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ABSTRACT

There are several of nonlinear processes which take place in our NOPA: second harmonic
generation due to frequency doubling, third harmonic generation due to sum frequency
generation, white light supercontinuum generation, and noncolinear optical parametric

amplification. The two stage NOPA was designed in accordance with the conditions of restricted
place, transportability, and a broad spectral range of output wavelengths. The optimal phase
matching angles, noncollinearity angles, and the distances at which the optical elements should be
placed for optimum efficiency but without their destruction, were calculated and the consequences
explained. The output of the 3ω-NOPA was characterized and pulses with the power up to 17mW
in a 475 nm – 700 nm spectral range were measured. The Fourier limit of 3ω-NOPA pulses was
also found, therefore their calculated durations are much shorter than 600 fs input beam and
vary between 50 fs and 10 fs. In addition, all of the adjustment processes were explained in detail,
so it is possible to use this internship report as a guide for the building and adjustment of new
NOPAs.

Keywords
Nonlinear optics, noncollinear optical parametric amplification, second harmonic generation,
third harmonic generation, supercontinuum generation, BBO, nonlinear crystal.
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1
INTRODUCTION

There are many processes in the nature that occur on very short time scales. In order to

investigate them the detection techniques have at least to be as fast as the processes of interest.

For atomic motions during chemical reactions, molecular vibrations, photon absorption and

emission etc. the time scale is in the range of fs, phonon dynamics and sound wave propagation

takes place on the ps to ns scale, domain wall propagation on a ns to µs scale.

There are many different methods available, which allow to reach different time scales like

stopped-flow method (milliseconds) [21], method of flash photolysis (microseconds) [8] or fast

photo-diodes and stroboscopic oscilloscopes since 1950 (10−10s) [7, 20]. The best time resolution is

available for current Pump-Probe techniques that allow to investigate processes with attosecond

time resolution but are routinely used to capture fs dynamics. The Pump-probe method was

invented in 1960ies when the appearance of the Q-switching techniques reduced the laser pulse

duration by a factor of 104 and allowed to generate the nanosecond pulses. The idea of this

method is based on the stroboscopic effect when the system is excited and its response is captured

after some delay with a "probe". The collection of snapshots at different delays finally allows to

reconstruct the transient dynamics of the sample response.

In Figure 1.1 (a.) the classical optical Pump-Probe technique is sketched. An ultrashort laser

pulse is generated by a laser. Then it is split by a beamsplitter in two beams: the pump beam and

the probe beam. The intensity of the pump beam is always much higher than the probe beam so

that the probe does not induce additional dynamics to the sample. The pump beam goes directly

to the sample and excite it, usually by thermal heating, generation of free charge carriers, or

the generation of ultrafast sound waves. The probe beam is delayed by the delay line before it

captures the dynamics of the sample. The optical length of this line is adjustable, so the delay can

be varied. Optionally the wavelength of the pump beam can be changed by an optical parametric

generator, which allows to excite the sample at different wavelength(s). The scheme on Figure 1.1

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The typical scheme of the reflection pump-probe experiment where the laser beam
(red line) is used both for excitation of the sample and probing it (a.) and where the laser beam
excites the sample but X-Ray synchrotron laser beam probes it (b.).

(a.) shows the case of studying of optical reflection of the sample and the same experiment can be

performed in transmission mode. After the reflection, the change of the probe light is captured

by a detector. The advantage of this method is that we are not severely limited by the response

time of the (photo)detector. We measure the average response and from the repetition rate it is

possible to calculate the real reflected signal.

During past few years people developed sophisticated synchronisation techniques, therefore

today it is possible to use different sources of electromagnetic waves for pump and probe beams.

For example the pump beam can be produced by a laser and the probe beam - by a synchrotron.

Using X-rays allows to obtain the direct information about the arrangement of the atoms and

distances between them , hence allow to probe the structural response of the sample due to the

optical excitation (Figure 1.1 (b.)).

The choice of the pump and probe laser beam wavelength strongly depends on the processes

2



CHAPTER 1. INTRODUCTION

in materials that are investigated and, of course, on the material structure and its properties.

The pulse must be sufficiently short, the wavelength must be chosen in accordance with, for

example, possible interband and intraband. Typically used amplifier-based laser sources deliver

laser pulses with a certain bandwidth, which is not broad enough to resonantly excite the sample

a wide range of materials. A solution is the noncolinear optical parametric amplifier ("NOPA"),

which can produce electromagnetic waves in the visible and near IR range of wavelength range

that differ from the input wavelength of the laser source. Such a NOPA is now set up at the

KMC3-XPP BESSY II synchrotron beamline and this process is described in this report. It will

be used for the selective excitation of samples for X-ray probe experiments at the KMC3-XPP

endstation.

In this work we will first briefly introduce nonlinear optical processes like second harmonic

generation, third harmonic generation, white light generation, and noncolinear optical parametric

amplification from the theoretical point of view, explain the design considerations for our own

NOPA and explain how to adjust it to reach a broad-band amplification of different wavelengths

and optimum efficiency.
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2
LITERATURE OVERVIEW

2.1 Basics of Nonlinear optics

Since childhood everyone knowns the wide range of simple optical phenomena based on

the processes of refraction, reflection, dispersion, interference, diffraction, etc. These effects are

explained by properties of light that do not depend on the light intensity but on its frequency.

Maxwell’s theory was based on the fact that the light waves do not "feel" each other, i.e., the

light wave cannot be scattered at another light wave [16]. The optical effects, which exhibit these

properties, are summarized in the field of "LINEAR OPTICS".

After the invention of lasers, people have a light source, of high coherence and high power. It

was found that monochromatic light of high intensity can change its colour while propagating

in transparent crystals. Also, the phenomenon of self-focusing of intense light in crystals was

discovered. These effects proved that light waves can indeed interact either with other light

waves or even with themselves, and that the occurrence of these effects depends on the power of

the incoming light. These phenomena are discussed in the framework of "NONLINEAR OPTICS".

In this chapter the origin of the terms "Linear-" and "Nonlinear-" will be described. Also,

certain nonlinear effects like second and third harmonic generation, white light generation and

light amplification will be briefly explained from theoretical and practical points of view, which

will be useful for building the noncollinear optical amplifier that will be described in Chapter 3.

2.1.1 Nonlinear polarisation of dielectric materials

The propagation of electromagnetic waves in a transparent dielectric material changes the

charge distribution inside of this material. Taking into account the fact that nuclei are much

heavier than the surrounding electrons, which form the electronic shells, the deformation of the
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CHAPTER 2. LITERATURE OVERVIEW

electronic orbitals is accompanied by a change of the electron charge distribution. In this way,

a dipole is created, which is characterized by its dipole moment ~µ. It is important to note here

that the electron shell is disordered on a timescale of 10−15 seconds, given by the frequency of the

electromagnetic wave which is much faster than ionic polarisation (10−12 s) or dipole molecular

polarisation (10−10 s). Thus, for light in the visible range of the electromagnetioc spectrum, only

the electronic polarisation has a significant influence [3].

The electric polarisation of the medium, ~P, is the average dipole moment per unit volume:

~P = N~µ (2.1)

where N is the concentration of dipoles in the volume [25]. Assuming that the response of a

medium is instantaneous and homogeneous in the material, the induced polarisation ~P depends

on the applied electric field ~E
~P = ε0χ̂~E (2.2)

or its projections in Cartesian coordinates [3, 25]

Pi =
3∑

k=1
ε0χikEk (2.3)

where ε0 is the vacuum permittivity ε0 = 8.8542 ·10−12m−3kg−1s4A2 and χik are the elements

of the second rank tensor , χ̂, which is called the tensor of dielectric response or susceptibility

tensor. In its diagonal form

χ̂=


χ11 0 0

0 χ22 0

0 0 χ33

 (2.4)

one obtains for isotropic materials χ11 = χ22 = χ33, for uniaxial crystals χ11 = χ22 6= χ33, and finally

for biaxial crystals χ11 6= χ22 6= χ33. From Equation (2.2), it follows that the polarisation ~P linearly

depends on the electric field ~E, which is sufficient to describe all linear optical effects. Nonlinear

optical effects hiwever can be described, when χ̂= χ̂(~E) is used in Equation (2.3). Expressing the

susceptibility as a series with different powers of the field one yields

χik = χ(1)
ik +

3∑
j=1

χ(2)
ik jE j +

3∑
j=1

3∑
m=1

χ(3)
ik jmE jEm + ... . (2.5)

After the substitution of Equation (2.5) into Equation (2.3), one obtains:

Pi =
3∑

k=1
ε0χ

(1)
ik E i +

3∑
k=1

3∑
j=1

ε0χ
(2)
ik jE iE j +

3∑
k=1

3∑
j=1

3∑
m=1

ε0χ
(3)
ik jmE iE jEm + ...= Pi,l +Pi,nl (2.6)

It is possible to separate the linear part Pil and the nonlinear parts of the electron polarisation

Pinl :

Pi,l =
3∑

k=1
ε0χ

(1)
ik E i (2.7)
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CHAPTER 2. LITERATURE OVERVIEW

Pi,nl =
3∑

k=1

3∑
j=1

ε0χ
(2)
ik jE iE j +

3∑
k=1

3∑
j=1

3∑
m=1

ε0χ
(3)
ik jmE iE jEm + ... (2.8)

The terms of χ(n) decrease quickly as the powers of electric field vector is increased. As a

result, essentially every material has nonlinear properties, which however, is only observed at

high light field intensities. There is a class of so-called nonlinear crystals that exhibit a large

nonlinear susceptibility. These are for example BaB2O4 (BBO), KH2PO4 (KDP), KH2AsO4 (KDA),

NH4H2PO4 (ADP) and more.

A more detailed analysis of nonlinear part of polarisation shows that if electromagnetic waves

with the frequencies ω1 and ω2 propagate in a nonlinear medium the terms of polarisation P

with frequencies ω1+ω2, ω1−ω2, 2ω1, 2ω2, etc. appear and are contained in the output spectrum

of the nonlinear crystal. This is schematically shown in (Figure 2.1).

Figure 2.1: Schematic interaction of two waves with different frequencies in nonlinear medium.
The new frequencies ω3 = and ω4 = are generated as indicated by the arrows on the right hand
side.

Let us study the general case of interaction of three electromagnetic waves, which we will

use in next subsection for the description certain nonlinear effects. It is possible to use quantum

optics theory [24] but a classical approach is sufficient for the effects in this thesis [3, 4, 14, 25].

