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Zusammenfassung

Transiente Leitfähigkeitsmessungen mittels

Terahertzspektroskopie in der Zeitdomäne

In der vorliegenden Arbeit wird der Aufbau eines Messplatzes zur Durchführung

von Spektroskopie mit Terahertzstrahlung beschrieben. Durch Differenzfrequenzmis-

chung innerhalb des breiten Spektrums optischer Femtosekundenlaserpulse werden

Terahertzpulse im nichtlinearen Kristall Galliumselenid (GaSe) erzeugt. Die Pulse

haben eine Zentralfrequenz von 1.5 THz und eine Bandbreite von etwa 2 THz. Die

Messung des elektrischen Feldes der THz-Pulse erfolgt mittels elektrooptischem Ab-

tasten in Zinktellurid (ZnTe). Durch Messung der von einer Probe transmittierten

oder reflektierten THz-Pulse kann die frequenzabhängige dielektrische Funktion der

vorliegenden Probe im THz-Bereich bestimmt werden. Aufgrund der Äquivalenz

von dielektrischer Funktion und elektrischer Leitfähigkeit lässt sich auch die fre-

quenzabhängige Leitfähigkeit einer Probe bestimmen. So kann etwa das Drude-

Modell der Leitfähigkeit auf seine Gültigkeit hin untersucht werden. Die Pulslänge

der Terahertzpulse beträgt etwa 500 fs, dies ermöglicht zeitaufgelöste Pump-Probe

Spektroskopie mit einer Zeitauflösung im Subpikosekundenbereich. Hier wurden

Optische-Pump / THz-Probe Experimente an den Halbleitern Galliumarsenid und

Silicium durchgeführt. Ist die Photonenenergie des optischen Anregungspulses höher

als die Bandlücke des Halbleiters können Elektron-Loch Paare erzeugt werden, es

sind freie Ladungsträger vorhanden. Wird der abtastende THz-Puls in Abhängigkeit

vom zeitlichen Abstand zum Anregungspuls gemessen kann daraus die transiente

Leifähigkeit (bzw. Anzahl der Ladungstäger) bestimmt werden. So können die Zeit-

skonstanten der Rekombination von Elektron-Loch-Paaren bestimmt werden, was

insbesondere für Anwendungen in der Photovoltaik interessant ist.
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Chapter 1

Introduction

The terahertz band, also called the far-infrared band, lies in between the regions of

optics and electronics of the electromagnetic spectrum (Fig. 1.1). For frequencies

from 0.1 to 10 THz the photon energies are in the range of 0.4 to 40 meV. The

wavelength lies in a range of 3 mm to 30 µm, i.e. in the sub-millimeter range. Due

to the lack of coherent sources and detectors, the THz band is the least exploited

region of the electromagnetic spectrum, known as the ’THz gap’. Advances have been

made in coherently generating and detecting THz radiation in the last 20 years [1]

[2]. Frequencies in the THz range are too fast for being recorded electronically, as the

best achievable bandwidth of lab oscilloscopes reaches up to several GHz. One the

other hand, the detection of THz radiation is also difficult with a bolometer because

it will be totally overwhelmed by the black-body radiation at room temperature

which corresponds to a frequency of 6 THz. The availability of ultrashort laser pulses

enables coherent generation and detection of pulsed THz radiation. As ultrashort

optical pulses cover a bandwidth of several THz difference-frequency generation and

also time-domain sampling of the electric field of THz pulses is possible.

The electronic conductivity of a solid is determined by the density of free carriers.

In contrast to visible light, THz radiation has much lower photon energies of several

meV. Such low photon energies can only cause electronic transitions close to the

Fermi edge, so only carriers that contribute to the conductivity are probed. The

interaction of visible light (E > 1 eV) with the electronic system is dominated by

interband transitions. Also carriers that lie deeper below the Fermi level do con-

tribute to the optical response of the system although they do not contribute to

the electrical conductivity. Broadband THz pulses combine the sensitivity to free

carriers close to their equilibrium state with a picosecond temporal resolution.

1



Chapter 1. Introduction 2

Optics ElectronicsTHz

Figure 1.1: THz radiation in the Electromagnetic Spectrum.

Generation and detection of THz pulses was first realized with photoconductive

antennas[1]. Here, an above-band gap laser pulse generates free carriers in the con-

duction band of a semiconductor with an applied bias voltage. The photoexcited

carriers are accelerated by the external field leading to the radiation of an elec-

tromagnetic pulse. For these antennas, semiconductors with sub-picosecond carrier

lifetimes are used to generate THz pulses [3]. With amplified laser pulses difference-

frequency generation in a nonlinear medium can be employed. Typical materials are

ZnTe, GaSe and GaP. Here pairs of different frequencies within the broad laser spec-

trum create a nonlinear polarization with the difference of the two frequencies, which

is then radiated. This is often synonymously called optical rectification because of

the small generated frequencies in comparison to optical frequencies.

The aim of this thesis was to built a time-resolved THz spectroscopy setup, to es-

tablish this type of spectroscopy in UDKM group. In the first part, a setup for

generation and detection of THz pulses from femtosecond amplified laser pulses was

realized. The generation was done via difference-frequency generation in gallium se-

lenide (GaSe) and the detection with electro-optic sampling in zinc telluride (ZnTe).

Electro-optic sampling allows to measure the electric field of the THz pulse in the

time-domain, therefore this type of spectroscopy is called THz time-domain spec-

troscopy (THz-TDS).

As a first test of the setup, static THz spectroscopy on samples with known dielectric

function in the THz range has been performed. Since the electric field is recorded

in the time-domain, the complex dielectric function of a sample can be obtained

directly from the measurement.
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In the second part, the experimental setup was expanded with an additional opti-

cal pump beam path, including a delay line, to perform optical-pump/THz-probe

experiments on semiconductors. The optical pump pulse is used to excite electrons

from the valence band into the conduction band of the sample. A change in the di-

electric function of a sample is caused by the presence of photoexcited free carriers,

electrons in the conduction band and the remaining holes in the valence band. The

THz pulse probes the change in the dielectric function of the sample or equivalently

the change in the conductivity as a function of the temporal delay with respect to

the pump pulse. From an optical-pump/THz-probe experiment the recombination

dynamics of the photoexcited electron-hole pairs can be observed.

This thesis is subdivided in the following chapters. In chapter 2 the relevant the-

oretical background will be given. The nonlinear optical effects for the generation

and detection of THz pulses, the relation between conductivity and dielectric func-

tion and some conductivity models will be discussed. In chapter 3 the experimental

setup is described, this is the laser system and the optical-pump/THz-probe spec-

troscopy setup. In chapter 4, preliminary static THz spectroscopy measurements

are shown. For testing the accuracy of the setup, the dielectric function of a doped

silicon sample and a single crystal of LiNbO3 have been determined, both showing

strong variations of the dielectric function in the THz range. The static dielectric

function was determined for the later dynamically examined GaAs and silicon sam-

ples. The results of the dynamical optical-pump/THz-probe (OPTP) measurements

are discussed in chapter 5. For GaAs, the pump-probe experiment was carried out in

transmission and reflection geometry to cross-check the results from both methods.

The usefulness of an OPTP measurement in reflection will be demonstrated with

an experiment on a polycrystalline silicon sample on a standard glass substrate,

that could not be carried out as transmission experiment, because of the strong

THz absorption of the glass substrate. The observed recombination dynamics of

the photoexcited electron-hole pairs can be understood in terms of bulk and surface

recombination taking place with different time constants.



Chapter 2

Theory

In this chapter the relevant theory needed to understand the generation and detec-

tion of THz-radiation will be briefly discussed. The underlying processes can be

described in the framework of nonlinear optics, namely difference frequency gener-

ation and the Pockels effect, which are χ(2)-processes. Transmission and reflection

measurements of THz pulses can be fully described in the linear regime by apply-

ing the Fresnel equations and calculating the propagation through a medium using

the dielectric function of the sample. The equivalence of the dielectric function and

the conductivity will be derived, which allows to determine the frequency dependent

conductivity of a sample from its dielectric function. To understand the mechanisms

of charge carrier dynamics, some conductivity models are reviewed, which are the

Drude model and possible extensions.

2.1 Generation and Detection of THz Radiation

The availability of sources of intense femtosecond laser pulses permits difference-

frequency generation (DFG) within the broad spectrum of such laser pulses. As an

example, a transform limited optical pulse centered at λ0 = 800 nm and a temporal

pulse width of τFWHM = 50 fs covers a bandwidth of a ∆ν ≈ 11 THz. The cor-

responding center frequency is ν0 = 375 THz. Thus THz-generation via difference-

frequency generation within the spectrum of the pulse becomes possible (Fig. 2.1).

For THz pulses the electric field can be measured directly in the time domain by

the electro-optic sampling technique. It supports a detection bandwidth of several

THz, given by the temporal width of the probing optical pulse, which is around one

4



Chapter 2. Theory 5

order of magnitude higher than what is achievable with purely electronic devices,

where bandwidths of several GHz, as for commercial available oscilloscopes, can be

achieved.

2.1.1 Difference-Frequency Generation

Difference-frequency generation (DFG) is a result of the nonlinear-polarization oc-

curing at high enough intensities of the applied electric field of the optical pulse. It

is convenient to express the nonlinear polarization Pnl in terms of a power series in

E with ’coefficients’ χ(n).

Pnl = ε0[χ(2)E2 + χ(3)E3 + ...] (2.1)

DFG is a process that originates from the second-order susceptibility χ(2), thus it

can only occur in materials without inversion symmetry. This yields for different

frequency components within the laser spectrum for the second order nonlinear po-

larization:

P(2)(Ω) = ε0

∫
dω1dω2χ

(2)(Ω;ω1,−ω2)E(ω1)E∗(ω2). (2.2)

Where for the case of DFG the following abbreviation was used to ensure that only

differences of two laser frequencies are generated (i.e. conservation of energy)

χ(2)(Ω;ω1,−ω2) = χ(2)(ω1,−ω2)δ(Ω− |ω1 − ω2|). (2.3)

For an ideal non-dispersive medium the radiated THz pulse is proportional to the

product of the nonlinear polarization P (2)(Ω) and the square of the frequency Ω as

E(Ω) ∼ Ω2 · P (2)(Ω) (Fig. 2.1). The Ω2 dependence of the radiated electric field

originates from the far field behaviour of a Hertz dipole [4].

Nevertheless, in a real experimental situation, propagation effects in the medium

within the generation process of the difference frequency cannot be neglected. For

an efficient generation process the optical pulse has to travel through a medium with

finite thickness. This means the waves generated at different crystal positions have to

add up constructively, ’phase matching’ has to be fulfilled. For a difference frequency

Ω = ω1 − ω2 phase matching is given if for the resulting wave vector K = k1 − k2
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ω1ω2 Ω = ω1-ω2

electric field ( )
of visible

laser pulse

E ω induced polarization
in theP(2)(Ω)

far- and mid-infrared

χ(2)

frequency
Ω = ω1-ω2

Radiated electric field

Erad ~ Ω² 

Figure 2.1: Principle of difference frequency generation: frequency pairs ω1 and
ω2 of the laser spectrum create a nonlinear polarization at the difference frequency
Ω, which is then radiated proportional to Ω2 (adapted from [5]).

is fulfilled. In a situation where all beams are collinear and a medium without

birefringence, using |k| = k = nω/c this leads to n(Ω)Ω = n(ω1)ω1 − n(ω2)ω2. This

condition can also be written as n(Ω) = n(ω) +ωn′(ω) with ω1 = ω+ Ω and ω2 = ω

and the first order Taylor-expansion for n(ω+ Ω) = n(ω) + n′(ω)Ω. With the phase

velocity vp = 1/n(Ω) and the group velocity vg = c/(n(ω)+ωn′(ω)), this means that

the phase velocity of the generated THz field and the group velocity of the optical

pump pulse have to coincide. The phase matching condition is summarized in the

following equation

K(Ω) = k2(ω + Ω)− k1(ω) ⇐⇒ vph(Ω) = vgr(ω). (2.4)

A detailed calculation of the difference-frequency generation involving the dispersion

of the nonlinear medium and treating the coupled wave equations can be found in

[6].

