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Abstract

In this thesis I present the strain response of laser-excited strontium ruthenate and dysprosium
measured by ultrafast X-ray diffraction as function of the magnetic order. Below the magnetic order
temperature, the excitation of the magnetic degrees of freedom provides an additional contractive
stress in both materials that reduces the ultrafast expansion and leads to unconventional strain
pulses in dysprosium. The modelling of the picosecond strain response reveals the spatio-temporal
stress as superposition of contributions from phonons and magnetic excitations. I apply the
thermodynamic concept of a macroscopic Grüneisen parameter to individually describe the stress
contributions of the subsystems. The subsystem-specific Grüneisen constants linearly relate the
deposited energy density to a stress contribution that inherits its time-dependence from the
excitation of the subsystem via its coupling to the other subsystems.
The most prominent property of the magnetic stress next to its contractive nature is its saturability
due to a finite integral of the magnetic heat capacity that corresponds to a full demagnetisation
of the material. The temperature- and fluence-dependent saturation of the magnetic stress
results in a temperature- and fluence-dependent total stress that drives the strain response of the
sample structure. The total laser-induced stress in strontium ruthenate exemplifies the changing
temperature and fluence dependence due to the saturation of the magnetic stress, for the case
of ultrafast equilibration between electronic, phononic and magnetic degrees of freedom. In
the high fluence regime the magnetic stress depends on the temperature-dependent integral of
the remaining, total magnetic heat capacity, whereas the magnetic stress is proportional to the
magnetic heat capacity in the low fluence regime.
In the inhomogeneously excited dysprosium layer the saturation of the magnetic stress results
in a spatially-dependent sign of the total stress that changes with time due to the long-lasting
non-equilibrium between phonons and magnetic excitations. At the fully demagnetised top side of
the layer the tensile phonon stress dominates and drives a bipolar strain wave. At the bottom of
the magnetic layer the non-saturated magnetic stress dominates and the contraction drives an
expansion wave into the substrate. These two contributions superimpose to the unconventional
strain wave shape that is an asymmetric bipolar strain wave preceded by an expansion detected in
a buried non-excited detection layer. The spatial extension of the fully demagnetised part of the
transducer is fluence-dependent. A double-pulse excitation scheme with a varying fluence of the
first excitation but a constant fluence of the second pulse probes this dependence by the response
to the second pulse. With increasing fluence the strain response to the second pulse changes from
purely contractive to purely expansive indicating the saturation of the magnetic stress. These
findings demonstrate the capability to study spatio-temporal magnetic excitations by ultrafast
X-ray diffraction using the Grüneisen model to describe the subsystem-separated ultrafast stress.
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Kurzfassung

In dieser Arbeit präsentiere ich die mit ultraschneller Röntgenbeugung gemessene zeitaufgelöste
Dehnung in Strontium Ruthenat und Dysprosium als Funktion der magnetischen Ordnung. Unter-
halb der magnetischen Ordnungstemperatur führt die Anregung der magnetischen Freiheitsgrade
zu einer zusätzlichen kontraktiven Spannung in beiden Metallen, die die ultraschnelle Ausdehnung
reduziert und unkonventionelle Dehnungswellen in Dysprosium erzeugt. Die Modellierung der
zeitaufgelösten Dehnung offenbart die raum-zeitliche Spannung, die sich als Superposition der
Beiträge von Phononen und magnetischen Anregungen ergibt. Um diese Beiträge der Subsysteme
individuell zu beschreiben, verwende ich das thermodynamische Konzept von Grüneisen Parametern.
Die verwendeten subsystemspezifischen Grüneisen Konstanten beschreiben die lineare Beziehung
zwischen einer deponierten Energiedichte und einem Spannungsbeitrag, der die Zeitabhängigkeit
der Anregung des Subsystems durch die Kopplung zu den anderen Subsystemen erbt.
Eine besondere Eigenschaft der magnetischen Spannung, neben ihrer kontraktiven Natur, ist
ihre maximale Amplitude, die aus einem endlichen Integral der magnetischen Wärmekapazität
resultiert und mit einer vollständigen Demagnetisierung assoziiert ist. Die temperatur- und fluenz-
abhängige Sättigung der magnetischen Spannung bedingt eine temperatur- und fluenzabhängige
Gesamtspannung, die die induzierte Dehnung innerhalb der Probe beeinflusst. Die laserinduzierte
Gesamtspannung in Strontium Ruthenat verdeutlicht die sich ändernde Temperaturabhängigkeit
aufgrund einer fluenzbedingten Sättigung des magnetischen Spannungsbeitrags für den Fall einer
ultraschnellen Equilibrierung der Subsysteme. Für hohe Fluenzen wird die magnetische Span-
nung durch das temperaturabhängige Integral der verbleibenden magnetischen Wärmekapazität
bestimmt. Im Gegensatz dazu hängt die magnetische Spannung für kleine Fluenzen von der
temperaturabhängigen magnetischen Wärmekapazität ab.
Für die inhomogen angeregte Dysprosiumschicht führt die Sättigung der magnetischen Spannung zu
einem tiefenabhängigen Vorzeichen der Gesamtspannung, das sich zeitlich aufgrund des langlebigen
Nichtgleichgewichts der Phononen und der magnetischen Anregungen ändert. Im vollständig
demagnetisierten vorderen Teil der Schicht dominiert die expansive Phonon Spannung und induziert
eine bipolare Schallwelle. Im Gegensatz dazu dominiert im hinteren Teil der Schicht die nicht
gesättigte, kontraktive, magnetische Spannung und treibt eine expansive Schallwelle in das Substrat.
Diese beiden Beiträge überlagern sich und bestimmen die unkonventionellen Dehnungspulse, die aus
einer asymmetrischen bipolaren Schallwelle und einer voranlaufenden Expansion bestehen und in
einer vergrabenen Detektionsschicht beobachtet werden. Die räumliche Ausdehnung des vollständig
demagnetisierten Teils des Films ist fluenzabhängig. Diese Abhängigkeit wird experimentell mit
Hilfe eines Doppelpulsexperiments überprüft. Dabei wird die Fluenz des zweiten Anregungspulses
konstant gehalten, während die der ersten Anregung systematisch erhöht wird. Mit zunehmender
Fluenz ändert sich die Dehnungsantwort zur zweiten Anregung von ausschließlich kontraktiv zu
ausschließlich expansiv, was die Sättigung der magnetischen Spannung durch den ersten Puls
indiziert. Diese Ergebnisse demonstrieren das Potential von ultraschneller Röntgenbeugung die
räumlichen und zeitlichen magnetischen Anregungen zu untersuchen, indem ein Grüneisen Model
für die Beschreibung der subsystemspezifischen Spannungsbeiträge verwendet wird.
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3.2.1 Phonon Grüneisen parameter . . . . . . . . . . . . . . . . . . . . . . . . 19
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Chapter One