Maxwell’s equations for matter [14, 16] are

rot ~H = δ~D
δt

+~j (2.9)

rot ~E =−δ
~B
δt

(2.10)

div ~D = ρex (2.11)

div ~B = 0 (2.12)

where ~D is the displacement field vector, ~B is the vectors of magnetic induction, ~E and ~H are the

electrical and magnetic field strength.~j and ρex are the current and charge densities respectively.

The mentioned electrical and magnetic values are connected via their constitutive relations

~B =µ~H (2.13)

~D = ε0~E+~P = ε~E (2.14)

where the polarisation is determined from Equation (2.7) and Equation (2.8) as

~P = ε0χ
(1)~E+~Pnl . (2.15)

6



CHAPTER 2. LITERATURE OVERVIEW

In these expressions µ is the magnetic permeability, which in the optical wavelength range is

typically equal to the vacuum permeability µ0 = 4π ·10−7N·m−1.

Inserting the electrical constitutive relation into Ampere’s law (Equation (2.9)) and after the

application of rot-operation of Faraday’s law of induction (Equation (2.10)). One obtains the wave

equation of light propagation:

∇2~E =µ0
δ

δt
(rot~H)=µ0σ

δ~E
δt

+µ0ε
δ2~E
δt2 +µ0

δ2(~Pnl)
δt2 . (2.16)

Here σ means the conductivity and ε= ε0
(
χ(1) +1

)
is the linear electric permittivity of the media.

For the derivation of Equation 2.16, an isotropic medium is assumed, which allowed to use

div ~E = 0 [3, 5]. For waves propagating along the z-direction, one obtains the following solutions

of the electric field strength:

Eω1
i (z, t)= 1

2

[
E1,i(z)ei(ω1 t−κ1z) + c.c.

]
(2.17)

Eω2
k (z, t)= 1

2

[
E2,k(z)ei(ω2 t−κ2z) + c.c.

]
(2.18)

Eω3
j (z, t)= 1

2

[
E3, j(z)ei(ω3 t−κ3z) + c.c.

]
(2.19)

with the Cartesian coordinates i, j and k of the fields.

In general the field amplitudes depend on the z-coordinate but if the nonlinear polarisation
~Pnl = 0, the amplitudes will be constant. Historically, the second order susceptibility tensor is

always expressed using the tensor d̂ik j = 1
2 χ̂ik j that does not depend on the frequency ω of the

electromagnetic wave [3]. Because of its symmetry properties of the last two indices,which is

valid whenever Kleinman’s symmetry condition applies [5], it is possible to express d̂ik j in a

form of 3x6 matrix d̂3x6, where the following substitutions were made: xx = 1; yy = 2; zz = 3;

yz = zy = 4; xz = zx = 5; xy = yx = 6. Therefore, the relation between the components of the

nonlinear polarisation of second order and the product of electric field components, for example

for frequency doubling, becomes


Px,nl

Py,nl

Pz,nl

= ε0


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36





E2
x

E2
y

E2
z

2EzE y

2EzEx

2ExE y


. (2.20)

Taking into account that the field amplitudes slowly vary:

δE1,i

δz
À δE2

1i

δz2 (2.21)
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CHAPTER 2. LITERATURE OVERVIEW

and assuming that the wave vector κ2 =ω2µrεr with µr and εr being the relative permittivity and

permeability of the medium, respectively one finally gets expressions of the variation of the field

amplitude components that depend on two other projections of the electric field vector amplitude:

δE1i

δz
=− iω1ε0

2

√
µ0

ε1
d′

i jkE3 jE∗
2ke−i∆kz (2.22)

δE2k

δz
=− iω2ε0

2

√
µ0

ε2
d′

ki jE1iE∗
3 j e

i∆kz (2.23)

δE3 j

δz
=− iω3ε0

2

√
µ0

ε3
d′

jikE1iE2kei∆kz . (2.24)

Here ∆k = κ3 −κ2 −κ1 is called phase mismatch and the Einstein summation is taken in field

vector projection multiplication. The tensor d̂′ is derived from d̂ after the transformation of the

coordinate system.

2.1.2 Dispersion and birefringence

The index of refraction of the transparent materials changes its value depending on different

factors. The dependence on the frequency (wavelength) of the electromagnetic wave is called

dispersion. An empirical wavelength-dependence that describes a transparent material is for

example given by the so-called by Sellmeier’s model [17], which covers the spectral range between

the inter- and intraband transitions and the phonon region. It is defined as

n2(λ)= 1+
2∑

m=1

λ2

λ2 −λ2
m

Adisp,m . (2.25)

It should be noted that this approach works only for normal dispersion, that is, dn
dλ < 0 and do

not work properly in the vicinity of resonance line where the imaginary part of the complex

refractive index is no longer zero. Using the Sellmeier model given by Equation (2.25) in order to

parametrise the refractive index of a BBO crystal, it is possible to write

no =
√

2.7359+ 0.01878
λ2 −0.01822

−0.01354λ2 (2.26)

where λ is given in units of [µm]. In Figure 2.2 the wavelength-dependence of the refractive index

for the ordinary and for extraordinary directions of the birefringent BBO is shown.

Nonlinear crystals are often uniaxial crystals that means that the velocity of propagating

electromagnetic waves in these crystals depends on their propagation direction and polarisation.

Each uniaxial crystal has its the special direction, which is called the axis of this crystal. When

the light wave is incident onto the nonlinear crystal surface at an angle θ to the optical axis of the

crystal, it splits into two waves with different polarisations and different propagation velocities.

The first wave has the field vector ~E that is perpendicular to the plane defined by the optical axis

and incident beam . It is called ordinary wave and the propagation velocity does not depend on

8
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Figure 2.2: The graphical dependence of ordinary index of reflection n0 (blue curve) and extraor-
dinary index of reflection ne (orange curve) for BBO crystal.

the direction of propagation. The second wave is polarised in the plane of optical axis and incident

beam and is called extraordinary wave. The indices of refraction can be represented by rotational

ellipsoids where the axes represent the indices of refraction along the directions parallel and

perpendicularly to the crystal optical axis. The length of the radius vector from the center of

ellipsoid to the surface yields the refractive index along this direction. For the ordinary wave, of

course the ellipsoid becomes a sphere [17] because its velocity is the same along all directions.

There are two types of uniaxial crystals, which are called optically positive and negative.

Positive crystals have an extraordinary index of refraction larger or equal to the ordinary one [3]

and for negative crystals the opposite situation is the case. There is however always only one

refractive index in the direction of the optical axis. Returning to the example BBO, which is a

negative uniaxial crystal, that means that its ellipsoid of ne is smaller than the one for no. This

is sketched in Figure 2.3. They differ only by a few percent but this will become important for the

nonlinear optics, as will be seen in following chapters.

If the axis no and ne of ellipsoid are known, the extraordinary index of refraction as a function

of θ can be calculated as follows:

ne(θ)= none√
n2

o sin2(θ)+n2
e cos2(θ)

. (2.27)

The dispersion conditions are almost the same for the extraordinary index of refraction,

just coefficients will be different. For previously mentioned BBO the dispersion relation for the

extraordinary refractive index is:

ne =
√

2.3753+ 0.01224
λ2 −0.01667

−0.01516λ2 . (2.28)

9



CHAPTER 2. LITERATURE OVERVIEW

Figure 2.3: Ellipsoids of ordinary index of reflection no (outer ellipsoid) extraordinary index of
reflection ne (inner ellipsoid) at 1028 nm of wavelength for BBO crystal.

which is graphically shown in Figure 2.2 by the orange curve.

2.1.3 Second and third harmonic generation

In Sections 2.1.1 and 2.1.2 the basic statements of nonlinear optics were introduced and the

coupled equations for field amplitudes (Equations (2.22) to (2.24) ) were given. It is now possible

to use them to describe the nonlinear effects that will be used in the experimental part of this

work and, of course, to obtain some significant expressions, which will allow to optimize the

experimental set up and reach high efficiencies of nonlinear optical processes.

To describe the second harmonic generation (SHG) or frequency doubling, which is a special

case of sum-frequency mixing. Starting from the expressions for the amplitudes of the incident

electromagnetic waves given by Equations (2.22) to (2.24), it is possible to restrict oneself for

the case of the angular frequencies ω1 =ω2 =ω that will not change as a function of z during

generation of the second harmonic:
δE(∗)

1i(2k)
δz = 0. This in turn means that it is possible to consider

only of the last Equation (2.24) and assume the amplitude of the SH wave of angular frequency

10
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ω3 = 2ω to be as zero an the entrance surface of the nonlinear crystal: E3 j(0) = 0. Integrating

Equation (2.24) from 0 up to the length L of the nonlinear crystal, one obtains:

E3 j(z)=−ωε0

√
µ0

ε3
d′

jikE1iE2k
ei∆kL −1
∆k

(2.29)

where the Einstein’s summation is used. In general the right hand side of Equation (2.29) contains

four terms: xx, xy, yx, yy. If the cross terms xy, yx are much larger then xx and yy, either because

of phase synchronism or larger tensor elements. Then the xx, yy terms can be neglected. Because

of the symmetry of d̂′ an additional factor of 2 appears. Finally the intensity of second harmonic

is:

ISHG = 1
2

√
µ0

ε3
E3 jE∗

3 j = 8
ω2d

′2
jikL2

cn1n2n3
I1I2sinc2

(
∆kL

2

)
(2.30)

where c = 1p
µ0ε0

is the speed of light, I1 and I2 are the intensities of the incident waves and, ni

are indexes of refraction that are ni =
√

εi
ε0

.

If the incident wave was polarised at 45◦, which means that the projections of the intensity

on the x and y axes are the same and equal to the half-intensity of incident beam I1 = I2 = Iin, it

is possible to express the efficiency of SHG relative to the intensity of the incident wave:

ηSHG = ISHG

Iin
= 2

ω2d
′2
jikL2

cn1n2n3
Iinsinc2

(
∆kL

2

)
. (2.31)

The same is result is obtained if one uses the xx and yy components [3]. The factor of 2 in

Equation (2.31) might be missing in some literature sources because of the determination of the

complex field amplitudes. It is important to remember that this approach works only when the

SHG light intensity is much smaller than the intensity of the incident light, otherwise the law of

energy conservation would be violated.

