells. Polycrystalline
materials are different as they are made of many small single crystals with arbitrary orientations.

3.1.1. Description of crystal lattices

In solid state physics a single crystal is described as the combination of a lattice and a basis. The basis is

Figure 3.1: Schematic sketch of the unit cell, taken from Bentall et al. [20]. The blue spheres are the
rare earth atoms and the rose ones are the transition metal atoms.

associated with the unit cell and the lattice consists of three linear independent primitive lattice vectors
~a1, ~a2 and ~a3. Every point (~R) of the lattice can be expressed with a linear combination of those vectors:

~R = n1~a1 + n2~a2 + n3~a3, (3.1)

where ni are integers. Placing a basis, i.e. unit cell, at every point of the lattice will create a crystal. For
TbFe2 which has basically a cubic lattice, ~ai are perpendicular, creating a Cartesian coordinate system
x̂, ŷ and ẑ which is aligned along the axes of the cubic unit cell. The length of ~ai is aTbFe2 .

1Often rare earth transition metal compounds form in a cubic Laves phase. It is named after F. Laves who wrote about
this sort of structure first in 1934 [13]. One unit cell consists of two rare earth atoms with a tetrahedral (Td) site
symmetry and four transition metal atoms with a D3d symmetry [14]. A special type of Laves phases are binary Laves
phases, where only two sorts of elements are included, such as TbFe2. Furthermore, already more than 360 different
binary Laves phases have been discovered. Every one of them has a unique ordered arrangement of atoms on the lattice
sites [15]. TbFe2 is part of the C15 subgroup of binary Laves phases, also called MgCu2 structure, after the prototype
of this special Laves phase. Laves phases are often considered, because of the magnetoelastic and magnetostrictive
properties in rare earth transition metal alloys especially at room and higher temperatures, as it is discussed in the
present thesis. Some alloys like HfV2 and ZrV2 even exhibit superconducting properties [16].
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3.1. Description of crystals (cf. [12])

3.1.2. Crystal planes and Miller indices

The concept of crystal planes must be discussed because they will be needed in the derivation of X-ray
diffraction. Looking at Fig. 3.1, we can see for example that the five Tb ions at the top lay in one
plane. Also the five ions at the bottom. Those two planes extend over the whole single crystal and will
always have the same distance to each other, since they are parallel. Because the crystal is also spatially
extended perpendicular to those planes, there will be plane over plane and each of them can not be
distinguished from each other. Equidistant, parallel planes are therefore indistinguishable so the set of
such planes and their surface vectors are described by the Miller indices (hkl).

In Fig. 3.2, some examples of crystal planes in a conventional unit cell are depicted. For TbFe2, set
a = aTbFe2 x̂, b = aTbFe2 ŷ and c = aTbFe2 ẑ. The three numbers in brackets are sufficient to describe one
set of parallel planes and are called Miller indices.

Figure 3.2: Examples for crystal planes with associated Miller indices, taken from Gross & Marx [12].

Each set of distinguishable planes can be associated with Miller’s indices by noting the intersection points
of planes and crystal axes in units of the lattice constants. Afterwards one takes the reciprocal value of
those numbers and expand the resulting ratios to integers, which are the associated Miller indices for
the discussed set of planes. The last plane in Fig. 3.2 for example is called the (221) plane because it

intersects the x̂ and ŷ axis at 1
2 of their unit length, giving h = k =

(
1
2

)−1
= 2, and the ẑ axis at one unit,

giving l = 1−1. Note that negative values are often visualised by a mark on top of the numbers, as we
can see in the fifth example (010), meaning h = l = 0 and k = −1. The Miller indices are conventional
tools and omnipresent in the research and literature concerning X-ray diffraction and crystallography.

Another use of the Miller indices, besides the specification of planes, is the definition of directions
in crystals. Taking Eq. 3.1 and setting n1 = h, n2 = k and n3 = l, we will get a vector ~R which is
perpendicular to the certain set of (hkl) planes. In general, the raw length of that vector is not a useful
quantity. But with a normalization, which reduces to (h2 + k2 + l2)−1 for cubic lattices, it provides the
lattice spacing according to:

dhkl =
a√

h2 + k2 + l2
, (3.2)

where a is the lattice constant and dhkl the distance of two neighbouring planes.
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3.2. Concepts of X-ray diffraction (cf. [12, 23])

3.1.3. Sample structure

2 nm Ti

500 nm
TbFe2

(110)

100 nm Nb (110)

Al2O3

Substrate
(1120)

Figure 3.3: TbFe42-
sample.

The main sample used in this work is labelled TbFe42. It was grown using
MBE2 by K. Dumesnil at the IJL in Nancy, France, and its cross-section is
depicted in Fig. 3.3 [22]. It consists of 2 nm titanium on the surface as a
protection layer on top of a 500 nm single crystal TbFe2. A 100 nm niobium
buffer connects the thin film to the Sapphire substrate (Al2O3). All four layers
are grown as single crystals with a fixed crystallographic direction. The (110)
direction of the cubic TbFe2 and niobium is perpendicular to the surface of
the sample, as well as the (1120) direction of the Sapphire substrate (it has an
additional Miller indices because Sapphire crystallises in a hexagonal structure
and has therefore another crystallographic symmetry). Thus it is clear that the
(110)-planes of the TbFe2 crystal is parallel to the surface and the ẑ direction
lies in plane, see the second example in Fig. 3.2.

3.2. Concepts of X-ray diffraction (cf. [12, 23])

The used sample of TbFe2 has a crystalline structure, which changes when the
lattice distorts due to magnetostriction. X-ray diffraction is a useful tool to
examine small changes in the lattice which has been conducted on TbFe2 from
the seventies [24, 25] to the present [26]. Consequently we have to understand
the principles of X-ray diffraction to be able to interpret collected data correctly
or to design useful experimental setups.

3.2.1. Reciprocal lattice

Leading to X-ray diffraction, a theoretical model for the description of crystals
is introduced first, the reciprocal lattice. In the associated chapter of Gross &
Marx [12], the reciprocal lattice related to a crystal lattice is well defined, as it possess the same structure

as the crystal lattice described beforehand. The reciprocal lattice is made of reciprocal lattice vectors ~G
which can be written as a set of three unit vectors (in cubic systems), in analogy to Eq. 3.1:

~G = h~b1 + k~b2 + l~b3, (3.3)

where ~b1 = 2π
VC
~a2 × ~a3 (~b2 and ~b3 accordingly, cyclic permuted) and h, k and l are integers with VC =

~a1 · (~a2 × ~a3), which is the volume of one unit cell in the crystal lattice. It is no coincidence that those
integers and the Miller indices are labelled the same. There is a connection between the reciprocal lattice
vectors and the planes in the real crystal lattice. According to Gross & Marx, to every set of planes
(hkl), there are reciprocal lattice vectors ~G and vice versa, so that ~G is perpendicular to the planes. For

the longest reciprocal lattice vector ~Gmax = h~b1 + k~b2 + l~b3, it is:

|~Gmax| =
2π

dhkl
, (3.4)

where dhkl is the distance of two neighbouring (hkl) planes, defined by Eq. 3.2. The reciprocal lattice
therefore contains vectors associated with every set of planes possibly found in the real crystal lattice.
The direction of the reciprocal lattice vectors provide the orientation of the planes, since the reciprocal

2Molecular Beam Epitaxy was introduced by Cho and Arthur in 1975 [21]. It is an experimental technique to deposit
crystalline structures on a single crystal substrate. In this technique one or several thermal molecular beams are merged
on the substrate surface in ultra-high vacuum to grow a crystalline layer. Its advantage lies in the direct control of
the atomic or molecular beam fluxes which allows a rapid change of the deposited species. Thus it is possible to grow
crystals very precisely, layer by layer, enabling for example the deposition of 10 Å layers with alternating materials or
compositions, a so called superlattice. Another benefit is the resulting epitaxy of the crystal layers on the substrate. It
means that the lattices of the deposited layer and substrate are the same, although their respective lattice constants may
differ. This mismatch is the reason for lattice distortions near the interface of layer and substrate. This is sometimes
unwanted and can be reduced by placing a buffer between the substrate and layer, where the lattice constant of the
buffer lies in between the lattice constants of the substrate and layer. For the depicted TbFe42 sample, 50 nm niobium
is used to minimise the distortions in TbFe2, making it nearly a single crystal.[22]
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3.2. Concepts of X-ray diffraction (cf. [12, 23])

lattice vectors are perpendicular to their associated crystal planes. The reciprocal lattice is thus a
representation of all possible crystal planes. With that in mind, we can now focus on the scattering or
diffraction of X-rays from crystal structures.

3.2.2. Bragg’s Law

In 1913, W. L. Bragg and his father W. H. Bragg introduced Bragg’s law [27] as a quantitative method
to describe X-ray diffraction patterns (or Laue photographs) observed by M. Laue and his group [28].
Son and father Bragg were awarded the Nobel price in 1915, and M. Laue in 1914 who invented a unified
description of X-ray diffraction with his Laue equation, which reduces to Bragg’s law. Nevertheless, we
will first discuss the equivalent Bragg’s law as it is less abstract and therefore easier to understand the
main idea behind X-ray diffraction.

In the following, two basic assumptions are made. First, the wavelength of the X-ray light has the
same order of magnitude as the lattice constants. Operating the MFXT or the PXS, the Kα1 line of
Copper is used for X-ray radiation (see Sec. 6.1.1) which has an associated wavelength of approximately
1.54 Å, while the BESSY II setup is using a monochromator to freely chose a wavelength in the hard
X-ray regime. So the first assumption is realised by the setups used and the second one is that X-rays
are scattered elastically and therefore do not lose energy during the diffraction process.

Bragg stated, that a crystal may be divided into planes with a certain distance d and we already saw
that this is a possible way to describe a crystal. Furthermore those planes are able to reflect X-ray radi-
ation, so that an incoming wave will be partially reflected at each plane. The reflections and diffraction
patterns of the Laue photographs are found exactly for those directions in which the reflected waves are
interfering constructively. Assuming an incident X-ray with the wavelength λ under the angle ϑ onto
planes with the distance d, constructive interference will be observed if the path difference between two
X-ray beams reflected on neighbouring planes is a multiple of the wavelength. The situation is depicted
in Fig. 3.4a and condenses in Bragg’s law, the condition for constructive interference of X-ray scattered
from adjacent crystallographic planes:

2d sinϑ = nλ n = 1, 2, 3, . . . (3.5)

If the reflected intensity reaches a local maximum at a certain angle ϑ, one speaks of it as a (hkl)
reflection, relating to the (hkl) set of planes on which the X-rays are reflected. Knowing the X-ray
wavelength λ and the diffraction angle ϑ of a local maximum by using for example the diffraction pattern
in Fig. 3.4b, we can calculate with Eq. 3.5 the distance dhkl. However, we must now clarify some issues
to understand the diffraction pattern depicted in Fig. 3.4b.

3.2.3. Interpretation of X-ray diffraction patterns

In Fig. 3.4b the TbFe2 peak is labelled (220). In the explanation of the Miller indices it was stated, that
the numbers (hkl) must be reduced, which would not allow a triplet like (220). There are two equivalent
interpretations of this notation. We could say, that it is the second order reflection of the (110) plane,
manifesting in n = 2 in Eq. 3.5. Or we could define the (220) plane set as the planes which are still
parallel to the (110) planes but just have half the distance to their neighbours, i.e. only every second
plane of the (110) set is considered.

Next we need to explain why the displayed reflections of the TbFe2, Sapphire and niobium crystals differ
in intensity, width and and shape. The answer lies partially in the amount of planes which are reflecting.
A single atomic layer reflects 10−3 to 10−5 of the incident intensity, which means if there are only few
planes, the maximal reflected intensity must be significantly smaller than it would be with many planes.
If we take a look at the sample’s cross section in Fig. 3.3, it is clear, that niobium can only reflect so
little because it is only 100 nm thin, TbFe2 will reflect a bit more because of the 500 nm thickness and
Sapphire will be of course the most intense reflection because it offers the highest amount of reflecting
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Figure 3.4: (a): Sketch of reflection of X-rays at equidistant planes of a crystal to visualise Bragg’s
law, adapted from Gross & Marx [12]. The red lines indicating the X-ray light reflected on the planes
with a distance d. The path difference equals 2d sinϑ and must be a multiple of the wavelength λ to
achieve constructive interference. (b): Diffraction pattern of the TbFe42 sample measured with the
MFXT setup. Varying the diffraction angle ϑ results in different intensities measured. The (220) planes
of TbFe2, the (1120) planes of sapphire and the (110) planes of niobium with their different distances d
reflecting under certain angles only.

planes because of it’s layer thickness.

However we can see, the intensity is not even remotely proportional to the thickness of the layers. Two
other material-dependent properties are affecting the intensity, namely the penetration depth and the
structure factor. The penetration depth results from the fact that crystals or matter in general scatter
and absorb (in this case also reflect) X-rays and any other sort of light. This leads to an exponential
decrease of incident intensity3 the deeper particular reflective planes are located inside the sample. Due
to the fact that the Sapphire substrate lies under 600 nm of absorbing and reflecting material the (1120)
Sapphire reflection is not some orders of magnitude higher than the other reflections are. The structure
factor gives an explanation why some planes of some materials only reflect 10−5 and some up to 10−3

of the incoming intensity and it will be discussed later in relation to the scattering amplitude with Eq. 3.9.

The width of a peak is determined by the number of reflecting planes and the more there are, the sharper
the peak will be. That is why the niobium reflection is the broadest, the TbFe2 is a bit sharper and
the Sapphire reflection is even sharper. That relationship finds its quantitative description in the lattice
sum, also discussed in combination with the structure factor with Eq. 3.9.

Additionally, the sharpness of the Sapphire (1120) reflection reveals another factor, which not only broad-
ens the peaks but also changes their shape. In Fig. 3.4b we can see a weak shoulder at the right side
of the Sapphire peak. This feature arises from the not fully monochromatic X-rays used in the MFXT

3The intensity-decrease is an interplay of mainly two interaction processes of X-ray with matter. At first, there is
the inelastic Compton scattering where photons are colliding with free electrons inside the material changing their
momentum and transferring energy to the electron hit. Those photons can not be used for X-ray diffraction any more.
And there is the photoelectric absorption where a photon is fully absorbed by a bound electron which now has enough
energy to escape its potential well of the nucleus. Fluorescent X-ray emission might be a secondary effect, but the
generated light has no favoured direction and can also not be used for further X-ray diffraction. Quantitatively, the
absorption is described by the Beer-Lambert law: I(z) = I(z = 0) exp(−µz), where I(z) is the intensity after a depth

of z and µ is the material-specific penetration depth, with µ = ρmNAσa
A

, where ρm, NA, σa and A are the mass density,
Avogadro’s number, the absorbtion cross-section and the atomic mass number, respectively [23].
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3.2. Concepts of X-ray diffraction (cf. [12, 23])

setup. Most photons used for X-ray diffraction here are in fact related to the Kα1
line of Copper, but

a fraction comes from the Kα2
line and the bremsstrahlung background spectrum. Thus, Bragg’s law is

fulfilled for different parts of the X-ray spectrum at different angles and light is reflected at angles where
Bragg’s law is not fulfilled for Kα1 light but for different wavelengths λ. The shoulder does not appear
at the niobium and TbFe2 peaks because they are already too broad because of the lattice sum, to make
such a feature visible.

After this simple look at X-ray diffraction by Bragg’s law, basically interpreting the lattice planes as
partially reflecting mirrors, but still using the term of interference to explain measured intensity patterns
of reflective crystals, a more mature, but still equivalent model must be presented. It is because Bragg’s
law confines itself to describe only symmetric reflections, meaning that the angle of incidence equals the
reflection angle, in both cases ϑ. This allows only the reflection-detection and distance-determination of
planes parallel to the surface of a sample. Reflections of planes inside a crystal that are not parallel to
the surfaces, can not be seen if the angle of incidence and the reflection angle are the same and thus the
distances between the planes can not be assigned4. The detection and description of so called asymmetric
reflections, where the incident and reflection angle differ, is easier with the Laue equation.

3.2.4. Laue equation

If a plane electromagnetic wave ei
~k·~r like X-ray enters a medium it can scatter elastically, meaning

only changing the direction of its associated wave vectors from ~k to ~k′. The related momentum change
∆~k = ~k′−~k is often called ~Q, the scattering vector, see Fig. 3.5a. In a crystal, there are many scattering
centres placed equidistantly, the atoms with a large electron density. And the scattered waves with the
wave vectors ~k′ may interfere, if one condition is fulfilled which is basically the same as it is in Bragg’s
law; The path difference between adjacent scattering paths from neighbouring scattering centres must
equal a multiple of the wavelength, which is anti-proportional to the wave vectors length (|~k′| = |~k| = 2π

λ ),
see Fig. 3.5b:

|~r| cosϕ′ − |~r| cosϕ = nλ n = 1, 2, 3, . . . (3.6)

where ~r is the origin of the electromagnetic waves, i.e. ~r = ~R (because the scattering centres are distanced

by ~R in a lattice, defined by Eq. 3.1), and ϕ and ϕ′ are the incident and scattering angle, respectively.

This equation looks similar to Bragg’s law 3.5, and is actually the same, setting |~R| = d, ϕ′ = −ϕ and
cosϕ = sinϑ, as it is done to construct the situation in Fig. 3.4a. Even so, Eq. 3.6 can be further
evaluated. With |~R| cosϕ′ = ~R · k̂′ and |~R| cosϕ = ~R · k̂, it follows

(~k′ − ~k) · ~R = 2πn ⇔ ei
~Q·~R = 1. (3.7)

This relation is equivalent to the definition of reciprocal lattice vectors. Thus, all ~Q are reciprocal lattice
vectors ~G to the crystal lattice defined by ~R. The Laue equation in its reduced form is now derived:

~Q = ~G, (3.8)

meaning that constructive interference of X-rays scattered by a crystal lattice will appear, if the scattering
vector ~Q equals any reciprocal lattice vector ~G of the crystal lattice. We are now able to calculate ~Q by
setting ~k and measuring ~k′, and we will then know the direction and length of ~G, which will give us the
associated set of (hkl) planes and their distance dhkl, respectively (see Eq. 3.3 and 3.4). Because ~k and
~k′ are vectors, all kinds of directions, i.e. incident and reflective angles are possible, almost every set of
planes can be examined and described with the help of the reciprocal lattice as an essential theoretical
model for X-ray diffraction techniques.

4It is important to note, that Bragg’s law is of course viable for every set of planes, no matter how they are oriented.
But in the experiment, we have a macroscopic sample with only one distinguished direction, the direction out-of-plane,
perpendicular to the surface. So we do not know how planes are oriented in relation to the sample surface. With a
ϑ/2ϑ-Scan where the sample is rotated by ϑ and the detector by 2ϑ in relation to the incident X-ray beam, only planes
parallel to the surface will reflect. Thus we have to take different incident and reflection angles referred to the sample
surface to see asymmetric reflections.
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(a) (b)

Figure 3.5: (a): Definition of the scattering vector ~Q, adapted from Als-Nielson [23]. The depicted
scattering centre is a molecule. (b): Sketch of the scattering of an electromagnetic wave at two lattice
points, adapted from Gross & Marx [12].

3.2.5. Scattering amplitude and intensity

With the Laue equation we can now associate the positions of reflections with a set of planes. So far
the intensity and appearance of the Bragg peaks was only partly explained in relation with Fig. 3.4b.
The lattice sum and the structure factor were the two parts missing to fully understand the measured
X-ray intensity. Thus we recall basic scattering theory and define the scattering amplitude F of X-rays
scattered by a certain crystal. It is the product of the structure factor and the lattice sum. Also, the
scattered intensity I( ~Q) is proportional to the square of F which is given by:

√
I( ~Q) ∝ F( ~Q) =

structure factor: Shkl︷ ︸︸ ︷
N∑
j=1

fj( ~Q)ei
~Q·~rj

lattice sum: G︷ ︸︸ ︷
M∑
n=1

ei
~Q·~Rn , (3.9)

where fj( ~Q) are the atomic scattering factors, ~rj the place of the jth atom in the unit cell, N is the

number of atoms in one unit cell, ~Rn the place of the nth unit cell inside the scattering crystal and M
the number of scattering unit cells.

The lattice sum G( ~Q) can be evaluated as follows: It approaches M if ~Q → ~G and for very large M

rapidly converges to zero if ~Q 6= ~G. A large M is interpreted as a participation of many unit cells in the
scattering process, i.e. many planes contribute to the reflection. The larger M gets, the more G( ~Q) re-

sembles a set of δ-functions in the ~Q space. With a decreasing number of unit cells or planes contributing
to the scattering, this set of sharp peaks is broadened and forms side maxima, see Fig. 3.6a. The number
of the side maxima increases with M , as their absolute value decreases to converge to the δ-functions.
That is the reason why a Bragg peak broadens and loses intensity as the thickness of a reflective layer
reduces.

Closely linked to the discussed reflectivity of a crystal plane are the structure factor Shkl( ~Q) and the

atomic scattering factor fj( ~Q). The latter gives the scattering strength of the jth atom in a unit cell and

changes for different types of atoms. Generally it decreases monotonically with an increasing ~Q and is
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Figure 3.6: (a): Graphs of one dimensional lattice sums for four different M , normalised with 1
M .

~Q and ~R are reduced to Q and n, respectively. Thus, following Eq. 3.9, the function of the graphs is
1
M

∑M
n=1 cos(nQ), with Q ∈ [−1, 8]. One can see that the amplitude of the peaks at 0 and 2π is equal to

M and that with an increase of M , side maxima and minima are decreasing relative to the main maxima,
as latter are getting more narrow. (b): Sketch of the situation leading to a forbidden reflection taken
from Gross & Marx [12]. A unit cell of a bcc crystal (body-centered-cubic, crystal with cubic unit cell
containing one centre atom) is sketched and the paths of X-ray are drawn just like in Fig. 3.4a. While
the atoms in the planes on the top and bottom (blue) of the cube are fulfilling Bragg’s equation, the
atom in the centre does not. It is part of a plane (red) lying parallel to the top and bottom plane. Thus
the path difference between two reflecting planes is now λ

2 which leads to destructive interference.

defined by:

f( ~Q) =

∫
ρ(~r) ei

~Q·~rd~r, (3.10)

where ρ(~r) is the electron density of the described atom, with f(~G → ∞) = 0 and f(~G → 0) = Z,
the atomic charge number. The scattering capabilities of all atoms in one unit cell are combined in the
structure factor Shkl( ~Q). It varies with ~Q but since G( ~Q) quickly drops to zero if ~Q 6= ~G, the product

F( ~Q) is finite only at those ~Q where the Laue equation is fulfilled. Therefore the strucutre factor must
only be evaluated for every Bragg reflection, for every set of reflecting planes and has therefore associated
Miller indices (hkl).

In addition to the scattering properties of the atoms, Shkl( ~Q) also encodes their positions in the unit cell.
Several reflections must be measured to determine the structure factor and some reflections can not be
observed, so called characteristic forbidden reflections with Shkl( ~Q) = 0 for the (hkl) set of planes and
present unit cell. An example for the occurrence of a so called forbidden reflection is depicted in Fig.
3.6b. Thus the intensity of a Bragg reflection is determined by the structure factor and the lattice sum.

3.2.6. Debye-Waller factor

Another important factor in the interpretation of X-ray diffraction patterns is the Debye-Waller factor.
It reduces the intensity of reflections with increasing length of ~G, if a finite temperature sets atoms into
motion:

Ihkl = I0 e−<u
2
G>G

2

, (3.11)
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3.2. Concepts of X-ray diffraction (cf. [12, 23])

where I0 is the intensity of the crystal lattice at rest as described by Eq. 3.9 and < u2
G > is the average

of the squared deviation of the atomic positions along ~G. Such a deviation originates from phonons,
quantised lattice oscillations, which are thermally excited at finite temperatures (at T = 0 so called zero
point fluctuations can also be observed), i.e. the movement of atoms around their equilibrium positions
rises with increasing temperatures [29]. It reduces the intensity because not all planes interfere construc-
tively, accompanied by a rise of the background noise commonly known as thermal diffuse scattering [12].