2.1.2 Detection: Electro-Optic Sampling - Pockels Effect

A change in the refractive index of a material that depends linearly on the electric

field is known as linear electro-optic effect, or Pockels effect. The effect is caused by

the second order susceptibility χ(2). For an applied DC-field and a field at optical

frequencies a nonlinear polarization of the following form occurs:

Pi(ω) = 2
∑
jk

χ
(2)
ijk(ω = ω + 0;ω, 0)Ej(ω)Ek(0). (2.5)
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In comparison to optical frequencies, ν = 375 THz corresponding to λ = 800 nm, an

electric field oscillating at a frequency of 1 THz can be treated as a quasi-DC field.

Thus a sum or difference frequency generation of the two fields can be neglected

(Eq. 2.5). The presence of the electric field can be rewritten as change in the re-

fractive index for the optical field. For a linearly polarized incident THz field this

causes a field dependent birefringence in a suitable crystal. This birefringence can

be detected by means of the electro-optic sampling scheme shown in Figure 2.2. For

the crystal ZnTe (point group 4̄3m) the resulting phase difference Γ for two perpen-

dicular polarizations of the optical probe pulse accumulated over the crystal length

d one gets the following result [7]:

Γ =
2πd

λopt
n3
optr41ETHz. (2.6)

Here r41 is the electrooptic coefficient for the crystal ZnTe. This phase difference

Γ can be transformed into an intensity difference which can be measured with the

configuration shown in Figure 2.2.

sin(Γ) ≈ Γ =
I1 − I2

I1 + I2
(2.7)

Figure 2.2: Principle of electro-optic sampling. A linearly polarized optical probe
pulse and the THz pulse propagate through the sampling crystal. The electric field
of the THz pulses causes a birefringence in the crystal that changes the polariza-
tion of the probe pulse from linear to elliptic. The quarter-wave plate sets the
intensity difference on the balanced detector to zero (circular polarization before
the Wollaston polarizer) with no field present, ensuring an almost background-free
measurement. Scanning the delay between the two pulses the electric field of the
THz pulse can be recorded in the time-domain (from [8]).
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2.2 Equivalence of Conductivity and Dielectric Func-

tion

In the following, Maxwell’s equations (macroscopic version) are given assuming con-

ducting media without any net charge density (ρ = 0).

Further, the material equations are used. The electric field E and the displacement

current D are linked via the dielectric function εL as D = εLε0E = ε0E + P , where

ε0 is the permittivity of free space and P is the polarization of the medium. The

magnetic flux density B is linked to the magnetic field H via the permeability µ as

B = µH = µ0H + M , where M is the magnetization of the medium and µ0 is the

permeability of free space. In the most general case, the medium consists of a lattice

(i.e. nuclei) and more or less free carriers (electrons) that allow for charge carrier

transport. The non-conducting lattice is characterized by the dielectric function

εL(ω), whereas free carrier transport is characterized via the conductivity σ(ω).

The dielectric function and the conductivity are in general frequency-dependent and

complex-valued, a tilde will be used here to denote generalized quantities.

∇ ·B = 0 (1) ∇ · E = 0 (2)

∇× E = ∂tB (3) ∇×H = jf + ∂tD (4)

Ohm’s law which links the current density of free carriers (subscript f) to the applied

electric field reads:

jf(ω) = σf(ω)E(ω). (2.8)

The concept of the conductivity is extended here to the frequency-dependent general

case. The derivation given here follows the references [9] and [10]. Taking the curl

of Eq. (3) and switching from time to frequency domain representation (∂t → −iω)

leads to:

∇× (∇× E) = ∇(∇ · E︸ ︷︷ ︸
=0

)−∇2E = −∇× (∂tB) = −∂t(∇×B)

= − ∂t(j + ∂tD)µ = iω(j + ∂tD)µ = iω(σf(ω)− iωεL(ω)ε0)µE

= −ω2ε0(εL(ω) +
iσf(ω)

ωε0
)µE. (2.9)
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The result is a wave equation for the electric field of the form:[
∇2 + ω2ε0

(
εL(ω) +

iσf(ω)

ωε0

)
µ

]
E(x, ω) = 0. (2.10)

This wave equation can be brought into a more commonly known form via introduc-

ing a generalized dielectric function ε̃(ω) also accounting for conducting media. Thus

the propagation and reflection/transmission can be described by means of ε̃(ω), as it

is the only material property (for non-magnetic media µ = µ0) in the wave equation

[
∇2 + ω2ε0ε̃(ω)µ

]
E(x, ω) = 0. (2.11)

With

ε̃(ω) := εL(ω) +
iσf(ω)

ε0ω
(2.12)

For a known lattice contribution the latter can be used to obtain the conductivity

of free carriers of a composite system (e.g. for doped semiconductors).

The 4th Maxwell equation can be rewritten by introducing a generalized current J

consisting of contributions from bound and free carriers

∇×H = J︸︷︷︸
= jfree + jbound

+ ε0∂tE

= (σ̃(ω)− iωε0)E(x, ω) = −iωε0

[
iσ̃(ω)

ωε0
+ 1

]
︸ ︷︷ ︸

=:σ̃(ω)

E(x, ω). (2.13)

This generalized current can then be assumed to be linked to an applied electric field

via an generalized form of Ohm’s law J(ω) = σ̃(ω)E(ω). By introducing this more

general concept of conductivity and dielectric function Eq. 2.12 can be rewritten in

a more general way by having introduced a generalized conductivity σ̃(ω) which is

then linked to the generalized dielectric function as

ε̃(ω) = 1 +
iσ̃(ω)

ε0ω
. (2.14)
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Putting together Eq. 2.12 and 2.14 shows that the generalized conductivity also

includes a lattice contribution, as

σ̃(ω) = σf(ω)− iε0ω(εL(ω)− 1). (2.15)

Which means that lattice oscillations can be regarded as bound oscillating currents.

It should be noted, that in an experiment only the complete generalized dielec-

tric function can be measured, which includes the frequency dependent response of

bound (i.e. lattice) and free carriers. For some cases the frequency dependence of

both contributions might intersect on the frequency axis and cannot be clearly dis-

tinguished (Fig. ). As an example, for non-magnetic media (µr = 1), the reflection

coefficient at normal incidence for the electric field is given by the following Fresnel

equation, where the generalized dielectric function enters.

r(ω) =
1−

√
ε̃(ω)

1 +
√
ε̃(ω)

(2.16)

2.3 Models of Conductivity/ Dielectric Function

Modeling the dielectric function ε or conductivity σ of a system is based on the linear

response function approach. The polarization P is given by the average displacement

x the of bound carrier density nb and by the product of the external electric field E

and the electric susceptibility χ

P (ω) = nbex(ω) = ε0χ(ω)E(ω). (2.17)

The current density j (free carriers) is defined as the product of the carrier velocity

ẋ, the density of free carriers nf and the charge e and according to Ohm’s law the

product of the conductivity σ and the electric field E:

j(t) = nfeẋ(t)

j(ω) = −iωnfex = σ(ω)E(ω). (2.18)

Where from the first to the second line it was switched from the time to the frequency

domain representation. From the definitions of P and j, by the division of Eq. 2.17

and Eq. 2.18 and regarding the both carrier densities as being equal, one can also

obtain a general relation between the conductivity and the electric susceptibility χ.
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With the general relation χ = ε− 1. This yields the exact same relation as derived

from Maxwell’s equations in the previous chapter

σ(ω) = −iωε0χ(ω) = −iωε0(ε(ω)− 1). (2.19)

2.3.1 General Case - Lorentz Oscillator

The most simplified approach for modeling the response of a system to an electric

field is to treat the system as an ensemble of damped harmonic oscillators with

a resonance frequency ωT , damping constant γ and an effective mass m∗. The

subscript T for oscillator frequency accounts for the fact that a transverse electric

field (e.g. plane wave) can only couple to transverse oscillation modes. The equation

of motion for a damped harmonic oscillator in an electric field in the time and

frequency domain reads

ẍ+ γẋ+ ω2
Tx =

eE

m∗
= (−ω2 − iωγ + ω2

T )x̃. (2.20)

The equation of motion is most easily solved in the frequency domain, and leads

together with Eq. 2.17 to a frequency dependent susceptibility

x(ω) =
eE

m∗(ω2
T − ω2 − iωγ)

, (2.21)

χosc(ω) =
ne2/m∗ε0

(ω2
T − ω2 − iωγ)

. (2.22)

In order to account for resonances at higher frequencies, one has to add another

component to the dielectric function ε = χ∞ + χosc + 1 = ε∞ + χosc. The plasma

frequency ω2
p = ne2/m∗ε0 is introduced here.

ε(ω) = ε∞ +
ω2
p

(ω2
T − ω2 − iωγ)

(2.23)

A set of eigenfrequencies can be included by taking the sum of the dielectric functions

over different resonance frequencies ωT,j

ε(ω) = ε∞ +
∑
j

ω2
p,j

(ω2
T,j − ω2 − iωγj)

. (2.24)
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For a system in which free carriers are present (ωT = 0) one might separate the

contribution of the free carriers from the bound lattice carriers.

ε(ω) = ε∞ −
ω2
p

(ω2 + iωγ)︸ ︷︷ ︸
Drude

+
∑
j

ω2
p,j

(ω2
T,j − ω2 − iωγj)︸ ︷︷ ︸

ωT 6=0

(2.25)

An example for the (generalized) dielectric function and conductivity is shown in

Figure 2.3.
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Figure 2.3: Real (blue) and imaginary part (red) of the dielectric function ε (a)
and the conductivity σ (b) for a system with a Drude response (plasma frequency
ωp/2π = 5 THz, damping γ/2π = 1 THz) and a phonon resonance at ωT /2π =
6THz (damping γ = 1 THz) ) with ε∞ = 5 (upper black dashed line in (a)). The
dielectric function was calculated with Eq. 2.25 and is related to the conductivity
via Eq. 2.14. The dashed lines in each graph indicate the free carrier (Drude)
response.
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2.3.2 Drude Model

The equation of motion of the charge carriers is simply that for a damped motion

without a restoring force, or an harmonic oscillator with ω0 = 0. The damping

frequency γ = 1/τ describes the collisions of the carriers with the lattice occuring

in an average scattering time τ . Within such a carrier-lattice collision the carrier is

assumed to loose its momentum.

ẍ+ γẋ =
eE

m∗
(2.26)

σ(ω) =
ne2

m∗
τ

(1− iωτ)
=

σDC
(1− iωτ)

(2.27)

Where the DC conductivity σDC := σ(0) was introduced, which can also be defined

involving the plasma frequency ωp or the carrier mobility µ.

σDC =
ne2τ

m∗
= ε0ω

2
pτ = neµ (2.28)

2.3.3 Generalizations of the Drude Model

In various experiments is shown that the assumptions of the Drude model are over-

simplified for describing the conductivity for general systems [11, 12]. An approach

to generalize the Drude model is to add a continuous distribution of scattering times.

In the Cole-Cole (CC) model a symmetric logarithmic distribution is assumed with

a peak at ln τ and a width that increases with the CC-parameter α and approaches

a δ-distribution for α = 0 [11]. The frequency dependent conductivity σCC for the

Cole-Cole model reads

σCC(ω) =
σDC

(1− (iωτ)1−α)
. (2.29)

For the Cole-Davidson (CD) model this is a one-sided logarithmic distribution, which

is zero for τ > τ0, with a peak at τ and with an increasing width for a decreasing

CD-parameter β < 1. The conductivity is given as

σCD(ω) =
σDC

(1− iωτ)β
. (2.30)

Both parameters are in the range 0 < α < 1 and 0 < β < 1 and the Drude model

is recovered for α = 0 and β = 1. To account for symmetric and asymmetric
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distributions of relaxation times the CC and CD model can be put together to form

a generalized Drude (GD) model [13]

σGD(ω) =
σDC

(1− (iωτ)1−α)β
. (2.31)

The conductivity is related to the electric susceptibility via σ(ω) = iωχ(ω). The

inverse Fourier transform gives the time-domain response function χ(t). For the

Drude theory the response function is an exponential decay, which is equivalent to

the Debye theory of dielectric relaxation. For the Cole-Davidson model the response

function has the form

χ(t) =
1

τΓ(β)

(
t

τ

)β−1

e−t/τ , (2.32)

where Γ denotes the gamma function. For the Cole-Cole model the response function

also involves an exponential decay term, but can not be written in a closed form [14].