The third harmonic can be generated in different ways. Mostly, when people talk about it,

the third order effect is meant when the cubic nonlinear susceptibility tensor χ̂(3), which is

rank-4 tensor, plays a dominant role. But this requires either much higher intensities of the

incident beam or finding a new nonlinear crystal where the components of described tensor will

be sufficiently large. Another way to produce frequency-tripled light to first frequency-double

it (ω→ 2ω) and then do the sum-frequency mixing of the doubled frequency light and incident

single frequency so that ω+2ω→ω3 = 3ω [3, 13, 22]. This approach will also be used for the UV

pumped mixing stage of the set up NOPA. Without detailed explanation it is possible to follow

the same idea than for SHG light and write down the expression for the intensity of the sum

frequency generated (SFG) light as

ISFG = 2
(3ω)2d

′2
jikL2

cnωn2ωn3ω
IωI2ωsinc2

(
∆kL

2

)
. (2.32)

Studying the expressions for the intensity of the generated light given by Equations (2.30)

and (2.32), one sees a periodical dependence in form of a sinc2 function, which is shown in

11
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Figure 2.4. In the minima of this function its argument is equal to

∆kL
2

= nπ (2.33)

where n is an integer and n 6= 0. From this one may conclude that during the propagation of the

fundamental light new frequencies are generated at the beginning, however, after some time the

energy will be transferred back to the fundamental wave.

Figure 2.4: The graphical dependence of sinc2 function on its argument

This behaviour suggests the introduction of a new parameter, the so-called coherence length

Lcoh. This is a measure for the propagation length in a nonlinear crystal after which the intensity

of SHG or SFG light is still increasing [3]. Thus, the nonlinear crystal does not need to be longer

than Lcoh. This value can be defined from the half of the distance between the zeros of 1st and

-1st order

Lcoh = π

∆k
. (2.34)

Because the intensity of the generated higher harmonic light is proportional to L2
coh (see Equa-

tions (2.30) and (2.32)), it is important to increase Lcoh. For the perfect case one obtains Lcoh →+∞
for:

∆k = 0 (2.35)

The case of Equation (2.35) is called "condition of perfect phase matching" [5] or "The condition

of phase synchronism" [3]. In reality Lcoh is of course finite and its value depends on thermally

induced scattering losses.

In the following, it is explained how the condition imposed by Equation (2.35) is experi-

mentally realised. Typically, the birefringence of the nonlinear crystals, which was described in

12
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Positive uniaxial crystal Negative uniaxial crystal

Type 1 e+e→o o+o→e
Type 2 e+o→o o+e→e

Table 2.1: Types of phase matching

Section 2.1.2, is used. For SHG and SFG there are several different wave polarisation configura-

tions for phase matching exist, which are summarised in Table 2.1.

Now the case of Type 1 phase matching for SHG in a BBO crystal, which is an optically

negative crystal, is discussed. From Table 2.1 one can see that, two fundamental ω-waves with

ordinary polarisation (or just one powerful ω-wave) can generate an e-polarised 2ω-wave. The

corresponding phase matching condition is

∆k = κ3,e(θ)−κ1,o −κ1,o =
2ω ·n3,e

c
− ω ·n1,o

c
− ω ·n1,o

c
= 0 (2.36)

that finally leads to

n3,e(θ)= n1,o . (2.37)

This means that for the highly efficient generation of SHG light it is necessary to determine the

phase matching angle using Equation (2.27) and to orient the BBO such that the angle between

the optical axis of the crystal and the direction of the e-polarised 2ω light propagation is equal to

the phase matching angle angle.

Figure 2.5: The schematic description of Type I (a.) and Type II (b.) configurations of SGH for
negative crystal

A similar expression can be obtained for Type 2 SHG phase matching, which yields

∆k = κ3,e(θ)−κ1,e(θ)−κ1,o =
2ω ·n3,e(θ)

c
− ω ·n1,e(θ)

c
− ω ·n1,o

c
= 0 . (2.38)

13



CHAPTER 2. LITERATURE OVERVIEW

n3,e(θ)= n1,e(θ)+n1,o

2
(2.39)

Here Equation (2.27) has to be substituted twice for n3,e(θ) and n1,e(θ).

2.1.4 White light generation

The white light generation (WLG) or the supercontinuum generation is a frequently used

phenomenon in the field of nonlinear optics. WLG is actively investigated [6, 9] because of the

wide range of different optical spectral ranges obtained depending the generation parameters

like laser wavelength, laser fluence, pulse length, and material used for the WLG. The generated

white light spectrum is preferentially directed along the propagation direction of the incoming

light waves, highly coherent, and it is possible to generate ultrashort white light pulses with a

polarisation determined by the polarisation of the incoming laser pulse [6, 9].

The three main regimes of WLG are known as soliton fission regime, Modulation instability

regime, and pumping in the normal dispersion regime. The first two modes are applicable mostly

for fibres [13]. For the setup of the NOPA the last mode is important: WLG will be performed in a

transparent medium with normal dispersion and in the following, this is discussed.

To date the most common explanation of WLG is based on the nonlinear effects: self-focusing,

self-modulation, and multi-photon absorption/emission with the free electron plasma generation

causing the laser beam filamentation [6, 9, 11].

When femtosecond laser pulse is focused in transparent dielectric media, index of refraction

n of the medium depends due to the third order nonlinearity on the light intensity I is given by:

n = n0 +n2I (2.40)

where n2 is the nonlinear refractive index. Because of the Gaussian beam profile of the laser

beam (see Section 2.2), the laser beam becomes self-focussed due to the Kerr-lens effect in the

nonlinear regime of the medium []. When the power of the beam is equal to its critical power for

self-focusing, Pcr, which is given by:

Pcr = 3.72λ2

8πn0n2
(2.41)

where λ is the incomming laser wavelength. The diffraction of the light beam in the medium that

leads to the beam divergence is compensated by the self-focussing.

Of course, the diminishing beam spot leads to time-dependence of the intensity I(t), that

creates an additional phase change of the electromagnetic wave:

φnl(t)=−ω0n2

c
I(t) (2.42)

that finally leads to a change of the circular frequency of the EM wave:

δω= δφnl(t)
δt

. (2.43)
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In other words light with the frequencies .

ω=ω0 + δφnl(t)
δt

(2.44)

is generated. Depending on the propagation time and the intensity profile of the laser beam the

correction in Equation (2.43) can become either positive or negative and hence lead to a red or a

blue shift of the fundamental wavelength [6, 9].

The process of self-focus cannot continue forever. At some point the intensity will be large

enough to initiate multi-photon absorption process in generation medium and the material bulk

is ionised and a bulk plasma appears. The incoming and generated photons are absorbed, which

means that the intensity cannot increase further. This is the reason for the strong dependence of

the generated white light sprectrum on the bandgap of the material used for WLG. [9, 11].

2.1.5 Noncollinear optical parametric amplification

The optical parametric amplification is a nonlinear effect based on difference frequency

generation [5] that is caused by the second order susceptibility χ(2).

For this process two waves have to interact: the powerful pump EM wave with angular

frequency ω3, the so-called "pump" beam, and the second EM wave with angular frequency ω1,

the so-called "signal" wave. While both waves propagate in a nonlinear medium, the ω3 pump

photons can split into the ω1 signal photon and the so-called ω2 =ω3 −ω1 idler photon. As an

result a wave with the new frequency ω2 is generated and the mutual amplification ofsignal and

idler waves happens.

Starting from the coupled amplitude relations Equations (2.22) to (2.24) one observes a case

where the pump beam does not loose its energy, δE3 j
δz = 0 Omitting the tensor character of the

coupled relations, after some mathematical operations one can write:

δ2E2

δz2 = m2E2 (2.45)

where m is the coupling factor between the idler and the signal waves, that is given by:

m2 = ω1ω2d2µ0p
ε1ε2

|E3|2 . (2.46)

With the boundary conditions

E1(0)= any (2.47)

and

E2(0)= 0 . (2.48)

the evolution of the idler and the signal wave amplitudes is [5]

E1(z)= E1(0)cosh(mz) (2.49)
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E2(z)= i
(

n1ω2

n2ω1

)1/2 E3

|E3|
E∗

1(0)sinh(mz) . (2.50)

This spatial dependence is shown in Figure 2.6. The modulus of the field strength for signal and

idler EM waves exponentially depend on the propagation distance z and tend to the same value

after some propagation. It is important to note that the idler wave depends on the phases of the

pump and the signal wave whereas the signal wave depends only on its initial phase [3, 5]. Both

waves lead to the decay of the pump photons ω3: The generation of the idler photons with ω2

results in a stimulated generation of the signal photons ω1 and vice-versa.

Figure 2.6: The graphical dependence of the modulus of signal wave amplitude |E1| (blue curve)
and idler wave amplitude |E2| (red curve).

Up to now, the previous expressions were investigated for the perfect phase matching condition

given by Equation (2.35). However in a birefringent medium only the phase velocities of the

different waves can be matched, not their group velocities. This means that the wave packets of

three light waves propagate with different velocities, which leads to a temporal elongation of the

signal and idler waves or even stops the amplification [13, 19].This means that the amplification

strongly depends on temporal and spatial overlap of the different waves. For the amplification of

different wavelengths, this overlap has often to be optimized for the optimum optical conversion

and amplification.

In 1995 Gale [10] solved this problem and proposed alternative optical scheme where the

three waves propagate not collinearly. For the noncollinear case the phase matching condition

acquires the vectorial character

δ~k =~κ3 −~κ2 −~κ1 . (2.51)
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In addition, the energy conservation has to be fulfilled:

ω3 =ω1 +ω2 . (2.52)

In Figure 2.7 the noncollinear configuration is sketched for the wavevectors of pump, signal,

and idler waves. Bearing this picture in mind, it is possible to find a scalar relation between the

tree wavevectors

kp = ks cos(φ)+
√

k2
i −k2

s sin2(φ) . (2.53)

Here kp,ks,ki are the absolute values of the pump, signal and idler wavevectors, respectively.

Also in this configuration the values of the wavevectors depend on the frequency of the different

waves as well as on the index of refraction of the generation medium. At the same time the index

of refraction in a uniaxial medium for ach wave depends on its polarisation, its wavelength, and

its propagation direction. Thus, it is possible to calculate the matching angles φ for different

wavelengths using the Sellmeier parametrisation of the refractive index given in Section 2.1.2

and the index of refraction ellipsoid given by Equation (2.27).

Figure 2.7: Vector diagram for the noncollinear optical parametric amplification scheme in a
nonlinear crystal, where θ is an angle between optical axis of the crystal and its short side, φ is
the phase matching angle and λ is the angle between the pump wave and optical axis.