Introduction

The atomic arrangement and spacing in a solid corresponds to a minimum in the Helmholtz free
energy and determines the mechanical, electrical, optical and magnetic properties of the material
in equilibrium. One way to study the fundamental contributions to the Helmholtz free energy
and the associated attractive and repulsive forces between the atoms is to investigate the effect
of their excitation on the interatomic distances. Studying the rising of these interatomic forces
on their intrinsic time- and length-scales requires an experiment with sub-picosecond time and
sub-nanometer spatial resolution on a nanometric thin film.
The field of picosecond ultrasonics subsumes time-resolved experiments that probe the lattice
constant change as response to the optical excitation of an opto-mechanical transducer material
[1–3]. Historically, this kind of experiment is conducted on non-magnetic metals and yields
insight into the fundamental processes such as electron-phonon coupling [4–6] and hot electron
propagation [7, 8]. The experimental approach is based on the deterministic relation between
the strain response and a laser-induced stress, which inherits the time- and length-scales of the
energy transfer processes in the transducer material. In metals the energy transfer from the
laser-excited electrons to phonons is the dominant process determining the spatio-temporal stress.
In recent years, the thermodynamic concept of a Grüneisen parameter has been used to describe
the electron-phonon stress in non-magnetic materials even on ultrafast timescales [6, 9–14]. The
Grüneisen approach linearly relates the energy density deposited in both the electrons and the
phonons to a stress contribution via a subsystem-specific Grüneisen constant [15, 16]. Historically,
the Grüneisen constant was introduced to describe the simultaneous contribution of the quantum
excitations in phonon modes to the heat capacity and the volumetric thermal expansion [17]. This
was further generalised to electronic excitations [18, 19]. The material-specific electronic and
phononic Grüneisen constants are frequently used to analyse the laser-induced strain pulses in met-
als [6, 9–11] and to provide insight into the nanoscopic heat transport in metallic heterostructures
exhibiting different electron-phonon coupling strength [12, 13].
In magnetic metals the magnetic order represents an additional energy reservoir and the magnetic
excitations provide an additional stress contribution. The demagnetisation-induced stress results
in a spontaneous magnetostriction both in equilibrium [20–25] and on ultrafast timescales [26–32].
The analysis of the picosecond strain response enables the investigation of spin-lattice interactions
in the time-domain. Despite the absence of a unified, microscopic theory of magnetostriction,
the thermodynamic approach of a magnetic Grüneisen constant [18, 19, 33, 34] is rarely used
to describe the underlying ultrafast magnetic stress contribution [27–29, 35, 36]. This magnetic
stress contribution and its influence on the strain response have been little studied so far. A recent
publication [32] uses a double-pulse excitation scheme to extract the magnetic stress contribution
in iron-platinum as function of the transient demagnetisation induced by the first pulse. The
experimental results linearly relate the magnetic stress contribution to the energy density storable
to the magnetic subsystem given by the integral of the remaining heat capacity. These findings
indicate a saturation of the magnetic stress that relates to a full demagnetisation of the material.
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In general, the strain response depends on the temperature- and fluence-dependent excitation of
the magnetic subsystem and provides the possibility to manipulate strain pulses by the temperature
and the fluence [27–29]. This raises the questions ”How can the phononic and magnetic stress
be separated on picosecond timescale?” and ”How does the saturability of the magnetic stress
influence the ultrafast expansion and strain waves?”. The manipulation of picosecond strain pulses
by magnetic excitations in a transducer may be useful for scenarios of strain assisted magnetisation
manipulation [37, 38] that could possibly extend the recently presented heat assisted magnetic
recording (HAMR) scheme [39, 40]. Here, the traversing strain pulses modify the crystal field
anisotropy, which deterministically [41, 42] results in magnetisation dynamics [38, 43, 44]. Other
application scenarios involve the study of materials with pressure-dependent phase transitions that
could be subjected to a picosecond strain pulse and the search for an ultrafast invar-material that
could be used for a local heat source that does not generate picosecond strain pulses.

In this thesis I investigate the effect of the laser-induced demagnetisation on the picosecond strain
response. I apply the thermodynamic Grüneisen concept to separate the total ultrafast stress into
the contributions of the phonons and the magnetic excitations. The subsystem-separated total
stress exemplifies the relation between the spatio-temporal magnetic excitations and the ultrafast
expansion given by a linear-chain model of masses and springs.
In the second chapter I introduce the central terms stress and strain as tensor quantities and identify
the stress as driving force for strain both in thermal equilibrium and on ultrafast timescales. The
picosecond strain response in a continuous film is described by a one-dimensional inhomogeneous
wave equation. The comparison to the expansion in thermal equilibrium highlights the absence
of a Poisson stress on ultrashort timescales due to the suppressed in-plane lattice motion. In
the following chapter I present the thermodynamic Grüneisen concept for electrons, phonons and
magnetic excitations, that linearly relates a deposited energy density to a stress via subsystem-
specific Grüneisen constants. The application of this approach to the non-equilibrium after laser
excitation results in a general equation for the ultrafast stress. A linear-chain model of masses and
springs relates this stress to a strain response. Its comparison to the measurements verifies the
stress model. In chapter four I describe the basic principles of X-ray diffraction and the generation
of sub-picosecond X-ray pulses by a laser-based table-top plasma X-ray source, which I use to
probe the transient strain response of the sample structures.
In the fifth and sixth chapter of the thesis I present the temperature- and fluence-dependent
strain response induced by the optical excitation of strontium ruthenate and dysprosium. For both
materials I determine the Grüneisen constants of phonons and magnetic excitations using the heat
capacity and the thermal expansion in equilibrium. The time-resolved investigation of the two
materials demonstrates the capability of the Grüneisen model to describe the strain response and
the subsystem-specific stress both for an ultrafast subsystem equilibration in the homogeneously
excited strontium ruthenate film and for a long lasting non-equilibrium of phonons and magnetic
excitations in the inhomogeneously excited dysprosium film. The Grüneisen model enables the
separation of the phononic and magnetic stress and reveals the influence of the magnetic stress
on the strain pulses in both complementary scenarios. In both materials the saturation of the
magnetic stress provides a temperature- and fluence-dependent ultrafast expansion that affects the
laser-generated strain pulses. This saturation can be probed experimentally by observing the strain
response to a second, delayed excitation pulse. The results indicate the capability of UXRD to
probe the saturation of the energy transfer to magnetic excitations independently of the magnetic
order and the versatility of the Grüneisen model for the analysis of the driving stress.
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Chapter Two

Strain waves in an elastic solid

Strain and especially strain waves driven by a laser-induced stress are the core of this work. This
chapter is designed to introduce the fundamental definitions and relations of stress and strain
that are subsequently used in the description of thermal expansion and strain waves in thermal
equilibrium and on ultrafast timescales respectively.
The quantity strain η denotes the deformation of the unit cell of a crystalline solid. This deformation
is driven by a force per unit area denoted as stress σ . Measuring the strain response therefore
provides insight into the microscopic stress mechanisms both in equilibrium and on ultrafast
timescales. In case of anisotropic three dimensional solids the quantities stress σ and strain η

are tensors. The first section associates their linear relation in the regime of small strains with a
generalised anisotropic three-dimensional Hooke’s law provided by the elastic tensor c that depends
on the interatomic potentials. Subsequently, I identify the Poisson and external stress contribution
to the anisotropic expansion in thermal equilibrium. In the second section I extend the discussion
to time-dependent strain dynamics that are described by the wave equation. The solution of
the inhomogeneous wave equation including time-dependent laser-induced stress is discussed and
indicates clearly the deterministic character of the strain response.

2.1 Elastic tensor and equilibrium expansion

Before turning to the time-dependent phenomena this section provides the used nomenclature and
the basic relations of the elastic properties of a solid to discuss quasi-static strain. The expansion
or contraction of solids with changing temperature is part of the daily experience and a general
macroscopic property of solids. This potentially anisotropic thermal strain η is caused by the
stress σ representing a generalised anisotropic pressure. The elastic tensor c couples stress and
strain linearly in the regime of small strain amplitudes (η < 1%). This generalised form of Hooke’s
law determines the anisotropic deformation of the solid in quasi-equilibrium, where the relaxation
of all degrees of freedom provides a Poisson stress. In this section I present the influence of cubic
and hexagonal crystal symmetries on the elastic tensor and the equilibrium expansion.

2.1.1 Stress and strain as tensor quantities

The following paragraphs introduce the tensor notation of stress and strain that is used to describe
the anisotropic lattice deformation and the underlying anisotropic stress. In crystalline solids the
internal forces are not described by an isotropic pressure p but by an anisotropic stress σ as a
generalised pressure accounting for the crystal symmetry. The force ~F on an area A is composed
of one normal and two tangential components as depicted in figure 2.1(a). The application of
this separation to the surface of an infinitesimal volume element (b) defines the stress tensor
σi j, where the first index denotes the direction of the force acting on the surface and the second
index indicates the direction of the surface normal. Due to the internal character of the stress,
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Figure 2.1: Definition of an anisotropic stress
σi j as force ~F acting on an area
A separated into one normal and
two tangential components (a) that
acts on surfaces of an infinitesimal
volume corresponding to the stress
tensor elements (b).

translational and rotational forces should vanish. This condition is fulfilled in case of a symmetric
stress tensor (σi j = σ ji) leading to a compensation of the stress within the coordinate planes of
the volume element [45, p. 147]. The symmetric stress tensor with six independent coefficients is

σi j =

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 (2.1)

where the off-diagonal elements denote shear stress corresponding to a force acting parallel on
an area. The elastic solid described by three orthogonal unit vectors x̂1, x̂2 and x̂3 responds with
a reversible deformation ηi j to this stress. This deformation leads to a new coordinate system
described by the three vectors x̂′1, x̂′2 and x̂′3:

x̂′1 = (1+η11)x̂1 +η12x̂2 +η13x̂3

x̂′2 = η21x̂1 +(1+η22)x̂2 +η23x̂3

x̂′3 = η31x̂1 +η32x̂2 +(1+η33)x̂3

(2.2)

where the length of the new basis vectors differs from unity (x̂′1 · x̂′1 6= 1) and the basis vectors
are no longer orthogonal (x̂′1 · x̂′2 6= 0). The deformation also changes the position of an atom
~r = x1x̂1 + x2x̂2 + x3x̂3 in the solid. This displacement may be described by a displacement vector
~R [45, p. 150]:

~R(~r) = u1(~r)x̂1 +u2(~r)x̂2 +u3(~r)x̂3

= x1(x̂′1− x̂1)+ x2(x̂′2− x̂2)+ x3(x̂′3− x̂3) .
(2.3)

The Taylor expansion of the direction-dependent displacement ui(~r) for small displacements relates
the strain tensor ηkl to the spatial derivatives of the displacement:

ηkl =
1
2

(
∂ul

∂xk
+

∂uk

∂xl

)
. (2.4)

This relation clearly indicates the symmetry of the strain tensor (ηkl = ηlk). Thus the strain tensor
ηkl has six independent coefficients that read:

ηkl =

 η11 η12 η13
η12 η22 η23
η13 η23 η33

 . (2.5)

2.1.2 Hooke’s law for crystalline solids

This section introduces the strain-independent elastic tensor c that linearly relates the stress σi j and
the strain ηi j in the regime of small strains. This generalised Hooke’s law determines the anisotropic
thermal expansion in thermal equilibrium that depends on a temperature-induced external stress
and a Poisson stress induced by the expansion along other crystal directions. According to Hooke’s
law the elongation of a harmonic oscillator is associated with an elastic energy determined by the
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elastic constants. In the simple case of a single, one-dimensional harmonic oscillator with masses
at positions R and R′ the energy is

Uharm =−1
4
[
ui(R′)−ui(R)

]
Dii(R−R′)

[
ui(R′)−ui(R)

]
=

1
2

k∆u2
i (2.6)

wherein ui(R) denotes the displacement of the mass at R and Dii(R−R′) denotes the negative
second derivative of the potential [46, p. 443], which corresponds to two times the spring constant
k. This simple case is extended to a three dimensional lattice by the different directions x̂1, x̂2 and
x̂3 and masses at the different lattice positions. A small-amplitude displacement field u(r) at R′

can be approximated by the Taylor expansion u(R′) = u(R)+(R′−R) ·∇u(r)|r=R. Following [46,
p. 444] this transforms equation (2.6) to:

Uharm =
1
2 ∑

R,i jkl

(
∂

∂xi
u j(R)

)(
∂

∂xk
ul(R)

)
ci jkl =

1
2 ∑

R,i j
σi j(R)ηi j(R) (2.7)

where the elastic tensor ci jkl denotes a generalised spring constant. The second identity in
equation (2.7) relates the harmonic energy to the product of a generalised force σi j and a
deformation ηi j according to Hooke’s law using the relation between displacement and strain (2.4).
The comparison of the second and the third term relates the stress σi j to the strain ηkl according
to a generalised Hooke’s law:

σi j = ∑
kl

ci jklηkl . (2.8)

The elastic tensor ci jkl is a tensor of rank four with, in general, 81 independent parameters.
However, the number of independent coefficients is reduced to 36 due to the inherited symmetry
from the stress and strain tensor. Due to this symmetry equation (2.8) becomes invariant for
interchanging the indices i↔ j and k↔ l. Therefore there are only six different combinations for
the index pairs i j and kl. These six different combinations can be abbreviated using the following
Voigt notation*:

x1x1→ 1, x2x2→ 2, x3x3→ 3, x2x3→ 4, x1x3→ 5, x1x2→ 6 . (2.9)

The six independent combinations in equation (2.9) include three normal (1,2,3) and three shear
stress contributions (4,5,6). Using the Voigt notation given in equation (2.9) the three-dimensional
Hooke’s law (2.8) transforms to�:

σλ =
6

∑
µ=1

cλ µηµ =
6

∑
µ=1

∂σλ

∂ηµ

ηµ . (2.10)

In case of small strains ηµ the Taylor expansion of the stress σλ (ηµ) defines the second identity in
equation (2.10) and shows the elastic tensor cλ µ to be the parameter describing the strain-caused
change of the stress. In analogy to dU = pdV at constant entropy, the differential of the elastic
energy (2.7) writes dUharm = ∑λ σλ dηλ . For the internal energy U and the free energy F this

*In the following I will use roman indices for the cartesian directions and greek indices to indicate when Voigt
notation is used.

�Note, the change of the notation introduces a factor of two for the the off-diagonal elements of the strain
tensor [45, p. 152]:

σ11 = c1111η11 + c1122η22 + c1133η33 +2c1123η23 +2c1113η13 +2c1112η12

σ1 = c11η1 + c12η2 + c13η3 + c14η4 + c15η5 + c16η6 .
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leads to a Maxwell relation both for adiabatic (entropy S = const.) and isothermal (temperature
T = const.) spatial dimension changes, respectively:

cλ µ =
∂ 2U

∂ηλ ∂ηµ

∣∣∣∣
S
=

∂ 2F
∂ηλ ∂ηµ

∣∣∣∣
T
= cµλ (2.11)

wherein the interchangeability of the partial derivations causes the invariance of the elastic tensor
for a change of λ and µ reducing the independent coefficients to 21 [47, p. 136]. This symmetry
simplifies the relation between strain ηµ and stress σλ in equation (2.10) and results in:

σ1 = c11η1 + c12η2 + c13η3 + c14η4 + c15η5 + c16η6

σ2 = c12η1 + c22η2 + c23η3 + c24η4 + c25η5 + c26η6

σ3 = c13η1 + c23η2 + c33η3 + c34η4 + c35η5 + c36η6

σ4 = c14η1 + c24η2 + c34η3 + c44η4 + c45η5 + c46η6

σ5 = c15η1 + c25η2 + c35η3 + c45η4 + c55η5 + c56η6

σ6 = c16η1 + c26η2 + c36η3 + c46η4 + c56η5 + c66η6

. (2.12)

Equations (2.12) relate the strain components of the solid to a stress σλ as generalised internal
restoring force. In the following this relation is extended by including also an external stress
σ ext

λ
. This thermoelastic external stress induced by a temperature increase ∆T counteracts the

elastic internal stress σλ . Since an equilibrium situation corresponds to a vanishing total stress
σ tot

λ
= σλ −σ ext

λ
= 0, a positive external stress (σ ext

λ
> 0) induces an expansion (ηλ > 0). Inserting

the internal stress σλ according to equation (2.12) defines the strain response to an external stress:

ηλ =
σ ext

λ

cλλ

− ∑
µ 6=λ

cλ µ

cλλ

ηµ (2.13)

wherein the strain components ηµ contain the external stress components σ ext
µ . Equation (2.13)

shows that the strain response ηλ is reduced relative to an external stress σ ext
λ

by the other
strain components ηµ via the off-diagonal elements of the elastic tensor. These strain compo-

nents form the Poisson stress σ
poi
λ

= ∑µ 6=λ cλ µηµ . The six non-equivalent equations (2.13) for
λ ∈ {1,2,3,4,5,6} form a linear system of equations and guarantee a solution for the six indepen-
dent strain components ηλ given by the elastic tensor cλ µ and the external stress components
σ ext

λ
. However, the solution including the full elastic tensor with 21 independent coefficients is

rather complicated and is not discussed here.

The following paragraphs describe the simplification of the elastic tensor by the crystal symmetry
reducing the number of independent coefficients. In chapter 5 and 6 I investigate pseudocubic and
hexagonal systems, therefore I derive the corresponding elastic tensors in the following. For both
systems the rotation symmetry is an important symmetry operation. The invariance of the elastic
tensor under rotations of the coordinate system can be expressed as:

ci jkl = ΦiΦ jΦkΦlci jkl (2.14)

with the rotation matrix Φ. The general form of the rotation matrix for a x3-axis rotation is:

Φ3(φ) =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 . (2.15)

The number of equivalent orientations within a rotation of 2π corresponds to the order of the
rotation axis and determines the angle φ . The cubic crystal exhibits three orthogonal, two-fold
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axes (φ = π) [47, p. 140f], which cause non-zero elastic coefficients only for an even occurrence of
the directions x1, x2 and x3. In Voigt notation (2.9) this coincides with cλ µ = 0 in case of λ 6= µ

and µ ∈ {4,5,6} leading to a block-diagonal shape.
Furthermore, the cubic crystal exhibits a triad axis in [111]-direction, which induces an invariance
under rotation by 2π/3 about this axis. This rotation represents a cyclic permutation of the
indices x1x2x3 and induces an invariance of the elastic tensor under this permutation [47, p. 141].
This symmetry analysis of the cubic crystal structure reduces the number of independent elastic
constants to three:

c cubic
λ µ

=



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 . (2.16)