The generalized Drude model was confirmed experimentally with THz time-domain

spectroscopy on doped semiconductors [15, 16] and photoexcited semiconductors [13,

17]. Also Monte-Carlo simulations of the carrier transport in doped semiconductors

confirmed the GD model [18]. Figure 2.4 compares the conductivity from the CC

and the CD model with the Drude model.
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Figure 2.4: Comparison of the real (a) and imaginary part (b) of the conductivity
obtained from the Drude model (σDC = 10 S/cm , τ = 100 fs) and the Cole-
Cole (Eq. 2.29, α = 0.2) and the Cole-Davidson model (Eq. 2.30, β = 0.7). The
frequency dependence varies significantly as the value for the frequency ν = 0 (DC)
stays constant.
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2.3.4 Drude Model with Restoring Force: Plasmon Model

For inserting a restoring force into the dynamic equation, the result is a vanishing

conductivity for zero frequency and a peak of the real part of the conductivity

for the resonance frequency (Fig. 2.5). A plasmon is the quantized plasma (free

carriers) oscillation, resulting from the restoring force. The plasmon model becomes

important for nanostructured systems where free carriers are confined to a certain

spatial region [19].

ẍ+ γẋ+ ω2
0x =

eE

m∗
(2.33)

σ(ω) =
σDC

1− iτ(ω − ω2
0/ω)

(2.34)
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Figure 2.5: Comparison of the real (a) and the imaginary part (b) of the conduc-
tivity obtained from the Drude (solid) and the plasmon model (dotted), with the pa-
rameters σDC = 10 S/cm , τ = 100 fs and a resonance frequency of ω0/2π = 2 THz
for the plasmon model, for the latter the conductivity vanishes for ν = 0.
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Setup

3.1 Laser System

The laser system consists of an Kerr-lens mode-locked Ti:sapphire oscillator oper-

ating at a repetition rate of 80 MHz and a two-stage amplifier system delivering

amplified 40 fs pulses at a repetition rate of 1 kHz and a pulse enerqy of 7 mJ. The

amplification process follows the chirped pulse amplification scheme [20]. The incom-

ing oscillator pulse is stretched in time before it is amplified by stimulated emission

in pumped Ti:Sa crystals in the amplification cavity and compressed in time after

the amplification process (Fig. 3.1). The compression (and stretching) is done with

a pair of diffraction gratings. Applying this technique makes such high pulse en-

ergies available, otherwise the active medium would be destroyed by the high peak

light intensity. The amplification is split into two parts: A regenerative amplifier

(RGA) where the amplification process is saturated after several roundtrips and a

booster where it only passes once and the pulse energy is approximately doubled.

The injection and release of only one seeding oscillator pulse into the RGA cavitiy

within on amplification period Trep is controlled with a pair high-voltage switched

Pockels cells. In table 3.1 the specifications of the laser system are summarized, the

pulse energy of the seeding oscillator pulse is approximately increased by a factor of

106.

16
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Figure 3.1: Schematic Drawing of the chirped pulse amplification scheme: the
seeding oscillator pulse is stretched in time, amplified in a gain medium and com-
pressed afterwards, yielding an ultrashort high-energy pulse (from [21]).

Laser Type Oscillator 2-Stage Amplifier

Model Coherent Mantis Coherent Legend Duo

Center Wavelength 800 nm 800 nm

Bandwidth 80 nm 30 nm

Pulse Duration < 30 fs (operating at 50 fs) 40 fs

Pulse Energy 5 nJ 7 mJ

Repetition Rate 80 MHz 1 kHz

Table 3.1: Summary of the specifications of the laser system

3.2 THz Setup

3.2.1 THz Generation and Electro-Optic Sampling

In the beginning of this thesis a simplified version of the final experimental setup

was built (Fig. 3.2). The aim of this first setup was to generate THz pulses from the

femtosecond optical laser pulses and to measure them. Since there was no power

monitoring device for the low THz range available, the electric field of the generated

pulses was measured by applying the electro-optic (EOS) sampling technique dis-

cussed in Section 2.1.2. Using a conventional bolometer as power monitoring device
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the generated THz radiation would be overwhelmed by the black body radiation of

the surrounding.

GaSe

Boxcar

PC

Oscillator, Coherent Mantis,

800nm, 30fs, 5nJ, 80MHz

Amplifier, Legend Elite,

800nm, 50fs, 1kHz, 1mJ

EOS-

delay

Figure 3.2: Setup for generation and detection of the THz pulses: amplified pulses
passing a (100) GaSe crystal where THz generation via DFG occurs, the remaining
800 nm light is filtered out of the beam path with a silicon wafer at Brewster’s
angle for THz radiation. On a second silicon wafer the THz pulse and the optical
sampling pulse from the oscillator are combined and focussed into an (110) ZnTe
crystal. The THz pulse induces a birefringence in the crystal that is transformed to
an intensity difference of the probe pulse by a quarter-wave plate and a polarizing
beam splitter, the intensity difference is measured with a balanced photodetector.

For generating the THz pulses the amplified 50 fs laser pulses (s-polarized) were

passed through a [001] GaSe crystal with a thickness of d = 0.5 mm. GaSe is suitable

for generating low frequency THz radiation at normal incidence, since it fulfils the

phase-matching condition (Sec. 2.1.1). The remaining 800 nm pump light is filtered

out of the beam path with a silicon wafer placed at Brewster’s angle θB for the

generated p-polarized THz radiation. The refractive index for crystalline silicon is

almost constant for low THz-frequencies (nSi = 3.41, Sec. 4.3.1), so the silicon wafer

was placed at θB = 73◦. The THz pulse is then combined with the sampling pulse

with another silicon wafer, also placed at θB, and focused together with an off axis-

parabolic gold mirror into the [110] ZnTe sampling crystal. S-polarized pulses of the

oscillator were taken as sampling pulses, since a perpendicular polarization of the

two beams gives the maximum signal [22]. A quarter-wave plate after the crystal is

used to circularly polarize the probe beam, so that without any electric field present

the polarizing beam splitter splits the beam in two parts of equivalent intensity

hitting the balanced detector. When the THz field is present, the polarization of the

probe beam will get elliptically polarized due to the induced birefringence and this
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can be subsequently detected as intensity difference with the balanced detector. By

scanning the delay between the oscillator pulse and the THz pulse, the electric field

of the THz pulse can be scanned in the time domain.

Since the THz pulses arriving at a repetition rate of 1 kHz are sampled with the

80 MHz (T = 12.5 ns) oscillator pulse train, a boxcar integrator is used to pick out

only the signal change of the one probe pulse overlapping with the THz pulse. The

application of the boxcar integration gate is illustrated in Figure 3.3. The balanced

detector was built from high speed photodiodes with rise times smaller than 1 ns, so

that the ocillator pulse train can be fully resolved.

time

12.5 ns Sampling Pulses
THz Pulse
Boxcar−Gate

Figure 3.3: THz pulse (frep = 1 kHz) sampled with optical pulse of the oscillator
(frep = 80 MHz ), to only measure the signal from the pulse overlapping with the
THz pulse a boxcar integration gate of width T < Trep = 12.5 ns is applied. The
temporal pulse width of the THz and the sampling pulse have been exaggerated as
they are in reality shorter than 1 ps.

3.2.2 Optical-Pump / THz-Probe Spectroscopy (OPTP)

As a next step the THz beam path was extended by another off-axis parabolic mirror

for measuring THz transients reflected from a sample. The sample is placed in the

focal plane of the parabolic mirror and fixed on a kinematic mirror mount. The

reflected pulse from the sample was aligned in a way to hit the parabolic mirror at

a different height than the incoming pulse as indicated in Figure 3.4. This results in

a reflected pulse traveling parallel at a different height as the incoming pulse after

the parabolic mirror, which can be send to the ’spectrometer’ with a pick-up mirror.

To perform the alignment of the THz beam path, an extra adjustment diode-laser

was aligned collinear to the optical beam that generates the THz pulse. If the pulse

from the amplifier would be taken for this purpose, the sample at the focus of the
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parabolic mirror would be destroyed due to the high peak intensity, that is high

enough to generate a plasma in ambient air. The angle of incidence onto the sample

was kept as small as possible and large enough to separate the incoming from the

reflected beam (θ < 5◦), so that the reflection can still be treated as a normal

incidence reflection. To also perform transmission experiments another parabolic

mirror behind the sample was added to the setup, so it is possible to switch from

one to the other geometry within a few minutes. The reflection and transmission

beam paths are shown in Figure 3.4. For an OPTP experiment the amplified pulse

was split into two parts where one part is used to pump the sample and is sent to a

1 ns delay stage and subsequently onto the sample.

GaSeBoxcar

PC

Oscillator, Coherent Mantis,

800nm, 30fs, 5nJ, 80MHz

Amplifier, Legend Elite,

800nm, 50fs, 1kHz, 1mJ

Pump-delay
EOS-

delay

Figure 3.4: Schematic drawing of the experimental optical-pump/THz-probe
setup in reflection (transmission) geometry, the dashed line after the sample shows
the transmission beam path.

Since the electric field of the probing THz pulse is recorded in the time domain,

within a pump-probe scan a two-time dataset of the electric field ETHz(tEOS , τpp)



Chapter 3. Setup 21

has to be recorded. Here tEOS is the time of the THz pulse scanned with the EOS-

delay stage (Fig. 3.4) and τpp is the delay of the THz pulse with respect to the optical

pump pulse scanned with the second delay stage. The temporal delays involved are

shown in Fig. 3.5.

Sampling pulse

THz probe

Optical pump

tEOS
τPP

Figure 3.5: Temporal delays for an optical-pump/THz-probe experiment: the
sampling pulse is used to scan the electric field of the THz pulse, delay tEOS, for
every delay with respect to the optical pump pulse τpp, which gives a 2D-dataset
ETHz(tEOS , τpp).

3.2.3 Improvements: Cross-Correlation and Fast Scanning

The previously used step-by-step electro-optic sampling technique has the big dis-

advantage that for typical sampling parameters (∆t = 25 fs) only around one tenth

of the used measurement time is used for acquiring data points of the THz electric

field. The rest of the time is ’wasted’ due to driving the EOS-delay stage to the next

position. Therefore a continuous-driving and continuous measurement scheme was

implemented, which decreased the required measurement time significantly. This

becomes very important when performing pump-probe scans, where THz transients

for several pump-probe delays τPP have to be recorded. As an example, acquiring

a THz waveform (T = 10 ps,∆t = 25 fs) in the step-by-step mode takes around 60

seconds, in the continuous driving mode, this can be done in less than 10 seconds.

As a limiting factor here the repetition rate of the laser system comes into play,

which determines the measurement time needed to record a data point with suffi-

cient signal-to-noise ratio. The stage repeatedly drives back and forth between the

two endpoints of the selected temporal range at constant velocity and the measure-

ment software continuously reads out the signal of the balanced detector and the

position of the stage. After each run the THz transient is put together by putting the

measured points into the predefined temporal grid of fixed step width. The velocity
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of the stage movement is chosen so that a defined number of averages is achieved

for a defined step width. Figure 3.6 shows a sketch of the continuous measurement

mode compared to the stepwise measurement.
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Figure 3.6: Stepwise data acquisition (a) vs. Continuous Driving (b) shows the
amount of time saved, the THz pulses that are measured are indicated at the bottom
(spikes). For the stepwise measurement there is always some down time between
the scanning steps, as for the continuous driving every THz pulse is measured,
which decreases the amount of time needed to record a single waveform.