2.2 Gaussian beams

As it was mentioned in previous sections, one of the required conditions of obtaining high

efficiency of nonlinear wave interaction is the usage of light, which has a high intensity and

high coherence. The typical sources for producing light with high coherence and intensity are

femtosecond lasers. Their pulsed beams have properties that cannot be described anymore in

terms of simple geometrical optics and that are important for the generation of the nonlinear

optical effects discussed in Sections 2.1.1 to 2.1.5.
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It is known from the Maxwell’s equations that the wave equation for propagating EM waves

in transparent dielectric material is [18][
∇2 −

(n
c

)2 δ2

δt2

]
~E(~r, t)= 0 (2.54)

with the electric field vector ~E(~r, t), which in general depends on time t and the coordinate r.

n is the index of refraction of the transparent medium and c is speed of light in vacuum. This

equation can be simplified taking in to account that ~E(~r, t)= ~E(~r)Re
[
e−iωt]. One finally comes to

the Helmholtz wave equation that only depends on spatial coordinates:[
∇2 −~k2

]
~E(~r)= 0 . (2.55)

The wave vector k is defined as k = ωn
c with the angular frequency ω of the wave. This equation

has different solutions but for the discussion in this thesis two in the following solutions are

particularly important. The first solution describes plane waves with constant wave vector and

field amplitude ξ0, which is

E(~r, t)=Re
[
ξ0e−iωt−~k~r

]
. (2.56)

and the second solution describes spherical waves, where the electric field strength and wavevec-

tor depend on the radial coordinate r, which is given by

E(~r, t)=Re

[
ξ0

e−iωt−~k~r

|~k~r|

]
. (2.57)

It is important to realize that the laser beams of femtosecond lasers have properties that

depend on the spatial coordinate, thus consist of properties of planar waves and spherical waves.

In Figure 2.8 the change of the EM wavefront is shown as function of the propagation coordinate

z after focussing the laser beam with a convex lens. Femtosecond laser pulses are characterised

by a Gaussian intensity distribution across their beam cross section far away from the focus and

in the focus (in Figure 2.8 at z = 0) of this beam, the so-called beam waist with the minimum

cross section with diameter w0 occurs. In the region 2zR of such a so-called Gaussian beam a

constant field amplitude along the propagation direction appears.

It is possible to express the intensity profile that contains planar and spherical beam prop-

erties dependent on the propagation coordinate. After the extension of the real propagation

coordinate z by the complex coordinate −iz0 and one replaces z → z− iz0. z0 is a real number

that measures the distance to the separate regimes where the beam has spherical properties,

that is, where |z| > z0, and regions where plane wave properties dominate, which is the case for

|z| < z0 [17, 18]. The resulting wave equation resembles the principal TEM00 laser mode [18].

Taking into account the Gouy phase η(z)= tan−1(z/zR) due to the curvature of the planar wave

[18], the spatial distribution of the electric field becomes

E(ρ, z)= ξ0
w0

w(z)
e[ρ/w(z)]2

eikρ2/2R(z)ei[kz−tan−1(z/zR)]2
(2.58)
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Figure 2.8: The profile of Gaussian beam (blue line) in propagation direction z; Front of Gaussian
beam (red line). wo is the beam waist, w(z) - beam diameter, Rr-Reyleigh range

Respectively the intensity is

I(ρ, z)= cε0

2
EE∗ = cε0

2
|ξ0|2

(
w0

w(z)

)2
e−2[ρ/w(z)]2

. (2.59)

In Equation (2.58) zR is the previously described parameter of Lorentzian intensity distribution

in z-axis (Figure 2.9(b)) so-called Rayleigh range [23] where w(z)= w0
√

(1+ (z/zR)2) is the beam

radius as function of zR that depends on the distance z to the beam waist with w0
2 =λzR/π for a

laser beam with wavelength λ. The intensity has a Gaussian profile in the plane perpendicular to

the propagation direction. Other basic Gaussian beam parameters are the radius of the curvature

of the wave front at position z, R(z), and the half opening angle of the divergence, θFF which are

given by

R(z)= z[1+ (zR/z)2] (2.60)

θFF =λ/πw0 (2.61)

In Figure 2.8 these quantities are shown for the cross-section of a Gaussian beam. A 3-dimensional

representation of the normalised intensity is shown in Figure 2.9a). A cut through the intensity

distribution of Figure 2.8 a) at the beam focus position where w0 is minimum is shown in

Figure 2.8 b) and the cut at z = 0, that is, along the propagation direction z is shown in Figure 2.8

c). From this one can conclude that strongly focused beam beam has a the smaller waist w0 and a

smaller Rayleigh range zR but an increased intensity I. In practice, the waist of the laser does

not necessarily be located at the laser output. The laser documentation usually contains the

information about its size and position and/or graphs of radius variation on the distance to the

laser.
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Figure 2.9: The normalized intensity profiles of a Gaussian beam in dependance on the: a. distance
to waist and beam radius in meters (3D plot); b. beam radius in meters in the waist (2D plot); c.
distance to waist in meters in the center of Gaussian beam (2D plot). The values for waist and
wavelength were taken as 1028 nm and 0.55 mm respectively.

The properties of Gaussian beams become particularly important while working with long

laser beam paths and using focusing optics. The image creation of a simple convex lenses is

described with the well known thin lens equation

± 1
d
± 1

f
= 1

F
(2.62)

where d is the distance between the lens and the object, f represents the distance between the

lens and the image and F is the lens focal distance. The choice of the signs depends on the reality

of the image or of the object. For simplicity let us consider pluses where the object and the image

are real.

Siegman recommends to use the universal way to calculate how a Gaussian beam passes

through an optical system using the matrix formalism, but for the particular case for a thin
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Figure 2.10: A Gaussian beam passing through a convex lens: The beam waist of the incoming
laser beam is positioned in the object distance of the lens, d, and the image of the beam waist is
observed after the focus distance f of the lens.

convex lens we can use the Gaussian extension of Equation (2.62) [23]:

1
d+ zR2/(d−F)

+ 1
f
= 1

F
. (2.63)

Here the object distance d is assumed to be equal to the the distance to the input waist as shown

in Figure 2.10 and one obtains the new waist on the image side of the lens at the distance f . In

contrast to the classical geometrical optics, Gaussian optics yield in the case of absent diffraction

that the image plane is at infinity if the source is placed in the focus plane. Also the image of a

Gaussian beam waist placed in the object distance is imaged in the image distance as shown in

Figure 2.10.
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3
EXPERIMENTAL REALISATION

In this chapter we review and explain the experimental besics of a building NOPA. We first

derive the distances between the optical elements from a simple simulation, then explain the

principal NOPA scheme, explain the processes of adjustments, and finally discuss the measured

results of the characterization of the built NOPA.

3.1 NOPA design

In this subsection the optical scheme for the noncolinear optical parametric amplifier will be

discussed on the basis of the theoretical considerations presented in Chapter 2.

One main point of the NOPA scheme design was put on its compactness because the space at

the BESSY II KMC3-XPP beamline is restricted and it should be possible to transfer the NOPA

to different experiments. At the same time we are not aiming at the shortest possible NOPA pulse

output because the X-Ray pulse duration at BESSY II is between 15 and 70 ps [12] in low-alpha

respectively in the more common hybride mode does not require ultrashort pump pulses. We

of course try to reduce the pulse duration of the incoming laser pulses from FWHM ∼600 fs in

order to be able to drive nonlinear optical excitation processes like coherent Raman excitation of

phonons or two-photon-absorption across the bandgap of insulators. The main focus of building

the NOPA is to obtain powerful pulses that can be turned over a broad spectral range. This NOPA

was designed to use two amplification branches where in branch the doubled and in the other one

the tripled frequencies of the fundamental wavelength of the laser are used as pump waves.
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3.1.1 General characteristics

The general idea of "two branch" NOPA design was taken from [13] and adapted for our needs

and prerequisites. The principal scheme of the 2ω-NOPA + 3ω-NOPA is shown in Figure 3.1. It is

consists of:

• 1x Pharos Yb (260 fs, 400 µJ, 1028 nm) Laser source

• 1x Breadboard

• 4x Apertures

• Periscope

• Beamsampler

• 11x Different broad spectral range mirrors

• 1x 1/6 Beamsplitter

• 4x Different BBO nonlinear crystals

• 1x Broad spectral range beamsplitter

• 7x Different convex lenses

• 1x Dichroic mirror (reflects 514 nm of wavelength)

• 1x Dichroic mirror (reflects 343 nm of wavelength)

• 1x Sapphire window (4 mm of length)

• 1x Gray filter

• 1x Shortpass filter

• 2x Different spherical mirrors

• 6x Moveable stages

We use a Light Conversion Pharos amplifier. It its typically operated at a repetition rate of

104 kHz, which is the 16th subharmonic of the fundamental BESSY operational frequency of

1.25 MHz. This is important because for the time-resolved laser pump – X-ray probe experiments,

the arrival time of the X-ray pulses is fixed and the relative arrival time of the laser pump pulses

has to be varied. Therefore the oscillator of the Pharos is synchronized to ring clock using a Menlo

RRE Sync synchronization device that acts on the cavity length of the oscillator and together

with an electronic delay box (Menlo DDS120), the delay between X-ray pulses and laser pulses
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Figure 3.1: General 2ω-NOPA + 3ω-NOPA design.

can be varied remotely. Generally, the Pharos features 600 fs long pulses with 200 µJ of pulse

energy. The output wavelength is 1028 nm with an average power of maximum 20 W. However,

to be able to vary a little bit the efficiency of the NOPA especially after some time of operation,

we opted for an optimized design for the average pump power of 15 W, which of course slightly

reduces the available pulse energy but allows us without a complete rebuilt of the NOPA to

react on fluctuations and at least for some time compensate the possible degradation of optical

components. To allow the usage of the NOPA at different locations we set it up on a 60 cm x 90 x

6 cm optical honeycomb breadboard (Thorlabs B6090A).

The fundamental alignment of the optical components was performed with the reduced

average laser power of 150 mW in order to reduce accidental back reflections during the placement

of the optical elements on the table. Now we describe the optical beam path from the laser to the

NOPA input and explain the beam path in the NOPA in detail. First we use a periscope to lift

the laser output beam to the desired beam height of 14 cm on the optical table. Then the still

p-polarized laser beam is fed into the NOPA. The beam height of the NOPA elements is fixed to
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Figure 3.2: The photo of 2ω-NOPA + 3ω-NOPA scheme.