In contrast to cubic crystals the hexagonal crystal structure exhibits a sixth order principal axis
corresponding to φ = π/3 in the rotation matrix (2.15). The diagonalisation of the resulting
rotation matrix with their eigenvalues and eigenvectors reduces the number of independent elastic
coefficients to five [47, p. 142ff]. However, both the cubic and hexagonal symmetry suppresses
the coupling of shear strain (µ ∈ {4,5,6}) to the normal strain (λ ∈ {1,2,3}) as seen from the
block-diagonal form of cλ µ .

c hexagonal
λ µ

=



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

 (2.17)

The following paragraphs discuss the explicit dependence of the strain ηλ on the external stress
components σ ext

λ
with λ ∈ {1,2,3} neglecting shear stress and strain in a cubic crystal. Using the

corresponding simplified, block-diagonal elastic tensor, the equilibrium strain in equation (2.13)
relates to the external stress by:

η
cubic
λ

=

(1+ ν̃) ·σ ext
λ
− ν̃ ∑

λ 6=µ

σ ext
µ

c11 · (1+ ν̃−2ν̃2)
. (2.18)

The parameter ν̃ denotes the ratio of the off-diagonal c12 to the diagonal element c11. Concerning
a typical solid this ratio is smaller than one (ν̃ < 1) and leads to a positive denominator in
equation (2.18). Therefore a positive stress σ ext

λ
induces an expansion (ηλ > 0) while a positive

stress σ ext
µ induces a contraction (ηλ < 0). This inverse coupling is related to the Poisson ratio

ν =−ηµ

ηλ
in case of an uniaxial stress σλ and λ , µ ∈ {1,2,3}. Inserting equation (2.18) determines

the known Poisson ratio of isotropic or cubic solids to ν = C12
C11+C12

[47, p. 140]. Assuming an
uniaxial stress σ ext

λ
simplifies equation (2.18) and exemplifies the influence of the Poisson effect:

η
uni
λ

=
σ ext

λ

c11
· 1+ ν̃

1+ ν̃−2ν̃2 >
σ ext

λ

c11
= η

c
λ

. (2.19)

Here, ηc
λ

denotes the strain driven by an external stress under the condition of all other strain
components are clamped (ηµ 6=λ = 0). According to equation (2.13) this strain is direct proportional
to the external stress via the diagonal element of the elastic tensor c11. The enhanced strain ηuni

λ
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in case of uniaxial stress is caused by the Possion effect of the non-vanishing transverse strains. An
uniaxial expansive stress σ ext

λ
induces a contraction perpendicular to the direction of the applied

stress ηµ 6=λ < 0 (see equation (2.18)), which causes a negative internal stress. This additional
negative restoring force enhances the induced strain ηuni

λ
according to equation (2.13).

2.2 Elastic dynamics described by the wave equation

After the introduction of the tensor quantities stress and strain and their quasi-static relation,
this section introduces the wave equation to describe the time-dependent strain that is driven
by a spatial gradient of both elastic and external stress. In equilibrium the thermal expansion
is determined by the elastic properties of the sample and corresponds to a vanishing of both
spatial and temporal heater-induced stress gradients. Since dynamics are in general driven by
gradients, in equilibrium no strain dynamics are expected. In this section the additional introduced
spatial and temporal stress gradients drive strain waves as elastic response. The first part of the
section introduces the homogeneous wave equation describing the strain waves driven by internal
stress gradients. The second part extends the discussion by an additional external stress gradient.
I provide the solution to the inhomogeneous wave equation for different stress rise times in a
simple, experimental relevant transducer-substrate geometry to exemplify the capability of the
strain response to indicate spatio-temporal stress.

2.2.1 Homogeneous wave equation in crystalline solids

Before turning to the description of laser-induced dynamics, this section introduces the homogeneous
wave equation to describe strain dynamics in the simplified case of vanishing external stress. The
general solution of the wave equation is a strain wave propagating with sound velocity. An effective
translational force in direction x̂i for an infinitesimal volume element is given by the spatial change
of the anisotropic stress ∑ j ∇ jσi j. According to Newton’s Second law this force density is related
to a mass density ρm times an acceleration üi of the displacement ui in x̂i-direction. The definition
of the strain ηkl (2.4) and its relation to the stress σi j via the elastic constants in equation (2.8)
leads to the homogeneous wave equation:

ρ
m ∂ 2ui

∂ t2 = ∑
j

∂σi j

∂x j
= ∑

jkl

ci jkl

2

(
∂ 2ul

∂x j∂xk
+

∂ 2uk

∂x j∂xl

)
. (2.20)

Inserting the elastic constants for the cubic (2.16) and hexagonal (2.17) symmetry simplifies this
wave equation. Concerning the x̂3-direction there are three stress contributions σ33, σ23 and σ13
corresponding to σ3, σ4 and σ5 in Voigt notation, respectively. For the cubic crystal the wave
equation transforms to:

ρ
m ∂ 2u3

∂ t2 = c11
∂ 2u3

∂x2
3
+ c44

(
∂ 2u3

∂x2
1
+

∂ 2u3

∂x2
2

)
+(c12 + c44)

(
∂ 2u1

∂x3∂x1
+

∂ 2u2

∂x3∂x2

)
. (2.21)

The wave equations for the displacements u2 and u3 in directions x̂2 and x̂3 result directly from
cyclic permutation of equation (2.21). Using the elastic constants for a hexagonal lattice (2.17),
the general wave equation transforms to:

ρ
m ∂ 2u3

∂ t2 = c33
∂ 2u3

∂x2
3
+ c44

(
∂ 2u3

∂x2
1
+

∂ 2u3

∂x2
2

)
+(c13 + c44)

(
∂ 2u1

∂x3∂x1
+

∂ 2u2

∂x3∂x2

)
. (2.22)

In contrast to the homogeneous wave equation in case of cubic symmetry, the wave equations of
the displacements u2 and u3 in directions x̂2 and x̂3 are not directly given by cyclic permutation due
to the additional independent diagonal elastic tensor coefficients in case of hexagonal symmetry.
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These homogeneous wave equations of cubic and hexagonal crystals reveal the relations between
sound velocities v and elastic tensor elements for both longitudinal and transversal elastic waves.
In case of a propagation in x̂3-direction the sound velocities are given by inserting the general
solutions (2.23) and (2.24) to the wave equation in the crystal structure specified wave equations
(2.21) and (2.22). The longitudinal elastic wave with the displacement parallel to the propagation
direction as solution to the wave equation is:

u3(x3, t) = u3,0 exp [i(kx3−ωt)] . (2.23)

In case of cubic and hexagonal crystals this ansatz leads to the relation ω2ρm = c11k2 and

ω2ρm = c33k2 with the sound velocities
√

c11
ρm and

√
c33
ρm , respectively. The general form of a

transversal strain wave with the displacement orthogonal to the propagation direction is given by:

u1/2(x3, t) = u1/2,0 exp [i(kx3−ωt)] (2.24)

where the resulting sound velocities in cubic and the hexagonal crystals is
√

c44
ρm [45, p. 165].

These ansatz (2.23) and (2.24) are formulated for the main symmetry directions and become more
complicated for arbitrary crystal directions.

2.2.2 Inhomogeneous wave equation describes laser-induced dynamics

Introducing a laser-induced external stress in the homogeneous wave equation changes the driven
strain dynamics. In the following paragraphs I discuss the strain dynamics in the experimentally
studied situation of a time-dependent external stress and a transducer-substrate geometry to
provide first insight how the spatio-temporal stress influences the strain response.
According to the homogeneous wave equation of crystal structures the elastic tensor elements
determine the sound velocity v of propagating elastic waves driven by an internal stress gradient.
In an ultrafast pump-probe experiment an additional stress gradient ∇iσ

ext
i is induced by the laser

excitation, which extends the previous discussion by introducing a forcing into the strain dynamics.
They are then described by the inhomogeneous wave equation:

ρ
m ∂ 2ui

∂ t2 = ∑
j

∂ (σi j−σ ext
i j )

∂x j
= ∑

jkl
ci jkl

∂ 2ul

∂x j∂xk
−

∂σ ext
i j

∂x j
. (2.25)

The inhomogeneous wave equation indicates two stress contributions with opposite sign. The
internal stress σi j arising in a strained solid as restoring force is counteracted by the external stress
σ ext

i j , which causes an expansion if σ ext
i j > 0.