It was recognized that there is a certain physical jitter in between the sampling oscil-

lator pulse and the THz pulse of several 100 fs within one hour, which is attributed

to thermal drifts of the whole system. One approach to avoid this is to do the EOS

with a small portion of the amplified pulse, but unfortunately this results in a much

lower signal-to-noise ratio, since the shot-to-shot fluctuations are much higher within

the amplified pulses. For correcting this physical jitter an additional non-collinear

second-harmonic generation in a BBO crystal was measured as cross correlation.

This defines the time zero between the optical sampling pulse and the THz pulse

for every scan of the THz waveform. Figure 3.7 shows the implementation of the

cross-correlation beam path into the setup. For this purpose the residual optical

pulse from the THz generation is used and the oscillator pulse is split into two parts.

In Figure 3.8 the correction of the temporal drift is demonstrated for a pump-probe

scan repeated over four consecutive loops.
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GaSe

Oscillator, Coherent Mantis,
800nm, 30fs, 5nJ, 80MHz

Amplifier, Legend Elite,
800nm, 50fs, 1kHz, 1mJ

S

R

Pump-delay
EOS-
delay

R = Reference
S = Sample

EOS

B
B

O

Cross Correlation

Figure 3.7: Setup with implemented cross-correlation measurement: a non-
collinear second-harmonic generation in a BBO crystal between the residual optical
pulse from the THz generation and a portion of the oscillator pulse is measured.
This cross-correlation is used to define the time zero between both pulses and to
correct for the physical jitter.
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Figure 3.8: Recorded pump-probe scans (a), cross correlation scans (b) for 4
consecutive loops over the pump-probe delay of 1 ns and corrected and averaged
field transients (c). The raw data (a),(b) shows a correlated drift which can be
corrected using the cross-correlation measurement (b).
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Results I : Static THz

Spectroscopy

In this section the results of the static THz time-domain spectroscopy measurements

are presented. The generated THz pulses were characterized regarding their wave-

form, peak electric field strength and spatial profile. To test the accuracy of the

setup, transmission and reflection measurements on samples with known response

were performed. As preliminary measurements for the dynamic experiments shown

in chapter 5, the dielectric function of the undoped semiconductors silicon and GaAs

was determined.

4.1 Characterization of THz Pulses

4.1.1 THz Electric Field and Spectrum

The THz pulses were generated via difference-frequency generation in an 0.5 mm

thick (001) GaAs crystal and detected via electro-optic sampling in an 0.5 mm thick

(110) ZnTe crystal. The electric field of the THz pulse shows an almost single-cycle

like behaviour with a center frequency of 1.5 THz and a bandwidth of 2 THz. The

measured THz time domain waveform and its spectrum (Fig. 4.1) are in good agree-

ment to the theoretical calculations for the difference-frequency generation in GaSe

(Fig. 4.2) given in [6]. The phase matching condition for the difference-frequency

generation in GaSe (Sec. 2.1.1) is limited by a transverse optical phonon resonance

at 6 THz, which explains why only such a small bandwidth compared to the laser

25
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bandwidth (10 THz) is converted efficiently into THz radiation for a crystal thick-

ness of 0.5 mm. The refractive index for GaAs at THz frequencies [23] compared to

the optical group index at 800 nm is shown in Figure 4.3.
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Figure 4.1: Electric field of the THz pulse generated from 50 fs, 800 nm pulses
in an 0.5 mm GaSe crystal in the time domain (a) shows an almost single cycle
behavior and frequency domain (b) with a center frequency of 1.5 THz covering a
bandwidth of 2 THz.
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Figure 4.2: Electric field in the time domain (a) and frequency domain com-
pared to the theoretical calculation (solid line) for difference-frequency generation
in 0.5 mm GaSe of amplified 30 fs pulses ( from [6]). The calculation involves cou-
pled nonlinear wave equations and the dispersion of GaAs.

4.1.2 Water Absorption

Since there are a lot of rotational and vibrational transitions for water vapor in the

THz band [24], the whole setup had to be purged with nitrogen. The importance

of this is shown in Figure 4.4. The water absorption in ambient air ( rH = 20%)

leads to a pulse spectrum with very deep absorption dips as shown in Fig. 4.4 (b),
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Figure 4.3: Refractive index of GaSe at THz frequencies (blue) compared to the
group index at 800 nm (red) ng = 3.13 for a electric field polarization perpendicular
to the c-axis. The THz refractive index increases towards higher frequencies due to
a transverse optical phonon resonance at 6 THz, therefore THz generation is only
efficient for low THz frequencies.

corresponding to a loss of the single cycle nature of the initial pulse in the time

domain. So the temporal width of the THz pulse increases according to its non-

smooth envelope which is undesirable for performing pump-probe measurements.

It was also observed that the water absorption is very sensitive to fluctuations in

the humidity so this would introduce an unwanted uncertainty for spectroscopic

applications.
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Figure 4.4: Effect of water vapor absorption: the electric field in the time domain
(a) shows a longer pulse duration (red curve) compared to the pulse propagating
in a nitrogen atmosphere (blue curve). In the frequency domain (b) the presence
of water vapor causes deep absorption dips in the pulse spectrum (red curve).
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4.1.3 Knife-Edge Measurement

For determining the spot size of the THz field focused by a parabolic mirror with a

focal length of f = 75 mm onto the sample, a knife-edge measurement was performed.

A D-shaped mirror was put in the focal plane of the parabolic mirror and moved

out of the beam path to act as a reflecting knife. The resulting peak electric field

amplitude was recorded as function of the lateral mirror position. From the fit of

the data with an error function (Fig. 4.5) the spot size of the focused THz pulse was

found to be FWHM = 1.3 mm. For an optical-pump/THz-probe measurement the

optical pump beam should have at least twice the beam waist as the spot size of the

probe beam.
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Figure 4.5: Result of the Knife edge measurement of the focused THz pulse and
fit with an error function yields spot size of FWHM = 1.3 mm.

From electrodynamics it is known that a plane wave with beam waist w0 can be

focused by an optical element with focal length f to a focused beam width of wf

proportional to its wavelength λ.

wf =
λf

πw0
(4.1)

For a central frequency of 1.5 THz and the applied parabolic mirror this yields an

initial width of w0 = 5 mm of the THz pulse. This matches the width of the gener-

ating optical beam, as it is expected from the parallel beam during the generation

in the GaSe crystal. Equation 4.1 implies that the different spectral components of
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the pulse are focused to different spot sizes that are proportional to the THz fre-

quency. Between the lowest frequency in the spectrum of 0.5 THz and the highest

frequency of 2.5 THz, there is a factor of 5, which is a totally different situation as

for optical experiments. So the focused spot size of the lowest an highest frequency

do also differ in a factor of 5, which has always to be kept in mind when performing

pump-probe experiments since it might lead to undesirable artifacts in the measured

signals [25].

4.1.4 Calibration of Field Strength

With the balanced detection scheme (Sec. 2.1.2) a relative intensity difference of the

oscillator pulses on the balanced detector is measured. The intensity difference is

proportional to the electric field of the THz pulse. As the actual measured quantity

is a voltage proportional to the intensity difference this voltage was calibrated. For

this purpose a defined intensity difference was introduce on the balanced detector

with a half-wave plate mounted on a high precision rotation mount. To find out the

peak electric field strength one could just use Eq. 2.6 that relates the electric field

to the measured intensity difference and the electro-optic coefficient of ZnTe. But it

is also worth having a look at the transfer function of the THz detection system.

For the electro-optic sampling of the THz electric field in ZnTe a frequency dependent

transfer function can be calculated which accounts for phase mismatching effect

during the detection process, the co-propagation of the THz and the optical pulse,

and Fresnel losses at the interface of the crystal [26].

The phase matching, reflection and absorption losses can be described by the fol-

lowing transfer function:

G(ω) =
2

(n(ω) + 1)δ(ω)

exp(i2πωδ(ω))− 1

i2πω
(4.2)

with the abbreviation

δ(ω) =
ng − n(ω)

c
d, (4.3)

where n is the refractive index at THz frequencies, ng the optical group index of

ZnTe and d the crystal thickness.
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One also has to account for the frequency dependence of the relevant electro-optic

coefficient r41 of ZnTe

r41(ω) = re

{
1 + C

(
1− ω2 − iωγ

ω2
TO

)}
, (4.4)

where re is the purely electronic nonlinearity, C is the Faust-Henry coefficient that

represents the ratio between the ionic and the electronic part of the electro-optic

coefficient, ωTO is the transverse optical resonance frequency in ZnTe and γ is the

lattice damping. The specific values are given in [26].

The full transfer function is given as

R(ω) = G(ω)× r41(ω). (4.5)

The optical group index, the refractive index at THz frequencies and the resulting

transfer function are shown in Fig. 4.6. The transfer function is almost flat up to

3 THz and the average value of 0.5 originates from the reflection loss at the first

interface of the sampling crystal.
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Figure 4.6: Refractive index of ZnTe for THz frequencies (blue) and optical group
index at 800 nm (dashed)(a). Due to the phonon resonance at 5 THz the refractive
index increases towards higher frequencies and effects the detection efficiency shown
as transfer function (b) for a 0.5 mm thick ZnTe crystal. The transfer function is
almost flat up to 3 THz.

Using Eq. 2.6 allows to calculate the peak value of the THz electric field to be around

50 kV/cm which is a quite high field strength. For a further cross-checking of this

value, a pulse energy measurement with a He-cooled bolometer could be performed.

The value of the peak field strength is in good agreement to what was reported in
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[6] for this type of THz generation. Since the THz pulse was planned to act as a

probe pulse, a higher field strength was not desirable, but could be reached with

a higher intensity of the generating optical pulse, as it leads to a nonlinear sample

response [27]. Given the peak electric field of the pulse, its time domain waveform

and the spatial profile from the knife-edge measurement, the total energy of the

THz pulse can be calculated to be Wpulse ≈ 50 nJ, which corresponds to an energy

conversion efficiency of 5× 10−5 for a generating pulse energy of 1 mJ. For a pulse

repetition rate frep = 1 kHz an average THz power of P̄ = 50 µW is radiated. For

comparison, the Stefan-Boltzmann law states that the total radiated power of a

black body at room temperature with an area of the size of the focused THz spot

(1 mm2) is Prad = 1 mW, which is much higher than the generated THz radiation.
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4.2 Test Measurements - Transmission

To test the accuracy of the THz setup, transmission measurements on samples with

known response have been performed. For performing THz-TDS (time-domain spec-

troscopy) experiments in transmission, different samples were placed into the beam

path and the electric field was recorded with and without the sample in the beam

path. The exact sample thickness has to be known for being able to determine the

dielectric function of the sample with high accuracy. Figure 4.7 shows the transmis-

sion beam path including multiple reflections inside of the sample and the resulting

transmitted pulse train in the time-domain.
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Figure 4.7: Transmission through a homogeneous plate (a) and resulting multi-
reflections in the time-domain (b) for d = 500 µm and a refractive index of n = 3.

E0 is the electric field without the sample in the beam path, E
(1)
t is the first

transmitted pulse through the sample and E
(2)
t includes an extra roundtrip arriving

10 ps later at the detector, the multi-reflections can be separated in the time-domain
if temporal difference fulfills ∆T > τpulse.

If the investigated sample is sufficiently thick the occurring multi-reflections can be

neglected, since the transmitted THz pulse is measured in the time domain temporal

windowing can be applied. As an example, for a sample thickness of 500 µm and

a refractive index of n = 3 the first and second transmitted pulse are separated

by 10 ps which is much longer then a typical THz pulse length of τpulse < 1 ps.