8 cm and we have produced at the workshop of the University of Potsdam posts with the height

of XX cm that are clampled to the bread board with Thorlabs clamping forks and fix the reference

beam height. Then the incoming light is passed trough the two fixed alignment apertures A1

and A2, that allow to quickly check the incomming beam alignment and thus allows a quick

alignment of the NOPA in case it is transportated to a different location. Then the beam is split

into a two beams by the 1/6 beamsplitter BS1. The directly passed-through beam with the power

of 12,4 W is used to pump the second and third harmonic generation part will be described in the

paragraph below and the reflected beam with roughly 2,1 W is used to generate a white light

supercontinuum as will be described in Section 3.2.3.

3.1.1.1 Generation of the NOPA pump beams

The pump beams of the subsequent NOPA stages are generated using the optical scheme

proposed by Riedle et al. [13, 22]: the SH generation of the Type 1 , which theoretical basis was

explained in Section 2.1.3, takes place in a 0.8 mm thick BBO crystal (BBO I), which is placed

9cm before the focus of a B-coated focussing lens (Thorlabs) with f = 300 mm (L1). The Type II

generation of s-polarized TH is done due to the process explained in Section 2.1.4 in the second

5 mm thick BBO II, which is placed 9 cm after the focus of L1. This SHG process is possible

because the pulse of the second harmonic propages in the BBO II faster than the fundamental

of the laser because of the different signs of the respective group velocities [13] and thus yields
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the temporal overlap of the pulses for the mixing process. Another 150 mm UV-silica focusing

lens (L2) collimates all three beams again. The separation of fundamental, SH and TH light

is carried out by two dichroic mirrors, which reflect only the SH (DM1) or the TH (DM2) and

are transparent for the other wavelengths. The two pump beams are then subsequently routed

towards the focussing mirrors by an additional mirror (Thorlabs E01 for the TH and Thorlabs

E02 for the SH), which allows to preadjust the beam path lengths roughly with respect to the

white light pulses whose generation is described in the following.

3.1.1.2 White light supercontinuum generation

The supercontinuum generation part starts with the aperture A3, that is used to shape the

"tails" of the Gaussian intensity profile. A small delay delay stage allows fine tuning of the delay

between SH/TH beams and the white light pulses. Then the light is focussed with a 35 mm fused

silica lens (L3) into a 4 mm thick sapphire crystal (a Thorlabs window). For the adjustment

of the white light generation condition, the input beam can be attenuated right after the lens

by a continuous grey filter (Thorlabs NDL-25C-4) and the focus within the sapphire crystal is

shifted towards the end of the crystal by moving it with a small translation stage to the position

where the spectrum (see Figure 3.9) is optimum and the stability of the generated white light is

good. After that, the white light is collimated by the convergent lens L4 with f = 25 mm and – if

neccessary – the transmitted fundamental is filtered by a short pass filter with a transmission

range between 350 and 700 nm, however, we found that the used beam splitter that equally

distributes the WL spectrum to the two NOPA branches already absorbs a significant part of the

laser fundamental wavelength. Hence, we usually do not used this filter. The aperture A4 can be

used to cut unwanted parts of the generated white light spectrum.

3.1.1.3 The NOPA stages

The noncolinear parametric optical amplification happens in BBO III using the SH pump

beam and in BBO IV using the TH pump beam. The 2ω and 3ω pump beams are focused by the

250 mm focusing mirrors FM1 (dielectric Thorlabs E02 mirror) and FM2 (Thorlabs CM254-250-

F01, an UV enhanced metallic mirror). The focussing mirrors for the pump beams are placed right

below the white light beam axis. With the help of the two prior placed plane mirrors together with

the focussing mirrors, the pump beams are directed under the optimum phase matching angles φ

for broad band amplification as calculated from Equation (2.53). The focusing mirrors are placed

on linear stages to adjust the time delay between pump and WL beams in the BBO crystals. The

BBO crystals are also placed on linear stages to calibrate the spot size and the intensity of the

respective pump beams. As a result, a certain wavelength of the white light spectrum is amplified

in dependence on the angle of the incidence of the pump beams into the BBOs and the time delay

between the white light and respective pump beam.
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3.1.2 Defining the positions of the optical elements

In Chapter 2 we showed that the intensity and the efficiency of generated SH or TH light

depends on the multiplication of the intensity of the incident light waves. However, the increase

of the intensity leads to self-focusing nonlinear effects in the material with additional white light

generation, that is not wanted in this case. At the same time the damage threshold intensity

also restricts the maximum allowed intensity of the incident laser beam. It is important to

realize that the intensity strongly depends on the beam spot. Therefore, the positioning of the

nonlinear crystals in relation to the focusing optics must take in to account the maximal intensity

to prevent the destruction of the optical elements, the BBO crystal for example, and hence avoid

the occurrence of additional nonlinear effects.

For the estimation of the placement of the optical elements, first the critical intensities have

to be estimated. Using typical literature values that are summarized in Table 3.1, the value of

critical intensity for white light generation Pcr
S for sapphire crystal is the smallest, which makes

it a good crystal for supercontinuum generation. At the same time it is possible to estimate that

for our laser with the pulse energy E = 200 µJ and pulse duration τ= 600 fs [15] the maximum

intensity for a circular 1 mm diameter is:

P
S

= E
τ S

≈ 0.33 ·1011 W
cm2 , (3.1)

which is below the threshold for the WLG in BBO but sufficient for the WLG in sapphire.

Medium λ, nm Pulse duration, fs no n2, cm2

W I th, W
cm2 Pcr/S, W

cm2

Sapphire [11, 26, 27] 1028 600 1.76 3.2 ·10−16 3.8 ·1012 1.7 ·108

BBO [1, 2] 1028 600 1.66 4.5 ·10−20 ∼ 1 ·1012 ∼ 17.7 ·1011

Air [26, 27] 1028 600 ∼ 1 4.7 ·10−19 − 3.37 ·1011

Table 3.1: The optical properties of the used light propagation media. Here no is the ordinary
refractive index, n2 is the intensity-dependent refractive index, I th the damage threshold and
Pcr is white light generation critical power after Equation (2.41).

The Figure 3.3 shows the intensity profiles of a laser beam before and after a focusing lens

with f = 30 cm. It is possible to see, that the damage threshold is not exceeded neither for the

sapphire nor for the BBO before the lens. After the focussing the maximal intensity in the waist

does not exceed the damage threshold of sapphire but is higher than the damage threshold of

BBO. We used MATLAB (Chapter 5) to find the distances from the calculated beam waist where

the damage threshold is still not exceeded. Assuming that the focal point coincides with the beam

waist, the BBO crystals should be mounted not closer than 65 mm to the beam waist position.

3.1.3 Optimizing the phase matching angles

In Chapter 2 the condition of phase matching is mentioned as one of the main requirements of

highly efficient nonlinear processes. It is important to note that for the collinear processes (SHG
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Figure 3.3: The intensity profiles of Gaussian beams before a focusing lens with f = 30 mm (a.)
and after it (b.) as function of the distances to the beam waists.

and THG) the BBO crystals are cut in such a way that the surface forms the angle β= 90o−θ with

the optical axis, where θ is the phase matching angle. The reason for this is to avoid the additional

calculations for refraction effects because in this case the pump beams incident normally to the

surface and take the angle θ with the optical axis. Table 3.2 shows the different mixing processes

and the required polarization states of the beams as well as the phase matching conditions, for

them and the matching angles calculated by our MATLAB script Chapter 5. The result of this

calculation is shown in Figure 3.4 and Figure 3.6.

Figure 3.4: The dependences of the phase matching angle θ of the BBO crystal on incident light
wavelength for second harmonic generation (a.) and third harmonic generation (b.).

The phase matching angle θ depends both on the signal wavelength and on the angle φ

between the pump beams and the WL. But it is possible to find an angle φ such that the phase
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matching angle θ will be almost constant over the broad spectral range. The curves in the

Figure 3.6(a. and b.) correspond to different angles φ from 0o to 24o for the 2ω-NOPA and 3ω-

NOPA respectively. It is possible to see that the broadest spectrum can be obtained for φ= 5o

and φ= 7o for 2ω-NOPA and 3ω-NOPA. It is important to note that this is the internal angle

between the pump and signal laser beams inside the BBO. But of course if the beams incident to

a BBO surface not at normal incidence, the angle between them will change due to Snell’s law.

For the NOPA branches we use two BBO crystals with the same cut (θo = 32.5o). According to the

theoretical diagrams in Figure 3.6 we can assume that the internal angles between the optical

axis and WL beam are equal to ∼ 32.5o and ∼ 48o for 2ω NOPA and 3ω NOPA, respectively. This

values are different in comparison to, for example, Riedle and al works [13, 22] which is explained

by the direction of the pump beam. The more common case is when the pump beam incidents

from above into the BBO crystal therefore it forms the angle α= θ+φ with the optical axis of the

crystal. In our case in both 2ω-NOPA and 3ω-NOPA the pump laser beams incident to a crystal

from below and take an angle α= θ−φ with the optical axis of the BBO. We estimated the values

of the external angles between pump and WL beams which are equal 8o and 13o respectively (

Figure 3.5).

Figure 3.5: The detailed scheme of the incidence and propagation of the white light (greenish
arrows) and the pump (blue arrows) laser beams in a tilted BBO crystal. The line RS represents
the optical axis of the BBO crystal, dached lines: PM,QN,K I,LJ are perpendiculars to interfaces
in the points of beam incidences: G,H,E,F. The angle RST is the BBO cut angle θo and the angle
RSU is the phase matching angle θ. The internal noncollinear angle φint is the angle GOH or
EOF, when the external noncollinear angle φext is the angle between lines EA and FB.
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Figure 3.6: The dependences of the phase matching angle θ of the BBO crystal on incident light
wavelength for different angles φ between the signal laser beam and pump laser beam for 2ω
NOPA (a.) and 2ω NOPA (b.). Each curve corresponds to each value of φ where the lowest one
corresponds to φ= 0o and the highest to φ= 24o with the step of 1o.

Figure 3.7: The principal scheme of the WLG, where the red beam is on the input.
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Process Configuration Type Phase matching condition Phase matching angle θ

SHG o+ o → e Type I 2 ·no(ω)= ne(2ω,θ) 24o

THG o+ e → e Type II no(ω)+2ne(2ω,θ)= 3ne(3ω,θ) 66o

NOPA e → o+ o Type I kp = ks cos(φ)+
√

k2
i −k2

s sin2(φ) 32.5o (2ω), 48o (3ω)

Table 3.2: The used configurations of polarisations, the phase matching conditions for them and
the matching angles calculated by MATLAB script for each nonlinear process.