The wave equation describing a typical laser-pulse-based pump-probe experiment can be simplified
for the limiting cases of a continuous thin film and individual small grains. The first simplification
is given by the reasonable assumption of vanishing shear forces, due to the in-plane symmetry
of the homogeneous excitation and the sample structure. Further assumptions specifying the
general inhomogeneous wave equation are determined by the lateral excitation conditions. The
significantly larger pump pulse footprint laterally excites the probed sample volume of a thin film
(x̂1 and x̂2) homogeneously. This suppresses in-plane stress gradients ∇1,2σ ext

1,2 and the lateral strain
components of neighbouring unit cells cancel out due to symmetry (η1,2 = 0). These conditions
transform the inhomogeneous wave equation (2.25) of the out-of-plane strain η3 as the observable
in X-ray diffraction to:

ρ
m ∂ 2u3

∂ t2 =
∂

∂x3

(
c33

∂u3

∂x3
−σ

ext
3

)
. (2.26)

The wave equation for a continuous film (2.26) displays the absence of a Poisson stress contribution
on ultrafast timescales in the thin film geometry. Therefore the picosecond strain response depends
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exclusively on the out-of-plane external stress σ ext
3 in contrast to the thermal expansion in

equilibrium (2.13) where the expansion along the transverse directions provides an additional
Poisson stress. In contrast to a continuous thin film, a sample of individual grains exhibits non-zero
in-plane strain due to the uncompensated external stress at the grain boundaries. However, in
the limit of small lateral dimensions the assumption of instantaneous strain relaxation with sound
velocity can be used to obtain a simplified relation, which reads:

ρ
m ∂ 2u3

∂ t2 =
∂

∂x3

(
c33

∂u3

∂x3
+ c13

∂u1

∂x1
+ c23

∂u2

∂x2
−σ

ext
3

)
. (2.27)

This thesis exclusively investigates continuous thin films on substrates or in heterostructures,
whose dynamics after laser excitation are described by equation (2.26). Historically, the solution
to this inhomogeneous wave equation was discussed for thick metal films as transducer exceeding
significantly the optical penetration depth ξ [1, 2]. In the absence of interfaces the depth
dependence of the laser-induced stress σ ext

3 (x3, t) in the transducer follows Lambert-Beers law with
the optical penetration depth ξ . Furthermore, the temporal dependence of the stress is neglected
by the assumption of instantaneous stress rise, which corresponds to an ultrafast laser pulse
excitation and fast microscopic stress generation mechanisms (see Chapter 3). This assumption of

negligible temporal dependence is fulfilled under the condition of τ � ξ

v for the stress rise time
corresponding to τ � 5ps in a typical metal.
In general the inhomogeneous wave equation is solved by the sum of right and left propagating
functions with the sound velocity v and the integral of the inhomogeneity [2]:

u3 = f (x3− vt)+g(x3 + vt)−η3,0ξ e−
−x3

ξ (2.28)

wherein η3,0 denotes the laser induced strain at x3 = 0. The extension to x3 < 0 and the necessary
symmetry at x3 = 0 determines f (x3) = g(−x3), which defines the strain η3 to

η3 =
∂u3

∂x3
= f ′(x3− vt)+ f ′(−x3− vt)−η3,0e−

−|x3 |
ξ sgn(x3) . (2.29)

The boundary condition η3(x3 = 0) = η3,0 determines the function f ′(x3) and leads to the solution
to the spatio-temporal strain η3(x3 > 0, t) [2]:

η3(x3 > 0, t) = η3,0e−
x3
ξ − η3,0

2

[
e−

x3+vt
ξ + e−

|x3−vt|
ξ sgn(x3− vt)

]
. (2.30)

This particular solution to the inhomogeneous wave equation is depicted in figure 2.2 for different
delays after laser excitation.� This depiction displays a bipolar strain wave with leading compressive
part propagating from the surface (x3 = 0) into the layer. At the same time an exponential strain
profile develops behind the expansive part of the strain wave, which remains after the strain wave
has left the near-surface region. This exponential strain profile corresponds to the laser-induced
stress profile and is described by the first term in equation (2.30). The third term denotes the
bipolar strain wave propagating into the layer with leading compression for x3 > vt. Together
with the second term at t ≈ 0 this compression compensates the expansion from incoherently
excited phonons and accounts for the transformation of stress to strain with the speed of sound
corresponding to the propagating strain wave.

The introduction of an additional interface extends these observations to a thin film with thickness
d . ξ on a transparent substrate with perfect impedance matching and equal sound velocities. The
additional interface limits the laser-induced stress to the film thickness and acts as an additional

�This solution is generalised to contractive stress by changing the global sign in equation (2.30). This inverts
the driven bipolar strain wave and causes a contraction in the stressed region of the transducer at the surface.
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Figure 2.2: Time-dependent strain profile after
laser excitation according to equa-
tion (2.30). The driven bipolar strain
wave propagates with sound velocity
v from the surface into the layer. The
induced stress according to the optical
penetration depth ξ transforms to a
thermal expansion.

source of propagating strain waves due to the unbalanced stress gradient. The external stress of a
thin film with time dependence T (t) is given by:

σ
ext
3 (x3 > 0, t) = T (t) ·σ3,0e−

x3
ξ H(d− x3) (2.31)

wherein H(d− x3) denotes the Heaviside function and σ3,0 describes the laser-induced stress at
x3 = 0. Under the condition of an initially unstrained thin film, the displacement u3 as solution to
the inhomogeneous wave equation equation (2.26) is given by [48]:

u3(x3, t) =− 1
2v

t∫
0

[
σ

ext
3 (x3 + v(t− s),s)−σ

ext
3 (x3− v(t− s),s)

]
ds . (2.32)

This solution includes an imaginary material for x3 < 0 in front of the transducer. The solution of the
half-space x3 > 0 is conducted by the combination of two solutions u3(x3 ≥ 0) = u3(x3)+u3(−x3)
[48]. Without explicit time dependence of the stress, this determines the strain η3(x3, t) as spatial
derivation of the displacement

η3(x3, t) =−H(x3)

2v

[
2σ

ext
3 (x3)−σ

ext
3 (x3 + vt)+σ

ext
3 (−x3 + vt)−σ

ext
3 (x3− vt)

]
. (2.33)

Here, the external stress σ ext
3 fulfils the condition σ ext

3 (x3 < 0) = 0, which should be considered
for the third and fourth term. This solution is equivalent to the solution given in equation (2.30)
in case of a transducer thickness exceeding the optical penetration depth.
An explicit time-dependent stress with a finite stress rise time τ complicates the solution to equa-
tion (2.32). Assuming an exponential rising of the stress by σ ext

3 (t)∼ 1− e−
t
τ leads to additional

terms in equation (2.32). Using discrete time steps ti this exponential stress rise transforms to

∑ti
(ti+1−ti)

τ
e−

ti
τ under the condition of ti− ti+1� τ . This discrete picture simplifies the continuous

time-dependent stress to a sum of stress fractions each of them driving dynamics according to
equation (2.33) in case of t = t− ti > 0. This simple picture directly rationalises the condition

τ � ξ

v or τ � d
v for negligible time dependence of the stress rise time concerning thick and thin

films, respectively. This condition ensures a coherent superposition of the dynamics driven by the
discrete stress fractions, since the decoherence time is given by the propagation of the strain wave
on the length scale of its spatial extent (ξ or d).

In the following paragraphs I discuss the solution to the inhomogeneous wave equation for a
transducer on a substrate in case of perfect impedance match and equal sound velocities according
to equation (2.32) and (2.33) including a time-dependent stress.
Figure 2.3(a) depicts the spatio-temporal strain response for an instantaneous stress and a layer
thickness of d = 0.5ξ . The spatial slices in (b) display the generation of a bipolar strain wave that
propagates into the substrate. The unbalanced expansive stress at the surface and the interface
results in an expansion of the transducer that compresses the substrate at the interface. This com-
pression is complemented to a bipolar strain wave by the bipolar strain pulse driven at the surface.
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Figure 2.3: Strain dynamics driven by a spatio-temporal laser-induced stress for a perfect impedance-
matched transducer-substrate system with (d = 0.5ξ ). Assuming instantaneous stress rise,
panels (a) and (b) display the generation of a bipolar strain wave. The spatial intersections
for different delays in units of d

v identify both the surface and interface as strain source. The

comparison to the spatial intersections for a finite stress rise time of τ = 0.1 d
v in (c) reveals a

significant change of the shape of the strain wave. This change is systematically depicted in
(d) at delay t = 3 d

v for different stress rise times in units of d
v

The expansive part of the bipolar strain wave leaves the excited film at t = d
v . Therefore the

transducer exclusively contains the expansive part of the bipolar strain wave that elevates the
mean strain of the film to 3/2 of the bare strain after t = 2 d

v [49].
The influence of a finite stress rise time τ is shown in figure 2.3(c) for a stress rise time of
τ = 0.1 d