The transmission of an electric field through the interfaces of the sample for normal

incidence from refractive index ni → nj is described by the Fresnel equation tij =

Et/Ein = ni/(ni + nj) . The propagation of a distance d through a medium is

calculated via exp(ik̃d), with the complex wave vector k̃ = ωñ/c which is given
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by the refractive index ñ = nr + ini. For a complex-valued refractive index the

propagation factor includes the phase shift and absorption within the medium. In

the frequency domain, neglecting multiple-reflections, the electric field with Es and

without the sample Eair in the beam path are related to the incoming electric field

E0 by

Eair(ω, d) = E0 exp(+iωd/c) (4.6)

Es(ω, d) = E0
4ns

(1 + ns)2
exp(+iωñsd/c). (4.7)

The complex-valued ratio of the two fields T̃ (ω) can be split into an amplitude A(ω)

and a phase factor exp(iφ(ω))

T̃ (ω) =
Es(ω)

Eair(ω)
=

4ns

(1 + ns)2
e−αd/2eiω(nr−1)d/c = A(ω)eiφ(ω). (4.8)

The absorption coefficient α is related to the imaginary part of the refractive index

ni via α = 4πni/λ, where λ is the vacuum wavelength of the incoming wave. For

samples with low absorption nr � ni holds, which is usually the case when perform-

ing a transmission measurement. The phase shift at the interfaces from the Fresnel

term 4ñs/(1 + ñs)
2 ≈ 4nr/(1 + nr)

2 can be neglected. For this approximation the

solution for the real part of the refractive index nr and the power absorption coef-

ficient α of the sample can be directly calculated [28] from the Fourier-transformed

measured waveforms as

nr(ω) = 1 +
c

ωd
φ(ω)

α(ω) = −2

d
ln

[
A(ω)

(nr(ω) + 1)2

4nr(ω)

]
. (4.9)
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4.2.1 Doped Silicon - Drude Response

THz time-domain spectroscopy has been widely applied to characterize the frequency-

dependent conductivity of doped semiconductors [15, 29] and the Drude model and

its generalizations were successfully employed to describe the frequency-dependent

conductivity for these type of samples. For doped semiconductors, depending on the

doping concentration, the plasma frequency typically lies in the THz band which

makes THz spectroscopy a suitable tool. This is in contrast to metals for which the

plasma frequency usually lies in the visible up the ultraviolet range. For gold, the

plasma frequency is ωp = 2.18× 103 THz [30] which corresponds to a wavelength

of λ = 137 nm, which is in the UV. The transmitted THz field through an n-type

phosphor-doped silicon wafer with a resistivity of ρ = 0.3 Ωcm and a thickness of

d = 375 µm was measured. The electric field in the time and frequency domain are

shown in Fig. 4.8.

Using equation 4.9, the complex refractive index ñ of the sample is calculated from

the ratio of the reference and the transmitted THz spectra. In Fig. 4.9 the refractive

index of the sample is shown. The imaginary part ni (absorption) increases and

the real part nr decreases towards low frequencies in comparison to undoped silicon

due to the additional free carrier contribution. It also shows that the assumption

nr > ni is valid.

The conductivity σ can be calculated from the refractive index σ(ω) = iε0ω(n2
L +

ñ2(ω)) with the knowledge of the lattice contribution n2
L = εL to the dielectric

function (Sec. 2.2). The lattice contribution nL = 3.41 can be obtained by mea-

suring the transmission through an undoped silicon wafer as shown in Sec. 4.3.1.

The frequency-dependent conductivity was fit with the Drude model and the pa-

rameters σDC = 2.7 S/cm for the DC-conductivity and τ = 171 fs for the scatter-

ing time. From the fit parameters the plasma frequency can be calculated to be

ωp =
√
σDC/ε0τ = 13.4 THz. The fit parameter σDC of is in good agreement to the

specification of the manufacturer (σ∗DC = ρ−1 = 3.3 S/cm).
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Figure 4.8: Reference (blue) and transmitted THz pulse through the doped silicon
wafer (red) in the time domain (a) and in the frequency domain (b) with the
calculated absolute transmission |T̃ (ω)| (dashed line). The silicon wafer acts as an
high pass filter as frequencies lower than 0.5 THz are totally absorbed in the sample,
the vertical lines mark the region of interest with sufficient spectral intensity for
further data evaluation.
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4.2.2 LiNbO3 - Phonon Resonance

Another useful application of THz-TDS is to determine the dielectric function, i.e.

the real part of the refractive index nr and the power absorption α, for materials that

have a transverse optical (TO) phonon resonance in the THz band. The transmitted

THz field through a 500 µm thick z-cut LiNbO3 wafer was measured and is shown in

Fig. 4.10. In the time domain the transmitted pulse shows a significantly different

shape which is caused by additional dispersion and the increasing absorption towards

higher THz frequencies in the sample. From the complex-valued transmission T̃ (ω) =

Ẽs(ω)/Ẽ0(ω) the dielectric function can be calculated with Eq. 4.9.

The real part of the refractive index nr and the power absorption α increase towards

high frequencies due to an TO phonon resonance at 4.5 THz . The refractive index

and power absorption, i.e the dielectric function, are in good agreement to what

was reported in [31], as shown in Fig. 4.11. For the dielectric function only the

values up to 2 THz are considered to be accurate because for higher frequencies the

transmitted power already reaches the noise floor of the spectrum. This is indicated

with the vertical lines in the frequency domain data, where also a low-frequency

cut-off is introduced due to the initial THz spectrum.
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Figure 4.10: Reference electric field of the THz pulse without the sample in the
beam path (blue) and transmission through a 0.5 mm z-cut LiNbO3 wafer (red)
in the time domain (a) and in the frequency domain (b). The absolute value of
the transmission |T̃ (ω)| (circles) is indicated in (b). The sample acts as an low-
pass filter as the transmission decreases for increasing frequencies and vanishes for
ν > 2 THz.
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Figure 4.11: The real part of the refractive index nr (a) and the absorption
coefficient α (b) for LiNbO3 increase towards higher frequencies due to a TO phonon
resonance at 4.5 THz. The solid line shows the calculated values from [31] to which
the measurement agrees well within the interval indicated by the dashed vertical
lines.

4.2.3 Highly Doped GaAs in Reflection

For highly doped semiconductors a THz-TDS transmission measurement is not pos-

sible for a typical wafer thickness of several 100 µm, because of the high plasma

frequency and the resulting power absorption in the THz band. As shown in [32, 33]

THz-TDS in reflection serves as a useful tool to study the conductivity of highly

doped semiconductors.

Performing a THz-TDS experiment in reflection is a quite difficult task because

one cannot switch easily from a measurement of the incoming to the reflected pulse

from the sample, which would be necessary to determine the dielectric function of the

sample with great accuracy. The solution of this problem is to measure the reflection

from a reference (e.g. metallic) mirror and compare it to the sample response. The

crucial task here is to put the reference and the sample into the exact same position

with micrometer precision. A misalignment of 10 µm causes a temporal shift of

66 fs, this alters the obtained results dramatically. Nevertheless for highly absorbing

samples reflection spectroscopy is the method of choice. The refractive index of the

sample can be calculated from the Fresnel reflection formulas. For normal incidence

the reflected electric field Er from a sample (Reference , Sample) with the refractive

index ni is related to the incoming field Ein via
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Er,i(ω)

Ein(ω)
:= ri(ω) =

1− ni(ω)

1 + ni(ω)
; i = R,S. (4.10)

The incoming electric field can be cancelled out by dividing the equations for the

reference and the sample, yielding the relative complex-valued reflectivity Q(ω)

Q(ω) :=
rS(ω)

rR(ω)
=

(1− nS(ω))(1 + nR(ω))

(1 + nS(ω))(1− nR(ω))
. (4.11)

This can be directly inverted for the complex-valued refractive index of the sample

nS if the refractive index of a reference sample nR is given

nS(ω) =
1 + nR(ω)−Q(ω) +Q(ω)nR(ω)

1 + nR(ω) +Q(ω)−Q(ω)nR(ω)
. (4.12)

As an example, a highly n-type Si-doped GaAs sample (nc = (4.2−6.3) ·1016 cm−3)

from MTI Corp. was studied. A transmission measurement for this sample was not

possible since all radiation gets absorbed within the sample. As reference sample

a gold mirror served as an almost perfect reflector. The reference mirror and the

sample were mounted on a kinematic mirror mount which was then attached to a

manual linear stage, to switch from one to the other. For the THz beam alignment

the beam from a laser diode was overlapped collinearly with the THz beam, so that

the alignment could be done with a visible beam. The recorded waveforms in the

time domain are shown in Fig. 4.12

For the dielectric function of gold in the THz range the values from [30] were taken.

Allthough the quality of the data is not satisfactory, the absolute reflectivity shows

the form of a Drude response. The absolute reflectivity fits quite well to the Drude

response but the calculated conductivity differs significantly caused by the phase

uncertainty. But with taking some bigger efforts it should be possible to deter-

mine the conductivity with higher precision with this setup. From the plasma

frequency ωp/2π = 8.7 THz and with the effective mass of electrons in the con-

duction band of GaAs m∗ = 0.067me [34] the carrier density can be calculated to be

n = ε0ω
2
p ∗m∗/e2 = 6.1× 1016 cm−3. This value fits into the specified range of the

wafer manufacturer. The mobility µ = e/γm∗ ≈ 4× 104 cm2 / Vs from the fitted

damping rate γ comes out one order of magnitude too high from this measurement

as it should have a value of µ ≈ 6× 103 cm2 / Vs [35].



Chapter 4. Results I 39

− 0 4 6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5 (a)

t / ps

E
 /

 a
.u

.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

/ THz

|E
(

)|
2

/ 
a
.u

.

Gold Mirror

GaAs N+

Gold Mirror

GaAs N+

Reflectivity

Drude Fit (weighted)

p
= 8.681THz, = 0.66THz, n

L
= 3.61

(b)

Figure 4.12: Electric field reflected from a gold mirror (blue) and a doped GaAs
wafer (red) in the time domain (a) and the frequency domain (b). The absolute
value of the reflectivity (black dots) was fit with the Drude model with a plasma
frequency of ωp/2π = 8.7 THz and a damping rate of γ = 0.66 THz (solid black
line).
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Figure 4.13: Real (blue) and imaginary (red) of the dielectric function ε (a)
and conductivity σ(b) for highly doped GaAs. A relative time shift of ∆t = 65 fs
between both THz pulses was manually introduced to fit the Drude model (solid
lines).
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4.3 Preliminary Measurements

For the undoped silicon and GaAs samples that have also been investigated in

optical-pump/THz-probe experiments, the static dielectric function in the THz range

has been determined. The undoped semiconductor wafers were investigated by THz

time-domain spectroscopy in transmission.

4.3.1 Undoped Silicon

The transmitted electric field through a high resistivity silicon wafer with thickness

of d = 500 µm was measured. In the time domain (Fig. 4.14) it shows that the

transmitted pulse through the wafer arrives approximately 4 ps later at the ZnTe

crystal (’detector’) with respect to the probing optical pulse. This would give rise

to a refractive index of n = 3.4 of the sample. The amplitude ratio in the frequency

domain shows an almost constant value which is due to the additional surface re-

flection losses. The fluctuations around the constant amplitude ratio should vanish

if the measurement is repeated for several times and an averaging over the recorded

data is performed. A transmission measurement here is performed without an ad-

ditional reference beam, which is the common technique in optical measurements.

Here the electric field was recorded without the sample, then the sample was moved

into the beam path and the electric field was recorded, so there were several min-

utes between both measurements. So fluctuations (drifts) in the laser output and

the resulting THz waveform could not be avoided. The phases of the two pulses

show a linear frequency dependence with different slopes as this is a general fea-

ture of the Fourier-transformation for a time shift Ẽ(ω,∆t) = Ẽ(ω,∆t = 0)e−iω∆t.