3.2 Adjustment and characterisation of the NOPA

3.2.1 Adjustment and characterisation of the white light generation

The WLG part of the scheme is presented in Figure 3.7. First we put a white screen after

the sapphire crystal and set the gray filter to medium attenuation. After shifting the sapphire

crystal into the focus of the collimated beam we start to decrease the level of attenuation of the

gray filter. At one point a coloured spot appears on the screen (Figure 3.8). Then we iteratively

shift the sapphire plate in one direction until the spot disappears or the intensity increases. Then

the input power is either increased or decreased. Finally we search for the position and filter

setting when the WL is generated with the minimum input power. We aim at the generation of

the WL close to the back surface of the sapphire crystal as seen along the propagation direction

of the input laser beam in order to diminish the influence of dispersion effects of the WL pulse.

Then the stability of the WL spectrum is checked. A first optimization is done using our eyes

but a more quantitative analysis is done using an Avantes AvaSpec spectrometer. Therefore the

WL is coupled into a multimode fiber and spectrum analyzed by the spectrometer and displayed.

Small optimizations should result in a temporally stable WL spectrum that also covers the broad

spectral range between 400 and 700 nm. Often a reddish ring appears around the white spot,

which is believed to be a sign of stable spectra and homogeneity [28]. For our spectral range

however it is not necessarily helpful as it also indicates additional spectral components in the

NIR region so we usually do not use this part and even block it using aperture A4. After putting

the 300 nm - 700 nm short pass filter before the spectrometer we measure WL spectra similar to

the one presented in Figure 3.9

3.2.2 Adjustment and characterization of the second and third harmonic
generation

The principal scheme of the second and the third harmonic generation is shown in Figure 3.1.

It consists of the two lenses L1 ( f = 300 mm) and L2 ( f =150 mm), that focus the fundamental

laser beam between the BBOs and collimate the generated 2ω and 3ω beams respectively. Two

BBO with special cuts (see Section 3.2.3) are used for the SH and TH generation and two dichroic

mirrors separate the SH and TH fromthe non-converted fundamental laser wavelength. For the
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Figure 3.8: The photo of the white light spot projected on the sheet of paper placed after the
sapphire crystal.

basic alignment in the beginning we put the BBO I 9 cmbefore the focus of L1. After that we

but a black screen after the second lens. If the BBO crystal is put in the right orientation, it

almost immediately generates the green SH light even with reduced average laser power; for

the alignment we use the pulse picker of the Pharos laser that allows us to reduce the average

laser power but maintains the pulse energy. After this we put in the dichroic mirror DM1 in

order to measure the power of the generated SH light with the power meter. We are aiming at

the maximum efficiency of the generation for this position of the BBO crystal so we tweak the

tilt angle and slightly rotate the BBO in its mount until we obtain the maximum power of the

converted light. When this is done, we put in the second BBO II in the distance of 9 cm after the

focus of L1. As in the previous case, if the BBO II is put in the right orientation, the TH light

can be observed on a white paper due to the induced fluorescence. We usee DM2 to reflect only

the TH light to the powermeter head and optimize the orientation of BBO II until we obtain the

maximum conversion efficiency.

In Figure 3.10 we show the spectra of the SH and TH light after the reflection of the respective

dichroic mirrors. The observed power of the beams is 2.7 W and 1.6 W respectively. Taking into

account that the incident power before the first BBO is 12.4 W, the efficiency of SHG and THG
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Figure 3.9: Typical white light spectrum as generated in a sapphire crystal and filtered by a 300
nm - 700 nm short-pass filter.

amounts to ηSHG = 22% and ηTHG = 13%, consistent with our previous experiences and the data

reported in [13, 22]. For the use as the NOPA pump beams, the SH and TH light is redirected

to the NOPA branches by the flat mirrors (M12, M13) and focussed into BBO III and BBO IV

with the spherical mirrors FS1 and FS2. Finally, the power that is available for pumping the

BBO crystals in the NOPA branches is slightly reduced to 2.15 W for 2ω-NOPA and 1.25 W for

3ω-NOPA.

3.2.3 Adjustment and characterisation of the 3ω NOPA branch

The noncolinear optical parametric amplification allows not only to amplify the weak signal

(in our case given by the WL), but is also accompanied by the generation of the strong idler beam

(see Section 2.1.5). For the proposed 3ω-NOPA the generated idler is in the visible spectral range

(Figure 3.6), thus the begin of the amplification is rather easy to detect directly by eye.

The crucial requirement for obtaining the optical parametric amplification is the temporal

overlap of pump and signal pulses. To satisfy the temporal overlap at first we try to make the

optical paths of the WL and 3ω pump laser beams equal with a ruler. The translation (delay)

stages are then put to in their arbitrary neutral positions to allow us being more flexible in further

precise adjustments. After that we used an ultrafast photodiode (Thorlabs DET025A/M, response
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Figure 3.10: The spectra of the SH beam reflected from the dichroic mirror DM1 (a.) and the TH
beam reflected from DM2 (b.)

Oscilloscope

Black screen

Input 1

Figure 3.11: The optical scheme for the defining of temporal delay between 3ω pump laser pulse
and white light laser pulse.
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Figure 3.12: The photo of time overlap measurement scheme (a.) and correspondent oscilloscope
signal (b.) .

time approximately 150, ps), which was connected to an Agilent DSO9404A oscilloscope. The

light is reflected from a black screen placed at the position of BBO IV. This scheme is shown in

Figure 3.11 and Figure 3.12. As reference trigger we use the light reflected from a beamsampler

right after the laser output using a biased avalanche laser diode (Hamamatsu) connected to the

oscilloscope. This allows us to measure the time delay between the arrival of the WL and the

3ω pump at the same position. Our task is now make the delay between both pulses 0 using

the delay stages. This was done iteratively and required also the slight repositioning of optical

elements.

Now we place BBO IV on a translation stage in a distance of 5 cm after the focus of the

focusing mirror FM2. We direct the 3ω pump beam to the center of BBO IV tweaking the focusing

mirror FM2 and the plane mirror M13. If the BBO crystal is properly oriented and the phase

matching angle is correct for the pump wavelength, the pump photons decay randomly in different

directions into pairs with different frequencies and therefore the so-called superfluorescence cone

is generated. This appears as broad colored ring on the screen as shown in Figure 3.13 (a.) and

(b.), where the colors are split like in a rainbow. Tilting the BBO along its horizontal axis allows

to obtain a thin almost white ring consisting of all of colors, which means that now we fulfil the

condition for the broad spectral range of the pump photon decay that is reflected in the desired

curves shown in Figure 3.6. For our case of the 3ω NOPA we obtain the white ring with orange

tint shown in Figure 3.13 (c.) and (d.).

Another crucial point for the operation of the NOPA is the spatial overlap between WL and

pump pulses. After obtaining the narrow superfluorescence ring we open the WL beam and

direct it to the center of the BBO and overlap it with the spot of the pump beam. This results

in the projection of the superfluorescence cone and the WL spot on the screen. Since the WL is

the seed for the pump photon split we need to overlap both of these projections without loosing

the temporal or spatial overlap between the two beams in the BBO. In order to do this we
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iteratively tilt the flat mirror M13 along the horizontal axis and then tilt the focusing mirror

FM2 to bring back the overlap in BBO IV. Finally we tilt the BBO crystal to maintain the narrow

superfluorescence ring on the screen. If the direction of the tilting is chosen correctly, it is possible

to see at one point the overlap of the projections on the screen. While trying to keep the temporal

Figure 3.13: The projections of the broad super fluorescence ring and the white light beam (a.),
medium thickness super fluorescence ring (b.), narrow super fluorescence ring with the amplified
green light and invisible IR idler (c.), narrow super fluorescence ring with the amplified red light
and red idler (d.) on the black screen.

overlap condition we have to slightly change the position of the delay stage and find that the

intensity of the superfluorescence ring reduces while the WL spot becomes brighter and changes

its color and another bright spot appears on the upper side of the superfluorescence ring, which

is seen in Figure 3.13 (c.) and (d.). This is the clear signature of the parametric amplification.

3.2.3.1 Spectral characterization of the 3ω NOPA

After the first amplification was obtained as described in the section before, we included an

aperture behind BBO IV that blocks all unwanted beams except of the amplified signal and place

the head of the powermeter behind the aperture. Then it is possible to optimize the BBO tilt, the

spatial overlap in it, and its optimum position in relation to the focus of FM2. When we reach an

amplification of different wavelengths, we remove the powermeter and put the black screen back
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Figure 3.14: The photos of the 3ω-NOPA pulse specta (a.) and power (b.) measurement processes.

and measure the spectra of the 3ω-NOPA pulses scattered from the screen using the spectrometer

(Figure 3.14 (a.)), similarly as we do it for the WL spectrum displayed in Section 3.2.3. The

spectra are measured for different positions of the FM2 translation stage between 0 to 25 µm

with the step width of 2.5 µm, which then converted to the temporal scale from 0 fs to 1650 fs.

The spectra are shown in Figure 3.15.

One immediately sees that the FWHM of the 3ω-NOPA pulses are different in relation to the

central wavelength. Assuming that all of these spectra exhibit a Gaussian profile it is possible to

estimate the Fourier limit of the pulses and obtain their duration ∆τ:

∆τ= K
c∆λ

λ2 . (3.2)

Here K = 0.44 is the parameter for a Gaussian line shape, λ is central wavelength of the pulse, ∆λ

is the FWHM of the pulse, and c is the speed of light in vacuum. As one might expect, spectrally

broader pulses correspond to temporally shorter pulses. The calculated values of of ∆τ as function

of the central wavelength is presented in Figure 3.16. One immediately notices that the 3ω-NOPA

pulses are significantly shorter than the laser output pulse duration is 600 fs. The minimum

number of 10 fs is likely an artefact because of the assumption that theses pulses have a Gaussian

line shape. Already the raw spectra shown in Figure 3.15 show that in broadest pulses are not

Gaussian anymore.