All in all, we can say that the structure analysis with X-ray diffraction has essentially two parts. The form
and dimensions, i.e. the lattice constants,are determined by measuring the position of Bragg reflections
because of Eq. 3.8, the Laue condition for constructive interference, also reappearing in the discussion of
the lattice sum. Besides, the content of the unit cell is derived from the intensity because with Eq. 3.9
the intensity of a (hkl) reflection reduces to:

Ihkl = M2 S2
hkl e−<u

2
G>G

2

, (3.12)

where e−<u
2
G>G

2

is the Debye-Waller factor, M is the number of reflecting unit cells and Shkl is the
structure factor, containing information of the electron density and thus the position of atoms. In fact,
the Fourier transformation of Shkl gives the electron density which can not be calculated directly but
with help of, for example, the Patterson function5. Furthermore we may conclude, that the scattering
amplitude of an X-ray diffraction pattern itself is basically a Fourier transformation of the electronic
charge density of the crystal [29].

3.2.7. Reciprocal space maps

To determine the structure of a crystal with X-ray diffraction we therefore have to measure the scattered
X-ray intensity as a function fo the scattering vector ~Q, mapping the whole reciprocal lattice. A recip-
rocal space map is the result and an example, of the (220)-reflection of TbFe2, is displayed in Fig. 3.7.

There we see a local maximum of intensity in the qz-qx-plane, a slice of the ~Q-space with fixed qy = 0.

At the maximum, ~Q = (qx, qy, qz) = ~G, the Laue condition, is fulfilled, as it must be for every observed
local maximum in the reciprocal space.

Theoretically, a complete picture of the reciprocal space can be obtained if every ~Q is realised by adjust-
ing ~k and ~k′ and measuring the intensity. In the reciprocal space to be formed, every reciprocal lattice
vector ~G could be found because it gives the place of a local maximum of intensity (except for those
reflections which are forbidden because of vanishing structure factors). Thus the reciprocal lattice can

be depicted inside the reciprocal space, which is basically empty (I( ~Q) = 0) except for those areas where
~Q ≈ ~G. Knowing the reciprocal lattice, i.e. all possible ~G, the real crystal lattice can be derived, because
they are connected by a Fourier transformation.

In reality, ~Q has a supremum | ~Q|max = k2, because the X-ray wavelength is often fixed and because we

only describe elastic scattering, it is always |~k′| = |~k| = 2π
λ . Also, the reciprocal space is isomorphous to

the real space R3 therefore dense. Thus, discrete measurements of ~Q vectors are only an approximation of
the reciprocal space. Usually, only the areas around Bragg reflections are measured, because everywhere
else, the signal would be near zero anyway. To set up different ~Q, it is necessary to rotate the sample
and place the detector in certain relation to the incident X-ray beam as ~Q = ~k′ − ~k. The precise
implementation and data acquisition for the MFXT, BESSY II and PXS setup is documented in the
respective sections 6.1, 6.2 and 9, repectively.

5The Patterson function provides a way to calculate the electron density which can be written as a three-dimensional
Fourier series of the form ρ(x, y, z) =

∑∞
hkl=−∞Shkl ·exp[2πi( ~Ghkl ·~r)]. The problem with a simple Fourier analysis lies in

the determination of the appropriate phases for Shkl. The method of Patterson however, enables a direct determination
of interatomic distances and their directions. This technique was introduced in 1934 by A. L. Patterson [30].
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Figure 3.7: So called reciprocal space map (RSM) of the TbFe2 (220) Bragg reflection. A slice of the
reciprocal space at qy = 0 is depicted in the top colourplot. The blue area in the top left corner is an
area of the RSM which was not scanned during the measurement, i.e. it is not a feature of the sample’s
reciprocal space. A slice along the qz-axis (red line in the RSM) is plotted in the bottom plot, where
qy = qx = 0. Apparently, the scattered intensity reaches its maximum at qz ≈ 2.43 Å−1, where the Laue
condition is fulfilled, associated with a lattice spacing of d110 = 5.40 Å or aTbFe2 = 7.63 Å according to
Eq. 3.4 and 3.2. Compared to the literature value of 7.347 Å, a mismatch of four percent is registered
here, which can be corrected by a more detailed calibration of the experimental setup. However, that is
not necessary during the course of this thesis since mainly relative changes are examined in the following.

3.2.8. Summary of XRD signal interpretation

The previous short introduction to X-ray diffraction condenses into a set of features which can be seen
if one is looking at one-dimensional X-ray diffraction patterns, such as the dependence of the intensity
on a component of the scattering vector qz in Fig. 3.7 or the diffraction angle ϑ in Fig. 3.4b. Mostly
these kinds of plots are used to determine the interatomic distances in crystals, although they are in some
cases one-dimensional projections of three-dimensional spaces defined by the spatial intensity distribution
measured by X-ray detectors.

The following Fig. 3.8 provides a short summary of effects and processes inside the crystal lattice and
how the diffraction pattern is influenced by them.
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Figure 3.8: Variation of Bragg-peaks resulting from different types of distortions in the lattice taken
from Bargheer et al. [29]. (a-d) are displaying the individual changes in the crystal planes, parallel to
the reflecting surface, made up by atoms. (e-h) are visualizing changes of the associated reflections.
Therefore the undistorted lattice and the changed lattices as well as their related Bragg reflections are
pictured in black in red (or blue), respectively.

(a) and (e): A random disorder in the lattice due to motion of atoms at finite temperatures

gives rise to the Debye-Waller factor e−<u
2
G>G

2

, which reduces the intensity of Bragg peaks with
increasing temperature accompanied with an increased diffuse background.

(b) and (f): Homogeneous acoustic deformation of crystals are shifting the Bragg peaks, because
the distance of reflecting planes changes. For a tensile or compressive deformation, the reflection shifts
to smaller or higher reflection angles, respectively. This can be understood by recalling Bragg’s law.
The intensity does not change.

(c) and (g): Sidebands are appearing as longitudinal acoustic phonons, i.e. longitudinal lattice
oscillations or sound waves, travel through the crystal. The Fourier-transformation-like relation between
crystal lattices and their diffraction patterns can be seen here again. Convolving a periodically signal
with another one, for instance the equidistant placing of atoms in the lattice with a periodically
distortion of them, results in additional wave vectors in the Fourier spectrum, in this case additional
peaks in the diffraction pattern. This can be described in the Laue formalism as the momentum of the
phonon contributes in the scattering process as an extension or shortening of the reciprocal lattice vector.

(d) and (h): If optical phonons with k = 0 are excited in the crystal a negative or positive mod-
ulation of the intensity may be detected. This change can be related to a variation of the structure
factor Shkl, which varies as atoms are displaced in the unit cell. For k 6= 0, sidebands as in g) are to be
expected.
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4. Magnetism in TbFe2

After the short introduction to crystallography, we now discuss the magnetic properties of TbFe2. In
combination of both topics lies the magnetostriction, the heart of this thesis. Therefore, I will shortly
describe the origin of magnetism in TbFe2, presenting the electronic configuration and the RKKY-
Interaction. Furthermore the observation of a spontaneous macroscopic magnetization, is explained and
underlined with multiple measurement results from different sources in the following sections.

4.1. Electronic configuration

The electronic configuration of terbium is [Xe](4f)8(5d6s)3[12, p. 679], where the three 5d6s elec-
trons are delocalised conduction band electrons in the Laves phase. One ion yields a magnetic moment
of µTb = 9.0µB [8, p.6] which originates almost solely from the eight 4f electrons while a value of
µFe = 1.6µB [26] is connected to the 3d electrons of the Iron sublattice. Iron has the electronic config-
uration [Ar](3d)6(4s)2 and the 3d electrons of Fe participate in bonding to other atoms whereas the 4f
charge cloud of Tb is localised at the nucleus and is screened by the conduction band electrons. The
orbital of the 4f electrons looks like a pancake [14], which means it is oblate and has one preferential
direction. This anisotropy is the origin of a magnetic anisotropy, see Sec. 5.1.2 and 5.4.

According to Hund’s rules [12, p. 677], the rare earths are divided into heavy and light ones. In the light

rare earths, the angular momentum ~J equals ~S − ~L, while it is the sum for heavy rare earths ~J = ~S + ~L
as it is for Terbium in TbFe2 [31]. For Tb the quantum numbers are J = 6, S = 3 and L = 3 and it is

also important to note that a strong Spin-Orbit coupling is present [14]. It means, that ~S and ~L tend to
align, which will result, in a reorientation of the anisotropic charge cloud of the 4f electrons, which is
connected to ~L, if the direction of the spin ~S is changing.

4.2. RKKY-Interaction and magnetic ordering

With the electronic configuration of Terbium in TbFe2, it is possible to comprehend the magnetic prop-
erties of TbFe2. Note at first that TbFe2 is a ferrimagnet at room temperature [32], which means that
the spins of the Iron ions are antiparallel to the spins of the Terbium ions. This leads to a net sponta-
neous magnetization, unlike an antiferromagnet. The ferrimagnetic nature of TbFe2 can be understood by
first recalling the RKKY exchange interaction together with the principles of spontaneous magnetization.

The 4f electrons contribute mostly to the large magnetic moment (µTb = 9.0µB) of Terbium and are
screened by conduction band electrons. Because the 4f electrons are located near the nucleus, they have
no direct overlap with the 3d electrons of Iron. A direct exchange interaction between the spins of Tb
4f and Fe 3d electron is negligible due to the vanishing overlap of their wavefunctions. In 1971 Taylor
wrote that the assumed exchange interaction is a simple RKKY mechanism as suggested by Wallace in
1968. [32].

The RKKY interaction is named after four scientists, M. A. Rudermann, C. Kittel, T. Kasuya and
K. Yosida who described the interactions of stationary magnetic moments, like spins in solid state ma-
terials in their successively published work in 1954 [33], 1956 [34] and 1957 [35]. It is called a Two-Ion
interaction because it explains the coupling of two neighbouring ions via a magnetization of the conduc-
tion band electrons. Thus it is an indirect effect and quantum mechanical calculations give an oscillating
interaction strength (Fig. 4.1) which changes the sign of the Two-Ion interaction as a function of the
distance. It means that two ions can have parallel spins while being at a certain distance to each other
but if the distance between them is increased, the coupling can become antiparallel [36]. For TbFe2 this
model leads to the following pictorial view: the magnetic moment originating from the 4f electrons of
Tb magnetise the conduction band electrons and they interact with the magnetic moment of the Fe 3d
electrons. Because of the certain distance between Fe and Tb ions, the indirect coupling of the spins is
of antiparallel nature, i.e. TbFe2 is a ferrimagnet. The exchange interaction in TbFe2 is described by an
exchange Hamiltonian Hex [37, 38]:

Hex = gµBBexJz, (4.1)
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4.3. Spontaneous magnetization

Figure 4.1: Pictorial view of the RKKY interaction and function with spins of terbium and the iron
atom, adapted from Taylor [32, p.611]. The RKKY-function oscillates with the distance and reduces in
strength by R−4. Here, only the interaction function from the left terbium ion is depicted, coupling anti-
ferromagnetic with the neighbouring iron ion, because the function is negative there. A ferromagnetic
interaction persists with the neighbouring terbium ion on the right because the RKKY-function is positive
at that distance R.

where g is the Landé factor, Jz the angular momentum of the rare earth ion and Bex the magnetic
exchange field, referring to the indirect interaction due to conduction band electrons, cf. Gross and Marx
[12, p. 711]. The exchange Hamiltonian describes the energy of one ion resulting from the RKKY
exchange interaction and will be used in Sec. 5.1.2.

4.3. Spontaneous magnetization

Since TbFe2 is a ferrimagnet, it exhibits a spontaneous macroscopic magnetization MS, which is strongly
temperature dependent. The spontaneous magnetization of the Tb and Fe sublattice as well as TbFe2

from various publications are displayed Fig. 4.2. Note, that at 0 K the measurements correspond well with
the expected value of µTb = 9.0µB. This magnetic moment can be translated into a net magnetization
which equals 1.7 A

m , seen in the Figure at 0 K. In addition, the ferrimagnetic nature due to the RKKY
interaction (Sec. 4.2) can be seen in Fig. 4.2, for example at 0 K:

MTbFe2(0 K) = 1 · 106 A

m
= 1.7 · 106 A

m
− 2 · 3.5 · 106 A

m
≈MTb(0 K)− 2MFe(0 K). (4.2)

The temperature dependence shown in Fig. 4.2 is a well known phenomenon, see Ashcroft & Mermin
[40]. Every ferro- or ferrimagnet has a Curie temperature at which it becomes paramagnetic. For TbFe2,
TC lies between 695 K [25] and 704 K [17]. Below TC the spontaneous magnetization M follows a power
law:

M(T ) ∝ (TC − T )β , (4.3)

with β = 0.33(. . . )0.37, which only applies for temperatures near TC. Such a dependence appears in Fig.
4.2 and a theoretical derivation is explained in a few steps. At T = 0 all magnetic moments inside the
crystal are aligned in one direction in the case of a ferromagnet. For TbFe2, all spins of the Fe and Tb
sublattice are aligned, while the spins are antiparallel. This leads to a saturation magnetization mS:

MTb(0 K) ∝MS = gµB
N

V
S, (4.4)

where g is the Landé factor, N
V the atom-density and S the mean spin of each magnetic moment. If

T 6= 0, the magnetization of all states has to be evaluated with a Boltzman factor e−E/kBT . This leads
to lower magnetization at finite temperature because of the excitation of spin waves. This process is
dominant at low temperatures and it’s magnetization reducing effect is called Bloch’s T 3/2 law, which
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4.4. Magnetic Domains, (cf. [40])
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Figure 4.2: Literature values for the Temperature dependence of the spontaneous magetization of TbFe2
and its components. The data was taken from Bruzo [39], Clark [7], Tang et al. [26] and Barbara et al.
[25]. The magnetization of the Iron and Terbium sublattice is depicted and one can see that the sum of
the sublattice magnetization, evaluated with the ferrimagnetic nature, equals the net magnetization of
TbFe2. The magnetization shows a decrease to zero at a temperature of approximately 700 K, the Curie
temperature.

states that the magnetization will differ from MS by a value proportional to T 3/2 at low temperatures.
Bloch’s law transitions with rising temperatures to the empirical relation in Eq. 4.3.

4.4. Magnetic Domains, (cf. [40])

Although quantum mechanics predict a spontaneous magnetization in TbFe2 at RT as in all ferro- or
ferri-magnets below their Curie-Temperature, a macroscopic magnetization, i.e. the possession of a mea-
surable external magnetic field is naturally non-existent. The reason is the magnetic dipole interaction
of the material’s spins. Between neighbouring spins, with a distance of some angströms, the RKKY
exchange interaction occupies a dominant position as it is usually by a factor of 1000 stronger than the
magnetostatic dipole interaction between magnetic moments. However, the impact of the RKKY interac-
tion decreases much faster with rising distance as the dipole interaction does. While a parallel alignment
of spins may minimise the RKKY interaction energy, a perpendicular or even antiparallel alignment
of magnetic dipoles reduces the dipole interaction energy on the other hand. Thus it is energetically
favourable to form magnetic domains with distinctive magnetization directions. In each domain, the
exchange energy is minimised resulting in only one direction of magnetization (spontaneous magnetiza-
tion) but concerning the whole sample, the dipole energy is minimised by many domains with different
directions of magnetization. At the borders of domains, the exchange energy is admittedly increased but
this is compensated by the relatively huge reduction of dipole interaction energy over the whole sample
volume. Therefore, magnetic domains occur at sample sizes larger than the actual emerging domains
which is for TbFe2, 5 to 250µm [41]. Most likely, our sample with a size of 5 mm times 5 mm times
500 nm will exhibit magnetic domains in-plane, but not in depth.

Despite the existence of magnetic domains in TbFe2 it is possible to achieve a macroscopic magneti-
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4.4. Magnetic Domains, (cf. [40])

zation. The domains are not fixed entirely, the borders between them (domain walls) can be moved
to enlarge one domain to the benefit of another and thus removing the equilibrium of counteracting
microscopic magnetizations. To move a domain wall, an external magnetic field Bext must be applied to
enhance one favourable orientation of spins. The response of a ferromagnet to an external field is strongly
dependent on the state and properties of the domains and is usually depicted in so called hysteresis mea-
surements. In Fig. 4.3 a schematic comparison between the magnetic response, i.e. the macroscopic
magnetization Mm, of a single domain and a multi-domain specimen is shown if they are exposed to a
variable magnetic field.

(a) (c)

(a) (b) (c)

(a)

(c)

(a)

(b)
(b)

(c)

Figure 4.3: Sketch of hysteresis of single- (green) and multi-domain (blue) specimen, cf.[40]. The
macroscopic magnetization Mm versus external magnetic field Bext is displayed and commonly this
response comes to light as the field is maximal at first (a), decreased to the negative maximum value (c)
and back to the initial magnetic field. Going from (a) to (c), the top half of the hysteresis can be measured,
accordingly following the arrows, from (c) to (a), the lower branch can be seen, completing one roundtrip,
a hysteresis loop. A microscopic view of the magnetization state for associated points during the loop
are depicted on the left side. Assuming only one domain (green), only two different states are possible
and decreasing Bext from (a) to be (c) switches the magnetization’s sign at −Bc (coercive field). The
way back looks similar, as Mm equals the spontaneous magnetization (MS) all the way. Taking multiple
domains into account (blue) results in a steadily decrease of Mm, vanishing at Bc, where all opposing
domains are equally large, as the domain walls were moved ((a) to (b)). Further on, Mm decreases as
the domain walls move on increasing the size of the aligned domain. At (c), Mm converges to −MS not
only by increasing the dominant domain even more but also by tilting the magnetization of the domains
with an initial perpendicular magnetization direction in respect to the external field. Accordingly MS

is also called saturation magnetization, reached only for high magnetic fields. Completing the loop by
going from (c) over (b) to (a) again shifts the domain walls and tilting the magnetization of not aligned
domains towards the external field.

Hysteresis loop measurements therefore give information concerning the microscopic magnetic structure
and were performed on TbFe2 during the course of this thesis, see Sec. 7.1. Interestingly, the magnetic
response of TbFe2 is strongly dependent on the crystallographic axis originating from the anisotropy
already mentioned in Sec. 4.1 and discussed in detail in Sec. 5.1.2 and 5.4.
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5. Magnetostriction

Joule discovered magnetostriction of pure Iron in 1842 [1]. It is the relative change of volume V or
length l caused by the change of the magnetization ~m. The quantity λ is called linear magnetostriction
or magnetostrictive constant and is defined by the relative change of l in one direction, for instance the
(111) direction of a single crystal, when the magnetization is changed:

λ111 :=
l111(~m2)− l111(~m1)

l111(~m2)
=

∆l111

l111
. (5.1)

This magnetostrictive effect is two to three orders of magnitudes larger in TbFe2 (λ111,TbFe2 = 2.4 · 10−3

[42]) than it is in Iron (λ111,Fe = −2.3 · 10−5 [8]). Effects of the order 10−3 or larger are classified as
giant magnetostriction and thus TbFe2 has been such a popular subject for magnetostriction research
and application for over 45 years now [2].

In addition, TbFe2 and other alloys exhibit a change in the crystal lattice, below the Curie temper-
ature, without applying an external magnetic field to change the magnetization. It is called spontaneous
magnetostriction and its source is the spontaneous magnetization of the material, described in Sec. 4.3.
The relationship between magnetization and magnetostriction is explained in Sec. 5.1 and 5.3. For now,
I will focus on the existence and differentiation between polycrystalline and single crystal magnetostric-
tion. To substantiate that, in Fig. 5.1 many measurements of magnetostriction are depicted. Not only
spontaneous magnetostriction examined in single crystals, but also forced magnetostriction of polycrys-
talline TbFe2 due to an applied field are displayed.
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Clark(1972): j6k ! 6?j at 2.5T
Clark(1972): j6k ! 6?j at sat.
Clark(1974): j6k ! 6?j at 1T
Clark(1974): j6k ! 6?j at 2.5T
Clark(1974): j6k ! 6?j at sat.
Barbara(1977): 6111, spontaneous

Clark(1977): 6111, spontaneous

Clark(1985): j6k ! 6?j at 0.9T
Clark(1985): j6k ! 6?j at sat.
Mougin(2000): 0xy (strain, thin -lm)

Tang(2014): 6111, spontaneous

Figure 5.1: Spontaneous magnetostriction in TbFe2: For polycrystalline materials |λ‖ − λ⊥| is the
quantity of magnetostriction, Clark (et al.) 1972 [2], 1974 [43] and 1985 [44]. For single crystal TbFe2

it is usually λ111, as in Barbara et al. [25], Clark et al. (1977) [45] and Tang et al. [26]. Mougin et al.
published a magnetostrictive and anisotropy strain term εxy of a thin film of TbFe2 [46], plotted here
for comparison. Some data was collected with an applied magnetic field. Generally the magnetostriction
rises with the strength of the field up to a saturation (sat.) value of the magnetostriction. In Sec. 5.2.3,
magnetostriction in polycrystalline materials caused by an external field will be described.
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5.1. Theory of crystal field magnetostriction

Figure 5.2: Poly-
crystalline magne-
tostriction, adapted
from del Moral [47]

In polycrystalline TbFe2, there is no distinguished [111] direction, which is why
no spontaneous magnetostriction will appear below the Curie temperature. But
by applying an external field ~Bext, one direction is predetermined and magne-
tostriction will occur. There is a contribution, positive and parallel to the field λ‖
and another, negative perpendicular λ⊥, as one can see in Fig. 5.2 [2]. Therefore
the material expands along to the magnetic field and contracts in the plane per-
pendicular to the applied field. In a single crystal there is also a contraction in
the plane perpendicular to the (111) axis, but it is rarely discussed. For polycrys-
talline samples the only distinguished axis is given by the external field direction
and the relationship between λ111 and |λ‖ − λ⊥| can be formulated. The latter
is temperature dependent and is also determined by the strength of the exter-
nal field. At saturation magnetization of the polycrystalline TbFe2 however, the
magnetostriction is also saturated and one can relate these two quantities by Eq.
5.2 [48]:

|λ‖ − λ⊥| =
3

2
λs, (5.2)

with λs being the magnetostrictive constant at saturation. For a more detailed discussion, with a deriva-
tion of λ111, λs and the exact relation between magnetization and magnetostriction see Sec. 5.2.2 and
5.3, respectively.

5.1. Theory of crystal field magnetostriction

A qualitative picture of magnetostriction can be obtained in the picture of crystal field magnetostriction.
By applying an external magnetic field or varying the temperature of a magnetostrictive material, the
magnetization may be changed. The reason why TbFe2 shows strong magnetostriction is the anisotropic
shape of the Tb 4f electron orbital and a strong spin-orbit coupling. It is known that the most part of
the ionic magnetic moment originates from the spin of the 4f electrons. Also, the electron cloud in its
special form can interact with the lattice via Coulomb interaction with the neighbouring atoms. Strongly
coupling the spin system to the orbital system thus means to connect distortions in the lattice with the
electron spins which make up the macroscopic magnetization. A scheme of this so called crystal field
magnetostriction process is given in Fig. 5.3.

Figure 5.3: Sketch of basic interactions responsible for magnetostriction, adapted from Dionne, 1979
[49]. (a): The angular momentum of the spins ~S and the orbit ~L tend to align due to Spin-orbit

coupling. (b): Only the momentum of the orbit ~L interacts with the coulomb crystal field ~E of near

atoms, called Stark interaction. (c): The spins ~S can react to an external magnetic field ~Bext, called

Zeemann interaction and giving the orbit momentum ~L a tug to distort the lattice due to perturbation
of the crystal field ~E, resulting in a lattice distortion.

The picture of the crystal field magnetostriction establishes a qualitative connection between the mag-
netization and lattice change contained in magnetostriction. To calculate the latter and give predictions
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5.1. Theory of crystal field magnetostriction

a balance of energy model is often applied. Containing all interactions in TbFe2 and associating energy
terms, a quantitative description can be obtained. There are five different terms to consider:

EH , the Zeeman energy, associated with a magnetic moment in an external field,

EA , the magnetocrystalline anisotropy energy, originating from crystal field and exchange energies,

EME , the magnetoelastic energy, a coupling energy between the magnetic and elastic system,

EE , the elastic energy of a crystal, stored during deformations,

ES , the external stress energy, added due to external compression or tension.