From Eq. 4.9 the phase shift is related to the real part of the refractive index as

∆φ(ω) = φS(ω)− φ0(ω) = (nr(ω)− 1)ωd/c from which the frequency dependent re-

fractive index can be calculated. The best agreement to previously reported values

for the refractive index of silicon [36–38] was obtained for a thickness of d = 525 µm,

which is within the uncertainty specified by the manufacturer. The real part of the

refractive index is almost constant within the THz range and there is no absorption

observable despite some fluctuations that result from intensity fluctuations of the

laser system.
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Figure 4.14: Electric field with (red) and without (blue) the undoped silicon
wafer in the beam path in the time domain (a) and frequency domain in amplitude
(b), where also the absolute value of the transmittance (dots) is shown, which is
almost constant, despite some fluctuations.
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Figure 4.15: The spectral phase (a) φ(ω) of the THz pulse with (red) and without
(blue) the undoped silicon wafer in the beam path shows different slopes, which
corresponds to refractive index of the sample as ∆φ(ω) = φS(ω)−φ0(ω) = (nr(ω)−
1)ωd/c. In (b) the real (blue) and imaginary part of the refractive index of the
silicon sample is shown. Both values are constant as n = 3.41 + i · 0, the deviations
in the low frequency range might be a result of a free carrier contribution because
of crystal impurities.

4.3.2 Undoped GaAs

Also the transmission through a semi-insulating GaAs wafer with a thickness d =

500 µm was measured, for which the results are very similar to that of the silicon

sample. In Fig. 4.16 the measured THz pulses are shown. The real part of the

dielectric function has an average value of < εr >=< nr >
2= 3.632 and increases
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slightly towards higher frequencies, as shown in Fig. 4.17. This due to a phonon

resonance at 8 THz and agrees well with previously reported values [38, 39]. The

imaginary part of the dielectric function is almost zero within the bandwidth of the

THz pulse, which shows that there is no absorption, i.e. free carriers, in the sample.
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Figure 4.16: Electric field with (red) and without (blue) the semi-insulating GaAs
wafer in the beam path in the time domain (a) and frequency domain in amplitude
(b). The absolute value of the transmittance (dots) is shown, which decreases for
higher frequencies.

0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

0

5

ν / THz

φ 
/ 2

 π

 

 
(a)

0 1 2 3 4

0

2

4

6

8

10

12

14

16

 ν /THz

ε

 

 

(b)Reference
Sample

ε
r

ε
i

< ε
r
 > = 3.632

Figure 4.17: The spectral phase (a) φ(ω) of the THz pulse with (red) and without
(blue) the GaAs wafer in the beam path shows different slopes, which corresponds
to refractive index of the sample as ∆φ(ω) = φS(ω) − φ0(ω) = (nr(ω) − 1)ωd/c.
In (b) the real (blue) and imaginary part (red) of the dielectric function of the
GaAs sample are shown. The real part increases for higher frequencies due to a
phonon resonance. The vertical lines indicate the region for which the average of
the dielectric function is < εr >= 3.632.
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Results II:

Optical-Pump/THz-Probe

Spectroscopy

Figure 5.1: Sketch of an optical-pump/THz-probe experiment in reflection ge-
ometry
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5.1 General
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Figure 5.2: Sample response (e.g. reflectivity) after excitation with an optical
pump pulse at t = 0, measured by a THz probe pulse with subpicosecond duration
as a function to the pump-probe delay τpp.

Optical-pump/THz-probe (OPTP) experiments on semiconductor samples were per-

formed to investigate carrier dynamics with picosecond temporal resolution. A

sketch of such an experiment is shown in Fig. 5.2.

If the photon energy of the optical pump pulse is larger than the band gap of the

semiconductor, an absorbed pump photon leads to an electronic transition within

the band structure of the sample. For a semicondutor, an electron is excited from the

valence band into the conduction band. The remaining electrons minus the excited

electron in the valence band behave collectively equivalent to a charged particle of

charge +e, thus forming a hole, an electron hole-pair is created. With an OPTP

experiment one can distinguish between bound and free charges, i.e. the difference

between a sample that behaves dielectric-like and metal-like. The optical excitation

of free carriers in a semiconducting sample leads to an increase in the reflectivity

of the probing THz pulse and a decrease in the transmission of the probe pulse, as

metals reflect electromagnetic radiation better than dielectrics. Measuring the sam-

ple response for different pump-probe delays τpp, the temporal evolution (e.g. the

recombination) of the photoexcited carrier density can be measured with a temporal
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resolution determined by the probing THz pulse (τ < 1 ps). The duration of the

optical pump pulse was always kept shorter than 100 fs, so the temporal resolution

is determined by the THz pulse length. The probing THz pulses are recorded in

the time-domain with the electro-optic sampling (EOS) technique as shown in Sec.

2.1.2. The measured pump-probe signal is the electric field E(tEOS , τpp) dependent

on the EOS delay tEOS and the pump-probe delay τpp (Fig. 3.5). Thus one has ac-

cess to the amplitude A and phase φ of the pump-induced change in the reflectivity

(or transmission)
r̃(ω,τpp)
r̃0(ω) =

Ẽ(ω,τpp)

Ẽ0(ω)
= A(ω)e−i∆φ(ω). From the Fourier-transformed

electric field Ẽ(ω, τpp) for all pump-probe delays τpp the change in the dielectric func-

tion of the sample can be calculated. The time-dependent dielectric function of the

sample is given by the static lattice contribution εL and the time-dependent photo-

induced conductivity σ as ε̃(ω, τpp) = εL(ω) + iσ(ω, τpp)/ωε0 (Sec. 2.2). If the static

dielectric function of the sample is known, the frequency-dependent photoinduced

conductivity σ(ω, τpp) can be calculated for all pump-probe delays τpp.

5.1.1 Reflection from a Photoexcited Surface Layer

The investigated samples are semiconductor wafers with a thickness of d = 500 µm.

The typical penetration depth of the optical pump pulse (λ = 800 nm) is D = 10 µm,

which is much shorter than the sample thickness. resulting in a reflection from a

strongly varying refractive index within the propagation direction z of the probing

pulse. Directly after the excitation the carrier density n will be proportional to the

absorbed energy in the depth of the sample z as n(z) = n0 exp(−z/D) which leads

to a z-dependent conductivity σ(ω, z) or equivalently to a dielectric function ε(ω, z).

For the case of the reflection from an exponential carrier density profile an analytical

solution of the wave equation was given in [40] in terms of modified Bessel functions

of complex order. Due to the inhomogeneous excitation the photoexcited carriers

will diffuse into the depth of the sample, which alters the carrier distribution. The

solution for an exponential profile will only be applicable for short pump-probe

delays. As the ongoing carrier diffusion introduces an additional degree of freedom

into the data analysis it is convenient to treat the actual carrier density distribution

as a thin homogeneously excited layer with fixed thickness d of the order of the

penetration depth d ≈ D. It is shown in Figure 5.3 that exact solution and thin film

approximation agree very well.

For the calculation of the reflectivity of a homogeneous layer only multiple reflections

within the thin layer on top of the wafer (Fig. 5.4) have to be considered because the
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Figure 5.3: Amplitude (a) and phase (b) of the reflectivity change 30 ps after
800 nm excitation of GaAs wafer fitted with the exact solution of an exponential
carrier density profile (solid line, nc = 9.5 · 1016cm−3, τ = 150 ps, d = 1.44 µm)
compared to the thin film approximation and a Drude conductivity (dashed line,
nc = 5.5 · 1016cm−3, τ = 160 ps, d = 2.3 µm). Both models agree well with each
other and also to the measured data.

time domain measurement of the THz field allows temporal windowing of only the

main reflection. As seen in previous experiments the reflection from the backside

of the wafer arrives around 10 ps later at the detector which is much longer than

the THz pulse duration. The reflection from such a system can be calculated by

taking the sum over an infinite number of multiple reflections (geometric series) or

calculated within a transfer matrix formalism which is basically the same [41].

The coefficients tij = 2ni/(ni + nj) and rij = (ni − nj)/(ni + nj) denote the Fresnel

transmission and reflection coefficients for the electric field at normal incidence for

the boundary ni → nj . As the refractive index is in general complex-valued this is

also true for the Fresnel coefficients. Propagation through a medium of thickness

d and refractive index ni is described with a complex-valued propagation factor

pi = exp(−iωñid/c). All coefficients are meant to be frequency-dependent and

complex-valued which will be dropped in the following notation. The refractive

index in the conducting layer can be expressed as n2(ω) =
√
n2

3 + iσ(ω)/ωε0 with

the refractive index of the unexcited sample n3 frequency-dependent conductivity

σ(ω).

The reflection from the top surface is given by

r0 = E(0)
r /Ein = r12.
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Figure 5.4: Photoexcited layer n2 of thickness d on top of semiconductor wafer
with thickness L. For d � L only multiple reflections within the top layer are
considered due to the temporal windowing of the measured THz pulses. The black
area indicates the exact initial exponential carrier density distribution due to the
optical pump pulse absorption.

The first multiple reflection including one extra round trip in the thin layer is

r1 = E(1)
r /Ein = t12p

2
2r23t21

and the nth multiple reflection including n extra round trips

rn = E(n)
r /Ein = r1(r21p

2
2r23︸ ︷︷ ︸

=:pR

)n−1 = r1p
n−1
R .

All reflection can be summed up by employing the geometric series with the factor

pR accounting for an extra round trip in the photoexcited layer

∞∑
n=0

E(n)
r /Ein = r0 + r1

1

1− pR
. (5.1)

Figure 5.5 shows the calculated reflectivity for various conducting film thicknesses

compared to the reflection from a bulk sample. It is clearly shows that for an

increasing film thickness the response approaches that of a bulk conducting sample

with only one surface reflection. It also shows that for a typical penetration depth

of 10 µm the deviations from the bulk reflection cannot be neglected.
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Figure 5.5: Comparison of the reflectivity in amplitude (a) and phase (b) from
a thin conducting layer with Drude parameters (σDC = 30 S/cm, τ = 150 fs) on
substrate with nL = 3.6 (GaAs) for different layer thicknesses, showing the devi-
ations from a homogeneously excited sample(dotted line). For thicker layers the
deviations from the bulk sample become smaller.

5.1.2 Transmission Through a Photoexcited Surface Layer

Following the same procedure as for the reflection case (Fig. 5.4) the pump-induced

relative change in the transmission T (exc) can be written with transmitted electric

field through the unexcited E0
t and the excited sample E

(exc)
t as

T (exc)(ω) =
E

(exc)
t (ω)

E0
t (ω)

=
t12p2t23p3(−d)

(1− r23p2
2r21)t13

. (5.2)

The problem of equation 5.2 that it can not be solved directly for the refractive index

of the conducting layer n2 because it occurs in an exponential pj = exp(−iωñd/c)
and in the Fresnel coefficients tij = ni/(ni +nj). But it could be solved numerically

which was not done here as the change in the transmission was fit with a suitable

model for the conductivity of the photoexcited layer, which was easier to apply.

There exists a thin-film approximation for the transmission of a thin conducting film

on an insulating substrate with refractive index n of EM-waves [42] which is only

valid if the wavelength λ of the incoming wave is much larger than the thickness d

of the conducting layer λ � d. The large benefit of this relation is that it can be

directly inverted for the conductivity σ.
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E
(exc)
t (ω)

E0
t (ω)

=
1 + n

1 + n+ Z0σ(ω)d
, (5.3)

where Z0 = 376.7 Ω denotes the impedance of free space. For the investigated

frequency range of several THz it was observed that this simplification only holds for

film thicknesses with d� 1 µm, so it is not applicable for the cases investigated here.

Fig. 5.6 shows the change in the transmission through a photoexcited conducting

layer with a thickness of d = 5 µm calculated with the exact formula (Eq. 5.2) and the

approximation (Eq. 5.3). The calculation from the thin-film approximation differs

significantly from the exact calculation. The vacuum wavelength for 1 THz is 300 µm,

which is much larger than the estimated layer thickness, so this deviation from the

approximation is quite surprising.
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Figure 5.6: Relative change in the transmission in amplitude (a) and phase (b)
as calculated with the thin-film approximation (Eq. 5.3) and the exact formula
(Eq. 5.2). Both results differ significantly so the approximation is not valid for
this frequency range. The thickness of the conducting layer is 5 µm, the Drude
parameters for the conductivity are σDC = 40 S/cm, τ = 150 fs and the refractive
index of the substrate is nL = 3.6.