Another important parameter of the NOPA pulses is their power. To characterise the 3ω-

NOPA output we again put the head of the powermeter after the aperture and measure the
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Figure 3.15: The normalized spectra of the 3-ωNOPA output for different positions of the focusing
mirror FM6 on the translation stage. The spectra correspond to time-delays of 0; 165 fs; 330 fs;
495 fs; 660 fs; 825 fs; 990 fs; 1155 fs; 1320 fs; 1485 fs; 1650 fs between the white light and the 3ω
pump laser beams.

power of the amplified pulses shown before (Figure 3.14 (b.)). The absolute power of the pulses

strongly depends on the diameter of the aperture and its position, so we make a series of the

measurements where the parameters of the aperture and the position of the powermeter are kept

constant. The dependence of the pulse power on the central wavelength of the pulse is shown in

Figure 3.17. As one can see the power reaches the maximum constant values around 16 mW for

the range between 540 nm and 640 nm. It is possible to change the profile of this dependence due

to the BBO tilt, which allows to enhance amplification for different wavelengths, if desired. Our

aim is to amplify a broad spectral range, thus the amplification efficiency is not maximum.
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Figure 3.16: The dependence of the 3ω-NOPA pulse durations on central pump wavelength.
Circles correspond to the Fourier limit data calculated from the experimentally measured 3-
ωNOPA pulse spectra. The red solid line serves as guide to the eye.
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Figure 3.17: The dependence of the 3ω-NOPA pulse power on the central pump wavelength.
Circles correspond to the experimental data and the red line is a guide to the eye.
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4
CONCLUSIONS

There are several of nonlinear processes which take place in our NOPA: second harmonic

generation due to frequency doubling, third harmonic generation due to sum frequency generation,

white light supercontinuum generation, and noncolinear optical parametric amplification. The

efficiency of generation and amplification depends on meeting the conditions of phase matching,

spatial and temporal overlap of the interacting laser pulses. The phase matching condition

can be also either fulfilled in a collinear or noncollinear arrangement. In this work we briefly

described the main theoretical principles of nonlinear processes that are important for our

NOPA. The two stage NOPA was designed in accordance with the conditions of restricted place,

transportability, and a broad spectral range of output wavelengths. The calculations for the

optimal phase matching angles, noncollinearity angles, and the distances at which the optical

elements should be placed for optimum efficiency but without their destruction, were calculated

and the consequences explained. During the setup of the NOPA the second harmonic and third

harmonic of the pump beams for the NOPA were built and optimized. The spectra efficiency

of the pump beams were measured. A stable white supercontinuum light was generated in a

sapphire crystal that serves as seed for the NOPA branches. The spatial and temporal overlap

between white light and third harmonic were found and the 3ω-noncollinear optical parametric

amplification process was optimized. Finally, the output of the 3ω-NOPA was characterized and

pulses with the power up to 17mW in a 475 nm – 700 nm spectral range were measured. The

Fourier limit of 3ω-NOPA pulses was also found, therefore their calculated durations are much

shorter than 600 fs input beam and vary between 50 fs and 10 fs.

In addition, all of the adjustment processes were explained in detail, so it will be possible to

use this internship report as a guide for the building and adjustment of new NOPAs, for example

for the realization of the 2ω NOPA branch.
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Matlab Code for the defining of the positions of BBO crystals

1 %input parameters

2 f =300*10^(−3) ; %f o c a l length m

3 lambda=1028*10^(−9) ; %wavelength m

4 w_o=1.5*10^(−3) ; %input waist m

5 z_o=650*10^(−3) ; %pos i t ion of the input waist m ( from laser to

the waist )

6 L=1700*10^(−3) ; %t o t a l length between laser and f i r s t length

7 s=L−z_o ; %waist to len s distance

8 E=200*10^(−6) ; %pulse energy ( j ou les )

9 tau=600*10^(−15) ; %pulse duration ( seconds )

10 P=E/ tau ; %pulse power ( j ou les per sec )

11 I_cr =10^12; % W/cm^2 %c r i t i c a l value of intens i ty for BBO

12 P_cr =17.7 * 10^(9) %white l i gh t cr . power

13

14 %programing

15 z =−100000:0.5:100000; z=z /1000; %scale from the both

sides of the waist +−100m

16

17 z_r=pi * (w_o ) ^2/ lambda ; %Raleigh d is t

18 w=w_o* sqrt (1+( z / z_r ) .^2) ; %Beam radius on z

19

20 %%

21 f igure ( 1 ) ;

22 plot ( z ,w*1000) ;

23 t i t l e ( ’ Values of the beam radius before focusing ’ ) ;

24 xlabel ( ’ distance , meter ’ ) ;

25 ylabel ( ’beam radius ,mm’ ) ;

26
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27

28 I_zenter =(2*P/ pi ) . / (w. *w) ; %intens i ty in the center

of gaussian

29 f igure ( 2 ) ;

30 plot ( z , I_zenter /10000) ;

31 axis auto

32 %axis ([ −0.15 0.15 0 4.6*10^4 ] ) ;

33 t i t l e ( ’ Values of max gaussian intens i ty before focusing ’ ) ;

34 xlabel ( ’ distance , meter ’ ) ;

35 ylabel ( ’ center intensity , W/ ( cm^2) ’ ) ;

36

37

38

39 %finding the pos i t ion where the max Intes i ty of Gaussian wi l l be the most

40 %close to the BBO damage intens i ty

41

42 j =0; %index of searched value

in array

43 k=10^20; %start ing d i f f e rence

which i s i n f i n i t y

44 f o r i =200001:400001 %use only one side from

the focus ( o to 100m)

45 i f abs ( I_zenter ( i )−I_cr )<=k %i f the value i s c l oser

to c r i t i c a l then we need i t

46 k=abs ( I_zenter ( i )−I_cr ) ;

47 j = i ;

48 end

49 end

50 z_cr=z ( j ) ; %the distande between

waist and the c r i t i c a l value of intens i ty

51

52

53 j =0; %index of searched value

in array

54 k=10^20; %start ing d i f f e rence

which i s i n f i n i t y

55 f o r i =200001:400001 %use only one side from

the focus ( o to 100m)
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56 i f abs ( pi *w( i ) *w( i ) * I_zenter ( i ) /2−P_cr )<=k %i f the

value i s c l oser to c r i t i c a l then we need i t

57 k=abs ( pi *w( i ) *w( i ) * I_zenter ( i ) /2−P_cr ) ;

58 j = i ;

59 end

60 end

61 zp_cr=z ( j ) ; %the distande between

waist and the c r i t i c a l value of intens i ty

62

63

64

65

66 %after focusing

67

68

69 s1=f *(1+( s / f − 1) / ( ( s / f − 1) ^2+( z_r / f ) ^2) ) ; %pos i t ion of focused

waist

70 w_o=w_o / sqrt (1−( s / f ) ^2+( z_r / f ) ^2) ; %new size of focused

waist

71 z_r=pi * (w_o ) ^2/ lambda ; %new Raleigh d is t

72 w=w_o* sqrt (1+( z .^2 / z_r / z_r ) ) ; %new Beam radius on new z

73

74

75

76

77

78 f igure ( 3 ) ;

79 plot ( z ,w*1000) ;

80 axis auto

81 %axis ([ −0.01 0.01 0.04 0 . 1 ] ) ;

82 t i t l e ( ’ Values of the beam radius a f ter focusing ’ ) ;

83 xlabel ( ’ distance , meter ’ ) ; y label ( ’beam radius ,mm’ ) ;

84

85

86 I_zenter =(2*P/ pi ) . / (w. *w) ; %intens i ty in the center

of new gaussian

87 f igure ( 4 ) ;

88 plot ( z , I_zenter /10000) ;
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89 %axis auto

90 axis ([ −5.0 5.0 0 4.6*10^12 ] ) ;

91 t i t l e ( ’ Values of max gaussian intens i ty a f ter focusing ’ ) ;

92 xlabel ( ’ distance , meter ’ ) ;

93 ylabel ( ’ center intensity , W/ ( cm^2) ’ ) ;

94

95

96 I_ooo= 10^(12) / w_o / w_o*w(200301) *w(200301) ;

97 E_ooo=I_ooo *260*10^(−15)*w(200301) *w(200301) ;

98 %finding the new pos i t ion where the max Intes i ty of Gaussian wi l l be the

most

99 %close to the BBO damage intens i ty

100

101 j =0; %index of searched value

in array

102 k=10^20; %start ing d i f f e rence

which i s i n f i n i t y

103 f o r i =200001:400001 %use only one side from

the focus ( o to 100m)

104 i f abs ( I_zenter ( i ) /10000− I_cr )<=k %i f the value i s

c l oser to c r i t i c a l then we need i t

105 k=abs ( I_zenter ( i ) /10000− I_cr ) ;

106 j = i ;

107 end

108 end

109 z_cr1=z ( j ) ; %the new distande between

waist and the c r i t i c a l value of intens i ty
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Matlab Code for the defining the phase matching and
noncollinearity angles

1 %% n_o and n_e as a function of wavelength

2 lambda=(250.0000:0.5000:1600.0000) ; %wavelength nanometers VVVVVERIFIED

3 no=sqrt (2.7366122+0.0185720. / ( ( lambda /1000) .^2−0.0178746) −0.0143756*(

lambda /1000) .^2) ;

4 ne=sqrt (2.3698703+0.0128445. / ( ( lambda /1000) .^2−0.0153064) −0.0029129*(

lambda /1000) .^2) ;

5 f igure ( 1 ) ;

6 plot ( lambda , no , ’ LineWidth ’ ,2 ) ;

7 axis auto

8 hold on

9 plot ( lambda , ne , ’ LineWidth ’ ,2 ) ;

10 %t i t l e ( ’ upper no and lower ne ’ ) ;

11 axis auto

12 hold o f f

13 xlabel ( ’\lambda (nm) ’ , ’ FontSize ’ , 16) ;

14 ylabel ( ’n ’ , ’ FontSize ’ , 16) ;

15

16 %% n_e as a function of angle

17 T=(0 :90) ;

18 T=T/360*2* pi ;

19 ne_t=zeros (2701 ,91) ;

20 f o r i =1:2701

21 f o r j =1:91

22 ne_t ( i , j )=no ( i ) *ne ( i ) / sqrt ( no ( i ) ^2*( sin (T( j ) ) ) ^2+ne ( i ) ^2*( cos (T( j

) ) ) ^2) ;

23 end

24 end

25 T=T*360/2 / pi ;

26 f igure ( 2 ) ;

27 plot (T, ne_t ( 1 , : ) ) ;

28 t i t l e ( ’ ne for d i f f e r e n t angles ( wavelength 250 nm) ’ )

29 axis auto

30

31

32
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33 %% el ipso id for indexes of re f r .