Together they form the total energy Etotal of a magnetostrictive system which includes all interactions
of impact on magnetostrictive effects:

Etotal = EH + EA + EME + EE + ES. (5.3)

In this section, every energy term will be derived, explained and described to deduce magnetostriction
through the appearance of Etotal. The ground state of the equilibrated system is then determined by the
minimum of its total potential energy Etotal.

5.1.1. The Zeeman energy

The Zeeman EH energy results from the response of a magnetic moment in a magnetic field. A mag-
netostatic potential energy can be associated with every magnetic dipole exhibiting a magnetization ~M
inside an external field ~Bext [50]:

EH = − ~M · ~Bext. (5.4)

Thus if the dipole is aligned to the external field, the energy reaches a global minimum. If no alignment
is present, the energy of the system will rise with the angle θ between ~M and ~Bext. Thus, it is possible to
change the direction of a magnetization by applying an external magnetic field, which I already mentioned
in Sec. 4.4, where magnetic domains realign with an external field.

5.1.2. The anisotropy energy

To derive the anisotropy energy, I will follow the work of Atzmony and Dariel [37]. They took the One-
Ion model from Callen and Callen [51], the fundamental theoretical model for magnetostriction in rare
earth alloys (see Sec. 5.3), and constructed an Hamiltonian HRE for one rare earth ion. It includes the
electrostatic and spin-orbit energy H0, the exchange energy Hex and the energy of the crystal field Hcrys

which yields the interaction of the 4f electrons with the crystal field:

HRE = H0 +Hex +Hcrys. (5.5)

Assuming that H0 is not effected by neighbouring atoms, the interaction between atoms is approximated
by an effective field described by Hex and Hcrys. The complete anisotropy Hamiltonian per unit cell with
N atoms in it is therefore given by:

Hanis = N(Hex +Hcrys). (5.6)

A theoretical development of the Hamiltonians is described by Atzmony & Dariel, Hutchings and Bowden
et al. which is not presented in this thesis [37, 38, 52, 53]. The phenomenological outcome however is
a series expansion of the free energy which parametrises the Hamiltonian Hanis, introduced for cubic
crystals by Becker & Döring in 1939 [54], see Eq. 5.7:

EA = K0+K1(α2
xα

2
y + α2

yα
2
z + α2

zα
2
x)

+K2(α2
xα

2
yα

2
z)

+K3(α4
xα

4
y + α4

yα
4
z + α4

xα
4
z)

+K4(. . . ),

(5.7)
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5.1. Theory of crystal field magnetostriction

where EA is the magnetocrystalline anisotropy energy, αi are the direction cosines, i.e. the components
of the unit vector of the magentization. They come into play, because both, Hcrys and Hex, depend on
the magnitude and direction of the magnetization. Furthermore, EA rapidly decreases with a rise of
temperature, described by the empirical bulk anisotropy constants Ki, which are displayed in Fig. 5.4.
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Figure 5.4: Anisotropy constants of TbFe2 as a function of the temperature. Atzmony and Dariel
estimated the values of K1 and K2 first in 1973 for three temperatures [37]. They do not coincide well
with the other data because the influence of the temperature on the exchange interaction was neglected.
Subsequent calculations were one order of magnitude larger at 0 K and the data of Atzmony and Dariel
from 1976 [52] matches with the values of Martin et al. [55] only with a small discrepancy. However, the
experimental data from Mougin et al. [46] deviate at room temperature by a half of an order of magnitude.
Note that on the one hand the data was given in erg

cm3 or K
ion , with 10 erg

cm3 = 1 J
m3 and 8kB

a3
K
ion = 1 J

m3 . On
the other hand, K1 is always negative for TbFe2.

The ratio of the anisotropy constants as well as their sign are indicators for the easy magnetization
direction of cubic Laves phase rare earth Iron compounds [46]. For example, if K1 < 0 and K2 > 0 as
it is at every temperature for TbFe2, the easy magnetization direction is (111) or equivalent directions
in cubic symmetry. In this context, ’easy’ labels the direction in which the saturation magnetization MS

is reached at the smallest external magnetic field and thus determines the spontaneous magnetization
direction of magnetic domains, as discussed in Sec. 4.4. Accordingly, the hard axis is the direction in
which the saturation magnetization is reached only for large magnetic fields compared to the easy axis.
The magnetocrystalline anisotropy energy thus describes the magnetization preferences of different crys-
tallographic directions.

To understand this interpretation of EA, it is useful to examine the interplay of the Zeeman energy
and the anisotropy energy in a magnet with uniaxial anisotropy. A schematic two-dimensional single-
domain magnet with distinguished easy and hard axis which is exposed to an external field is depicted
in Fig. 5.5. In the situation on the left side of Fig. 5.5a, the Zeeman energy is zero since the external
field is non-existent. The anisotropy energy is as EA = −Kα2

x, where K > 0 is an anisotropy constant.

Thus EA is minimised when αx = 1, i.e. the spontaneous magnetization ~MS is entirely aligned with the
X-direction, which is the magnetic easy axis. Applying a nonzero external field ~Bext along the hard axis
however changes the situation since the Zeeman energy must be taken into account, see Fig. 5.5b. The
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5.1. Theory of crystal field magnetostriction

scalar product ~M · ~Bext can be evaluated according to EH = −MresBext cos θ = −MresBextαy and thus
the total energy of the system is:

Etotal = EA + EH = −Kα2
x −MresBextαy, (5.8)

without taking into account that the sample can distort via a strain. Minimising Etotal with respect to
θ, one will get:

BextMres sin θ = 2K sin θ cos θ ⇒ θ = arccos

(
BextMres

2K

)
, (5.9)

which is the angle the resulting magnetization of the sample ~Mres will have to an external field ~Bext,
considering Zeeman and anisotropy energies, in contrast to ~MS.

Figure 5.5: Scheme of a two dimensional single-domain sample (grey rectangle) with defined easy (X)

and hard (Y) axis and resulting magnetization ~Mres with (b) or with without (a) an applied external

magnetic field, adapted from Engdahl [8]. In (a) the magnetization ( ~MS) is spontaneous aligned with the
easy axis, minimising only the anisotropy energy as no external field is present. In (b), the magnetization
tilts towards the hard axis additionally minimizing the Zeeman energy since a magnetic field is applied
along that direction.

5.1.3. The elastic and stress energy

The elastic energy is another important contribution to the presented model of magnetostriction. The
quantity of the strain is essential for this energy contribution. The strain tensor εij is defined bvia the
displacements ui of an atom along the coordinate i relative to the equilibrium position [12]:

εij :=
1

2

(
∂ui

∂rj
+
∂uj

∂ri

)
, with ~r =

rx

ry

rz

 . (5.10)

A change of atomic distances manifests itself in form of a strain. These changes of length may result from
external stresses σ applied to the solid. Hook’s law states, the distortion coded in ε must be proportional
to the applied stress, as the force ~F is to the elongation ∆~l:

~F = −C∆~l ↔ σ = Cε. (5.11)

The spring constant C is called Young’s modulus for solids. Just like the strain, the stress σ has a three
dimensional interpretation. In one dimension it is the ratio of a force applied to an area ~A, thus in solids:

σij :=
Fi

Aj
, with ~F =

Fx

Fy

Fz

 and ~A =

Ax

Ay

Az

 . (5.12)
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5.1. Theory of crystal field magnetostriction

Composing the stress and strain 2nd-order symmetric tensors ←→σ and ←→ε , it is necessary to have a

4th-order elastic tensor
←→
C in place for connection:

←→σ =
←→
C←→ε ⇔ σij =

∑
kl

Cijklεkl, with

←→σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 and ←→ε =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 .

(5.13)

The elastic tensor in cubic materials, such as TbFe2 looks particularly simple due to many arguments
of symmetry [56]. There are only three independent coefficients, C11, C12 and C44 using the compressed
Voigt notation6:

←→
C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 . (5.14)

Under an external stress ←→σ , a crystal is deformed by ←→ε . The ratio of stress and the resulting strain is
given by the elastic constants. The elastic energy stored in a distorted crystal can therefore be specified
by Eq. 5.15, just like the potential energy of a stretched spring C∆l2/2:

EE =
1

2
C11(ε2xx + ε2yy + ε2zz)

+
1

2
C12(εxxεyy + εxxεzz + εyyεzz)

+
1

2
C44(ε2xy + ε2xz + ε2yz).

(5.15)

To deduce the external stress energy, let us recall the model of a linear compressed spring. The work W
is needed to compress a spring. By the compression elastic energy from Eq. 5.15 is stored in the crystal.
In the process of compression with a constant force F , the mechanical work is defined by Eq. 5.16 [58].

W := −
∫
F dl = −F∆l. ↔ ES = −σε (5.16)

For crystals, the variables corresponding to F and ∆l are σ and ε, respectively. In one dimension, the
external stress energy can therefore be written as showed and is of course zero when no stress is applied.
In connection with the elastic term, the sum EE+ES can be minimised as in Sec. 5.1.2, but now in respect
to the strain ε under a certain applied stress σ. What will follow logically is a strain dependence of the
stress and Young’s modulus, as in Eq. 5.13: ε = C−1σ. This is shown in more detail in Engdahl’s book [8].

Note that in many publications and in the following, values of so called Young’s moduli are actually

combinations of components of
←→
C , for example in cubic crystals C = (C11−C12)(C11+2C12)

C11−C12
[59]. For

polycrystalline samples of TbFe2 only an average can be given, C = 9.4 J
m3 [19]. The components of

←→
C

are not available in the literature for TbFe2 but Clark and Belson stated that the elastic moduli of rare
earth transition metal alloys can be considered equal for simplicity [2]. For Tb0.3Dy0.7Fe2, C11 = 11.7,
C12 = 4.02 and C44 = 3.84 · 1010 J

m3 were measured [60], so similar values can be expected for TbFe2.

6Notation of Tensors introduced by W. Voigt in 1910 [57]. Because ←→σ and ←→ε are symmetric tensors, there are only six
independent entries: (xx), (yy), (zz), (xy), (xz) and (yz). Thus Voigt suggested to create a 1×6-vector instead of using

the 2nd order tensors: ←→σ 7−→ ~σ with the entries σxx, σyy, σzz,σxy,σxz and σyz. Applying the same for←→ε ,
←→
C condenses

into a 6× 6-matrix, displayed in Eq. 5.14. In particular C11 = Cxxxx = Cyyyy = Czzzz, C12 = Cxxyy = Cyyzz = Czzxx,
C44 = Cyzyz = Czxzx = Cxyxy, and every other entry equals zero.
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5.1. Theory of crystal field magnetostriction

5.1.4. The magnetoelastic coupling energy

Last but not least, the magnetoelastic energy must be described. It is the connection between the elastic
energy from Sec. 5.1.3 and the energy due to the magnetocrystalline anisotropy in the undistorted lattice.
EME describes therefore the interaction energy of the magnetic and elastic subsystems in magnetostrictive
materials. The energy EME is deduced, in a similar way as EA in Sec. 5.1.2, from the magnetoelastic
Hamiltonian Hme of Callen and Callen’s One-Ion model (Sec. 5.3) and composed by the magnetization
direction cosines αi and the strains εij to represent the magnetic and elastic response, respectively. The
magnetoelastic coupling constants bi come into play as the link [38, 46, 61]:

EME = b1(εxxα
2
x + εyyα

2
y + εzzα

2
z)

+ b2(εxyαxαy + εxzαxαz + εyzαyαz).
(5.17)

The original idea to write the magnetoelastic coupling in the form displayed in Eq. 5.17 was published
by Kittel in 1949 [4]. He stated that the bi constants ”may in principle be calculated knowing the details
of the interactions in the solid” [4, p. 556], for example EME depends on the deviation from sphericity
of the 4f electrons [62]. Here they are also defined by an expansion of the anisotropy energy in Taylor’s
series of the strains, meaning:

∂EA

∂εxx
= b1α

2
x;

∂EA

∂εxy
= b2αxαy;

∂EA

∂εyy
= b1α

2
y;

∂EA

∂εxy
= b2αxαy;

∂EA

∂εzz
= b1α

2
z ;

∂EA

∂εyz
= b2αyαz;

(5.18)

for cubic crystals. Callen and Callen claimed in their seminal publication [51] that bi are temperature de-
pendent, corresponding to their derivation where they are dependent on EA. In Fig. 5.6 some anisotropy
constants and magnetoelastic constant are summarised in one graph for comparison. Because αi and
εij are unitless, both Ki and bi have the units of energy density. Also, Ki contribute to the anisotropy
energy in a product with potencies of αi which have values between 0 and 1 while bi are multiplied by
potencies of αi and εij. The strains usually show values around 10−3 or smaller, which is why the product
biλs is plotted to provide an estimate of the energy distribution of the competing EA and EME. λs is
chosen as the quantity which measures the saturation strain due to magnetostriction. The Ki have a
strong temperature dependence as their absolute values decrease up to three orders of magnitude from
0 to 300 K, whereas b2λs stays rather constant with −11.6 to −6.48 · 105 J

m3 , being up to two orders of
magnitude smaller than the anisotropy constants at 0 K and about the same at room temperature. Be-
cause the contribution of EME is relatively weak compared to EA at low temperatures, the magnetization
will be aligned along the easy magnetization direction (111), minimizing mainly the anisotropy energy.
At room temperature however, a magnetostrictive shear strain can be observed in thin films of TbFe2 as
the magnetoelastic contribution rises significantly [46].

An estimation of the energy density of the different contributions is provided by Clark et al. from
1973 [19]. For polycrystalline TbFe2 they report a value for the Young’s modulus, C = 9.4 · 1010 J

m3 ,
and in their work, C is multiplied by the saturation magnetostriction λs of polycrystalline TbFe2. It is
made clear by Clark et al. that 1

2Cλ
2
s = 1.45 · 105 J

m3 is an energy density which can be interpreted as
the amount of magnetic energy which can be transformed to elastic energy per volume of TbFe2. The
energy stored in a compressed spring looks accordingly, see Eq. 5.16 in 5.1.3. This amount of energy
stored in the magnetoelastic system of TbFe2 is thousand times larger compared to other ferromagnetic
materials like nickel.

Another magnetoelastic effect is the so called ∆E effect (C = E means Young’s modulus), which is
the resulting change of Young’s modulus because of an initial magnetization change, introduced by Ma-
son in 1956 [63]. C is the ratio between the applied stress and the observed total strain. It is possible
to change the strain and therefore C only due to a different magnetization, because of the coupling
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5.1. Theory of crystal field magnetostriction
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Figure 5.6: Anisotropy and magnetoelastical parameters of TbFe2. K1, K2 and K3 from Martin et al.
[55] are the same as in Fig. 5.4. Values for b2λs are given by Clark et al. [45] and Mougin et al. [46]
whereas b1 was nowhere reported. The quantity 1

2Cλ
2
s is a quantitative representatives of the energy

stored in the elastic interactions described by EE in Sec. 5.1.3 are depicted for comparison, taken from
Clark et al. [19].

described by Eq. 5.17. The quantity to describe the strength of the ∆E effect is the ratio:

C :=
∆C

C0
=
C0 − Cs

C0
, (5.19)

where C0 is the Young’s modulus of the material without magnetization and Cs at saturation magne-
tization and thus magnetostriction. For TbFe2, measurements showed that the ∆E effect is large with
that due to magnetostriction. At 77 K, C equals 45% and at room temperature C reaches 55% while the
sample is magnetised in a field of 2.5 T, which is not enough to reach a state of saturation [62]. In the
publication of Clark et al. C0 = 5.9 · 1010 J

m3 and Cs = 11.1 · 1010 J
m3 are given. This implies C = 90%,

i.e. the elastic constant of TbFe2 can be modified by 90% by applying a magnetic field [19].

Therefore, the ∆E effect leads to an increase of the sound velocity by 37% when the external mag-

netic field rises from zero to high fields as the sound velocity is given by
√

C
ρ , where ρ is the mass

density of the material. Engdahl accordingly suggested to compare the Young’s moduli for very high
magnetic fields, at saturation, to make comparisons of different materials unambiguous. The magnetoe-
lastic coupling softens the effective elastic constants below saturation as he shows in explicit calculations
[8, 59].
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5.1. Theory of crystal field magnetostriction

5.1.5. Summary of and connection between the energy terms

Now all the energy terms can be summarised and used to calculate the magnetostrictive quantities via
minimizing with respect to the strain and the magnetization direction. To recall all energies and their
dependences, an overview is given to quickly see the connections in Fig. 5.7. With all that in mind, an
actual calculation of the magnetostriction λ can be carried out.

Magnetic: Elastic:

External

Figure 5.7: Pictorial view of all interaction energies participating in magnetostrictive effects in TbFe2.
The energies are divided in magnetic (red) and elastic (blue) origin. One term the magnetic energy is
the anisotropy energy EA, dependent on the anisotropy constants Ki and the direction cosines αi. The
second magnetic term is the Zeeman energy EH, arising from an external (green) magnetic field ~Bext,
interacting with the magnetization coded in αi. The magnetoelastic energy EME builds the heart of
magnetostrictive interactions, connecting αi via the magnetoelastic constants bi with the strain field εij,
which is the main quantity of the elastic system. The latter consists of the elastic energy EE with its
Young’s modulus Cijkl and the stress energy ES originating from an external stress σij applied to the
system.
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5.2. Magnetostrictive calculations

5.2. Magnetostrictive calculations

In this section, the sum Etotal will now be used to calculate magnetostrictive effects in TbFe2. This
will explain forced and spontaneous magnetostriction in single crystal TbFe2. To calculate for example
magnetostrictive strains one has to minimize the total energy of the system.

5.2.1. The equilibrium strain

Assuming that no external field and no stress is applied to a magnetostrictive alloy (EH = ES = 0), there
is still magnetostriction. It follows directly by minimizing the total Energy of this case with respect of
εij and because EA does not depend on the strain, only EE + EME must be considered cf. [4]:

0
!
=

∂

∂εij
[EE + EME]

=
∂

∂εij
[ 1
2

(
C11(ε2xx + ε2yy + ε2zz) + C12(εxxεyy + εxxεzz + εyyεzz) + C44(ε2xy + ε2xz + ε2yz)

)
+ b1(εxxα

2
x + εyyα

2
y + εzzα

2
z) + b2(εxyαxαy + εxzαxαz + εyzαyαz)].

(5.20)

There are six different εij and each derivative of Etotal has to be zero, which leads to:

0 = b1α
2
1 + C11εxx + C12(εyy + εzz),

0 = b1α
2
2 + C11εyy + C12(εxx + εzz),

0 = b1α
2
3 + C11εzz + C12(εxx + εyy),

0 = b2α1α2 + C44εxy,

0 = b2α1α3 + C44εxz and

0 = b2α2α3 + C44εyz.

(5.21)

Thus the equilibrium strains only depend implicitly on Ki via the direction cosines of the magnetization
αi. Only terms up to second order were considered because of their large size compared to higher order
terms. The solutions of this linear system are:

εij =


b1(C12 − α2

i (C11 + 2C12))

(C11 − C12)(C11 + 2C12)
, if i = j,

− b2αiαj

C44
, if i 6= j,

(5.22)

the so called equilibrium strains which a magnetostrictive alloy will exhibit when not being exposed to a
stress or magnetic field (EH = ES = 0). It is a magnetostrictive effect, because the equilibrium strains are
a function of the magnetoelastic constants, which are only non-vanishing in magnetostrictive materials.
This equilibrium strain may be interpreted as the spontaneous magnetostriction mentioned as a property
of TbFe2, shown in Fig. 5.1.

5.2.2. Magnetostrictive constants and Akulov’s law

A possibility to describe magnetostriction macroscopically is presented by Becker and Döring who found
in 1939 that magnetostriction λγ of cubic crystals along a certain direction of interest ~γ can be described
by the Eq. 5.23 [54]. In his book, Engdahl uses the same description as Kittel [4, 8], and in the book of
Bjelow [64] the following Eq. 5.23 is called as Akulov’s law. Akulov published in 1930 two articles about
magnetization and magnetostriction [3, 65], which contain equations basically equivalent to:

λγ =
∆lγ
lγ

=
3

2
λ100

(
x,y,z∑

i

α2
i γ

2
i −

1

3

)
+ 3λ111

x,y,z∑
i 6=j

αiαjγiγj

 , with ~γ =

γx

γy

γz

 , (5.23)

where αi are the direction cosines of the magnetization and λ111 and λ100 are the magnetostriction
constants, the saturation values for longitudinal magnetostriction along the (111) and (100) directions
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5.2. Magnetostrictive calculations

of cubic crystals. Equation 5.23 is used in the analysis of experimental measurements, because it can
predict the magnitude of magnetostriction in any direction ~γ, for a given magnetization. λ111 and λ100

can be expressed by the introduced magnetoelastic constants (bi) and elastic constants (Cij). To do so,
one must write the relative change of length in a certain direction as a function of the strains (See Eq.
5.10) and the chosen direction:

∆lγ
lγ

=

x,y,z∑
i=j

εijγiγj, (meaning x > y > z). (5.24)

Inserting the equilibrium strains from Eq. 5.22 into 5.24, the following relation can be obtained:

∆lγ
lγ

=− b1
C11 − C12

(
x,y,z∑

i

α2
i γ

2
i −

1

3

)
− b2
C44

x,y,z∑
i 6=j

αiαjγiγj


+

b1
(

4
3C11 + 2

3C12

)
(C11 − C12)(C11 + 2C12)

x,y,z∑
i

γ2
i︸ ︷︷ ︸

=1

,
(5.25)

which is basically Akulov’s Eq. 5.23 if the last term is neglected because it is constant with respect to αi

and γi [4]. Thus, the magnetostrictive constants can be identified as:

λ100 := −2

3

b1
C11 − C12

and λ111 := −1

3
.
b2
C44

. (5.26)

5.2.3. Akulov’s law applied to isotropic materials

Magnetostriction has been reported also in isotropic materials such as polycrystalline TbFe2 [4, 8],
as shown in Fig. 5.1. It is described by the term |λ‖ − λ⊥|. In isotropic samples, one does or can
not distinguish between (100) and (111) direction, and therefore Akulov’s law reduces with an average
magnetostrictive constant λs to:

λγ,poly =
∆lγ
lγ

=
3

2
λs

(x,y,z∑
i

αiγi

)2

− 1

3


=

3

2
λs

[
cos2 θ − 1

3

]
,

(5.27)

with θ being the angle between the magnetization vector, coded in αi, and the examined direction ~γ.
Equation 5.27 agrees with the data and discussion in Sec. 5, if we identify λ‖ and λ⊥ as λγ,poly at θ = 0
and π

2 , respectively. This implies:

λ‖ = λγ,poly(θ = 0) =
3

2
λs

[
cos2(0)− 1

3

]
= λs

λ⊥ = λγ,poly

(
θ =

π

2

)
=

3

2
λs

[
cos2

(π
2

)
− 1

3

]
= −1

2
λs

⇒ |λ‖ − λ⊥| =
3

2
λs,

(5.28)

as already stated in Eq. 5.2. Note that λs < λ111 when comparing λs for polycrystalline and λ111 for
a single crystal of TbFe2. Together with the Zeeman interaction as a function of ~Bext and αi it is now
clear, why |λ‖ − λ⊥| depends on the strength of the applied magnetic field.