For the case of small changes in the transmitted electric field ∆E � E transfer

functions for several cases of layered sample geometries are given in [43], but are

not applicable here, either. Here pump induced changes of the probing THz field of

approximately a factor of 2 were investigated.
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5.1.3 Carrier Dynamics

Photoexcited electron-hole pairs in the bulk of a sample will recombine with a char-

acteristic time constant τb. This radiative transition this can be observed by time-

resolved photoluminescence measurements. For samples with a thickness larger than

the penetration depth of the optical pump pulse carrier diffusion into the depth of

the sample will take place which is described by a diffusion equation (∂tn = D∂2
xn).

The diffusivity is given by the Einstein relation D = µabkBT/e, where µab is the am-

bipolar mobility given through the electron and hole mobilities 1/µab = 1/µe+1/µh.

The recombination on the surface of a semiconductor is known to be totally different

from the bulk material. A reason for that is that dangling bonds can act as surface

recombination centres where non-radiative recombination takes place trough defect

levels.[44]

It is customary to relate the time constant of the surface recombination τs to the

sample thickness d via τs = d/2, where the quantity s is the surface recombination

velocity (the factor 2 refers to the two wafer surfaces).

The effective carrier lifetime is related to the two recombination mechanisms as

follows [45]
1

τeff
=

1

τb
+

1

τs
=

1

τb
+

2s

d
, (5.4)

so the surface recombination is important for small sample thicknesses and equiva-

lently for thin photoexcited layers.

An analytical solution of the diffusion equation 5.5 was given in [46] involving the

surface recombination velocity s, a slower bulk recombination time τb and the dif-

fusivity D. For the initial condition the optical penetration depth 1/α of the pump

pulse is needed and the pump pulse is assumed to be a δ(t)-pulse. The diffusion

equation reads
∂n

∂t
= D

∂2n

∂z2
− n

τb
+ δ(t) exp(−αz). (5.5)

With the following boundary conditions:

n(0, t) =
D∂n(z, t)

s ∂x
|z=0 (5.6)
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which states that carrier at the surface will recombine (Fig. 5.7), and

n(L, t) = 0 (5.7)

n(z, 0) = 0 (5.8)

(5.9)

stating that there are no excess carriers before the excitation and for a sufficient

distance L in the depth of the sample.

The solution can be found by a Laplace transform method [46]:

n(x, t) = φ(x, t) exp(−t/τb) (5.10)

φ(x, t) = exp

(
− x2

4Dt

)
{1

2
[ω

(
α
√
Dt− x

2
√
Dt

)
+

αD + s

αD − s
ω

(
α
√
Dt+

x

2
√
Dt

)
]

− s

αD − s
ω

(
s

√
t

D
+

x

2
√
Dt

)
}, (5.11)

where ω denotes the exponentially scaled complementary error function ω(z) =

exp(z2)[1 − erf(z)] The solution for some specific time steps is shown in Fig. 5.7,

where also the first boundary condition (Eq. 5.6) was indicated.

The total carrier density for this model is given is given by:

n(t) =

∫ L

0
dx n(x, t)

= exp(−t/τb)

{
s

α(s− αD)
ω(α
√
Dt)− D

s− αD
ω

(
s

√
t

D

)}
(5.12)

In the following it will be shown that the response (transmission/reflection) from

such an inhomogeneous carrier density profile, resulting from the bulk and sur-

face recombination and the carrier diffusion, can be well described by a thin ho-

mogeneous film. For this calculation it also was ensured that the total number

of carriers is the same for both cases (Fig. 5.8(a)). The space-dependent Drude-

conductivity σ(ω, z) ∼ nc(z)
1−iωτ is used for calculating the THz response in a transfer

matrix formalism.[41] The general dependence of the scattering time τ on the carrier

density was neglected here.
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Figure 5.7: Initial exponential carrier density profile (dashed line) for a penetra-
tion depth of 1µm and carrier density profiles for 10, 50, 100, 300 and 1000 ps after
photoexcitation calculated with a bulk lifetime τb = 2 ns, surface recombination ve-
locity s = 8× 105 cm/s and a diffusivity D = 100 cm2/s, the straight dashed lines
indicate the boundary condition (Eq. 5.6) for the surface recombination at z = 0.

For the example shown in Figure 5.8, a carrier density profile was chosen that de-

viates significantly from the initial profile as surface recombination has taken place

and so the ’center of charge’ has moved into the sample. The calculation shows that

even for this case the reflectances/ transmittances agree reasonably well in amplitude

and phase. For carrier distributions agreeing more closely with the step function,

the accordance in the response increases.
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Figure 5.8: Calculation of the amplitude (b) and phase (c) of the THz reflec-
tion/transmission resulting from a inhomogeneous carrier density profile (a) (dots)
compared the response of thin homogeneous layer with a thickness of 1µm (red line
in (a)), the dots in the normalized carrier density plot (a) correspond to the step
width applied in the transfer matrix calculation. The absolute relative deviation
(d) from the response of the real profile stays below 3%. The Drude parameters
for the conducting layer are σDC = 40 S/cm and τ = 200 fs.

5.1.4 Temporal Resolution

The achievable temporal resolution of a pump-probe experiment is determined by the

temporal length of both the probe and the pump pulse. In the case of the OPTP

experiments performed here, the THz-probe pulse has a length of τprobe ≈ 500 fs

which is much longer than the length of the optical pump pulse τp < 100 fs. If both

pulses impinge non-collinearly on the sample, an additional geometrical smearing

decreases the temporal resolution. A schematic drawing of a probe pulse at normal

incidence and a pump under an angle α is shown in Figure 5.9. In this configuration,

the temporal smearing can be estimated to be ∆t = tan(α)wprobe/c. For a typical

focused spot size of a THz pulse of w = 1 mm (Sec. 4.1.3) and an angle of incidence
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of α = 30◦, this leads to an additional smearing of ∆t = 2 ps, which is much larger

then the temporal THz probe pulse width.

wprobe

wpump

Δt

α

Figure 5.9: Non-collinear pump probe geometry and resulting temporal smearing
∆t that is related to the angle of incidence of the pump pulse α and the spatial
probe pulse width wprobe as ∆t = tan(α)wprobe/c.

Observed Signal Rise Time

Figure 5.10 shows the rise in the reflectivity for short times before and after the ex-

citation in an OPTP experiment in reflection geometry on a semiconductor sample

(Si). The observed transient signal R can be treated as a convolution of an instan-

taneous(electronic) response (Heaviside function H) and Gaussian pump and probe

pulses plus some additional smearing that might occur for geometrical reasons. As

electronic transitions happen on much shorter time scales (sub-fs) than what is ac-

cessible in this experiment the electronic transition can be treated as instantaneous.

R = H ∗ Ipump ∗ Iprobe ∗ Ismearing (5.13)

= H ∗ Ieff (5.14)

∼ erf(τ/σeff ) ; σ2
eff =

∑
i

σ2
i (5.15)

The observed onset in the reflectivity was fitted with an error function of the form

erf(τ/σ) which yields the width of the effective probing Gaussian with FWHM =

2
√

ln 2σ. It was observed that the measured width of the rising edge of 2 ps is much

broader than the pulse width of the THz pulse of τ = 0.5 ps would suggest. This can

be explained fully geometrically by the non-collinear setup. The measured width
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Figure 5.10: Pump-probe scan of the electric field of the THz pulse (a) for
the optical excitation at τpp = 0 of a silicon wafer measured in reflection. The
integrated probe pulse intensity (b) shows a rise time of 2 ps, the dashed red line
shows the derivative of the rising edge compared to the THz envelope (blue), the
rise time is increased due to an additional temporal smearing that can be explained
geometrically.

corresponds exactly to the value calculated in the previous paragraph. If pump and

probe beam are arranged collinearly, the observed temporal resolution should be

determined solely by the width of the THz pulse.

To increase the temporal resolution even further one can also do some additional

data processing - Finite-difference time-domain analysis [47] of the dataset E(t, τ).

The key idea is that usually the optical pump pulse (τp < 100 fs) is much shorter

than the THz pulse, so different parts of the THz pulse in reality ’see’ different pump

probe delays and this information is contained in such a two-time measurement.
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5.2 Gallium Arsenide (GaAs)

GaAs is a III/V direct band gap semiconductor (Eg = 1.42 eV) that crystallizes in

the zinc blende structure. Semi-insulating GaAs crystals have very low carrier con-

centrations, resulting from crystal defects, leading to a resistivity up to 1× 109 Ωcm

which is still lower than the resistivity of true insulator. A semi-insulating (100)

GaAs wafer (d = 500 µm) was optically excited by an 800 nm (50 fs) pump pulse.

Figure 5.11 shows the simplified band structure of GaAs and the possible above

band gap excitation. The OPTP experiments were performed in transmission and

reflection geometry. Although examples of transmission measurements have been

reported very frequently in the literature, this is not the case for reflection mea-

surements. Here experiments in both geometries were performed to cross-check the

results by both methods . The absorption for GaAs at 800 nm is α = 1.3× 104 cm−1

[48] which corresponds to an optical penetration depth of d = 0.7 µm.
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Figure 5.11: Simplified band structure of GaAs [49] showing only the first valence
band and the conduction band and a possible vertical above band gap excitation of
an electron-hole pair in the proximity of the Γ-point with an 800 nm pump pulse.
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5.2.1 Transmission Measurement

In the transient THz transmission experiment an initial decrease of the transmission

due to the additional photocarrier absorption was observed. A subsequent increase

in the transmission for longer times after the photoexcitation within several 100 ps

could be observed caused by electron-hole pair recombination.

The model of a thin conducting layer of approximately the optical penetration depth

(d = 1 µm) on an insulating substrate was employed to fit the photoinduced change in

transmission. The dielectric function of the conducting film was calculated as ε(ω) =

εGaAs+iσ(ω)/ε0ω. It was observed that the Drude model was not sufficient to fit the

data so the generalized Drude model of the form σ(ω) = σ0/(1−(iωτ)1−a) (Cole-Cole

model Sec. 2.3.3) with the additional parameter a was employed. As a result shown in

Figure 5.12, the pump induced change in transmission texc(ω)/t0(ω) = A(ω)ei∆φ(ω)

could be well described by the model of a thin homogeneous layer in amplitude

and phase. For evaluating the data, a constant layer thickness was assumed to

simplify the curve fitting procedure at all pump-probe delays τpp. Since the change

in transmission should be proportional to the total amount of carriers, N the carrier

dynamics are assumed to come out right ( ∆T/T ∼ exp(−N)). For GaAs the

mobility of electrons in the conduction band is much larger than the hole mobility

[50] so the effective mass for the conduction band electrons m∗ = 0.067me is used

for the calculation of the carrier density (σDC = ne2τ/m∗). The fitting procedure

yields time dependent values for the carrier density nc, the scattering time τ and the

CC-parameter a which are shown in Fig. 5.13. As expected, the total transmission

in Fig. 5.13(a) shows a behaviour that corresponds to the carrier density in Fig.

5.13(c).

As a result it can was observed that the decay in the total number of carriers can not

be described by a single exponential decay, but by an biexponential decay indicating

that there must exist at least two different relaxation mechanisms. This can be

explained by the occurrence of surface and bulk recombination on different time

scales and carrier diffusion into the depth of the sample. The pump pulse creates an

exponential carrier density profile while being absorbed on its way into the depth of

the sample. Then the fast surface recombination, diffusion of carriers into the bulk

of the sample and the slower bulk recombination are taking place. The fast surface

recombination should be the dominant process for short times after the excitation

and for later times the bulk recombination rate should be observable, as there are

almost no more remaining surface carriers.
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Figure 5.12: Amplitude (a) and phase (b) of the spectral change in transmission
Eexc(ω)/E0(ω) = texc(ω)/t0(ω) = A(ω)ei∆φ(ω) for GaAs 30 ps after photoexci-
tation with an 800 nm pulse and a fluence of 40 µJ / cm2. In (a) also the initial
(dashed) and less intense THz spectrum after photoexcitation (solid) are indicated.
The measured data (dots) agrees well with the fit of an 1 µm thick conducting
(Cole-Cole model) layer with nc = 7× 1017 cm−3 , τ = 150 fs and a = 0.1.