v which contradicts the condition of negligible time dependence of the stress. The slowly
increasing expansion at the surface (x3 = 0) with increasing delays indicates the finite stress rise
time in comparison to figure 2.3(b). This finite stress rise time also changes the spatial shape and
the amplitude of the driven bipolar strain wave. The finite rise time leads to a superposition of
coherently excited phonons that are launched at different delays. The strain dynamics driven by
delayed stress components cause a spatial broadening of both the expansive and compressive part of
the strain wave according to the length scale given by τ ·v. Therefore the smeared out compressive
part overlaps with the expansive part and the superposition extends the effective compressive
part as shown by the shifted zero-crossing in case of finite stress rise time (figure 2.3(d)). The
comparison of the driven strain wave for different rise times τ in units of d

v at a delay of t = 3 d
v in

figure 2.3(d) displays a systematic trend with increasing stress rise time. A nearly unchanged strain
wave is only observable for the smallest, finite rise time fulfilling τ � d

v . However, with increasing
stress rise time the amplitude of the coherent dynamics decreases due to the incoherent excitation
conditions. Furthermore, the superposition of the spatially extended expansive and compressive
part causes increasing spatial dimensions of both the compressive and expansive part.
The change of the driven bipolar strain wave also influences the temporal shape of the transient
mean strain of the layers in a heterostructure as demonstrated in the supplementary material of
[29]. Here, the mean strain of the detection layer indicates a nearly uni-polar strain wave for slow
stress rise, since the spatial dimension of the expansive part exceeds the layer thickness causing
an asymmetry in the detection. The observed stress dependence of the driven strain dynamics
exemplifies the strain response to be characteristic for the spatio-temporal stress. This I use
extensively in the analysis of the picosecond strain response in chapter 5 and 6.



13

Chapter Three

Using Grüneisen parameters to
model ultrafast stresses

In this chapter I discuss the linear relation between the energy density ρQ and the stress σ , which
is central to the interpretation of the picosecond strain response observed by ultrafast X-ray
diffraction in this thesis. The used thermodynamic concepts date back to the work of E. Grüneisen
in 1912 [17] who studied the temperature-dependent thermal expansion of solids under equilibrium
heating. The following sections present the core ideas of this approach and discuss its application
in the modelling of laser-induced strain dynamics.
In the first section the potentially anisotropic (negative) thermal expansion is conceptually separated
into the induction of a pressure at constant volume by a temperature increase and a subsequent
relaxation of the pressure by a volume change according to the elastic properties. The temperature
increase driving the thermal expansion relates to the deposition of an energy density by the
corresponding heat capacity. In the second section the introduced Grüneisen parameter Γ linearly
relates the deposited energy density to a stress as generalised pressure. The extension of this
Grüneisen approach to the subsystems of electrons, phonons and magnetic excitations by subsystem-
specific Grüneisen parameters enables the separation of the total stress into the individual subsystem
contributions. The last section presents the two conceptual steps to model a laser-induced strain
response. First, the application of the Grüneisen approach to the equilibration of the laser-induced
non-equilibrium of the subsystems results in a thermodynamic model of the time-resolved stress. In
a second step a linear-chain model of masses and springs calculates the picosecond strain response
including coherently excited strain waves on the basis of the total time-dependent stress.

3.1 Thermodynamics of thermal expansion

This section focusses on the thermodynamic description of the potentially anisotropic (negative)
thermal expansion of solids on the basis of previous investigations [15, 19, 50]. This description of
the strain response in equilibrium prepares the introduction of the Grüneisen approach, which is
the core of the analysis of the laser-induced strain dynamics in the following chapters.
Thermal expansion in general is caused by microscopic intra- and interatomic interactions changing
the macroscopic properties of the solid. The thermodynamic description bases on the macroscopic
properties and rationalises the behaviour of the solid without a detailed knowledge about the
microscopic processes. In case of isotropic elastic properties and thermal stresses the expansion of
a solid is characterised by the volumetric expansion coefficient

β =
1
V

∂V
∂T

∣∣∣∣
p

, (3.1)

which describes the relative volume change ∆V/V induced by changing temperature T under
constant pressure p. Here, the temperature-dependent volume minimises the Helmholtz free energy
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F as thermodynamic potential [15, 19]. The differential of the free energy F =U−T S is given by

dF =−SdT − pdV , (3.2)

wherein S denotes the entropy and U the internal energy. Using the free energy provides further
insight into the physics of thermal expansion. The corresponding Maxwell relation based on

the interchangeability of partial derivations ∂S
∂V

∣∣∣
T
= ∂

∂V

(
∂F
∂T

)
= ∂

∂T

(
∂F
∂V

)
= ∂ p

∂T

∣∣∣
V

can be used to

transform the volumetric expansion to:

β =− 1
V

∂V
∂ p

∣∣∣∣
T

∂ p
∂T

∣∣∣∣
V
=

1
B

∂S
∂V

∣∣∣∣
T

. (3.3)

Here, the isothermal bulk modulus B is defined by B = − ∂ p
∂ lnV

∣∣∣
T

and describes the inverse

compressibility of the solid, which determines the volume change as a response to an induced
pressure. The first term in equation (3.3) separates the thermal expansion conceptually into
two steps. First, a change in temperature induces a pressure at constant volume. This induced
pressure stresses the solid and the following relaxation leads, in the second step, to the volume
change determined by the elastic properties. This two-step view on thermal expansion is depicted
in figure 3.1 by the blue arrows that indicate the underlying minimisation of the free energy
F. The figure schematically displays the free energy in dependence of the volume for two
temperatures T (gray solid line) and T +∆T (black solid line). Here, the induced pressure with
increased temperature is represented by the negative slope of the free energy F(V ) according to
equation (3.2). Since the minimum of the free energy corresponds to p = 0, the second step in
thermal expansion is associated with a relaxation of the temperature-induced pressure by a volume
change, that results in an internal elastic stress counteracting the induced pressure.
Equation (3.3) indicates the important role of the entropy in the thermal expansion, the solid
expands if the entropy increases with increasing volume but contracts if the entropy decreases
with increasing volume. This observation is supported by the condition of minimised free energy
with changing temperature that can be expanded to first order in temperature as [50]:

F(T +∆T ,V ) = F(T ,V )−S(T ,V )∆T . (3.4)

Equation (3.4) shows the correspondence between minimisation of the free energy and the
maximisation of the entropy. In case of a volume-dependent entropy the volume changes always in

Figure 3.1: Thermodynamic two-step view on thermal expansion based on equation (3.3) and (3.4).
The minimum of the volume-dependent Helmholtz free energy F(T ,V )+ p0V determines the
equilibrium volume V of the solid. Increasing the temperature from T to T +∆T shifts the
position of the minimum in the first step and causes a volume change in the second step. In (a)
the entropy increases with increasing volume (∂S/∂V |T > 0) inducing an expansion. However,
in (b) ∂S/∂V |T < 0 shifts the minimum of the free energy to smaller volumes inducing a
negative thermal expansion (NTE).
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the direction of increasing entropy, that is required by the second law of thermodynamic. The
temperature-induced expansion due to a volume-dependent entropy is depicted in figure 3.1. The
difference between the volume-dependent free energy at two temperatures relates by equation (3.4)
to the volume-dependent entropy times the temperature change. The minimum position of the
volume-dependent free energy F(T ,V ) at temperatures T and T +∆T differs, which leads to an
expansion. Depending on the volume dependence of the entropy the expansion is either positive
(a) or negative (b). The positive expansion corresponds to an increasing volume with increasing
temperature, which is in agreement with the usual daily experience. The special case of negative
thermal expansion (NTE) is shortly discussed in section 3.1.2.