5.2.4. Magnetostriction induced anisotropy energy change

Because of magnetostriction, the anisotropy energy will change and the difference can be calculated,
cf. Kittel [4]. EA will increase, because the derivation in Sec. 5.1.2 was given under the assumption
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5.3. The One-Ion Model

that no distortion of the lattice is present. Would it be possible to hold the lattice, to clamp it, the
experimentally deduced anisotropy constants and therefore the energy had a different look. In reality
however, the spontaneous magnetostriction sets the lattice under constant stress producing a strain and
thus changes the anisotropy energy. I.e. to first order:

K1(α2
xα

2
y + α2

yα
2
z + α2

zα
2
x) 7−→ (K1 + ∆K1)(α2

xα
2
y + α2

yα
2
z + α2

zα
2
x). (5.29)

To derive ∆K1 one simply has to take the sum EA +EE +EME from Sec. 5.2.1 and insert the equilibrium
strains in a similar way as it was done in Sec. 5.2.1. After that, one has to replace the magnetoelastic
constants bi with the magnetostrictive constants according to Eq. 5.26 and it will follow:

∆K1 =
9

4

[
(C11 − C12)λ2

100 − 2C44λ
2
111

]
. (5.30)

Paes and Mosca performed this calculation for a single crystal of TbFe2, assuming 2.6·10−3 = λ111 � λ100

(see Sec. 5.4) and therefore neglecting λ100 [61]. Setting C44 = 11.5 · 109 J
m3 , they calculated the effective

first order anisotropy constant (K1 + ∆K1) = −3.5 · 106 J
m3 at room temperature. Taking their reference

value K1 = −7.6 · 106 J
m3 (from Geshev et al. [42]), a strong decrease by almost 50 % is registered,

originating from the magnetoelastic coupling.

5.3. The One-Ion Model

In which exact form the magnetostriction arises from a change in the magnetization was made clear by
Callen and Callen in 1963 [51]. In their publications they displayed a theoretical model to connect the
magnetization to the later measured magnetostriction of, for example, TbFe2. It has many names, such
as One-Ion, Single-Ion or Molecular-Field model and is used in many publications to the present day as
justification and explanation for the appearance of magnetostriction in TbFe2 [2, 7, 25, 26, 44, 43, 66, 67].

The One-Ion model is described in the original work of Callen and Callen as a restriction ”for the
sake of analytic simplicity” [51, p. 579], meaning they assumed the magnetoelastic coupling arises only
from the ”interactions of single spins with the strain field” [51, p. 579]. The sum of all those interactions
contributes to the magnetoelastic Hamiltonian Hme, on which the calculations of magnetostriction and
other physical quantities are based. The approach is mainly of quantum mechanical nature, containing
symmetry arguments, spin-operator functions, group theory and so called Tensor Cubic Operators and
thus I will not elaborate the formalism in detail.

A simple consequence of the model is the following: It suggests a dependence of the magnetostriction on
the magnetization in the following form:

λ111 ∝ I 5
2
[L−1(mR)] ≈ m3

R, (5.31)

where I 5
2

is the hyperbolic Bessel function, L−1 the inverse Langevin function and mR is the reduced

magnetization, see Eq. 5.32. The magnetostriction of a single crystal TbFe2 along the (111)-axis is
approximately proportional to the reduced magnetization mR cubed. The reduced magnetization is of
course temperature dependent as one can see in Fig. 4.2 and is defined by

mR(T ) =
µTb(T )

µTb(0 K)
, (5.32)

following Callen and Callen. Here, µTb(T ) is the mean magnetic moment one Terbium ion in the TbFe2

crystal at a certain temperature T . Besides the power law, a more detailed relation between magnetization
and magnetostriction lies in the term I 5

2
[L−1(mR)]. I 5

2
, the hyperbolic Bessel function, is received due to

quantum mechanical perturbation theory and internal field approximation and describes the temperature
and magnetization dependence of the magnetostriction. To compare the theory with experimental data,
the influence of the temperature has to be extracted, as realised by the inverse Langevin function L−1,
giving a connection of T and mR. Thus λ111 is a function of only mR, which is indeed temperature
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5.4. Magnetostrictive anisotropy

dependent.

Looking at Fig. 5.8, a good agreement becomes apparent. The reduced magnetostriction λ111,R, is
plotted from two different publications by Barbara et al. [25] and Clark [7]. Magnetization data were
published in the same articles as well, which I took to calculate λ111,R via the m3

R power law and the
detailed One-Ion model I 5

2
[L−1(mR)]. One can see the good agreement of the calculated dashed and

dashed-dotted lines with the measured magnetostriction, indicated by the solid line.
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Figure 5.8: Reduced measured magnetostriction λ111,R and calculated values. To calculate I 5
2
[L−1(mR)]

I took the graph of the function in [51, p. 587] and digitised it. The data was then fitted polynomial
in mR with an order of 4 which was used to calculate the values λ111,R for individual data points. A
good agreement of the measured and the calculated magnetostriction can be seen as it is mentioned in
the publications used.

5.4. Magnetostrictive anisotropy

The magnetostrictive constants of for example TbFe2 are highly anisotropic, which is confirmed experi-
mentally by Cullen and Clark in 1977 [14, 44, 45]. In particular, λ111 � λ100 with a ratio of more than
50 : 1 [68]. They presented a simple model to explain this magnetocrystalline anisotropy.

Cullen and Clark claimed that this anisotropy arises from the shape of the 4f electron cloud which
is realigned in an external magnetic field via spin-orbit coupling (see Sec. 5.1) and thus distorts the unit
cell via coulomb interaction dependent on the alignment direction. This situation is depicted in Fig. 5.9
and thereby Cullen and Clark presented a plausible and graphic explanation for the highly anisotropic
magnetostriction in TbFe2. However, Buck and Fähnle re-evaluated the situation in 1999 and found
that the effects explained by Cullen and Clark are of minor importance considering the anisotropic
magnetostriction. They calculated the magnetostrictive constants via an ”ab initio electron theory in
local-density approximation with constraints for the 4f states and by the full-potential linear-muffin-tin-
orbital method”, a theoretical approach [69]. They found that the intrinsic electronic structure is mainly
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5.4. Magnetostrictive anisotropy

responsible for the measured anisotropy in contrast to the developed explanation of Cullen and Clark.
Nevertheless, I present the idea of Cullen and Clark as it is an comprehensive and intuitive example of
a magnetostrictive process.

Figure 5.9: (a): Sketch of the unit cell of TbFe2 in which the blue spheres represent the Tb atoms and
the red spheres the Fe atoms. The sketch is adapted from Bentall et al. [70] and three crystallographic
axes are added as well as a numbering of several atoms used during the explanation of magnetostrictive
anisotropy in (b) and (c). (b): Two dimensional projection of a part of the unit cell, adapted from Cullen
and Clark [71]. If applying a magnetic field along the (111) direction, the 4f electron orbitals of Tb atoms
outlined around atom number 1 and 2 align as shown. Because of the electron cloud alignment, the 4f
electrons of atom number 1 move closer to the atoms 2’, but not closer to the remaining neighbouring
atom number 2, resulting in a net coulomb attraction with the 2’ nuclei. Consequently, a distortion δl
occurs, pulling atom number 1 towards the atoms number 2’. The same applies for atom number 2 and
three neighbouring atoms, according to the cubic symmetry. Ultimately, this results in an elongation of
l, associated with λ111. (c): Two dimensional projection of a part of the unit cell, adapted from Cullen
and Clark [71]. If applying a magnetic field along the (100) direction, the 4f orbital aligns as shown and
the electrons of atom number 1 equally move closer to all 2’ atoms and the atom number 2. Thus, the
coulomb attraction is equally strong to each neighbouring atom and thus no distortion is present because
the net coulomb force vanishes. This is associated with the significantly smaller λ100.
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Part II.

Forced magnetostriction measurements
Having introduced the basic relations leading to magnetostriction as well as X-ray diffraction I will now
focus on experiments conducted by me as part of the UDKM group in order to get a better comprehen-
sion of magnetostriction in TbFe2. The presented theoretical overview is used to predict the response of
TbFe2 when an external magnetic field is applied. This feedback is called forced magnetostriction since
the distortions in the lattice due to magnetoelastic coupling can be enforced by the change of the mag-
netization which is coupled via the Zeeman interaction to the external magnetic field. In Part II, I show
the following observations, measurements and simulations, which consist mainly of three distinguishable
parts.

XRD measurements on the TbFe2 sample were performed with the MFXT with a magnetic field of
150 mT and at BESSY II with a field of 550 mT where the field was applied parallel to the sample
surface. The direction of the magnetic field was rotated in the plane of the sample surface within one
measurement routine and a shift of the Bragg peak associated with the (110) set of planes were observed.
A change in the lattice spacing d110 is related to that shift. The experiment shows that an out-of-plane
distortion is caused by a rotation of a magnetic field in plane. The measured strain is linear in the
strength of the applied magnetic field. ε110 was found to be 6 · 10−5 at 550 mT and 1.7 · 10−5 at 150 mT,
which is the same ratio as the respective magnetic field strengths.

The qualitative response of the sample depends on the amplitude of the applied field. While ε110 has a
sinusoidal dependence on β with a 360 ◦ symmetry at the MFXT, the measured strain at BESSY II shifts
back to zero after reaching its maximum around β = 180 ◦. Until that point, the strain follows the same
path in both cases, reaching its maximum when the external magnetic field is aligned antiparallel to the
initial magnetization. This shift is caused by the magnetic field of 550 mT which is sufficient to switch
the magnetization of the sample, as shown by Vibrating Sample Magnetometer (VSM) measurements
conducted in the group of K. Dumesnil at the IJL in Nancy, France. They show not only a coercive field
of roughly 500 mT along the easy-axis in-plane, but also give the magnetization during a rotation of an
external field with the strength of 550 mT.

Since the magnetization in the VSM-measurements also shows a switch, I work out a self-consistent
model which is based on a simulation of the interplay of anisotropy energy and Zeeman energy by min-
imizing the energy of the magnetic system, it was possible to predict the magnetization state of the
sample. From there, magnetostrictive calculations based on Akulov’s law are used to predict the result-
ing strain. A fit can only be obtained under the assumption that magnetic domains are present in the
sample. Such domains have been shown to exist by Sery et al. in bulk TbFe2 [41]. The magnetization
lies in one of two different directions (equivalent to the (111) direction because of cubic symmetry) in
each domain, which are equally distributed over the sample. Thus, a macroscopic magnetization can be
measured which is smaller than the spontaneous magnetization of single crystal TbFe2. A qualitative
agreement of simulated and measured strain is achieved, however the amplitude differs by a factor of 3
which is might indicate an epitaxial clamping to the substrate in thin films of rare earth alloys [18, 46,
80].
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6. Experimental setup and data acquisition

The working principle of the MFXT and BESSY II is the same. In both cases X-ray diffraction is used to
measure interatomic distances of the single crystal of the TbFe2-sample and a magnetic field is applied
to force magnetostriction. However, some differences lay in the exact implementation of the experiments.
An overview of the setup parameters is given in table 6.1.

Table 6.1: Comparison of MFXT and BESSY II setup parameters

Micro Focus X-ray Tube [72] BESSY II-Beamline [73]7

X-ray source 55 kV acceleration voltage, 600µA
electron current, 50µm electron
spot on Cu anode

dipole D13.1 magnet at the electron
storage ring BESSY II

X-ray optics poly capillary X-ray optics with
HAPG-Monochromator, focusing
to a (5 mm)2 spot with 5·107 photons

s

XPP-KMC3-Beamline: parabolic
mirrors and a double crystal
monochromator, creating a
(350µm)

2
focus with a flux of

approximately 1011 photons
s

Energy/wavelength 8.048 keV/1.54 Å (Cu-Kα1) 10 keV (Synchrotron)

Goniometer geometry symmetrical (θ,2θ) four circle diffractometer (ω,θ,φ,χ)

Detector System Pico Harp 300 (PicoQuant) scin-
tillation point detector with photo-
multiplier and time correlated sin-
gle photon counting module, 7 mm
aperture diameter

Pilatus 100k (Dectris) fast read-
out CMOS (complementary metal-
oxide conductor) two-dimensional
X-ray detector, 172µm pixel size

Data handling diffraction angle θ dependent inten-
sity is measured, Bragg peaks are
evaluated with respect on position,
width and intensity

the diffraction angle set dependent
2D intensity portrait on the detec-
tor is transformed, into a three di-
mensional array I( ~Q), several pro-
jections of the intensity to compo-
nents of ~Q are evaluated with re-
spect on position width and ampli-
tude

External magnetic field strength of approximately 150 mT
(±30 mT), rotated indefinitely

strength of approximately 550 mT
(±50 mT), rotated indefinitely

6.1. Micro Focus X-Rray Tube

A detailed description of the MFXT and its operation is given in my Bachelor Thesis [72]. It shows in
addition that time-resolved measurements can be conducted with that setup as well, as the idea of the
Bachelor Thesis project was to get a fully functional, small, simple and cost efficient way to conduct
time-resolved X-ray diffraction in the UDKM group. In this work, the setup was used without time
resolution to observe forced magnetostriction, thus the experimental setup, the functional principles and
data handling are shortly summarised in the following.

7Web page directions: > Neutron and photon source > Photon source > Instruments BESSY II > List of Beamlines >
XPP-KMC3-Beamline and > Neutron and photon source > Photon source > Electron Storage Ring BESSY II.
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6.1. Micro Focus X-Rray Tube

6.1.1. Experimental setup and functionality

The micro-focus X-ray tube is essentially a Coolidge tube, see Fig. 6.1a, where electrons are emitted by
a filament and are accelerated into an anode as a result of an applied external voltage of 55 kV. The
difference to the Coolidge tube lies in the fact, that the electron beam of 600µA is focused on a spot
with a 50µm diameter. This leads to point-like source of X-rays, the major advantage of micro focus
X-ray tubes over conventional ones.

Entering the anode material, in this case Copper, the electrons are decelerated emitting Bremsstrahlung,
see Fig. 6.1b, a spectrum of light, reaching from zero to 55 keV. Along their way through Copper, some
electrons collide with tightly bound electrons in the K shell of Cu atoms, ionizing the latter. During the
transition of weakly bound electrons in the L shell to the hole in the K shell, monochromatic light known
as X-ray fluorescence is therefore emitted, see Fig. 6.1c. There are as many discrete fluorescent lines as
there are allowed transitions in the atoms, which can be seen in the spectrum. The selected transition
line of the MFXT setup is the Kα1

line of Copper with an energy of 8.048 keV as it is the most intense
part of the spectrum. Because of the electron beam’s micro-focussing, the X-ray light is that of a point

(a) (b) (c)

Figure 6.1: (a): Sketch of a Coolidge X-ray tube, taken from Als-Nielson [23]. Emitted electrons
from a filament are accelerated to the water cooled anode and emitting X-ray as they enter the anode.
(b): Simplified spectrum of a X-ray tube, taken from Als-Nielson [23]. It consists of the continuous
Bremsstrahlung originating from decelerated electrons and the discrete fluorescent material dependent
lines. (c): Simplified energy scheme of atom with some possible electronic transitions, taken from Als-
Nielson [23]. An atom can be ionised (middle) and L or M shell electrons can take the free place in the
K shell, associated with discrete lines in the spectrum, called X-ray fluorescence.

source and needs to be collimated. Capillary optics are therefore installed at the output of the tube
which are made from microscopic hollow glass fiber bundles. A monochromator between the optics and
the sample selects a certain energy or wavelength of the spectrum. In this case, it is diffracting HOPG8

which guides the Kα1
light to the centre of the goniometer.

There, the sample is mounted in front of a cylindrical magnet which results in a magnetic field of
150 mT in the sample plane, which can be rotated by the angle β as shown in Fig. 6.2a. The sample itself
is rotated by the angle ϑ to diffract the incoming X-rays under angles which fulfil Bragg’s equation 3.5.
The detector with a 0.5 cm slit for screening scattered X-rays put in front of it, is set under the angle
2ϑ relatively to the incident X-ray beam. A top-view of the MFXT setup is schematically depicted in

8Highly Oriented Pyrolytic Graphite made purely from Carbon has a crystalline structure but is not a single crystal. It
consists of many small single crystals with a grain size of circa 0, 2 mm, i.e. it has a mosaicity where the planes of the
small grains are tilted relative to each other by a maximum of 0, 1 ◦. Thus using HOPG as a monochromator results in a
higher intensity but the light is not monochromised as much as light from for example a silicon monochromator, because
not only one wavelength at a time is fulfilling Bragg’s equation but many. For more information, see the Optigraph
GmbH web page [74].
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6.1. Micro Focus X-Rray Tube

(a)

(b)

Figure 6.2: (a): Picture of the sample in the turquoise rectangle in front of the cylindrical magnet
(violet outlined) centred and mounted on the goniometer. The stray field of the magnet along the
cylinder jacket where the sample is placed is nearly homogeneous around 150 mT, measured with a Hall
probe. The magnetic field will penetrate the sample only in-plane and can be rotated by β, indefinitely.
(b): Top view of the MFXT setup with the important parts; X-ray tube and optics to create a collimated
X-ray beam, which is monochromatised and deflected by HOPG to the centre of the goniometer onto the
sample penetrated by a magnetic field and finally diffracted to the detector.

Fig. 6.2b. Simply by rotating the sample by ϑ and the detector by 2ϑ after calibration, a ϑ/2ϑ-Scan can
be performed and a possible result is depicted in Fig. 3.4b in Sec. 3.2.3. With Bragg’s equation 3.5, the
distance of the (110) planes can be derived from such scan.

6.1.2. Data acquisition and processing routine

Magnetostriction can now be performed and examined by applying and rotating a magnetic field in-plane
of the sample. For those measurements, the sample was magnetised before the measurement in a homo-
geneous magnetic field of a permanent magnet with a strength of more than 1 T to assure the sample’s
state is the same at the beginning of each measurement. Afterwards, the sample was mounted in the
centre of the goniometer while the magnetic field of the cylindrical magnet behind it pointed in the same
direction as the magnetizing field of the 1 T magnet from before, again to assure the magnetization state
of the sample stays the same. A ϑ/2ϑ-Scan can now be performed and the direction of the magnetic field
in-plane was changed after each scan, i.e. β was varied in 45 ◦ steps, eight times per measurement loop
to get the full 360 ◦.

The lattice spacing d110 of the (110) planes is calculated from the ϑ-position of the TbFe2 (220) re-
flection from the ϑ/2ϑ-Scans via Bragg’s equation. Equation 6.1 was used to calculate the COM of the
TbFe2 reflection, where every measured angle ϑ is linearly weighted with the corresponding intensity
I(ϑ).

COM =

∫ ϑ2

ϑ1
I(ϑ)dϑ∫ ϑ2

ϑ1
dϑ

, (6.1)

where ϑ1 and ϑ2 are angles defining the end of the TbFe2 peak. It is not that important to know the
exact values of ϑ1 and ϑ2 since we are only interested in relative changes in the COM, but the whole peak
has to stay in between these two bounds and also has to be the only one. Looking at Fig. 3.4b, 16.5 ◦

and 18 ◦ are suitable bounds. This way, the COM of the TbFe2 peak is measured as a function of the
magnetic field orientation β. Repeating the measurement loop 30 times, the mean change in the TbFe2

reflection’ COM position because of magnetostriction could be examined, see Fig. 6.3. The corresponding
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6.2. BESSY II Beamline

lattice spacing shift in the MFXT and also BESSY II measurements are compared and discussed in Sec.
7, after the introduction of the BESSY II setup.

rotation-angle of magnet - in /
0 45 90 135 180 225 270 315C

O
M

T
bF

e 2
!

C
O

M
T

bF
e 2

in
/

#10-4

-2

-1

0

1

2

0 1
1
0
(r

el
at

iv
e

ch
an

ge
of

d
1
1
0
)

#10-5

-1

-0.5

0

0.5

1

Figure 6.3: Absolute change in the COM position of the TbFe2 reflection in relation to the mean value
COMTbFe2 . At β = 0 ◦, the applied field points in the same direction as the sample was magnetised
before and there the COM position of the TbFe2 peak has the lowest value. It follows the rotation of the
magnetic field, reaching its maximum at β = 180 ◦, where the applied field points in the opposite direction
of the magnetization. After that, the COM of the peak converges back to the initial value performing
a sinusoidal-like dependence. The change in the COM position of the Bragg peak is associated with a
change of d110 which is indicated with the axis red on the right.

6.2. BESSY II Beamline

Thanks to the collaboration of the UDKM group at the University of Potsdam and the Helmholtz
Zentrum Berlin (HZB) which operates the synchrotron BESSY II, it was possible to conduct not only
similar measurements to the MFXT setup but also timeresolved XRD, discussed in Sec. III. Although
the principles are the same as they are at the MFXT setup, BESSY II operates in many aspects on a
much larger scale, i.e. higher X-ray intensity, size of source and amount of collected data.

6.2.1. X-ray source

BESSY II9 is an electron storage ring with a circumference of 240 m in which preaccelerated electrons
with an energy of 1.7 GeV are circulating with a current of 200 mA. They are guided by 32 deflecting or
bending magnets through multiple insertion devices (usually Wigglers and Undulators) to supply roughly
50 beamlines with 50 ps X-ray pulses of enormous intensity.

In the centre of the BESSY II storage ring, an electron gun fires 70 keV electrons into a racetrack
microtron which accelerates to 50 MeV. A Booster synchrotron fills the gap and accelerates the electrons
to the 1.7 GeV electron beam energy [75]. When these high energetic electrons travel through a dipole
magnet, i.e. a homogeneous magnetic field which is directed perpendicular to their current trajectory,
not only will they be deflected in a circular manner due to the Lorentz-Force but they also will emit light
as they are accelerated. The so called synchrotron radiation is radiated in a cone, see Fig. 6.4a, with the
emitting electron as a point source and an opening angle proportional to 1

γ = cm0

E , where c is the speed
of light, m0 the mass of an electron and E the energy of the electrons. The spectrum of the syncrotron
light from a bending magnet is continuous (Fig. 6.4b) [23].

9cf. [73] as all information in this section regarding BESSY II and the beamline is taken from this web page or otherwise
is cited.
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6.2. BESSY II Beamline

(a) (b)

Figure 6.4: (a): Radiation cone originating from electrons accelerated on a circular arch with the
radius ρ. The cone’s opening angle is proportional to γ−1 and its axis is always parallel to the current
trajectory of the electron, tangential to the circle. Taken from Als-Nielson [23]. (b): Normalised energy
dependent brilliance of a synchrotron radiation source. Brilliance is proportional to the flux (photonss )
but also normalised in terms of the solid angle (mrad2), the bandwidth (0.1% BW), the energy (E2) and
the current of the electron beam. Taken from Als-Nielson [23].

The dipole magnet used to supply this experiment with X-ray light is number D13.1, the front end
of the XPP-KMC-3-Beamline which monochromatises and guides the light to the centre of the goniome-
ter inside the experimental hutch to perform X-ray diffraction. A layout-plan of the beamline can be
seen in Fig. 6.5. In all of the following measurements, the photon energy was set to 10 keV.

6.2.2. Goniometer setup and data acquisition

The centre of the four axis goniometer lies in the focal spot of the beamline. It is placed inside the
experimental hutch in a vacuum chamber which can be used to perform XRD at low temperatures. A
picture of the goniometer centre can be seen in Fig. 6.6a where θ is the angle of the detector in relation
to the incident X-ray beam and ω, χ and φ are the angles by which the sample can be tilted and rotated
in relation to the incident X-ray beam. In addition, the sample can be moved in every direction to ensure
placing it in the focal spot of the beamline.

When varying only ω and θ in such manner that 2ω = θ, a conventional ϑ/2ϑ-Scan can be performed.
Decoupling ω and θ and varying χ and φ as well results in the possibility to detect asymmetrical reflec-
tions of the sample, meaning the reflection of a set of planes which does not lie parallel to the sample
surface. In fact, this goniometer allows to map the reciprocal space as discussed in 3.2.7, because a
much larger amount of scattering vectors ~Q can be achieved than in a simple ϑ/2ϑ-Scan. With the

set of angles at this goniometer, basically every ~Q can be realised and an associated intensity can be
measured creating a three dimensional reciprocal space map. In Fig. 6.6b one can see that four angles
are sufficient to define the direction of the incoming and outgoing wave vector of the X-ray beam, Ki

and Kh respectively. Therefore, their difference, i.e. ~Q, can be calculated using Eq. 6.2, [77]:

qx = K(cosαf sin θf + cosαi sin θi)

qy = −K(cosαf cos θf − cosαi cos θi)

qz = K(sinαf + sinαi).