Figure 5.14 shows the total number of carriers fitted with equation 5.12 accounting

for bulk and surface recombination. Beard et al.[13] found slightly different fit pa-

rameters which might result from the higher pump fluence applied here, the obtained

bulk lifetime τb = 1.33 ns here is about half of the value they found (τb = 2.1 ns).

Also the surface recombination velocity of s = 19.2 cm/s found here is much higher

than what they have found (s = 8.5× 105 cm s−1). This should also result from the

high number of carriers of 1× 1018 cm−3 which is two orders of magnitude higher

than in their study (2× 1016 cm−3). The diffusion coefficient of D = 11.2 cm2/s

matches quite well their result of D = 10 cm2/s, in [51] a value of D = 20 cm2 s

was reported. The absorbed fluence of 40 µJ / cm2 corresponds to a photon flux of

1.6× 1014 cm−2. Making the assumption that all photons are absorbed within the

first 1 µm of the sample this would lead to an initial average carrier (e-h pair) density

of 16× 1017 cm−3. So the estimated initial carrier density is approximately 2 times

higher than obtained via the fitting procedure of the data for short times after the

photoexcitation. The reason for this might be that the surface recombination is that

fast enough to decrease the number of carriers within a few picoseconds. A step size

of 20 ps was not sufficient to capture the whole dynamics of the carriers for short

times after the excitation.
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Figure 5.13: Results of the OPTP transmission experiment on GaAs pumped
with a fluence of 40 µJ / cm2 at 800 nm: averaged change in transmission (a) (<>:=∫
dω|E(ω)|2). Obtained fit parameters for the various pump-probe delays: collision
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the conducting layer of d = 1µm. The transmission corresponds to the carrier
density which shows a biexponential behaviour with τ1 = 659 ps and τ2 = 45 ps.
The scattering time and also the Cole-Cole parameter increase for lower carrier
concentrations .
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Figure 5.14: Total carrier density as fitted with the surface recombination and
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time steps after the photoexcitation (b). After 100 ps there are no more carriers at
the surface so only the bulk recombination rate affects the total number of carriers.
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5.2.2 Reflection Measurement

Additionally for the almost the same fluence as in the transmission measurement

the experiment was also done in the reflection geometry. A photoinduced onset and

decay in the THz reflectivity was observed, caused by photoexcitation and recombi-

nation of electron-hole pairs. For fitting the change in reflectivity the same model as

for the previous measurement was employed to check if the results match. Again the

thickness of the photoexcited layer was fixed at 1 µm to reduce the number of fitting

parameters. Figure 5.15 shows the fit for one selected time step which shows good

agreement within the spectral width of probing THz pulse. The time dependence of

the obtained fit parameters nc, τ and a, as shown in Fig. 5.16, matches well with the

results from the transmission measurement. The absorbed fluence of 36 µJ / cm2

corresponds to a photon flux of 1.4× 1014 / cm−2. With the assumption that all

photons are absorbed within the first 1 µm of the sample this leads to an initial

average carrier (e-h pair) density of 14× 1017 cm−3. So the estimated initial carrier

density is again approximately 2 times higher than obtained via the fitting procedure

of the data for short times after the photoexcitation.
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Figure 5.15: Amplitude (a) and phase (b) of the spectral change in reflection
Eexc(ω)/E0(ω) = rexc(ω)/r0(ω) = A(ω)ei∆φ(ω) for GaAs 20 ps after photoexcita-
tion with an 800 nm pulse and a fluence of 36 µJ / cm2. In (a) also the initial
(dashed) and more intense THz spectrum after photoexcitation (solid) are indi-
cated, which shows an increased reflection due to the photoexcitated carriers. The
measured data (dots) agrees well with the fit of an 1 µm thick conducting (Cole-Cole
model) layer with nc = 6× 1017 cm−3 , τ = 150 fs and a = 0.1.
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Figure 5.16: Results of the OPTP reflection experiment on GaAs pumped with
a fluence of 36 µJ / cm2 at 800 nm: averaged change in reflection (a) (<>:=∫
dω|E(ω)|2), obtained fit parameters dependent on the pump-probe delay colli-

sion time τ (b), carrier density nc (c), Cole-Cole model parameter a (d), for a
thickness of the conducting layer of d = 1 µm, the carrier density shows a biexpo-
nential behaviour with τ1 = 681 ps and τ2 = 91 ps. The scattering time increases
for lower carrier concentrations and also does the Cole-Cole parameter. The results
agree well to the transmission measurement.

5.3 Silicon

OPTP experiments on silicon have also been performed in transmission (and reflec-

tion) geometry on an undoped single crystal wafer with a thickness of d = 500 µm.

Silicon is an indirect band gap semiconductor with a band gap of Eg = 1.11 eV [52].

The band structure of silicon and a possible indirect excitation with an 1.55 eV

pump photon is shown in Figure 5.17. The absorption coefficient at 800 nm is

α = 1× 103 cm−1 which corresponds to a penetration depth of 10 µm.

As the penetration depth of the pump pulse is 10 µm, the photoexcited conducting

layer is assumed to have thickness of the order of this penetration depth. However,

the best fit results for the complex change in transmission were achieved assuming

a constant thickness of d = 5 µm. Again Figure 5.18 shows a very good agreement

between the fit and the measured data. The number of carriers shows an single

exponential decay with a time constant of τ = 2.5 ns. As known from other methods

(Microwave-Detected Photoconductance Decay µ− PCD,Optical pump-probe) the

bulk carrier lifetime in silicon is on the order of a few µs [53]. It was shown that the

surface recombination can be suppressed by chemical surface passivation techniques
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Figure 5.17: Band structure of Silicon [52] and a possible indirect phonon assisted
electron transition for a photon energy of Eγ = 1.55 eV(800 nm).

[54]. so the decay seen here is attributed to the surface recombination at the wafer

surface. It was also observed that silicon shows far slower recombination velocities

which explains why the decrease observed here happens on a much slower time scale

than for GaAs.
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Figure 5.18: Amplitude (a) and phase (b) of the spectral change in transmission
Eexc(ω)/E0(ω) = texc(ω)/t0(ω) = A(ω)ei∆φ(ω) for Si 30 ps after photoexcitation
with an 800 nm pulse and a fluence of 100 µJ / cm2. In (a) also the initial (dashed)
and the less intense THz spectrum after photoexcitation are indicated. The mea-
sured data (dots) agrees well with the fit of an 5µm thick conducting (Cole-Cole
model) layer with nc = 18× 1017 cm−3 , τ = 230 fs and a = 0.25.
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Figure 5.19: Results of the OPTP transmission experiment on Si pumped with
a fluence of 100 µJ / cm2 at 800 nm. Averaged change in transmission (a) (<>:=∫
dω|E(ω)|2), obtained time dependent fit parameters: collision time τ (b), carrier

density nc (c), Cole-Cole parameter a (d), for a thickness of the conducting layer
of d = 1 µm. The transmission corresponds to the carrier density which shows an
exponential behaviour with a time constant of τs = 2.5 ns. The scattering time and
the Cole-Cole parameter increases for lower carrier concentrations.

5.4 Poly-Si on Glass Substrate

An OPTP measurement was performed on an 10 µm thick poly-Si layer on a stan-

dard glass substrate (Corning). This measurement also serves as an example for

the usefulness a reflection measurement, since the THz transmission through a stan-

dard glass plate (soda-lime glass) of 1 mm thickness almost vanishes (T < 10−3).

Thus performing the experiment in transmission would not be possible. But the

experiment can be easily be done applying a reflection geometry. The sample was

provided by D.Amkreutz (HZB) and is similar to that reported in [55]. The change

in reflectivity was again fitted with a layered system model with a thickness of the

silicon layer of d = 8 µm and a refractive index of the glass substrate of n = 2.5.

The refractive index of the glass substrate is assumed to match basically that of

BK7 which was reported in [56]. For BK7, refractive index is almost constant for

the THz range with n = 2.5 and the absorption coefficient increases quadratically

with frequency, having a value of 100 cm−1 for 1 THz. Also for this sample the fit

suits quite well for change the in reflectivity in amplitude and phase (Fig. 5.20).

The carrier lifetime here was found to be 5.9 ns, as in previous experiments by time-

resolved photoluminescence the lifetime was found to be τ = 8 µs [55]. This leads to

the conclusion that again surface recombination was observed here, since the bulk
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recombination in silicon happens on the µs-time scale. Surface recombination is very

important for thin layers as the surface recombination time constant can be related

to the thickness of the sample d and the recombination velocity s as τs = d/s. From

the carrier lifetime and the layer thickness, the surface recombination velocity can

be estimated to be s = 4× 105 cm/s.
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Figure 5.20: Amplitude(a) and phase (b) of the spectral change in reflection
Eexc(ω)/E0(ω) = texc(ω)/t0(ω) = A(ω)ei∆φ(ω) for poly-Si on glass 30 ps after
photoexcitation with an 800 nm pulse and a fluence of 450 µJ / cm2. In (a) also the
initial (dashed) and the more intense THz spectrum after photoexcitation (solid)
are indicated. The measured data (dots) agrees well with the fit of an 8 µm thick
conducting (Cole-Cole model) layer with nc = 1.3× 1018 cm−3 , τ = 230 fs and
a = 0.25.
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Figure 5.21: Results of the OPTP reflection experiment on poly-Si pumped
with a fluence of 450µJ / cm2 at 800 nm: averaged change in reflection (a)
(<>:=

∫
dω|E(ω)|2) and obtained time dependent carrier density nc (b), for a

thickness of the conducting layer of d = 8 µm. The transient reflectivity corre-
sponds to the carrier density which shows an exponential behaviour with a time
constant of τs = 5.9 ns. Nγ = 2.3× 1018 cm−3 denotes the number of absorbed
photons within the layer and is almost twice the value obtained from the fit.



Chapter 6

Conclusion and Outlook

During this thesis a THz time-domain spectroscopy setup was built allowing to

perform optical-pump / THz-probe experiments in transmission and reflection ge-

ometry, which was shown for GaAs and silicon samples. From those measurements

the bulk lifetime and surface recombination rate of the photoexcited carriers could

be determined. For GaAs surface and bulk recombination could both be observed

on the experimental available timescale and for the silicon samples the observed

recombination is attributed to the surface recombination only. The surface recombi-

nation was observed here because the recombination in thin photoexcited layers with

a thickness of several µm was investigated. For thin layers surface properties play

an important role and particularly for photovoltaic applications. The time needed

for recording a full 2D OPTP scan was improved significantly by implementing a

fast THz-sampling mode. A large benefit of the reflection geometry is that it offers

the possibility to examine highly absorbing samples. Usually, samples for OPTP ex-

periments in transmission have to be prepared on expensive quartz glass substrates

due to their low THz absorption. It should also be possible to investigate samples

that actually work as photovoltaic devices in reflection and not only the active layers

prepared on a substrate. As the signal change from thin conducting films is of the

order 10−2 and lower, it is necessary to implement a chopper into the optical pump

beam path for measuring such small pump induced changes. For the measurements

reported here, the pump fluence was chosen high enough that still a pump induced

signal was observable. To my knowledge OPTP experiments in reflection have rarely

been analyzed and published so far to this extent (only one example in [57]). The

obtained pump-induced change in THz reflection and transmission could be well

described within a layered system model for the examined semiconductor samples.
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For examining samples that show a fast photoconductive decay it could become

important to arrange the pump and probe beams collinearly to increase the temporal

resolution. Also the spectral bandwidth of the THz radiation could be increased by

applying a different generation mechanism (e.g. generation in air plasma) which

then also increases the temporal resolution. It could also be interesting to generate

THz radiation with high peak electric field strengths to use them as pump pulses or

to probe nonlinear carrier dynamics.
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