34 f igure ( 3 )

35 [ x , y , z ] = e l l i p s o i d (0 ,0 ,0 , no (1557) ,no (1557) ,no (1557) ) ;

36 surf ( x , y , z )

37 axis equal

38 hold on

39

40 [ x , y , z ] = e l l i p s o i d (0 ,0 ,0 , ne (1557) ,ne (1557) ,no (1557) ) ;

41 surf ( x , y , z )

42 t i t l e ( ’ inner e l l i p s . f or ne , outer for ne for 1028 nm ’ )

43 xlabel ( ’ n_x ’ ) ;

44 ylabel ( ’ n_y ’ ) ;

45 z labe l ( ’ n_z ’ ) ;

46

47

48

49 %% SHG Type 1 ( ooe ) in BBO

50 Teta=zeros (1001 ,1) ; Teta=Teta ’ ;

51 lambda_cut =(250 :0 .5 :800) ;

52 f o r i =501:2:2701

53 i i =0.5*( i +1)−250;

54 Teta ( i i )=asin ( ne ( i i ) / no ( i ) * sqrt ( ( no ( i i )^2−no ( i ) ^2) / ( no ( i i )^2−ne ( i i )

^2) ) ) ;

55 end

56 lambda_cut=lambda_cut *2;

57 Teta=Teta *360/2 / pi ;

58 f igure ( 4 ) ;

59 plot ( lambda_cut , Teta , ’ LineWidth ’ ,2 ) ;

60 t i t l e ( ’ Type I phase matching for SH ’ )

61 xlabel ( ’\lambda (nm) ’ , ’ FontSize ’ , 16) ;

62 ylabel ( ’\theta ( deg . ) ’ , ’ FontSize ’ , 16) ;

63 axis auto

64

65

66

67 %% SFG Type 2 ( eoe ) in BBO

68 w3_massive=zeros (284 ,2) ;

69 %T=T/360*2* pi ;
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70 del t =100000;

71 f o r i =1002:6:2700

72

73 f o r k=1:91

74

75 a=abs ( no ( i −1)+2*ne_t ( i /2−250 ,k )−3*ne_t ( ( i +501) /3−501+1,k ) ) ;

76 i f a<del t

77 del t=a ;

78 index=k ;

79 end

80 end

81 w3_massive ( ( i −1002) /6+1 ,1)=lambda ( i −1) ;

82 w3_massive ( ( i −1002) /6+1 ,2)=T( index ) ;

83 del t =100000;

84 index =100000;

85 end

86 zzz= zeros (45 ,2 ) ;

87 m=1;

88 f o r i =1:283

89 i f ( abs ( w3_massive ( i , 2 )−w3_massive ( i +1 ,2) ) >=0.00001)

90 zzz (m, 1 ) =w3_massive ( i , 1 ) ;

91 zzz (m, 2 ) =w3_massive ( i , 2 ) ;

92 m=m+1;

93 end

94 end

95 f igure ( 5 ) ;

96 plot ( zzz ( : , 1 ) , zzz ( : , 2 ) , ’ LineWidth ’ ,2 ) ;

97 t i t l e ( ’ Type II phase matching for TH ’ )

98 xlabel ( ’\lambda (nm) ’ , ’ FontSize ’ , 16) ;

99 ylabel ( ’\theta ( deg . ) ’ , ’ FontSize ’ , 16) ;

100 axis auto

101 %% 3w NOPA phase matching Type 1 ooe in BBO

102 T=(0 :0 .25 :90 ) ;

103 T=T/360*2* pi ;

104 omega=zeros (2701 ,1) ;

105 omega = ( 1 . / lambda ) .*100000000;

106 ffi_theta_lambda_massive=zeros (2326 ,361) ;

107 Fi =(0 :90) ; T=T/360*2* pi ; Fi=Fi /360*2* pi ;
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108 wp=1/343*100000000;

109 d=100000;

110 f o r m=1:2701

111 a=abs (omega (m)−wp) ;

112 i f a<d

113 d=a ;

114 index_pump=m;

115 end

116 end

117 f o r j =1:91

118 f o r i =375:2701

119 delta =10000000000000000;

120 wi=wp−omega ( i ) ;

121 d=1000000000000;

122 index_k =1;

123 index =1;

124 f o r m=1:2701

125 a=abs (omega (m)−wi ) ;

126 i f a<d

127 d=a ;

128 index=m;

129 end

130 end

131 f o r k= j :361

132 a=abs ( (wp*ne_t ( index_pump , k− j +1) ) ^2+(omega ( i ) *no ( i ) * cos ( Fi ( j )

) ) ^2−2*wp*omega ( i ) * cos ( Fi ( j ) ) *ne_t ( index_pump , k− j +1)*no ( i )

−(wi*no (m) ) ^2+(omega ( i ) *no ( i ) * sin ( Fi ( j ) ) ) ^2)

133 i f a<delta

134 delta=a ;

135 index_k=k ;

136 end

137 end

138 ffi_theta_lambda_massive ( i −374, j )=T( index_k ) / 2 / pi *360; %%vylaz i t

za predely

139 end

140 end

141 f igure ( 6 ) ;

142 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 ) ) ;
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143 hold on

144 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 2 ) , ’ LineWidth ’ ,2 ) ;

145 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 3 ) , ’ LineWidth ’ ,2 ) ;

146 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 4 ) , ’ LineWidth ’ ,2 ) ;

147 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 5 ) , ’ LineWidth ’ ,2 ) ;

148 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 6 ) , ’ LineWidth ’ ,2 ) ;

149 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 7 ) , ’ LineWidth ’ ,2 ) ;

150 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 8 ) , ’ LineWidth ’ ,2 ) ;

151 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 9 ) , ’ LineWidth ’ ,2 ) ;

152 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 0 ) , ’ LineWidth ’ ,2 ) ;

153 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 1 ) , ’ LineWidth ’ ,2 ) ;

154 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 2 ) , ’ LineWidth ’ ,2 ) ;

155 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 3 ) , ’ LineWidth ’ ,2 ) ;

156 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 4 ) , ’ LineWidth ’ ,2 ) ;

157 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 5 ) , ’ LineWidth ’ ,2 ) ;

158 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 6 ) , ’ LineWidth ’ ,2 ) ;

159 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 7 ) , ’ LineWidth ’ ,2 ) ;

160 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 8 ) , ’ LineWidth ’ ,2 ) ;

161 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 1 9 ) , ’ LineWidth ’ ,2 ) ;

162 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 2 0 ) , ’ LineWidth ’ ,2 ) ;

163 plot ( lambda(375:2701) , ffi_theta_lambda_massive ( : , 2 1 ) , ’ LineWidth ’ ,2 ) ;

164 t i t l e ( ’ Type II phase matching for TH ’ )

165 xlabel ( ’\lambda (nm) ’ , ’ FontSize ’ , 16) ;

166 ylabel ( ’\theta ( deg . ) ’ , ’ FontSize ’ , 16) ;

167 axis auto

168

169 %% 2w NOPA phase matching Type 1 ooe in BBO

170 omega=zeros (2701 ,1) ;

171 omega = ( 1 . / lambda ) .*100000000;

172 fi_theta_lambda_massive_2wnopa=zeros (2170 ,91) ;

173 wp=1/515*100000000;

174 d=100000;

175 f o r m=1:2701

176 a=abs (omega (m)−wp) ;

177 i f a<d

178 d=a ;

179 index_pump=m;

180 end
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181 end

182 f o r j =1:91

183 f o r i =531:2701

184 delta =10000000000000000;

185 wi=wp−omega ( i ) ;

186 d=1000000000000;

187 index_k =1;

188 index =1;

189 f o r m=1:2701

190 a=abs (omega (m)−wi ) ;

191 i f a<d

192 d=a ;

193 index=m;

194 end

195 end

196 f o r k= j :91

197 a=abs ( (wp*ne_t ( index_pump , k− j +1) ) ^2+(omega ( i ) *no ( i ) * cos ( Fi ( j )

) ) ^2−2*wp*omega ( i ) * cos ( Fi ( j ) ) *ne_t ( index_pump , k− j +1)*no ( i )

−(wi*no (m) ) ^2+(omega ( i ) *no ( i ) * sin ( Fi ( j ) ) ) ^2)

198 i f a<delta

199 delta=a ;

200 index_k=k ;

201 end

202 end

203 fi_theta_lambda_massive ( i −374, j )=T( index_k ) / 2 / pi *360; %%vylaz i t

za predely

204 end

205 end

206 f igure ( 7 ) ;

207 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 ) ) ;

208 hold on

209 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 2 ) , ’ LineWidth ’ ,2 ) ;

210 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 3 ) , ’ LineWidth ’ ,2 ) ;

211 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 4 ) , ’ LineWidth ’ ,2 ) ;

212 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 5 ) , ’ LineWidth ’ ,2 ) ;

213 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 6 ) , ’ LineWidth ’ ,2 ) ;

214 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 7 ) , ’ LineWidth ’ ,2 ) ;

215 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 8 ) , ’ LineWidth ’ ,2 ) ;
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216 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 9 ) , ’ LineWidth ’ ,2 ) ;

217 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 0 ) , ’ LineWidth ’ ,2 ) ;

218 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 1 ) , ’ LineWidth ’ ,2 ) ;

219 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 2 ) , ’ LineWidth ’ ,2 ) ;

220 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 3 ) , ’ LineWidth ’ ,2 ) ;

221 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 4 ) , ’ LineWidth ’ ,2 ) ;

222 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 5 ) , ’ LineWidth ’ ,2 ) ;

223 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 6 ) , ’ LineWidth ’ ,2 ) ;

224 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 7 ) , ’ LineWidth ’ ,2 ) ;

225 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 8 ) , ’ LineWidth ’ ,2 ) ;

226 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 1 9 ) , ’ LineWidth ’ ,2 ) ;

227 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 2 0 ) , ’ LineWidth ’ ,2 ) ;

228 plot ( lambda(375:2701) , fi_theta_lambda_massive ( : , 2 1 ) , ’ LineWidth ’ ,2 ) ;

229 t i t l e ( ’ Type II phase matching for TH ’ )

230 xlabel ( ’\lambda (nm) ’ , ’ FontSize ’ , 16) ;

231 ylabel ( ’\theta ( deg . ) ’ , ’ FontSize ’ , 16) ;

232 axis auto
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