(6.2)

Considering Fig. 6.6b and Eq. 6.2 one has to keep in mind that the angles and also the transforma-
tion are not the same as they are at the XPP-KMC-3-Beamline but they are similar. To calculate ~Q
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6.2. BESSY II Beamline

Figure 6.5: Top and side view of the 31 m long beamline and its elements which is supplied by the
synchrotron light of the D13.1 Magnet at BESSY II. The Elements are: a mask (A1), to shield the
beamline from scattered light inside of the storage ring, a parabolic mirror (M1) to collimate the cone
of light vertically and horizontally and tilt it upwards by 0.6 ◦ through a monitor (BM1), a slit (S1) to
select the desired fraction of the incoming beam and block everything else, into another beam monitor
(BM2), followed by the double crystal monochromator (DCM) where symmetric XRD is used to select
the desired energy for the experiment, a third beam monitor (BM3) and a slit (S2), a second parabolic
mirror (M2), reversing M1 and a final monitor (BM4) in front of the window (CW) which acts as the
transition from the ultra high vacuum of the storage ring and the beamline to the focal point centred in
the goniometer.

θ

X-Rays

(a) (b)

Figure 6.6: (a): Photo of the goniometer centre at the XPP-KMC-3-Beamline. The yellow solid line
is the path of an X-ray beam diffracted by the angle θ at the sample. ϕ rotates the sample around the
out-of-plane axis. χ rotates the sample around the direction of the incident X-ray beam and ω is the
polar angle which rotates the sample around the same axis as the detector is rotated by θ. Taken from
Reinhardt and Leitenberger [76]. (b): Sketch of a diffracted X-ray beam on a surface with definition
of all angles to define the scattering vector h, taken from Pietsch and Holý [77]. Ki and Kh are the
incoming and diffracted X-ray beams respectively, θi,f,h and αi,f,h are the associated diffraction angles.
Together with Eq. 6.2, this set of angles equivalent to (θ,ω,χ,φ) from Fig. 6.6a, can be used to calculate
the scattering vector and map the reciprocal space.
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6.2. BESSY II Beamline

from the set of angles the Python package xrayutilities is used, see [78]. It uses the same principles
presented here and also considers the type of detector used at the experiment. It is a Pilatus 100k
hybrid pixel area detector from Dectris [76] which is important because an area detector simultaneously

measures different ~Q, as a unique set of angles is associated with every different spot on the detector area.

All in all, this setup can be used to map areas of the reciprocal space, as xrayutilities gives the scattering
vector ~Q and the associated intensity to every set of angles (θ,ω,χ,φ) chosen. The instrument control
and data acquisition software is called spec10. It allows to program crystal structure of the sample and
its orientation in order to scan certain reflections automatically when handing over the scan parameters,
i.e. (θ,ω,χ,φ) and their range.

To examine magnetostriction, the sample was again magnetised before a magnetic field was applied
in plane in the same manner as it was done in the MFXT setup. It has a strength of (550± 50) mT and
can be rotated in-plane by the angle β. The field is provided by two cubic magnets with a side length
of 1 cm positioned on opposite sides of the sample. At the sample surface the magnetic field is nearly
homogeneous.

6.2.3. Data processing and interpretation

For every β set up, a scan of the reciprocal space was performed. Therefore one Bragg reflection was
chosen and scanned in every dimension of ~Q with the help of spec. The result is a three dimensional
data set of the intensity distribution I( ~Q), the reciprocal space map (RSM). Commonly a slice of the
reciprocal space is shown, see Fig. 6.7, as the RSM is hard to visualize in its three dimensional form.
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Figure 6.7: RSM: slice at qy = 0. One can see the reflections of the TbFe2 (220), the Sapphire (1120)
and the Nb (110) planes as local maxima of the intensity in the reciprocal space. Following the same
algorithm as in Fig. 3.7 in Sec. 3.2.7, the reflection of TbFe2 corresponds to the (220) set of planes which
is parallel to the surface. The dark blue areas at the top left and bottom right are due to the angle range
which was chosen at this particular scan. They are not an actual feature in the reciprocal space.

As the reflection of interest is the specular (220) reflection of TbFe2, the peak can be integrated in qx

and qy direction to get an intensity distribution along the qz direction, which equals a ϑ/2ϑ-Scan. For

asymmetrical reflections, the ~Q-Space is rotated by xrayutilities to create an RSM that looks like one of a

10”Spec is a UNIX-based software package for instrument control and data acquisition widely used for X-ray diffraction
at synchrotrons around the world and in university, national and industrial laboratories.”, cf. [79].
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6.2. BESSY II Beamline

specular reflection, such that the position of the intensity maximum only differs from zero in qz direction.
That makes the data processing considerably easier, because one can again just integrate over qx and qy

and perform a COM calculation in one dimension instead of three.

This way, the length of the scattering vector with the maximum of the diffracted intensity can be derived
for every direction of the magnetic field in plane. For this particular scattering vector, the Laue equation
3.8 is fulfilled and the length of ~Q equals mainly qz and corresponds via Eq. 3.4 to the distance of the
set of planes associated with the reflection. The calculated absolute and relative change of the lattice
spacing from the scattering vector’s length is displayed in Fig. 6.8 as a function of β. The calculated
strain ε110 is compared with the data from the MFXT setup and is evaluated further in relation to
theoretical predictions, simulations and magnetization measurements in the following sections.
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Figure 6.8: Corresponding absolute change of the lattice spacing d110 provided by the evaluation of the
(220) reflection of TbFe2 as a function of β, the angle of the applied magnetic field in plane. One can see
that there is a strong dependence on the rotation of the applied magnetic field. At β = 0 ◦, the spacing
grows almost sinusoidal to a maximum around β = 150 ◦ where the magnetic field in plane points almost
to the opposite direction of the field with which the sample was magnetised before the measurement.
At this point, a shift in the lattice spacing can be observed. Rotating the magnetic field even further
repeats this observation periodically.
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7. Comparison and Interpretation

The XRD at BESSY II and the MFXT yield the out-of-plane strain ε110 of TbFe2 in dependence of an
external in-plane rotating magnetic field. Also, I numerically calculate the expected strain with MAT-
LAB and compare the results to the experimental outcomes. The measured and simulated results are
displayed in Fig. 7.1. As the original data from BESSY II is displayed, the strain measured at the MFXT
is normalised by the ratio of the applied magnetic fields BB

BM
= 550

150 ≈
7
2 , to emphasise the similarities

between the results. The response of the lattice as a result of the magnetostrictive interaction seems
to be the same for both measurements during the first 150 ◦, in which the strain is normalized by the
magnitude of the applied field. The simulated strain shows a good qualitative agreement in both cases,
although it is likewise normalised by a factor of three. This discrepancy might indicate the well docu-
mented epitaxial clamping to the substrate in thin films of rare earth alloys [18, 46, 80].
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Figure 7.1: Measured and simulated strain in (110) direction of TbFe2 in dependence of the direction
of an applied magnetic field. The MFXT data is normalised with the quotient of BM and BB improving
the visibility of similarities and differences. The simulated strain is normalised by a factor of three for
the same reason. The first 150 ◦, both strains have the same sinusoidal route which the MFXT strain
follows further after reaching the maximum at 180 ◦. The strain measured at BESSY II however shifts
to zero at 180 ◦, repeating this trajectory at larger angles. The simulation shows the same qualitative
results but is calculated to be three times higher than measured.

A rotation of the magnetic field over 150 ◦ to the initial magnetization reveals the different nature of the
two measurements. As the strain at the MFXT with the small magnetic field is continuously following
a sinusoidal path after reaching its maximum at 180 ◦, the strain at BESSY II jumps back to zero when
the stronger magnetic field is pointing in the opposite direction of the initial magnetization. Afterwards
the latter strain follows the same path as it does in the first 150 ◦, holding a 180 ◦ symmetry unlike the
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360 ◦ symmetry of the strain measured at the MFXT.

One very simple way to explain that response is to say that the strain is an expression of an inter-
nal stress produced by a magnetic field which is not aligned with the magnetization of the sample, which
would explain why the strain is always maximal if the external field is antiparallel to the initial magne-
tization. Furthermore the 360 ◦ symmetry of the strain at the MFXT is reasonable since 150 mT are not
enough to magnetise the sample in another direction, so the sample stays in the initial magnetic state
all the time. For BESSY II measurement, the magnetization actually is switched by the applied field of
550 mT. After the switching of the magnetization, the field and magnetization are aligned, so the stress
and therefore the strain is zero again.

To substantiate this qualitative discussion I compare in the following sections 7.1 to 7.3 numerous ex-
perimental results to numerical calculations based on aspects of magnetostrictive theory discussed in
Sec. 5.1 and 5.2. All presented VSM measurements were performed by Arnaud Huillon in the group
of Karine Dumesnil at the IJL in Nancy, France. They can give not only a precise magnetic in-plane
analysis of the sample but also valuable crystallographic information if compared to other measurements.

The VSM-Hysteresis measurements of Sec. 7.1 indicate the existence of magnetic domains in TbFe2

as previously reported by Sery et al. [41]. Furthermore, a coercive field of roughly 0.5 T in the (110)
direction was found. This field has to be overcome to actually remagnetise the sample in that direction,
and as the measurement at BESSY II was conducted with a slightly higher field, a remagnetisation, or
a switch of the magnetization to the opposite side is thus expected.

In Sec. 7.2, the magnetization of the sample was measured in a VSM setup while rotating the ex-
ternal field with a strength of 550 mT, basically repeating the measurement conducted at BESSY II, but
measuring ~M , not ε110. In good accord with the BESSY II data, the magnetization exhibits a switch
around β = 180 ◦. The interpretation of the experimental result is that the sample is macroscopically
magnetised along the (110) direction at the beginning and for the first 150 to 180 ◦ and then switches its
sign, pointing in the opposite direction of the sample’s initial magnetization.

I use the VSM data as an input to the simulation I conducted and documented in Sec. 7.3. There,
I minimised the total energy of the sample’s magnetic system given by energy terms, discussed in Sec.
5.1 in respect to the magnetization’s direction for every angle β. Using the calculated minima as input for
Akulov’s law (Sec. 5.2.2) it was possible to calculate the strain. Doing so, it turned out that although the
sample was macroscopically magnetised in (110) direction, microscopically it is equally divided into do-
mains which are magnetised along two different crystallograpic directions equivalent to a (111) direction
(in cubic symmetry). Both directions have a component along (110) and the perpendicular components
compensate each other which is why it can’t be macroscopically seen by the VSM measurement in Sec.
7.2. Assuming the state of the sample’s magnetization differently would have lead to a different simula-
tion result in terms of the strain which would not match with the measured data at BESSY II as well
as the reported existence of magnetic domains. Thinking of only one magnetic domain with one distinct
direction of magnetization would have resulted in a rather different simulated strain dependence, see Fig.
A.5 in the appendix. This is a contradiction to the measurement as the maximum strain occurs at an
angle β, where ~M and ~Bext are antiparallel, before the magnetization get switched to be aligned again
and the strain vanishes (or decreases monotonically in case of the MFXT measurement). Only the sum
of two strains of different magnetic domains is consistent with the measurements.
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7.1. VSM-Hysteresis Measurements

7.1. VSM-Hysteresis Measurements

In this experiment, the sample was put into a Vibrating Sample Magnetometer11 to gain information
of its magnetic response. Thus, hysteresis loops were recorded at different orientations of the external
magnetic field with respect to the crystal lattice. The result is displayed in (a) of Fig. 7.2. Additionally,
the associated in-plane coordinate system is displayed in (b) and a sketch of the microscopic magnetic
ordering in form of domains similar to Fig. 4.3 is visualized in (c) and (d).

Figure 7.2: (a): Hysteresis loops of TbFe2 sample via VSM (green and red) and single crystal TbFe2

magnetization data from Clark (blue) [7]. The plain green graph depicts the magnetization in plane along
the direction of the external field and the dotted graph shows the magnetization in plane perpendicular to
the field, while the sample’s (110) direction is aligned with the magnetic field. This situation is visualised
in (d), where the external field is pointing along the (110) of the coordinate system in (b). The red graph
in (a) can be assigned similarly, where the external field is rotated by 90 ◦ so that the (001) direction
is aligned with the external magnetic field, outlined in panel (c). Because the hysteresis in (a) is not
a rectangle in any case, magnetic domains must be present which was already found by Sery et al. [41].
They saw straight parallel domains with walls perpendicular to the aligned field accordingly shown here
and in every domain itself the magnetization is aligned to a direction equivalent to (111), the magnetic
easy axis [18, 41, 45, 52].

Clark’s data and the magnetization in Fig. 4.2 give a spontaneous (or saturation) magnetization of
8.5 · 105 A

m , which is not reached in our VSM measurement. This is in accord with the domain pattern
shown in the panels (c) and (d) of Fig. 7.2. If the external magnetic field is aligned to the (110) direction
(Fig. 7.2(d)), each domain’s magnetization projection along that direction is larger and thus the total
macroscopic magnetization is larger as if the field is aligned to the (001) direction (Fig. 7.2(c)). Looking
at the coordinate system in panel (b) of Fig. 7.2 this becomes apparent. The angle between the (001)
direction and directions equivalent to (111), named φ is larger than φ′, the angle between the (110) and
(111)-equivalent directions, resulting in different magnetization projections. This is visible in the hystere-
sis in Fig. 7.2(a) as the green graph reaches a larger magnetization as the red graph does. Nevertheless,

11VSM: A device to measure magnetization of samples inside of homogeneous magnetic fields. Around the sample there
are small induction coils (pickup-coils) which can detect small changes in the magnetic flux when the sample is moved.
The sample vibrates with known parameters and according to the changing magnetic flux a voltage is induced in the
coils. Carefully adjusted and calibrated, one can calculate the magnetization of the sample inside the homogeneous
magnetic field along the field direction and perpendicular to it, just by measuring the induced voltage.[81]
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7.2. Magnetization in field-rotation

the saturation is not reached in both cases, because there are always components of the magnetization of
neighbouring domains which cancel each other out, reducing the total amount which is measured. The
magnetic field of maximal 2.5 T is therefore not sufficient to erase the small opposing domains and tilt
the magnetization in the domains towards the field direction to prevent such compensation mechanism
and reach saturation along the field’s direction.

Another information we can gather from this hysteresis measurements is a coercive field of 550 mT
which is the field at which the net magnetization is zero along the direction of the applied magnetic
field. In case of the green graph (where the (110) direction is parallel to the applied field), this field
strength is also basically the same at which the magnetization switches from one plateau to the other
with a small change of the external field of roughly 50 mT. This value of the coercive field corresponds
well to the observations concerning the strain. While 150 mT is not enough to produce a discontinuously
progression in the strain, 550 mT is sufficient. The switch in strain could be associated with the switch
in the magnetization at a magnetic field of 550 mT, because the field’s projection is only big enough
at angles near β = 180 ◦, to actually switch the magnetization almost instantaneously, as it happens in
this VSM measurement. Thus relieving the sample of the stress originating from an anti-parallelism of
magnetization and external field, gives a quick change in strain back to zero as observed at BESSY II.

7.2. Magnetization in field-rotation

With the VSM, A. Hiullion, at the IJL in Nancy, France, was able to record the magnetization under
the same conditions under which we conducted experiments at BESSY II and the MFXT. The sample
was magnetised with 2.5 T along the (110) direction and put into an external field of 550 mT, which was
rotated by the angle β. The result is depicted in Fig. 7.3. At the beginning, M‖ is at maximum, while
M⊥ is near zero, because the sample’s magnetization is aligned with the external field. Rotating the
field does not change the magnetization direction and thus M‖ decreases and reaches zero at 90 ◦. At
the same time, M⊥ increases, because the magnetization’s component perpendicular to the external field
grows if the magnetization stays in the the same state as before. Furthermore, M⊥ reaches the maximum
value of M‖ just as the latter changes its sign. The first 150 ◦ can be explained just by assuming a rigid
magnetization in a certain direction. Associated with a rotating framework, the two components change
within the rotation process.

At 150 ◦ however, something changes. The magnetization reverses its direction. For a short period
of rotation, the net magnetization in-plane reaches almost zero during the switch. M‖ reaches its maxi-
mum after the switch at roughly 180 ◦, because there, the magnetization and the external field are fully
aligned again. This process repeats itself after 180 ◦, every time the component of the external field
parallel to the magnetization is actually strong enough to force a switch, which was already concluded
from the strain measurements at BESSY II.

In conclusion, applying and rotating a magnetic field of 550 mT, which equals slightly more than the
coercive field of the sample, results in a switch of strain and magnetization when the external field is
close to pointing in the opposite direction of the initial macroscopic magnetization of the sample. The
magnetization switches because the component of the external field along its direction is strong enough
to re-magnetise the sample, so that external field and macroscopic magnetization are aligned again. That
explains the rapid loss of strain, because the internal stress associated with it vanishes because of the
re-alignment of magnetization and external field. The switch of the macroscopic magnetization must
also be interpreted in a multi-domain approach. Initially magnetizing the sample along (110), produces
a microstructure shown in panel (c) of Fig. 7.2 (green arrow), where almost each domain possesses a
magnetization along (111) or (111). The sample keeps this state until β reaches 180 ◦. There, the do-
main walls move to enlarge domains with magnetizations along (111) or (111) directions and to decrease
the size of the previously dominant domains. As pointed out, the maximum magnetization of 6 · 105 A

m
measured in Fig. 7.2 indicates that not all of the sample is magnetised in the same direction. Lest, the
maximum value would have to be around 8.5 ·105 A

m , which equals the saturation magnetization of TbFe2

at RT. To support my interpretations of the displayed measurements, I simulated the experiment in the
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7.3. Simulation of field-rotation

following by utilizing the magnetostrictive theory and calculations, illustrated in Sec. 5.2 and 5.1.
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Figure 7.3: VSM measurement: Dependence of magnetization in sample plane perpendicular (M⊥)
and parallel (M‖) to the external field which is rotated by angle β. The progression corresponds to a
magnetization which lies in-plane in a certain direction and does not alter its direction or amplitude very
much while rotating the external field up to 150 ◦. While M‖ decreased monotonically and switches the
sign, M⊥ reaches its minimum. Then M⊥ reaches almost zero as M‖ switches its sign and jumps from the
minimum to the maximum in a short period of β. This progression repeats every 180 ◦. Furthermore, a
maximal magnetization value of 5 · 105 to 6 · 105 A

m was recorded which is an indicator that the sample
has microscopical magnetic domains as visualized in the panels (c) and (d) of Fig. 7.2. Those domains
partly compensate each other in terms of magnetization. Otherwise, the maximum of the magnetization
should be equal to the spontaneous magnetization of TbFe2 at RT which is 8.5 ·105 A

m . This measurement
supports the existence of domains magnetised along directions equivalent to (111).
The blue lines represent the results of my simulation from the next section. They fit well with the
measured data and they contain the assumption of two magnetic domains with different magnetization
directions and thus compensating themselves to some extent.

7.3. Simulation of field-rotation

In this section I will use the models and understandings of Sec. 5.2 and 5.1 to simulate the experiment of
putting the sample in a rotating magnetic field of 550 mT and observe the magnetization as well as the
resulting strain. Together with the measurements of the previous sections, it was possible to visualise and
understand the microscopic processes of our sample. A scheme of the simulation’s principles is shown in
Fig. 7.4.
I took the sum of two energy terms EA and EH, the anisotropy energy and Zeeman energy and minimised
it, for a constant magnetic field. The idea is that the magnetization, which is parameterised by αi, has
to occupy the state of the lowest energy at any given strength and rotation angle β of the external field.
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7.3. Simulation of field-rotation

Magnetic: Elastic:

External + minimize Akulov's Law

Figure 7.4: Flow chat of the simulation: An external field determines the Zeeman energy EH. The
sum of EH and the anisotropy energy EA is minimized to obtain the resulting magnetization direction,
parameterised by αi. The αi are used as input for Akulov’s law to obtain the strain strain. Therefore
then strain and the magnetization state are the results of the simulation.

The outcome of the minimization process is therefore a set of αi, which determine the direction of the
magnetization in the sample. This idea was presented by Kovalenko et al. [82]. Due to magnetostriction,
the direction of the magnetization has an impact on the lattice, described by the interaction energy EME,
the magnetoelastic coupling energy, see Sec. 5.1.4 and 5.1.5. Akulov’s Law (Sec. 5.2.2) gives the strain
in any direction for crystallographic cubic materials just by knowing the direction of the magnetization,
i.e. handing over the set of αi. Akulov’s Law can be seen as a function of the magnetization which maps
the strain. Taking the magnetization given by the minimization, the strain can be calculated. Thus, not
only the magnetization can be calculated and compared with the data, but also the strain.

To understand the results of the simulation it is first necessary to get used to the chosen nomencla-
ture and to understand relevant definitions . In Fig. 7.5, the outline of an unit cell of TbFe2 is depicted
with crystallgraphic axes, the external field, the magnetization vector and angle parameters used in the
simulation.
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)

Out of plane
   direction

Figure 7.5: Outline of an unit cell of TbFe2 with relevant crystallographic directions (blue), angles
(green), the magnetization and its components (red), as well as plane of the sample surface and the
external magnetic field, lying in-plane.

Recalling the energy expressions from previous sections (Eq. 5.7 and 5.4) and also taking another energy
term into account, the macroscopic shape anisotropy energy Eshape, the total energy can be derived, see
Eq. 7.1. The shape anisotropy does not originate from an internal, microscopic anisotropy of the material
but from the shape of the sample. The favourable direction of the magnetization is parallel to the sample
plane (in-plane) for a thin film (500 nm thin, but 0.5 cm in width and length) and a demagnetizing
energy can be associated [83] which Kittel mentioned seventy years ago [4]. The direction does not have
to coincide with any crystallographic axis or anisotropy. Kovalenko et al. considered this energy term as
well in their publication [82]. The total energy is:

Etotal =EA(K, ~M) + EH( ~Bext, ~M) + Eshape( ~M)

=K1(α2
xα

2
y + α2

yα
2
z + α2

zα
2
x) +K2(α2

xα
2
yα

2
z)

−MBext

(
(−αx − αy)

sin(270◦ − β)√
2

+ αz cos(270◦ − β)

)
+
µ0M

2

2
(αx + αy)2,

(7.1)

where K are the anisotropy constants, K1 = −3.5 · 106 J
m3 and K2 = 7 · 105 J

m3 (cf. Sec. 5.1.2 and 5.2.4).
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7.3. Simulation of field-rotation

The vector ~M is parameterised in terms of αi, where ~Bext only depends on β. The strength of the
magnetization was chosen to be M = 8.5 ·105 A

m as it is the spontaneous magnetization of TbFe2 at room
temperature, see Fig. 4.2 in Sec. 4.3. Corresponding to the coordinate system in Fig. 7.5, I used the the
following notation for the simulation:

~M =

Mx

My

Mz

 = M

αx

αy

αz

 = M

sin(ϑ) sin(ϕ)
sin(ϑ) cos(ϕ)

cos(ϑ)

 and ~Bext =
Bext√

2

 − sin(270◦ − β)
sin(270◦ − β)√
2 cos(270◦ − β)

 . (7.2)

Note that the product − ~M · ~Bext, i.e. EH, is not just an energy in this case, it describes an energy
density, just like EA, an amount of energy normalised by a volume. This can be understood by recalling
that in Sec. 5.1.1, an energy is assigned to one magnetic moment adjusting inside of an external field.
But what we need to describe are many of these moments, that are forming a macroscopic magnetization.
Thus, ~M and ~Bext are given in such manner that their product gives an energy density. For the sake of
simplicity I will continue talking about energies rather than about energy densities.

Following Kovalenko et al., I calculate an energy-(density-)map, as a function of two variables; the
angles ϑ and ϕ, for every value of β with fixed M and Bext. The energy surface Etotal for β = 0 ◦ and
Bext = 550 mT is depicted in Fig. 7.6. It exhibits minima which coincide with the magnetization direc-
tions, as the system seeks the least energetic state. In the situation shown in Fig. 7.6, the magnetization
most certainly must point to the (111) or (111) direction, because the global and local minima of Etotal

give those directions. Although the sample was magnetised in (110) direction before every measurement,
where no minimum can be seen in in the energy-density-map (ϑ = 90 ◦ and ϕ = 135 ◦), the two mentioned
minima represent the state of the magnetization in the domains. Because the minima are symmetrical, I
assume equally distributed magnetic domains magnetised either in (111) or (111) direction, which results
in a macroscopic magnetization along (110) and is consistent with our knowledge of the domain structure.

In the appendix, the Figures A.1 to A.4 show the complete energy maps for different angles β at magnetic
fields of 550 mT, 150 mT and 1100 mT, as well as one series with neglected shape anisotropy energy at
550 mT. Comparing Fig. A.1 and A.2, the impact of Eshape becomes clear. There are four equal minima
at β = 90 ◦ in the series without it, because the energy is the same for all four directions, even if the
magnetization has a component out-of-plane. Considering Eshape however changes this drastically as the
magnetization favours now in-plane directions such as (111) and (111) or (111) as in Fig. 7.6. Varying
the external field strength has also a very specific effect. Mainly an increase of the field gives rise to the
correlation of the field direction with the position and intensity of the minima, i.e. the magnetization
direction. Comparing Fig. A.3 with A.1 highlights this manner as only one minimum (or in symmetric
cases two minima) distinguishes itself more distinctly if the magnetic field is twice as large. Decreasing
the external field leads to an opposite effect. The energy surface stays rather constant with no obvious
movements or trajectories of the minima visible, just the intensities of extrema is changing in the course
of the rotating magnetic field, see Fig. A.4.

To see how the magnetization direction is changing during the roation of ~Bext, we must follow the
minima during the series of β. On this account, the minima were calculated and plotted as red crosses in
Fig. 7.6 to see in which direction the magnetization points. Recalling the magnetization measurements
of the previous section 7.2, we already know that the magnetization points into one certain direction and
switches to the exact opposite direction after a sufficient rotation of the external field. We also assume
that the most magnetic domains are either magnetised in (111) or (111) direction at the beginning.
Between 150 ◦ and 180 ◦ should be the point in β where the magnetization leaves the local energetic
minimum around the (111) and (111) direction and switches to the opposite side, the (111) and (111)
direction. This change of minima is associated with the movement of domain walls as single domains not
necessarily change their magnetization direction, but decrease and increase their size to influence their
shares on the macroscopic magnetization and re-magnetise the sample along the applied field.

This situation is depicted in Fig. 7.7 where Etotal is plotted for β = 150 ◦ and 180 ◦. The energy
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Figure 7.6: Energy density (Etotal) as a function of the angles ϑ and ϕ, which parameterise the mag-
netization, see Fig. 7.5. The ranges of 0 ◦ to 180 ◦ and −180 ◦ to 180 ◦ of ϑ and ϕ respectively cover all
possible directions of ~M . The red crosses are local minima of Etotal and the zero in the bottom right
corner gives the angle β that was chosen to get the depicted simulation result. The small black circles
represent certain crystallographic directions with their description next to it, they are depicted for the
sake of orientation (the line at the top represents the (001) direction, i.e. ϑ = 0 ◦ ). With β = 0 ◦, ~Bext is
aligned to the (110) direction, which is associated to ϑ = 90 ◦ and ϕ = 135 ◦. Clearly, the magnetization
is pointing in either (111) or (111) direction in the majority of the sample, as the energy’s local and
global minima are at the those places. This is the initial state of the sample, as it was magnetised with
higher fields along the (110) direction.
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maps are equipped with the same features as in Fig. 7.6, additionally rectangles are drawn to mark the
most represented magnetization direction distributed over the sample. Before the switch (left), mainly

all domains, where ~M points along the (111) or (111) direction occupy most of the specimen’s volume.
And afterwards (right), the domains with magnetization along the (111) or (111) direction are dominant.
The map for β = 180 ◦ looks exactly like the one for 0 ◦ as it should be so the states of the magnetization
in both cases are indistinguishable originating from the crystallographic symmetry.

Figure 7.7: Energy maps for β = 150 ◦ and 180 ◦ with all features described already in Fig. 7.6. In the
left graph, the sample’s majority is magnetised along the (111) or (111) direction, although it is not the
global minimum but a local minimum is still visible inside the black rectangle. Right, at β = 180 ◦, a
large portion of the sample is magnetised along (111) or (111) direction and thus again occupying the
least energetic state in that situation (black rectangle).

By following the energetic minima, it was possible to track the magnetization direction for both cases,
i.e. each minimum. Thus it is elementary to simulate the VSM measurements of Sec. 7.2. The minimum
contains the pair of ϕ and ϑ and using Eq. 7.2 to get ~M as well as ~Bext for every β gives the possibility to
calculate the scalar product ~Bext · ~M which is proportional to M‖, and M⊥ is calculated by Pythagoras;√
M2 −M2

‖ . Including the assumption of two possible states, equally distributed in magnetic domains,

the macroscopic magnetization could be calculated. This simulated result of the previous shown mea-
surement is depicted and compared again in Fig. 7.8 (top). A good agreement between the measurement
and simulation is visible. The only difference is the steepness during the switching process. While the
measurement shows a very steep increase of M‖, it is not instantaneous, as it is in the simulation. Some
kind of damping process associated with the domain wall movement could be the reason to slow down
the switching mechanism in terms of β.

Additionally, the calculated and measured strain is shown in Fig. 7.8 (bottom) again. It was calcu-
lated by putting the same set of ϕ and ϑ for each minimum and β into Akulov’s law (Eq. 5.23). It
condenses to a very simple form, because the direction of examination ~γ is (110), and λ111 � λ100:

ε110 =
3λ110

2
αxαy. (7.3)

Likewise, the strain was calculated for both possible states and the mean value is presented here as the
final result. In comparison with the data it is clear that two very important features are represented by
the simulation. First, the strain increases monotonically for the most part of the first half of the external
field’s rotation, and also for the second half, after the switch which is the second feature. A jump in
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7.3. Simulation of field-rotation

strain occurs around β = 150 ◦, where it decreases drastically to the initial value, associated with the
alignment of magnetization and external field. The only difference seems to be the strain amplitude of the
simulation which is three times higher than measured. This may originate from the epitaxial clamping
of the film or a certain defect pattern.
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Figure 7.8: Top: VSM-Measurements (see Sec. 7.2) compared to simulated data. The sample’s mag-
netization parallel and perpendicular to the external field over the rotation of the same is depicted.
Simulated and measured data are in good agreement. The only deviation lies in the steepness during the
switch around 150 ◦.
Bottom: The strain along the (110) direction, calculated and measured at BESSY II, is depicted over
the rotation of the external magnetic field of BB = 550 mT. Both, the data and simulation, show a rise
in strain when rotating the magnetic field and both show a shift around 150 ◦, where the strain vanishes
and starts to rise again. The simulation result is normalised by a factor of 1

3 , to make visible that only
the absolute magnitude of the calculated strain must be adjusted to fit the measured data.

Concerning the measurements at the MFXT, the simulation result is the same as one can see in Fig.
7.1. The strain reaches its maximum at β = 180 ◦, before following the mirrored sinusoidal path as in
the measurements, reaching zero again at 360 ◦. There are no discontinuities to be found, because the
magnetization does not alter its sign, only moving around the (111) and (111) direction, as one can see
in Fig. A.4. Also, the strain scales linearly with the quotient of the magnetic field strengths and it is
three times higher than the measured one. In Fig. A.5, one can see that a mono-domain approach would
not be suitable as the calculated strain would not match with the measurement results.
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8. Outlook for static forced magnetostriction

As it was possible for me to describe the microscopic changes within the sample statically with a simple
model, the factor of three remains to be explained or justified. To me, it is not clear why the simulation
gives a strain which is three times higher than the reality shows us. It may be possible that Akulov’s
law in its simplicity to which it condenses in my evaluation is not sufficient to cover all magnetoelastic
interactions in TbFe2 and therefore the simulation is yet incomplete somehow. However, many sources
use this law for the prediction of magnetostriction while knowing the magnetic state of the sample [4,
8, 64]. Since it is reported that a strain occurs in thin films, originating from the mismatch of lattice
constants from buffer and film, maybe the sample is clamped in some way, so that the magnetoelastic
strain can not be as large as expected [18, 46, 84]. Taking bulk TbFe2 and repeating the measurements
would be an option, as clamping effects due to the connections to a substrate are disabled in that case.

At many points during this work, it became clear that magnetic domains are present in TbFe2. More
evidence of magnetic domains would be possible to gather with different experimental methods in the
future. AFM (Atomic Force Microscopy) measurements have been performed on TbFe2, grown in (111)
direction on sapphire by Huth and Flynn [84]. They show magnetic domains in the micrometer-regime
and this could easily be performed on the present sample to confirm the existence of domains. A spatial
overview of the sample’s magnetic structure can be also achieved with MOKE (Magneto-optical Kerr
Effect [85]). The UDKM group is currently working on such experimental implementation. But also
simple XRD is capable of detecting magnetic domains, even if the X-ray probe spot on the sample is
larger than the domains. If so, the Bragg-Peak must be of increased width because of varieties in the
lattice constant from domain to domain.

To test Akulov’s law, different crystallographic axes could be examined in terms of magnetostriction
as well. The BESSY II setup is suited for such measurements. However, on TbFe2 conducted measure-
ments were not consistent regarding the intensity and position of the Bragg-peaks. Responsible was a
wrong association of the crystallographic axes in the sample while measuring asymmetrical Bragg re-
flections. Repeating these experiments with a better understanding of how the crystallographic system
is oriented in the sample could improve the amount of data we have to test the presented modelling I
developed.

We also conducted magnetic switching under laser irradiation and a selection of the results is depicted
in Fig. A.6 of the appendix. It utilises the same experimental setup as described in Sec. 6.2 but with an
additional laser system in place which is usually used for time resolved measurements, see Sec. 9.1. The
laser heats the sample with short pulses and adjustable fluences and could evoke an earlier switching
in terms of β during the rotation of the external field. So far we have not yet developed a consistent
interpretation but it seems to be a promising topic because this could give quantitative information about
energy-density thresholds which need to be overcome to switch the sample magnetization.
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Part III.

Ultrafast lattice dynamics of TbFe2
As the UDKM group has a strong interest in dynamics of nanostructures on a femto- to nanosecond
time scale, I used two experimental setups to observe the lattice dynamics of TbFe2 after the excitation
by an ultrashort laser pulse. One of the setups is the previously presented XPP-KMC-3-Beamline at
BESSY II. A pulsed laser system is additionally used to trigger dynamics which are detected via time
resolved XRD, in a pump-probe approach. The second setup, the Plasma X-ray source, is an ultrafast
time-resolved version of the MFXT setup. Additionally I utilised the udkm1Dsim-toolbox to simulate
the pump-probe experiments and interpret the observed lattice dynamics.

This part begins with a description of the PXS and BESSY II setups in Sec. 9 where I explain the
implementation of the pump-probe experiments to provide an overview of the capabilities, limits and
collected data of the setups. In the subsequent section 10 I discuss the collected data, i.e. the lattice
strain obtained via time-resolved XRD by fitting the Bragg reflections with Gaussian profiles or calcu-
lating the COM. It follows an analysis of the PXS data focussed on the strain dynamics during the first
150 ps deduced from a detailed examination of the temporal evolution of recorded Bragg peaks. I further
discuss the BESSY II data with respect to the magnetic and thermal strain present in the sample. I
conclude this part with a data interpretation by modelling the results using the udkm1Dsim-toolbox in
Sec. 11.
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9. Experimental setup and data acquisition

Two complementary setups were used in this work to measure the temporal dynamics: the lab based
Plasma X-ray Source of the UDKM group and the BESSY II beamline already described in Sec. 6.2. The
time resolution is better at the PXS, however longer delays can be measured at the BESSY II beamline
with higher resolution in ~Q space. In both, timeresolved XRD is performed on TbFe2. After exciting
the sample with an ultrashort, high fluence laser pump pulse it is probed with short X-ray pulses. The
laser pulse deposits a large amount of energy inside the sample in times less than a picosecond, which
results among other things in a dynamical, spatio-temporal lattice distortion which can be examined by
an ultrashort X-ray pulse. A brief overview of the two setups is given in table 9.1, comparing the setup
specifications. The experiments are discussed in more detail in the following sections together with an
explanation of the data handling routine.

Table 9.1: Comparison of MFXT and BESSY II setup parameters

Plasma X-ray Source[86, 87, 88] BESSY II-Beamline [73, 76]

X-ray source focused laser pulse (40 fs, 800 nm
centre wavelength, 6 mJ pulse en-
ergy) on a 15µm thick Cu-Tape

dipole D13.1 magnet at the electron
storage ring BESSY II

X-ray optics Montel multilayer optic [89] with
0.3 ◦ divergence, focusing to
(300µm)

2
with a flux of approxi-

mately 5 · 105 photons
s

XPP-KMC3-Beamline: parabolic
mirrors and a double crystal
monochromator, creating a
(350µm)

2
focus with a flux of

approximately 1011 photons
s

X-ray energy 8.048 keV to 8.027 keV (Cu-Kα1

and Kα2
)

10 keV (Synchrotron)

Goniometer geometry two circle diffractometer (ω,θ) four circle diffractometer (ω,θ,φ,χ)

Detector System Pilatus 100k (Dectris) fast read-
out two-dimensional X-ray detec-
tor, 172µm pixel size

Pilatus 100k (Dectris) fast read-
out two-dimensional X-ray detec-
tor, 172µm pixel size

Accessable delay 0 to 4 ns 0 to 4.8µs

Time resolution 250 fs 50 ps

Pump-Laser system Mantis (Coherent) oscillator pro-
ducing short pulses, amplified by
Legend Duo (Coherent) Two-stage
Ti:sapphire amplifier

Clark-MXR, Impulse: multi-stage
Yb-doped fibre-amplifier

Centre wavelength 800 nm 1030 nm

Pump-pulse duration 40 fs 250 fs

Pump-pulse energy 0.1 mJ 10µJ

Repetition rate 1 kHz 200 kHz to 1.25 MHz

9.1. BESSY II Beamline

The setup is the same as it is described in Sec. 6.2 extended by a synchronized pump-laser. A multi-
stage fibre-amplifier amplifies femtosecond laser pulses which are synchronised with the synchrotron’s
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9.2. Plasma X-ray Source

periodically emitted X-ray pulses with a repetition rate of 1.25 MHz. The synchronization accuracy is
4 ps at maximum and the X-ray pulse length of 50 ps limits the time resolution of this setup. By coupling
the pump beam into the centre of the goniometer, the sample is exposed to 250 fs pump pulses with a
centre wavelength of 1030 nm which deposit approximately 10µJ of energy [76]. The fluence (the amount
of energy deposited per time and area) can be varied by adjusting the pump laser’s intensity to achieve
different amounts of excitation12. A sketch of the pump probe implementation is shown in Fig. 9.1.

Clark-MXR
fs-Laser

BESSY II
Synchrotron

Synchronization

Pilatus
Detector

X-Ray Probe

Pump beam

Sample

Figure 9.1: Layout of the pump probe setup at BESSY II. In addition to the X-ray setup (blue, described
in Sec. 6.2), a femtosecond laser is installed at the beamline to supply ultrashort light pulses as excitation
pump-pulses which are electrically synchronised with the periodically occurring X-ray probe pulses. The
delay between pump and probe can be chosen freely up to 5µs determined by the round trip time of
an electron bunch in the storage ring. Doing so, the evolution of the diffracted X-ray signal in time is
recorded by running through several pump probe iterations with various delays.

Because an area detector is used, it does not have to be moved to scan the reciprocal space for different
delays, only the sample is rotated during the scans. The chosen Bragg peak is centred on the detector
before each pump probe experiment. The observed peak shifts and distortions are small, the reflection
will never leave the detector area in course of a delay scan. Thus, the lattice spacing corresponding to
the position of the Bragg peak can be measured as a function of the time after the pump laser excites the
sample, proceeding accordingly to Sec. 6.2. This means, RSM are constructed from the detector images,
the maxima in ~Q-space are determined and associated with the (110) lattice spacing which changes
during a delay series. The final result is the relative change in spacing, the strain, which is depicted in
Fig. 10.4 of Sec. 10.3.

9.2. Plasma X-ray Source

The Plasma X-ray Source is one of the main experimental stations of the UDKM group. It allows time
resolved X-ray diffraction in a pump-probe experiment and sub-picosecond resolution in a tabletop setup.
Due to its complexity, I refer to several publications that summarise the main working principles of this
machine, primarily the dissertation of D. Schick [90] as well as the Master thesis of A. von Reppert [6]
and J. Pudell [5]. There one finds more detailed views of the setup and many examples of measurements
already conducted using this source.

The process of generating ultrashort X-ray pulses is the heart of the PXS, also giving it its name.
Accelerated electrons are the source of X-rays but the acceleration is accomplished with a short and

12The fluence is calcualted via the Top Hat approximation of the pump pulse spatial profile (at BESSY II as well as
PXS). Therefore, the energy per pulse Ep is calculated by the repetition rate and the output power. Also, the two
dimensional Gaussian beam profile is recorded to obtain the full width at half maximum (FWHM) in x- and y-direction
perpendicular to the propagation direction. The fluence is then derived by 2Ep/(πFWHMxFWHMy), i.e. the ratio of
pulse energy and the approximated area which resembles a top hat as an approximation of the two dimensional Gaussian
beam profile.
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Figure 9.2: Sketch of the generation precess for short X-ray pulses, taken from von Reppert [6] who
adapted this sketch from Weisshaupt et al. [91]. An incoming ultrashort laserpulse ionises copper atoms
at the tape surface. This is possible because an energy of 6 mJ is compressed to a light pulse of 40 fs
length, resulting in a peak intensity of 5 · 1017 W

cm2 [90]. This is associated with an electric field of over

1012 V
m which creates the plasma due to ionization in the copper tape (yellow area). Electrons inside

this large oscillating electric field are accelerated and decelerated for a short period of time and also
interacting with the surrounding copper as they do in conventional X-ray tubes. The resulting X-ray
spectrum is therefore similar to the one shown in Sec. 6.1.1, containing Bremsstrahlung as well as the
characteristic spectral lines of copper. X-rays are only emitted while the laserpulse is present and shortly
after, resulting in 250 fs x-ray probe pulses with a repetition rate of 1 kHz. The X-ray pulse length is
the limiting factor of the time resolution, which is almost two orders of magnitudes higher as at BESSY
II [6]. After the emission of an X-ray pulse, a small hole is left in the tape and therefore the tape is
translated continuously to ensure the same initial situation for every pulse every millisecond.

very intense laserpulse, not with a booster synchrotron or a static electric field. In Fig. 9.2, the X-ray
generation process at the PXS is depicted and explained.

The plasma used for X-ray generation is located in an interaction chamber of the experimental station
for which an overview is shown in Fig. 9.3 to understand the functioning of the setup. Having a two circle
goniometer combined with a pulsed laser system which illuminates the sample for 40 fs and simultane-
ously generates short X-ray pulses to diffract from the excited sample, time resolved X-ray diffraction is
realised. The pump probe delay is set via a mechanical delay stage.

Similar to the procedure at BESSY II (Sec. 6.2), the area detector allows us to create a RSM where

maxima in ~Q-Space are associated with sets of planes in this case again, along the (110)-direction, out-
of-plane. However, in the course of this thesis the goniometer geometry was fixed during the delay scans.
Because the X-rays which are focussed onto the sample have a convergence of 0.3 ◦ and an area detector
is in place, a miniature version of a ϑ/2ϑ-Scan is conducted without moving the goniometer. During one
exposure, a range of diffraction angles is thus detected simultaneously. If the chosen incident angle is the
Bragg angle of the (110) peak of TbFe2, additional X-rays will shine onto the sample under a slightly
different angle, i.e. ±0.15 ◦. An area detector is therefore very useful as it records all the diffracted X-rays
simultaneously in contrast to a point detector which can only detect X-rays under one specific diffraction
angle. The detector picture is integrated along the direction perpendicular to the diffraction plane after
each exposure to get a one dimensional intensity profile in qz direction.
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Shifts and distortions of these reflections correspond to lattice dynamics which can be examined over
time as shwon in pump-probe experiments. For every delay, the measured Bragg peak is evaluated mostly
with respect to the momentary strain within the region probed by X-ray pulses. The probe region is
located in the centre of the pump area which is larger than the X-ray spot. A Gaussian fit and the
COM is used to determine the exact position of the peak maximum associated with the average lattice
spacing, giving the strain. The time dependence of the latter and also of the peak’s shape is measured
at TbFe2 for different fluences. The results are discussed together with the measurements at BESSY II
in the following Sec. 10.

Figure 9.3: Sketch of the PXS, taken from von Reppert[6], cf. [90] and [5]. A Mantis Ti:sapphire
oscillator creates fs low energy pulses with 80 MHz repetition rate which are coupled into the Legend
Elite Duo amplifier. The amplifier’s output is a pulsed laser signal with a 1 kHz repetition rate, 800 nm
centre wavelength, 40 fs pulse length, but 7.5 mJ energy per pulse. By passing a beamsplitter, 80% of
the Legend Elite Duo output is focused inside the interaction chamber using a parabolic mirror onto
the copper tape, creating X-ray pulses which are focussed on the sample located in the centre of a two
circle goniometer. The remaining 20% of the amplifier output are available for sample excitation passing
through the mechanical delay stage.
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10. Experimental results

In this section I present time resolved X-ray diffraction data on TbFe2 collected at the PXS setup and at
BESSY II. The lattice dynamics on a pico- to nanosecond time scale after photo excitation are determined
via X-ray diffraction. Therefore, the recorded RSMs were integrated along qx to provide one dimensional
diffraction patterns. The diffracted intensity as a function of qz, i.e. one dimensional Bragg peaks are
evaluated at different time delays.

10.1. Evaluation of Bragg peaks

In Fig. 10.1a, the (220) Bragg peaks of TbFe2 are depicted, selected at four different delay times at
the PXS. They are fitted with Gaussian profiles as shown, to determine the corresponding qz which is
associated with a certain lattice spacing via Bragg’s law. In Fig. 10.1b, two Bragg peaks are plotted to
emphasise that at early delays (< 100 ps), the peaks are asymmetrical as they exhibit shoulders which
are not covered by single Gaussian fits.

Figure 10.1: (a): Measured Bragg peaks at PXS with a fluence of 25 mJ
cm2 at four different delays

displayed with Gaussian fits for qz determination. Data and fits are displayed at t = t0, 13 ps, 64 ps and
4 ns. (b): Data points, double Gaussian and regular Gaussian fits are displayed at t = 13 ps and 64 ps.

In Fig. 10.1a, the temporal evolution of the Bragg peaks becomes visible. 13 ps after excitation, the
intensity has decreased by 20% associated with a disorder of the TbFe2 lattice. Also, the main peak
shifted by −1.5 · 10−3 to higher qz associated with a compressed majority of the layer. Simultaneously
a shoulder at lower qz has developed, associated with a small fraction of the sample being expanded.
These are the initially excited and now expanded top layers. At 64 ps, the main Bragg peak’s intensity
has subsequently further decreased by 4% and it shifted by 3.5 · 10−3 to lower qz in relation to the initial
position. At this stage, it exhibits a shoulder at higher qz associated with a small fraction of the sample
yet being compressed. But still a small shoulder at lower qz is visible. The Bragg peak then recovers
intensity while the shoulders are vanishing until it reaches 97% of the initial intensity 4 ns after excitation.
At this point in time, it is shifted by 3.5 · 10−3 to lower qz.
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10.2. Picosecond strain dynamics at the PXS

For the two time delays, where the shoulders of the Bragg peak are pronounced, at t = 13 ps and
64 ps, data and fits are depicted again in Fig. 10.1b. There, the peaks are fitted with a single Gaussian
function (dashed line) and a double Gaussian profile, i.e. the sum of two Gaussian functions. While the
double Gaussian fit covers the whole range of data points, the single Gaussian fit mainly matches the
data points in the centre of the major Bragg peak, disregarding the shoulders. The position of the main
Bragg peak however differs by less than 1% in both approaches which is why both are valid.

Regardless of the Gaussian evaluation method, these shoulders can be interpreted as minor parts of
the sample diffracting under a different ~Q because they are compressed (shoulder at higher qz) or ex-
panded (shoulder at lower qz) in relation to the majority of the sample (main Bragg peak). Thus, I
additionally calculate the COM of the peaks. This way, the shoulders will be included in the determina-
tion of qz. These two evaluation methods provide two different pieces of information about the sample.
As the COM is sensitive to the main peak but also takes shoulders into account, the qz is different
from the qz one gets from the Gaussian fit which includes only the main peak. This means that the
COM asserts the average lattice spacing in TbFe2 while the Gaussian fit provides the lattice spacing in-
side the fraction of the layer with the highest diffraction signal which is usually the majority of the sample.

The Bragg peaks recorded at BESSY II are measured with a significantly slower time resolution which
is why the shoulders and temporal evolution during the first 100 ps could not be observed. However, the
qz and the resulting strain determined either via COM or Gaussian fits differ from each other as well, as
one can see in section 10.3.

10.2. Picosecond strain dynamics at the PXS

The temporal evolution of the lattice spacing is determined by evaluating the Bragg peaks for every
time delay. I then calculate the relative change of the lattice spacing, i.e. the strain. In this thesis I only
evaluate (220) or (440) Bragg peaks which is why the strain along the (110) direction (ε110) is determined
via qz from the COM and Gaussian fits. In the used sample geometry, this direction is perpendicular to
the sample surface.

In Fig. 10.3, ε110 is plotted for seven fluences. In the top graph ε110 was determined via a Gaussian
fit of the Bragg peak and in the bottom grpah ε110 was calculated via the COM. Obviously, the de-
termination method of the peak position is of high relevance when quantifying the strain with a high
time resolution. Applying the conclusions of Sec. 10.1, the PXS data show an immediate increase of
the average strain after excitation (COM). The strain is reaching its maximum between 10 ps and 60 ps
depending on the fluence. With increasing fluence, a larger maximum is recorded and the maximum is
recorded at larger delay times. This is due to heat deposited inside TbFe2 by photo excitation which
is accompanied with a thermal expansion proportional to the initial amount of energy deposited. The
exceptional case is the strain evolution for a high fluence of 25 mJ

cm2 because not until 10 ps after excitation
the strain begins to rise and seems to continue increasing at 1 ns.

The strain provided by the Gaussian fit implies that the majority of TbFe2 is compressed during the
first 10 ps to 30 ps after t0, depending on the fluence. Subsequently the strain rises to a local maximum,
meaning that most of the sample is expanded before a renewed decrease results in a local minimum at
110 ps. Afterwards, the global maximum is reached which shifts to larger delay times with increasing
fluence.

The dynamics during the first 100 ps are in accord with previous ultra fast time resolved XRD mea-
surements and is explained in depth in the publication by D. Schick et al. [92]. With Fig. 10.2 I shortly
summarize their findings. With that in mind, the ultra fast strain dynamics measured at the PXS
can be explained qualitatively. A few picoseconds after photo excitation, just the top layer is strongly
expanded, whereas the majority of the sample is slightly compressed. This is in accord with the Bragg
peak shift and the shoulder we see at 13 ps in Fig. 10.1a. During the propagation of the strain-wave
through the layer, the amount of compressed TbFe2 decreases as two parts of the layer are expanded (H
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10.2. Picosecond strain dynamics at the PXS

Figure 10.2: Sketched strain profiles at three arbitrary delay times inside a layer excited by an fem-
tosecond laser pulse, adapted from Schick et al. [92]. The initial pump pulse inscribes an inhomogeneous
stress profile according to Beer-Lambert’s law. A few picoseconds after excitation (t1) the top layers give
in to the stress and expand, i.e. show a positive strain. This is because the amount of deposited energy
is maximal near the surface and so is the stress the lattice is exposed to. Going deeper into the sample,
the stress decreases exponentially, resulting in a net contraction of the majority of the sample during the
first 10 ps to 30 ps. The expansion (E) propagates with sound velocity into the TbFe2 layer, preceded by
the contraction (C). This spatial strain transforms into a bipolar strain-wave propagating through the
layer (15t1), leaving an exponentially decreasing strain profile due to heat at the surface (H) behind.
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Figure 10.3: Fluence series of temporal strain evolution in TbFe2 after laser excitation at t0, measured
at the PXS. For each fluence, the Bragg peak of TbFe2 was scanned for delays reaching up to 4 ns. Either
the COM (bottom) was determined or a Gaussian fit (top) was utilised to ascertain the peak position in
qz and associate a lattice spacing which leads to the strain when compared to the initial value at t < t0.
The COM data are smoothed to ensure a better visibility, meaning that every data point represents the
average value over adjacent data points and itself.
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10.3. Nanosecond strain dynamics at BESSY II

and E in Fig. 10.2). The expanded parts are associated with the Bragg peak shift to lower qz and the
small shoulder at lower qz. The preceding compressive part corresponds to the shoulder at larger qz of
the peak at 64 ps in Fig. 10.1a. At this delay time, the compressive part of the strain wave starts to
propagate into the adjacent niobium layer which is why the average strain increases until 110 ps. Then, a
sudden strain decrease is recorded as the expansive part of the strain-wave follows the compressive part
into the niobium.

10.3. Nanosecond strain dynamics at BESSY II

An overview of the strain evolution of TbFe2 after laser excitation has been determined at BESSY II from
0 to 500 ns, with a magnetic field applied in different directions, see Fig. 10.4. A similar measurement
series is displayed in the appendix in Fig. A.7 which differs in terms of the point density which is five
times higher at short time delay.
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Figure 10.4: Time resolved strain of TbFe2 after laser excitation at t0 along (110) direction. The
strain is either calculated by a Gaussian fit (top) by the COM method (bottom) and is derived for five
different directions (β) of an external magnetic field with a strength of 550 mT. The sample was exposed
to 7.5 mJ

cm2 of incident fluence with 1030 nm centre wavelength, resulting in a shift and distortion of the
Bragg peak corresponding to the displayed strain.

10.3.1. Magnetic strain

Clearly, the different directions of the magnetic field do not affect the experimental outcome in terms of
measured strain. Partly this may be due to the difference of an order of magnitude in strain compared to
the static measurements where a maximum of 6 ·10−5 was recorded. Looking at Fig. 10.4, a maximum of
3 ·10−4 is visible. Also, the measured strain scatters within a range of 5 ·10−5. So even if the sample was
switched into a different magnetic state during one excitation process, it would be difficult to see with
the present data quality. Other more fundamental reasons for not seeing a dependence on the magnetic
field are the experiment’s implementation sequence and the data handling.
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10.3. Nanosecond strain dynamics at BESSY II

Concerning the measurement sequence it is important to note that the sample was only exposed to
a saturation magnetic field once before the measurement. Afterwards, the delay scan begun with one
pump pulse and an X-ray pulse to be diffracted by the excited sample at one certain delay (maybe even
diffracted by the unexcited sample if the first delay was set to t < t0). If the sample was changed in
any way to a new magnetic state by the initial pump pulse, only one diffracted X-ray pulse could detect
this change. For the second pump pulse, the magnetic state of the sample could not have been altered
because the direction of the external field was not changed during the delay-scans. Thus, it is not the
right way to detect the difference in the sample’s magnetic state by looking at the relative change of
the lattice spacing for each measurement. However, the absolute values of the lattice spacing hold the
information about the magnetic state of the sample.

Therefore, I plotted the absolute difference between the measured lattice spacing d110 and it’s litera-
ture value (5.195 Å) for four different magnetic field directions in Fig. 10.5. The global trend of the
absolute value d110 is obviously similar to it’s relative change in Fig. 10.4. But for β = 90 ◦ and 270 ◦

the absolute value of d110 is on average 2.8 · 10−4 Å larger than for β = 180 ◦ and 360 ◦. This absolute
offset of 2.8 · 10−4 Å corresponds to a relative magnetostrictive strain of 5 · 10−5, in good agreement with
the static magnetostriction measurements in Sec. 7. There, a strain of 4 · 10−5 for the different magnetic
states was found, see Fig. 7.1. Here, in the time resolved measurements, the dynamics are independent
of the applied magnetic field.
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Figure 10.5: Time resolved lattice spacing along (110) for four different directions of an external mag-
netic field of 550 mT. The position of the Bragg peak was deduced by applying Gaussian fits.

10.3.2. Thermal strain

Although no dynamics associated with magnetostriction could be substantiated, the observed strain dy-
namics still provide important information about the dynamics in TbFe2 after the excitation. Obviously,
an expansion is visible due to heating of the sample via the pump pulse. An amount of energy is deposited
in the sample, absorbed by the electrons from which it is transferred into the lattice (electron-phonon-
coupling). The coupling of electrons (excited by an ultrashort laser pulse) and the lattice is subject of
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10.3. Nanosecond strain dynamics at BESSY II

current research targeted on the development of an underlying model as well as on the identification of
equilibrium coupling times [93, 94]. Additionally, magnetic systems shifted into the focus, adding the spin
system interactions to the conception of ultrafast dynamics [6, 95]. Two- or three-temperature models are
often used in the literature, although theory shows that temperature is not necessarily a valid quantity
at short times after excitation. The idea is to associate temperatures to the electronic system, the lattice
and the spins which can interact by scattering of electrons, phonons and magnons. Macroscopically this
translates into three coupled heat baths from which only one is heated at t0. The electrons absorb the
pump energy which increases their temperature resulting in heat flowing to the lattice and spin system
until a temperature equilibrium is reached. It is not easy to find electron-phonon coupling times of any
rare earth metal in the literature, but according to U. Bovensiepen the typical order of magnitude is a
few picoseconds [95]. Thus, this ultrafast equilibration can not be displayed by the measurements. Also,
in my evaluation of dynamics in TbFe2, I do not consider magnons as interaction elements, i.e. dynamical
magnetic response.

Even so, at a time scale of several nanoseconds, the sample is basically heated in a common way, mean-
ing an amount of heat Q(~r, t) is deposited in an exponentially decaying spatial profile and propagates
through TbFe2 according to classical heat diffusion [12], described by Fourier heat law:

Q̇(~r, t)

A
= −κ∇T, (10.1)

where κ is the heat conductivity, ∇T the temperature gradient and Q̇(~r,t)
A the heat current density, i.e.

the heat current passing perpendicularly through the area A. Inscribing an exponential temperature
profile by the pump laser excitation pulse due to Beer-Lambert’s law, results in a maximum temperature
gradient at the surface, decreasing exponentially into the sample. Thus, the heat flows fastest out of the
top layer into the sample and successively slower the more deeper it goes into the sample. Additionally,
the heat is accompanied by an expansion, modelled by a linear thermal expansion coefficient ζ [12], see
Eq. 10.2:

∆L

L
= ζ∆T, (10.2)

where ∆L
L is the relative change in length during a temperature change ∆T . Although ζ and κ are in

general temperature dependent [12], I assume constants for the sake of simplicity in the course of this
thesis as they are implemented as constants during the simulations in Sec. 11. Also, for a the temperature
range 150 K to 350 K linear thermal expansion could be substantiated at the PXS, see Fig. A.8 in the ap-
pendix. Focussing on the heating and expansion process, a maximum of the temperature induced strain
(∆L
L ) right after the excitation could be expected. This is obviously not accurate concerning the strain

calculated by the Gaussian fit but applies to the COM data. Nevertheless that is not a contradiction as
the strain is maximal right after excitation but only inside the top layer of TbFe2. The majority of the
sample is yet to be heated and expanded. The Gaussian fit however is not sensitive to a small portion
of the sample being strongly expanded because the diffraction signal of this thin layer is a broad, low
intensity Bragg peak competing with an intense, narrow peak of the homogeneous remaining sample.
Additionally, the diffracted intensity is even more reduced because of the inhomogeneous excitation pro-
file. Not until a significant fraction of TbFe2 is heated and expanded, the major Bragg peak shifts and
therefore a positive strain can be detected by the Gaussian fit.

The maximum around 2 ns (see Fig. 10.4) occurs because of two competing processes. On the one
hand there is the reduction of the maximal and average strain because the initial temperature profile
equilibrates and heat slowly propagates to the adjacent niobium layer. This results on the other hand
in an increase of the strain detected by the Gaussian fit because the sample is successively homogenised,
sharpening and intensifying the Bragg peak. Meanwhile, the COM evaluation is sensitive to a shift of
the major Bragg peak as well as to the small, heated fraction of the sample providing a broad, low
intensity Bragg peak. Consequently, the Gaussian fit is sensitive to the majority of the sample and the
amount of inhomogeneity, whereas the COM evaluation is a measure of the average strain, as it reaches
its maximum almost instantaneously after excitation and does not decrease until heat is flowing out to
the adjacent niobium buffer.
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11. Strain dynamics modelled by the udkm1Dsim-toolbox

In this section I provide an overview of the simulations to model the measured strain dynamics. Therefore
I explain the concepts and implementation of the udkm1Dsim-toolbox, depict the results and compare
them with measured data. I derive a more sophisticated insight about the mechanics of TbFe2 during
the pump-probe experiments, as it is for example possible to picture a temporal and spatially resolved
strain evolution at once.

To ensure a suitable interpretation of the strain data obtained at the PXS and BESSY II, I employed the
udkm1Dsim-toolbox [96], a collection of Matlab (MathWorks Inc.) routines and functions developed by
the UDKM-group. With this I modelled a one dimensional representation of the sample along the out-
of-plane direction by placing atoms in the right order and distance to create unit cells and subsequently
material layers. This one dimensional representation was then exposed to the pump pulse resulting in
structural dynamics because of thermal stress. Consequently, the strain was calculated by applying a
linear-chain model of masses and springs. Eventually, dynamical X-ray diffraction was conducted on the
excited sample at given delays by simulating the scattering of incident X-rays on single atoms over the
entire sample.

Many publications of the UDKM concerning ultrafast XRD used this toolkit to fit their data and pro-
vide explanations for observed features, see [5, 6, 90]. Based on experience, a one dimensional approach
provides a good approximation of the structural dynamics. This can be understood by taking a closer
look at the spatial orders of magnitude. The TbFe2 layer measures 500 nm in depth while typically a
spot size on the surface with a diameter of 1200µm is exposed to the pump pulse at the PXS. With
an optical penetration depth of 22 nm, solemnly a one dimensional temperature dependence is inscribed
into the region which is probed by the X-ray pulse and measures 300µm in diameter. With a sonic speed
of 4.6 nm

ps it would take 65 ns for a strain wave to propagate from the outer rim of the excited spot to
the probe region of the sample. Thus it is safe to assume a one dimensional problem structure to model
structural dynamics on a pico- to nanosecond time scale especially for nanoscopic samples.

I will focus mainly on three distinguished parts of this procedure which are the heat deposition dur-
ing the excitation and its diffusion in section 11.1, the coherent phonon dynamics arising from the initial
excitation in section 11.2 and subsequently the simulated dynamical X-ray diffraction in section 11.3. All
along, a comparison of the data from previous sections will be included to determine the sound velocity
of TbFe2 in Sec. 11.4. Additionally, I present evidence of fluence dependent ultrafast heat diffusion in
TbFe2 in Sec. 11.5.

To start off the simulation one must hand over important material properties to the simulation tool
kit and construct the unit cells accordingly. In Table 11.1, all necessary quantities are listed to conduct
the simulations via the udkm1Dsim-toolbox. In contrast to niobium and sapphire, it was not possible
for me to find exact values for the heat conductivity κ, the sound velocity vsound and the linear thermal
expansion coefficient ζ for TbFe2. The given κ is associated with a Terbium-Dysprosium-Iron alloy,
known as Terfenol (Tb0.3Dy0.7Fe1.92), which is listed online. It is a well known magnetostrictive alloy
for which the heat conductivity is documented [97]. The longitudinal sound velocity of polycrystalline
TbFe2 is 3.94 nm

ps [7] but since the sample consists of a single crystal it is not surprising that a different
value of 4.6 nm

ps provides the best match of the simulation results and the measurement data, see Sec.
11.2 and 11.4. To determine the linear thermal expansion coefficient, the temperature dependence of the
lattice spacing d110 was measured at the PXS via static XRD, see Fig. A.8 in the appendix. Also, the
optical penetration depth according to Beer-Lambert’s law was identified by ellipsometry measurements
conducted by my colleague L. Willig. For niobium it was found to be 24 nm and for TbFe2 22 nm but
the simulation of the UXRD signal (Fig. 11.6) shows that only a much higher δ of up to 55 nm matches
the temporal strain evolution during the first hundred picoseconds after excitation. In fact, a correlation
between the fluence and penetration depth could be observed, i.e. the length scale of the stress profile
rises with higher fluences, see Sec. 11.5.
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11.1. Heat diffusion

Table 11.1: Necessary material properties at room temperature for udkm1Dsim-toolbox operation.
Quantities marked with * are not associated with single crystal TbFe2 but with similar materials as I
could not find the exact values. The × tagged items result from the simulation itself as those values
provide a match of measured and simulated data, see Sec. 11.4 and 11.5. Those properties signed by †

are determined by the UDKM group either by static XRD or ellipsometry, see Fig. A.8 in the appendix.
The optical penetration depth for Sapphire was set to∞ because the TbFe2 and Nb layers absorb nearly
the entire pump energy with the result that at maximum a fraction of 10−5 of the incident intensity
would have penetrated the substrate.

TbFe2 layer Nb buffer Al2O3 substrate

lattice constants in Å

c-axis (out-of-plane) 10.39 [17, 18] 4.67 [98] 4.76 [99]

b-axis (in plane) 10.39 [17, 18] 3.30 [98] 12.80 [99]

a-axis (in plane) 7.35 [17, 18] 4.67 [98] 8.24 [99]

heat conductivity κ in W
mK 10.8* [97] 58.3 [100] 40 [99]

heat capacity Cp in J
kgK 330 [101] 264.78 [102] 778.73 [103]

sound velocity vsound in nm
ps 3.94* . . . 4.6× [7] 5.083 [104] 11.075 [105]

mass density ρ in g
cm2 9.0 [19] 8.57 [102] 4.05 [99]

optical penetration depth δ in nm 22† . . . 55× 24† ∞

lin. thermal expansion ζ in 10−6

K 23.7† 7.6 [106] 6.6 [107]

layer thickness d in nm 500 100 106

11.1. Heat diffusion

After constructing the sample by manually defining the structural prototypes of unit cells and adding
them to sample layers, the heat simulation can be conducted with the udkm1Dsim-toolbox. For a
given excitation pulse, the program assigns an exponentially decreasing temperature profile according to
Beer-Lambert’s law. Subsequently to the instantaneously modelled excitation, the temporal and spatial
thermal evolution T (z, t) is then calculated by solving the one dimensional heat diffusion equation 11.1
numerically, cf. [96]:

ρ(z)Cp(z)
∂T (z, t)

∂t
=

∂

∂z

(
κ(z)

∂T (z, t)

∂z

)
, (11.1)

where ρ(z) is the mass density, Cp(z) the heat capacity and κ(z) the heat conductivity. The involved
quantities are dependent on the sample’s depth z as three different materials with different properties are
part of the simulation. Furthermore Cp(z) and κ(z) are usually temperature dependent but are set to the
fixed values of table 11.1 during the course of this thesis. Eventually, the output, a spatial and temporal
temperature map of the whole sample, is generated for further evaluation. Several spatial temperature
profiles at different times after excitation are depicted in Fig. 11.1.

5 ps after the initial pump pulse, the exponential penetration profile originating from Beer-Lambert’s
law is still apparent. Successively heat diffuses deeper into the sample, rapidly reducing the tempera-
ture near the surface and increasing temperature in the remaining part of the sample slowly as in the

process the flux is determined by the one dimensional temperature gradient ∇T (z, t) = ∂T (z,t)
∂z and κ(z)
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11.2. Coherent phonon dynamics

according to Eq. 10.1. The different values of κ(z) for the three materials can be seen in the inset of Fig.
11.1 because the temperature equilibrates at higher rates in niobium and sapphire as compared to TbFe2

and therefore decreases the spatial temperature slope. Apparently only after an elapsed time of 2 ns a
considerable amount of thermal energy flows out of TbFe2 heating the adjacent niobium buffer. Mean-
while the average temperature gradient within TbFe2 is reduced from 9.2 K

nm to 0.9 K
nm inside the top

100 nm while being increased by a factor of ten inside the bottom 100 nm of TbFe2, adjacent to niobium.
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Figure 11.1: Spatial temperature profiles of the sample simulated at several times from 5 ps to 10 ns
after an instantaneously excitation by a 20 mJ

cm2 pump pulse and an optical penetration depth of 55 nm.
The decently coloured background indicates different sample layers according to the sample depth, i.e. the
TbFe2 layer occupies the top 500 nm followed by 100 nm niobium and eventually the sapphire substrate
from 600 nm on. The inset magnifies the spatial profiles at the TbFe2-niobium-sapphire interface.

11.2. Coherent phonon dynamics

The calculated temporal and spatial temperature distribution is evaluated in this section with respect to
the resulting structural dynamics. Mainly the concept of linear thermal expansion (Eq. 10.2) is applied
including the elastic theory concerning (thermally induced) stress and its conversion into strain, as dis-
cussed in Sec. 5.1.3. The briefly explained fundamental processes are discussed by Schick et al. in depth
[92].

The inscribed temperature profile not only equilibrates thermally due to heat diffusion but is also ac-
companied by a thermal stress which relaxes via the generation of hypersound and is described by the
linear thermal expansion coefficient ζ. The latter provides the uniaxial length expansion ∆L caused by
the temperature change ∆T . However, to elongate unit cells by ∆L according to their ∆T , space is
needed which is initially, i.e. directly after pump excitation, still occupied by adjacent unit cells. Only
the unit cell at the surface is adjacent to only a single unit cell on the one side and is able to release
its stress by expanding to the other side. Alongside with an inherent expansion, the surface unit cell
compresses the adjacent cell because of the discrepancy in stress, figuratively it pushes stronger. Because
of the exponentially decreasing stress profile, this compression occurs also instantaneously deeper into
the sample. Subsequently the unit cell below the surface will expand as it is not pressured any more
by the cell on the top which is now strained but not stressed. The interaction of stressed, expanded
and compressed unit cells propagates through the lattice as a bipolar strain wave with a compression
travelling in advance pursued by an expansion [92], see Fig. 10.2.
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11.2. Coherent phonon dynamics

In the udkm1Dsim-toolbox this is modelled by an one dimensional model of masses and springs. A
chain of harmonic oscillators is built with masses mi according to the involved unit cells and springs
ki derived from the sound velocity vsound,i and the lattice spacing ci along the sample growth direction
according to ki = miv

2
sound,i/c

2
i . Thus, a multidimensional system of differential equations according to

Eq. 11.2 is derived [96]:

miẍi = −ki(xi − xi−1)− ki+1(xi − xi+1) +miγi(ẋi − ẋi−1) + F heat
i (t), (11.2)

where xi(t) = zi(t)− z0,i expresses the absolute position change in relation to the initial position z0,i of
the unit cells. An empircal damping term miγi(ẋi− ẋi−1) is added as well as F heat

i (t), the thermal stress
due to the pump excitation and heat diffusion numerically provided by the temporal temperature profile
of Sec. 11.1. F heat

i (t) is realised by, figuratively speaking, placing incompressible sticks of the length
∆L between each spring and mass, where the ∆L is determined via Eq. 10.2. This represents the stress
in terms of compressed springs before relaxation, and thermal expansion after relaxation. Solving this
system of differential equations numerically with an inbuilt ordinary differential equation solver provides
the temporal and spatially strain distribution xi(t)/z0,i. An example of the latter is depicted in Fig. 11.2.
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Figure 11.2: Spatiotemporal strain distribution xi(t)/z0,i for pump probe delays of 0 to 200 ps, simulated
with a fluence of 20 mJ

cm2 and an optical penetration depth of 55 nm. The strain evolution of the top TbFe2

layer, 100 nm niobium buffer and 100 nm of the sapphire substrate are displayed in the right plot. On the
left, the average strain inside the TbFe2 layer is displayed for the same time span. Moreover, the green
dashed line at 108 ps marks the maximum of the average strain in TbFe2 which is the moment when the
entire compressive part of the bipolar strain wave (blue) is propagated into adjacent niobium.

All discussed features discussed in this section are visible in in Fig. 11.2, for example the expansion of
surface near TbFe2 due to heat and heat diffusion deeper into the sample while decreasing the temperature
gradient near the top layers. Likewise the bipolar strain wave and its propagation through TbFe2 lead
by a compressive part (blue) and followed by an expansion (red) was calculated by the udkm1Dsim-
toolbox. This spatio-temporal strain profile is handed over in the following to a dynamic XRD simulation,
calculating the time dependent diffraction signal of the sample, to calculate the transient Bragg peak of
TbFe2.
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11.3. Dynamical X-ray diffraction

11.3. Dynamical X-ray diffraction

In this section, I briefly explain the procedure of the udkm1Dsim-toolbox to calculate XRD patterns and
present the results of the simulation. The latter is the transient X-ray reflectivity for a strained sample
according to the spatio-temporal strain distribution. Here, dynamical means that effects on the incident
X-ray beam such as absorption, refraction, scattering and multiple reflections are taken into account.
The toolbox calculates the X-ray reflectivity in accord with the concept of the scattering amplitude in
Sec. 3.2.5. The main difference is the restriction in terms of the scattering vector ~Q. As the toolbox
models one dimensionally, only symmetric reflections can be simulated, i.e. the (220) Bragg peak of
TbFe2. The udkm1Dsim-toolbox is in detail described and explained by their authors Schick et al. [96].
Consequently however, the X-ray reflectivity for each diffraction angle ϑ or the associated qz is calculated
which corresponds to the measured intensity of the experiment. Subsequently, the temporal evolution
of the Bragg peak of TbFe2 is provided which is evaluated by the same fitting routines or COM proce-
dure as the measured data. In Fig. 11.3 a comparison of the temporal evolution of the reflections is shown.

Figure 11.3: Measured (a) and simulated (b) temporal TbFe2 (220)-Bragg peak evolution during the
first 100 ps after excitation. The fluence was chosen to be 25 mJ

cm2 at the PXS and 20 mJ
cm2 for the simulated

data. The excitation moment is marked as a black line at tDelay = 0 and the intensity is normalised for
a comparable colour code. An optical penetration depth of 55 nm was set for the simulation in this case.

The temporal evolution of the modelled Bragg peak corresponds well to the measured reflections. At a
pump-probe delay of 0 to 25 ps after excitation the main Bragg peak shifts to higher qz which is associated
with a compression of the majority of the TbFe2 layer. The intensity of the Bragg peak decreases which
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11.3. Dynamical X-ray diffraction

is associated with an increasing disorder and inhomogeneity reviewed in the previous sections. Even the
observed shoulders discussed in Sec. 10.1 and visualised in Fig. 10.1 are visible in Fig. 11.3. Between 10
and 40 ps and 2.35 and 2.4 Å−1, a shoulder is appearing, increasing in intensity while shifting to higher qz
and eventually combining with the main peak. This shoulder is also more pronounced than the shoulder
of the Bragg peaks measured at the PXS, see Fig. 11.4b. Subsequently, the main peak maintains its
minimal intensity for 20 ps while shifting back to lower qz as the strain wave propagated halfway through
the TbFe2 layer. At 50 ps after excitation the majority of TbFe2 is expanded, as the position of the
main reflection has shifted to lower qz compared to its initial position. The maximal shift is recorded at
60 ps. And in succession a slight shift decrease of 30% for the measured and 5% for the simulated data
is recorded.

As done already in Sec. 10.1, the Bragg peaks can be evaluated in terms their position in qz. Fit-
ting the main peak with a Gaussian function provides the centre position corresponding to the lattice
spacing in the majority of the sample. Calculating the COM however gives the average strain in the
TbFe2 layer. The simulated transient strain, can therefore be calculated and is displayed and compared
to BESSY II and PXS data in Fig. 11.4a.

Figure 11.4: (a): Time resolved strain of TbFe2 as measured at BESSY II and PXS as well as simulated
after excitation with a short laser pulse at t0. The incident fluence at PXS was 25 mJ

cm2 , at BESSY II

7.5 mJ
cm2 and in the simulation 18 mJ

cm2 was chosen. The BESSY II data are scaled with a factor of 10 for
an easier comparison. The strain from the dynamical XRD simulation is provided via a Gaussian fit.
Calculating the COM of simulated Bragg peaks results in a transient strain, which equals the average
strain calculated by the toolbox and already seen in Fig. 11.2. (b): Simulated Bragg peak and raw PXS
data of the Bragg peak at 13 ps after excitation. An equally large shift to higher qz and a shoulder at
lower qz can be observed.

The plain red graph results from the transient Gaussian fit evaluation of the simulated Bragg peaks in
Fig. 11.3. The blue graph corresponds to the measured temporal Bragg evolution in Fig. 11.3. The
initial decrease of the strain, the quick increase to a maximum at 60 ps and a subsequent strain reduc-
tion as well as the global maximum at 2 ns (discussed in Sec. 10.3.2) are features visible in both data sets.
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11.4. Determination of sound velocity in TbFe2

All in all, the transient response of the Bragg peaks corresponds well to the known response of single crys-
talline materials exposed to an ultrashort pump pulse, which is a main research field of the UDKM group.
Two distinct observations concerning the temporal evolution of the reflections are usually made during
similar measurements, in particular peak-splitting and peak-shifting [90, 108]. Peak-splitting means that
the Bragg peak is split into two distinct reflections after the excitation, i.e the shoulder has around 50%
of the diffracted intensity. Thus, two lattice constants can be associated with the diffracting sample,
usually corresponding to the fraction excited by the pump pulse which is therefore expanded and to the
unexcited part which is not yet heated due to insufficient penetration of the pump pulse. Peak-shifting
on the other hand occurs if the excited diffracting material layer is thin in relation to the penetration
depth so that the sample’s diffracting part is homogeneously heated after excitation. In the course of this
thesis, a hybrid of both phenomena is observed. The peak shifts to larger qz after excitation, because of
a compression of the majority of the layer. Simultaneously, a shoulder appears at smaller qz, associated
with the expanded part of the layer. This is because 90% and more of the sample is not excited by the
pump pulse. Subsequently, the shoulder increases in intensity, i.e. the peak shifts to smaller qz because
the majority of the sample expands.

11.4. Determination of sound velocity in TbFe2

In this section I match the simulated and measured data to determine the sound velocity of TbFe2. As
discussed in the beginning of Sec. 11, I could not find some material properties of single crystal TbFe2 as
a necessary input for the udkm1Dsim-toolbox, in particular vsound along the (110) direction. The sound
velocity in crystals depends on the propagation direction and can be derived from the elements of the
elastic tensor Cij [56] but since I could neither provide those, I determined the sound velocity in TbFe2

by matching the measured data to the simulated results. Because the strain oscillation observed at the
PXS during the first 150 ps after excitation is caused by the bipolar strain wave propagating through the
500 nm TbFe2 layer, its time scale depends on the sound wave’s velocity which is the sound velocity along
(110) direction. I tuned vsound to achieve the best match measured strain at the PXS. The measured
strain and modelled results for three different sound velocities are displayed in Fig. 11.5.

Considering vsound = 4.6 nm
ps provides obviously the best result as the strain retains negative values

for the first 30 to 35 ps and reaching a maximum between 50 and 60 ps. Afterwards it decreases slightly
until the strain drops more significantly at 100 ps, manifesting at a local minimum between 130 to 150 ps
and subsequently rises to the global maximum. Although the slopes of the simulations do not fit the
measured data during the strain oscillation, the global trend and the moments for significant features,
i.e. extrema and signs of slopes, are fitted best with a chosen sound velocity of 4.6 nm

ps . A change in
vsound leads to a mismatch of the measured and modelled strain. The maximum at 60 ps is reached too
early for a higher sound velocity. Also, the strain-decrease at 100 ps, associated with the excitation of
the sound wave’s expansive part to the adjacent niobium layer, occurs 20 to 30 ps later than measured
if utilising a lower sound velocity. Consequently I chose to set the sound velocity in TbFe2 to the fixed
value of 4.6 nm

ps as this fits the data best at my discretion even if tuning the speed with a resolution of
0.1 nm

ps .

77



11.5. Fluence dependent ultrafast heat diffusion
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Figure 11.5: Strain calculated by Gaussian fits over 200 ps of pump-probe delay time. The black line
represents the PXS data for a fluence of 25 mJ

cm2 . Three simulation results with different sound velocities,

a fluence of 20 mJ
cm2 and an optical penetration depth of 55 nm are displayed.

11.5. Fluence dependent ultrafast heat diffusion

Another aspect which must be discussed is the impact of the optical penetration depth δ which is found
to be 22 nm at a wavelength of 800 nm by ellipsometry measurements, conducted by L. Willig of the
UDKM group. Forwarding this value to the udkm1Dsim-toolbox results in a significant mismatch be-
tween measured and simulated data, especially for high fluences, see Fig. 11.6. However, this discrepancy
is mainly apparent for delay times after the observed sign reversal of the PXS data, while the minimum
directly after excitation is modelled rather well. If utilizing a penetration depth of 55 nm, the simulation
result fits the measured data significantly better for delays with an associated positive measured strain
whereby the improvement in match increases with the fluence. In the first 15 to 30 ps (dependent on
the fluence) the sample responds as if the penetration depth was 22 nm. The depth and position of the
minimum is determined by the dynamics of the bipolar strain wave which are coupled to the initial stress
profile inscribed during excitation. Apparently, assuming a larger penetration depth does not provide
the stress profile necessary to result in the minimum of the measured strain during the first 15 to 30 ps.
However subsequently, only a transient state associated with a larger penetration depth of 55 nm matches
the data. The most obvious difference in these cases is the inscribed stress profile due to thermal exci-
tation. But consulting Fig. 11.1 it becomes apparent that the temperature profiles register only minor
changes from 5 ps to 30 ps due to the heat conductivity of 10.8 W

mK which is mainly the limiting factor
concerning heat diffusion. The sample is initially excited with a penetration depth of 22 nm, because the
corresponding stress profile determines the dynamics of the strain wave during the first 15 to 30 ps. A
possible explanation is that subsequently, the heat propagates significantly faster than predicted by the
Fourier heat diffusion (which can be approximated by an initially larger penetration depth), accompanied
with a faster and stronger expansion.

Phenomena of ultrafast heat diffusion are discussed since 1987, when Brorson et al. introduced an new
mechanism of heat transport. They detected heat propagation in thin gold films which was orders of
magnitudes faster than the usual heat conductivity of gold would provide. This was explained with hot,
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11.5. Fluence dependent ultrafast heat diffusion
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Figure 11.6: Time dependent strain, derived by a Gaussian fit of Bragg peaks measured at the PXS
or calculated by the udkm1Dsim-toolbox. In each of the plots, the red graph is associated with the
PXS measurement at a certain fluence FPXS , noted in the bottom right corner. The modelled strain is
depicted for two different optical penetration depths δ = 22 nm (black) and 55 nm (blue) whereas the
input fluence Fsim is the same and placed in the bottom right corner. Thereby, the ratio of FPXS and
Fsim is chosen to be similar for each plot. As different regimes of the modelled strains match to certain
parts of the measured data, the graph is plain for the simulation which fits best at a particular time and
is dashed otherwise.

non-equilibrium (ballistic) electrons which propagate quickly after excitation deep into the sample. They
equilibrate with phonons after long electron propagation paths and therefore conduct heat faster. Thus
they distort the spatial thermal profile and the resulting stress profile on a femtosecond time scale [109].

Another approach concentrates on the electron-phonon coupling time τ which was mentioned in Sec.
10.3.2. Typically, this coupling time is on the order of magnitude of a few picoseconds [95], but it is
not a constant. Is has been shown, that the electron-phonon coupling time scales linearly with the heat
capacity of electrons Ce [110]. The latter is a function of the temperature Te of the electronic system,
according to the Sommerfeld-model of a free electron gas [12]:

τ ∼ Ce = γTe, (11.3)

where γ is the Sommerfeld constant. Because Te is increased drastically after photo excitation, especially
at high fluences, the electron-phonon coupling time increases. Also, the heat conductivity of the electronic
system is usually much larger than the conductivity of the phonon system. Thus, hot electrons propagate
deeper into the sample before coupling with the phonon system resulting in a flatter temperature profile.
This is accompanied with an extended and delayed stress profile. In essence, at high fluence the excited
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11.5. Fluence dependent ultrafast heat diffusion

electrons live longer and therefore conduct more heat compared to low fluence. In addition the very
large electron temperature lead to very large temperature gradients, accelerating the heat transport even
more.
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12. Outlook for ultrafast X-ray diffraction

So far, I studied the ultrafast lattice dynamics in TbFe2 after laser excitation and I could observe mag-
netostriction as a static offset in the presented measurements. Consequently I propose a new experiment
to examine the magnetostrictive dynamics during the laser induced magnetization-switch process (see
Appendix A.6), where strain and magnetization change as shown in the static measurements (Part II).
In principle, a pump-probe setup should be used, just as presented in this thesis (PXS and BESSY II).
But to scan the strain during the switching process which is induced by the pump pulse, the sample
needs to be exposed to a saturation magnetic field before the sample is pumped again. This way, we
magnetise the sample in the same way before each pump pulse. A succeeding probe pulse would then
provide the strain at a certain time during the switching process. The sample is magnetised to saturation
(> 1 T) at first, is then exposed to a magnetic field of 550 mT at an angle of 170 ◦ in relation to the initial
magnetization which is not enough yet to switch the magnetization. Then, the sample is exposed to
the pump pulse which triggers the magnetization switch and a change in strain. The latter is measured
by the succeeding probe pulse at a certain time and then, the sample is remagnetised to saturation to
restart the measurement routine.

There are however technical difficulties to overcome. Strong magnetic fields of over 1 T are precari-
ous to handle and slow to change, which is why the conduction of the proposed experiment may take
a long time. Alternatively, we could use another material than TbFe2 which has a significantly smaller
anisotropy energy and is thus much easier to magnetise, i.e. with small magnetic fields. Regardless of
the final implementation, this experiment may provide pieces of information about whether or not the
coherent strain wave or the heating of the sample is responsible for the facilitation of the magnetization
switch. Also, we could determine the time scale of the switching process.

Furthermore, I could to use the udkm1Dsim-toolbox to provide quantitative proof for the interpre-
tation of ultrafast electronic heat transport and increased electron-phonon coupling time in Sec. 11.5.
A two-temperature model with variable electron-phonon coupling time would have to fit to the fluence
dependent data, based on the assumption of a electronic heat capacity which linearly increases with the
temperature, according to the Sommerfeld model.
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Summary

The presented X-ray diffraction measurements on a 500 nm layer of TbFe2 provide a self consistent view
of the magnetostrictive response and ultrafast structural dynamics, confirmed by a qualitative theoretical
evaluation of the observables.

I acquainted myself with the commonly accepted concepts of magnetostriction, which is mainly an assign-
ment of potential energies to different subsystems of magnetostrictive materials. This concept contains
terms like the elastic energy of the lattice, the magnetocrystalline anisotropy energy which determines
the easy and hard crystalline axis’ of magnetic materials, the Zeeman energy held by a magnetic moment
associated with a magnetization inside a magnetic field and the magnetoelastic energy which describes
the interaction of the lattice and magnetization. Usually, the sum is subsequently minimised with respect
to the strain and the magnetization direction to receive the magnetostrictive response to initial conditions.

As I measured the out-of-plane magnetostriction forced by an applied magnetic field rotating in sample
plane via static X-ray diffraction, I was able to model the magnetostrictive strain qualitatively utilising
the minimisation of the potential energy sum and under the assumption of the separation of TbFe2 into
ferromagnetic domains with distinctive magnetization directions. The ordering of TbFe2 is documented
as well as the resulting magnetization direction of the domains corresponding with the magnetic easy axis
which is the (111) direction (or equivalent directions in cubic symmetry) according to the minimisation
of the anisotropy energy. I calcualted the resulting strain with Akulov’s law which represents the mag-
netoelastic interaction and allocates magnetostriction to the magnetization direction. The measured as
well as modelled data show a sinusoidal increase of the strain starting at a minimum where the sample’s
macroscopic magnetization is aligned to the external field. By rotating the magnetic field a maximum
strain is reached a few degrees before an antiparallel state of the initial magnetization and the external
field is employed. From there, the strain vanishes rapidly since the magnetization realigns with the ex-
ternal field to minimize the Zeeman energy. I conducted the measurements at two different experimental
stations, utilising the MFXT setup of the UDKM group and the synchrotron BESSY II of the HZB and
fortunately all results coincide. A constant factor mismatch of the modelled data, as a maximal strain of
6 · 10−5 was recorded with an external field strength of 550 mT, is associated with an epitaxial clamping
of the TbFe2 layer.

Furthermore, I conducted ultrafast structural dynamics studies on TbFe2 via X-ray diffraction once
again at two different experimental stations; At BESSY II of the HZB and the PXS of the UDKM group.
The sample was exposed to an ultrashort laser pulse and subsequently probed by a similarly short X-ray
pulse, providing the sample’s out-of-plane lattice spacing as a function of the pump probe delay time.
All measured and modelled data show a thermal expansion of up to 4 · 10−3. The superior time resolu-
tion of the PXS (down to one picosecond) enabled recording the strain oscillation during the first 100 ps
after laser excitation which corresponds to a bipolar strain wave propagating through the TbFe2 layer
according to the modelling of the udkm1Dsim-toolbox. The utilisation of the toolbox additionally sug-
gest an ultrafast heat diffusion process, particularly during the first 30 ps and increased by high fluences.
We suggest that the nonequilibrium of electron- and phonon-temperatures leads to the enhanced heat
conductivity κ, because κelectron is larger than κphonon.
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A. Appendix

Simulation of field rotation several β-series

External field strength: 550 mT
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Figure A.1: Energy density map of Etotal for Bext = 550 mT. The number in each segment is the
corresponding angle β and for each graph. Also, four crystallographic axes are marked.
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Simulation of field rotation several β-series

External field strength: 550 mT, no Eshape energy term
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Figure A.2: Energy density map of Etotal for Bext = 550 mT with neglected shape anisotropy
energy Eshape. The number in each segment is the corresponding angle β and for each graph. Also,
four crystallographic axes are marked.
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Simulation of field rotation several β-series

External field strength: 1100 mT
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Figure A.3: Energy density map of Etotal for Bext = 1100 mT. The number in each segment is the
corresponding angle β and for each graph. Also, four crystallographic axes are marked.
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Simulation of field rotation several β-series

External field strength: 150 mT
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Figure A.4: Energy density map of Etotal for Bext = 150 mT. The number in each segment is the
corresponding angle β and for each graph. Also, four crystallographic axes are marked.
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Simulated strain in a mono-domain model

Simulated strain in a mono-domain model

In Fig. A.5, the simulated strain for three different situations is plotted together with the strain from
static magnetostriction BESSY II measurements. It is clear that both simulations in which a mono-
domain approach was used (red), are not matching the data. The extrema are not in the right place and
it shows in general a different progression. Only the switch around 180 ◦ is visible in all simulations. That
is because I manually changed the energetic minimum at that angle as the magnetization measurements
of Sec. 7.2 show a switch in the magnetization at that angle. Only the combination of both strains in
the multi-domain approach (blue) gives a qualitative agreement with the data.
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Figure A.5: Calculated and measured strain of TbFe2 due to a rotation of an external field by the angle
β. The black graph shows the data (multiplied by 3), the red dashed-dotted line shows the simulated
strain if assuming that the magnetization in the sample points everywhere in the sample along the (111)
direction for the first 180 ◦ and switches to the (111) direction afterwards. The dashed red line results
from a similar assumption, only taking different crystallographic directions into account, (111) and (111).
The blue graph originates from a combination of both as the sample is not seen homogeneous, but evenly
segmented in domains with either one of the two magnetization directions.
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Laser assisted magnetic switching

Laser assisted magnetic switching

During the experimental work at BESSY II we tested, if the rotation of the magnetization in a rotating
in-plane magnetic field could be modified by laser-pulse excitation. As examplified in Fig. A.6, we
observed the switching of magnetization at a lower β angles when the sample was excited with a pump
laser. The pulsed pump laser, which is usually used for time resolved measurements and is characterised
in Sec. 9, was focussed on the sample during the course of a β scan. The observed discontinuity in strain
associated with a magnetization realignment (cf. 7.1) could thus be induced at lower angles β. For several
incident laser fluences, the switching process is displayed in Fig. A.6. Although depicted measurements
show the general trend that the switch relocates to a lower rotation angle β with increasing fluence,
more measurements with significantly higher fluences show a contradictory dependence. In the displayed
data, a memory effect becomes apparent as two measurements without laser excitation significantly differ
from each other, if the sample was exposed to light in between. This rules out stationary heating with
lowered energetic potential barriers as a sample process. Maybe the magnetization is trapped in a local
minimum of the energy density map modelled in Sec. 7.3. As the time was limited, no consistent result
or reasonable strategy to examine this feature was found, therefore this can be the content of upcoming
research on TbFe2.
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Figure A.6: Relative change of the lattice spacing along (110) direction in dependence of the external
magnetic field’s angle β at a field strength of 550 mT. The relative change was derived from a Gaussian
fit of the Bragg peaks corresponding to d110 and the five displayed results are recorded subsequently
according to their order in the legend.

Ultimately, a study about the laser induced magnetic switching of the sample could be conducted in the
future focussing on the microscopic dynamics during the remagnetization process. It would be interesting
to differentiate between the impact of a single laser pulse and the heating at longer time scales and which
of those effects is responsible for the easier switching. On the one hand, a thermal excitation of TbFe2

is accompanied with an significant decrease of the anisotropy constants Ki, see Fig. 5.4, that can soften
the magnetic response of the sample, i.e. the magnetization is more easily realigned. However, a bipolar
strain wave on the other hand, which is observed during time resolved measurements in Sec. 10, could
also work as a seed for a magnetization switch, propagating through TbFe2. The latter would be a
directly forced magnetostrictive effect of inverse nature as the material is stressed and strained to evoke
a change in the magnetization, cf. Kovalenko et al. [82].
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Sub-nanosecond strain dynamics at BESSY II

Sub-nanosecond strain dynamics at BESSY II

Figure A.7 shows the temporal strain profiles measured at BESSY II, similar to the results discussed in
Sec. 10.3 but with a different time resolution. It is depicted here to display the highest possible time
resolution which can be reached at BESSY II. However, compared to the PXS, the superior time resolu-
tion of the PXS becomes apparent as the strain oscillation during the first 100 ps can not be resolved at
BESSY II.

The strain reaches a saddle point during the first 100 ps to 200 ps after the excitation independent
of the calculation method of the strain. The Gauss-Fit strain continues to increase by 50% to the global
maximum around 1 to 2 ns before decreasing at larger times while the COM strain stays relatively con-
stant from 200 ps to 2 ns until decreasing as well. This trend corresponds well to the interpretations in
Sec. 10. The steady increase of the Gauss-Fit strain until 2 ns in contrast to the constant COM strain is
an effect of dynamical X-ray diffraction.
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Figure A.7: Time resolved strain of TbFe2 after Laser excitation at t0 along (110) direction. The strain
is either calculated by a Gauss-Fit (top) or the COM method (bottom) and is derived at six different
directions (β) of an external magnetic field with a strength of 550 mT. The sample was exposed to 7 mJ

cm2

of incident fluence with 1030 nm centre wavelength, resulting in a shift of the Bragg peak corresponding
to the displayed strain.
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Static thermal strain

Static thermal strain

The PXS possesses the ability to conduct XRD statically, i.e. without a sub picosecond time resolution
of pump probe experiments. Additionally a cryostat is present to cool down samples from room temper-
ature to 15 K. Since the cooling procedure takes long time, a homogeneous temperature of the sample is
ensured before XRD is performed to determine the lattice spacing out-of-plane d110. The temperature
dependent relative change of d110 is displayed subsequently in Fig. A.8, leading to a linear thermal ex-

pansion coefficient of ζ = 22.7 10−6

K by fitting the linear regime between 150 K and 350 K.

ζ is mainly determined by the heat capacity CV which is a function of the temperature. At low temper-
atures, below 150 K, CV is proportional to T 3 and thus ζ is also not constant. At larger temperatures
above 150 K, CV and thus ζ become constants [12].
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Figure A.8: Temperature dependent relative change of the lattice spacing d110 measured statically at
PXS. The Bragg peak associated with the (110) set of planes was fitted with a Gaussian function to obtain
the position of the maximum corresponding to d110. The relative change of latter was determined for a
range of temperatures and a linear regression subsequently provides the linear regime’s slope starting at

150 K upwards to 350 K. It is specified to be 22.7 10−6

K , resembling the linear thermal expansion coefficient
ζ.
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