3.1.1 Anisotropic expansion

In the previous paragraph the assumption of isotropic or cubic solids leads to an isotropic
thermal expansion described by the volumetric expansion coefficient β . However, in general both
anisotropic elastic properties and anisotropic microscopic stress mechanisms induce anisotropic
thermal expansion. The description of anisotropic expansion requires a direction dependence of the
temperature-induced pressure p and the relative volume change ∆V/V . The generalised quantities
are the external stress σ ext

λ
and the strain ηλ , which were introduced in chapter 2 and determine

the thermal expansion. Equation (3.3) demonstrates the relevance of the temperature-induced
pressure for the volumetric expansion. In analogy, the anisotropic expansion is determined by
the temperature-induced stress σ ext

λ
. Inserting the relation between stress and strain from the

generalised Hooke’s law (2.10) results in:

∂σ ext
λ

∂T

∣∣∣∣
η

=
6

∑
µ=1

cλ µ

∂ηµ

∂T

∣∣∣∣
σ

=
6

∑
µ=1

cλ µαµ (3.5)

where the elastic constants are assumed to be temperature-independent. The elastic constants cλ µ

in equation (3.5) relates the temperature-induced stress to the linear thermal expansion coefficient
αµ defined by

αµ =
∂ηµ

∂T

∣∣∣∣
σ

, (3.6)

which includes in general also shear strain ηµ=4,5,6. Equation (3.5) is the general expression
of equation (3.3) including anisotropic stress mechanisms and the full elastic tensor with 21
independent coefficients. The generalised ansiotropic case can be transferred to the special
isotropic case by the assumption of both isotropic temperature-induced stress and the simplified
elastic tensor of cubic symmetry (2.16):

∂ p
∂T

∣∣∣∣
V
=

c11 +2c12

3
·3α (3.7)

wherein α = αλ for λ ∈ {1,2,3}. Equation (3.7) uses the equal sign of pressure and stress in
this thesis. This sign definition of the external pressure σ ext

λ
in contrast to other publications

[15, 19, 50] bases on the association of the external stress to counteract the restoring force of the
internal stress. Thus positive external stress leads to an expansion (see section 2.1.2). In first
order the volumetric expansion coefficient is determined by β = 3α . Therefore the comparison of
equation (3.3) and (3.7) reveals the representation of the bulk modulus by the elastic tensor in
case of isotropic or cubic solids [47, p. 140]:

B =− ∂ p
∂ lnV

=
c11 +2c12

3
. (3.8)
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Introducing the compliance sλ µ as generalised compressibility, equation (3.5) can be transformed
to a definition of the anisotropic expansion coefficient αµ . Using the reciprocal condition of the
compliance and the elastic tensor

∑
ν

cλνsνµ = δλ µ (3.9)

equation (3.5) leads to a relation between the linear thermal expansion αµ and the direction-
dependent external stresses σ ext

λ
[19]:

αµ =
6

∑
λ=1

sµλ

∂σ ext
λ

∂T

∣∣∣∣
η

. (3.10)

The stress as generalised pressure is related to the free energy by the derivative σλ =− 1
V

∂F
∂ηλ

∣∣∣
η ′,T

.

The subscript η ′ denotes that all strain coordinates except ηλ are kept constant. Inserting this
and using the relation S =− ∂F

∂T results in:

αµ =
1
V

6

∑
λ=1

sµλ

∂S
∂ηλ

∣∣∣∣
η ′,T

. (3.11)

Equations (3.10) and (3.11) indicate the contribution of different stress components to the thermal
expansion αµ . The stress components σλ 6=µ couple to the expansion αµ via the off-diagonal
elements of the compliance tensor that correspond to the Poisson effect. Even if these stress
components vanish (σλ 6=µ = 0), the thermal expansion includes the Poisson effect as shown by
equation (2.18). Thus thermal expansion under equilibrium conditions does not directly correspond
to the intrinsic expansion given by the associated external stress components, but also includes
the Poisson effect as additional internal stress originating from the transverse strains.

3.1.2 Negative thermal expansion

Under equilibrium conditions at low temperatures both materials investigated in this thesis, SrRuO3
and dysprosium, show a decreasing lattice spacing with increasing temperature thus negative
thermal expansion [24, 25]. Therefore this section provides an overview about this phenomenon
in various materials induced by different mechanisms, which shares an increasing entropy with
decreasing volume [15, 51, 52]. The most familiar example of the resulting negative thermal
expansion is the density anomaly of water between 0 and 4 ◦C.
In statistical physics the number of microstates corresponding to the same macrostate determines
the entropy. In case of an ideal gas the number of microstates representing the same macrostate
increases with increasing volume and thus the entropy increases [53, p. 129]. The maximisation of
the entropy in thermal equilibrium results in a positive thermal expansion. A simple example of
decreasing entropy with enhanced volume from statistical physics is a one-dimensional polymer
chain of free-orientable subunits. The longer the polymer chain is the more subunits have to be
orientated parallel to the direction of the chain reducing the number of microstates leading to the
same polymer chain length. This example in comparison to the ideal gas highlights the important
role of interatomic interactions in negative thermal expansion.
In a solid, the crystal structure results from the interaction between the individual atoms that
it hosts. It determines the band structure of electrons and the dispersion relation of phonons
including macroscopic phenomena like ferroelectricity and magnetism. The excitation of these
quasi-particles and collective phenomena can lead to negative thermal expansion, which occurs in
various materials. The following paragraphs provide a brief overview of the different mechanisms
leading to negative thermal expansion in various materials.
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The so called tension effect [52, 54] induces negative thermal expansion by transverse phonons
(see figure 3.2). The transverse oscillation of the atoms stresses the interatomic bound (gray
dashed line), which results in an additional restoring force (blue arrow). In open structures like
zinc blende or wurtzite the favourable excitation of transverse phonons induces a negative thermal
expansion for example in Si, Ge, GaAs, InAs, HgTe or CdTe [19, 52, 55, 56] at low temperatures.
In trigonal selenium [57] and tellurium [58] this vibrational effect induces an anisotropic negative
thermal expansion over a wide temperature range. One famous example of isotropic negative
thermal expansion over a wide temperature range is zirconium tungstate ZrW2O8 [59].

Figure 3.2: Tension effect in two dimensions.
Transverse oscillations induce an ad-
ditional restoring force by stressing
the interatomic bond that decreases
the effective lattice spacing (dashed
gray line).

In general, also strictly positive external stress can induce anisotropic negative thermal expansion.
The conditions are a strongly anisotropic stress and large off-diagonal elements of the elastic
tensor. According to equation (2.13) the strain component ηλ is reduced by a negative elastic
stress generated by other strain components ηµ 6=λ via the off-diagonal elements of the elastic
tensor. Therefore strongly anisotropic induced stress and large off-diagonal elements may induce
an effective negative stress. This strong anisotropic stress can be either temperature-induced as in
arsenic, indium, zinc and cadmium [60, 61] or induced by the different in-plane expansion of the
substrate deforming the unit cells of a thin film that is epitaxially attached to it.
Furthermore, ferroelectric materials like the perovskites PbTiO3 [62] and BaTiO3 [63] exhibit a
volumetric negative thermal expansion in the tetragonal phase below their order temperature. Also
magnetism induces anisotropic negative thermal expansion for example in rare-earth materials
[24, 51] or the perovskite SrRuO3 [25]. Even crystal electrons can cause negative thermal expansion
as observed for strontium [64] at low temperatures.

3.2 The Grüneisen model

In the previous section the thermal expansion is conceptually separated into two steps. These
are the generation of lattice stress by a temperature change and the following relaxation of the
stress by a change of the solids dimensions. While the second step is determined by the elastic
properties of the solid, the first step contains the stress generation from an increased entropy that
results from an energy density deposition. This section introduces the concept of the Grüneisen
parameter Γ as the linkage between energy density ρQ and stress σ for phonons, electrons and
magnetic excitations. Starting from equilibrium considerations this concept is extended to describe
the laser-induced stress on ultrafast timescales with non-thermal distribution functions.
The following paragraphs consider the thermodynamic relations for a heated solid that lead to
the definition of the Grüneisen parameter Γ. The temperature increase inducing a deformation of
the solid requires the deposition of energy per unit volume at constant volume ρQ = U

V . In the
isochoric case the total differential of the internal energy dU = δQ+ pdV reduces to [53, p. 122]:

dU
V

=
δQ
V

=
CV

V
dT , (3.12)

where CV denotes the heat capacity at constant volume. This relates the temperature-induced
pressure in equation (3.3) to the deposited internal energy U per unit volume [15, 16]:

∂ p
∂T

∣∣∣∣
V
=

CV

V
∂ p
∂

U
V

∣∣∣∣∣
V

=
CV

V
Γ . (3.13)
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Here, the Grüneisen parameter defines the induced pressure by energy density deposition, which
corresponds to the first conceptual step in the thermal expansion process. Inserting the definition
of the temperature-induced pressure in equation (3.3) relates the Grüneisen parameter Γ to the
macroscopic properties of the solid, i.e. the volumetric thermal expansion β , the bulk modulus B
and the heat capacity CV :

Γ =
∂ p
∂

U
V

∣∣∣∣∣
V

= BV
β (T )

CV (T )
. (3.14)

According to equation (3.14) the volumetric expansion coefficient β is fully described by the
bulk modulus, the heat capacity and the Grüneisen parameter. In analogy to section 3.1.2 this
definition of the Grüneisen parameter can be generalised for the case of anisotropic expansion.
The anisotropic Grüneisen parameter Γλ relates the scalar quantity of deposited energy density ρQ

to the direction-dependent stress σλ . The description of anisotropic expansion in equation (3.5)
transforms equation (3.14) to:

Γλ =
6

∑
µ=1

cλ µV
αµ(T )
CV (T )

. (3.15)

The relation between the linear thermal expansion αµ and the temperature-induced external stress
(3.10) transforms the anisotropic Grüneisen parameter (3.15) to:

Γλ =
V
CV

∂σ ext
λ

∂T

∣∣∣∣
η

. (3.16)

For sufficiently small temperature changes dT equation (3.16) simplifies and reveals the Grüneisen
parameter relating linearly energy density and induced stress:

σ
ext
λ

= Γλ ρ
Q = cλλ η

c
λ
= cλλ

(
ηλ + ∑

µ 6=λ

cλ µ

cλλ

ηµ

)
. (3.17)

The induced stress σ ext
λ

relates by the elastic tensor element cλλ to a strain ηc
λ

that corresponds to
the new equilibrium position. The superscript c indicates vanishing strain components ηµ 6=λ = 0.
The resulting simple relation between stress and strain is rationalised by neglecting the transverse
strain components ηµ 6=λ in equations (2.13) and (3.5). Thus clamping all strain components
except ηλ as on ultrafast timescales in a thin film geometry accesses the intrinsic expansion
without Poisson effect given by the anisotropic Grüneisen parameter Γλ .

Historically, the Grüneisen parameter was introduced by E. Grüneisen, who observed heat capacity
and thermal expansion share the same temperature dependence in various materials [17]. Since
the elastic constants typically vary very little with temperature [16], this leads to a temperature-
independent Grüneisen constant according to equation (3.14). In fact, for many materials the
Grüneisen parameter is approximately temperature-independent and therefore a Grüneisen constant
as for the closed-packed metals aluminium, copper, iron, gold, platinum and silver [65–68] or the
insulator magnesium oxide [69]. In this case a deposited energy density induces the same external
stress regardless of the sample temperature.
However, in general the Grüneisen parameter of a solid is temperature-dependent. The Grüneisen
parameter changes especially at low temperatures, where mainly phonon modes of low energy are
occupied [19, 70] (section 3.2.1) or other subsystems r like magnetic excitations (section 3.2.3)
add to the phonon contribution [71, 72]. Therefore it is useful to separate the Grüneisen parameter
into its subsystem contributions Γr weighted by the respective heat capacity [19, 71]:

CV Γ = ∑
r

ΓrCr . (3.18)
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The Grüneisen parameter Γr of each subsystem r describes the lattice stress generated by the
deposition of energy density ρ

Q
r to the subsystem. Equation (3.18) clearly indicates a temperature-

dependent total Grüneisen parameter Γ if the heat capacity contributions of the subsystems with
subsystem-specific Grüneisen parameters exhibit a different temperature dependence.
The volume dependence of the entropy offers further insight into the origin of the lattice stress of
different subsystems. The total differential of the entropy S(T ,V ) in equation (3.19) reveals an
alternative approach to define the Grüneisen parameter.

dS =
∂S
∂T

∣∣∣∣
V

dT +
∂S
∂V

∣∣∣∣
T

dV

=
CV

T
dT +

BβV
V

dV

(3.19)

The partial derivatives of the entropy are associated with the macroscopic properties of the solid
by using the second law of thermodynamics [53, p. 127f]

(
dS|V = dU

T

∣∣
V

)
and the definition of

the volumetric thermal expansion (3.3). As discussed in equation (3.4) and in figure 3.1 the
minimisation of the free energy corresponds to a maximisation of the entropy (dS = 0). Thus
equation (3.19) relates the Grüneisen parameter to the negative relative temperature change with
changing volume:

Γ = BV
β (T )

CV (T )
=−d lnT

d lnV
(3.20)

Associating the entropy to depend on the occupation of quasi-particle states makes this uncon-
ventional definition of the Grüneisen parameter useful. It shows that the Grüneisen parameter
describes the volume dependence of the energy of quasi particle states [19], where the temperature
determines the occupation via the relevant distribution function. This thesis investigates magnetic
metals where the relevant subsystems r are electrons, phonons and magnetic excitations. The
entropy of these subsystems depends on the density of states at the Fermi surface [18, 73, 74], the
Debye temperature [50, 73, 74] and the magnetic exchange energy [18, 50, 74]. The corresponding
Grüneisen parameters and thermal expansion due to electronic excitations, phonons and magnetic
excitations are discussed in the following sections.

3.2.1 Phonon Grüneisen parameter

Historically, the Grüneisen description of thermal expansion only includes the phonons [17]. In
non-magnetic metals in thermal equilibrium this is, especially at room temperature, a valid
simplification, since the electronic heat capacity is small compared to the phononic one. Therefore
the total Grüneisen parameter approximately coincides with the Grüneisen parameter of the
phonons independently of the electronic Grüneisen parameter (see equation (3.18)). According to
equation (3.14) the phononic Grüneisen parameter is determined by the phononic heat capacity
contribution and the phonon caused pressure that both results from the internal energy U . The
internal energy is determined by the sum of the equilibrium internal energy Ueq and the contributions
from the phonons as quantised harmonic lattice vibration modes [46, p. 489f]:

U =Ueq +∑
k s

(
nk s +

1
2

)
h̄ωs(k) (3.21)

wherein nk s =
(
eϑ h̄ωs(k)−1

)−1
denotes the occupation of the state with frequency ωs(k), wave

vector k and polarisation s according to the Bose-Einstein-statistic at temperature T = (kBϑ)−1.
Thus the internal energy of the phonons inherits the temperature dependence of the distribution
function. In the following I use the temperature-dependent internal energy to determine the
phononic heat capacity contribution and the volumetric expansion.
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The heat capacity at constant volume Cph of the phonons as lattice vibration quanta is determined
by the temperature-induced occupation change of the modes:

Cph =

(
∂U
∂T

)
V
= ∑

k s
h̄ωs(k)

∂

∂T
nk s . (3.22)

In the simple case of isotropic or cubic solids the temperature-induced pressure describes the
volumetric expansion β (3.3). The free energy F =U−T S defines the pressure by p =− ∂F/∂V |T .

Using the relation between entropy and internal energy ∂S
∂T

∣∣∣
V
= T ∂U

∂T

∣∣∣
V

relates the pressure to the

internal energy (3.21) [46, p. 489f]. This definition of the pressure originating from the phonons
determines the volumetric expansion according to equation (3.3)*

β =
1
B ∑

k s
h̄
(
− ∂

∂V
ωs(k)

)
∂

∂T
nk s . (3.23)

The comparison of the heat capacity Cph (3.22) to the volumetric expansion β (3.23) demonstrates
the identical temperature dependence defined by the occupation change of the modes with
temperature. Therefore the ratio of those quantities defines a temperature-independent mode-
specific Grüneisen constant as historically suggested by E. Grüneisen:

γk s =
V Bβk s

Cph,s(k)
=−∂ lnωs(k)

∂ lnV
. (3.24)

The mode-specific Grüneisen constant describes the volume dependence of the energy of quantum
mechanical states. Furthermore, it highlights the thermal expansion being an anharmonic effect,
since the excitation level of an harmonic oscillator does neither change its equilibrium position
nor its resonance frequency. Figure 3.3 depicts an anharmonic potential (black solid line) and the
change of the equilibrium position (blue dots) with occupation of higher energetic vibrational states
in contrast to a strictly harmonic potential (gray solid line). In non-cubic solids the phononic stress
may be anisotropic and the corresponding mode-specific Grüneisen constant γk,s,λ corresponds to
an anisotropic anharmonicity of the interatomic potential [19]:

γk,s,λ =−∂ lnωs(k)
∂ηλ

. (3.25)

Anisotropic thermal expansion and the corresponding anisotropic phononic Grüneisen parameter
is reported for various trigonal, hexagonal and orthorhombic materials. For an overview see [75,
p. 91ff], [16, p. 243] and [19, 60, 61]. As discussed in section 3.1.2 an exclusively positive but
anisotropic Grüneisen parameter may cause a negative thermal expansion in one direction via the
Poisson effect that induces an additional contractive stress.

The mode-specific Grüneisen constants γk s define a macroscopic Grüneisen parameter of the
phonons Γph as the heat capacity contribution weighted mean value of the γk s:

Γλ ,ph =
∑k s γλk sCV ,s(k)

∑k sCV ,s(k)
=−∂ lnωD

∂ηλ

. (3.26)

In the frequently used Debye model the frequency of the normal vibration modes scales linearly
with the Debye frequency ωD. This is due to the assumption of a linear dispersion relation and a

*Note, the contradiction between a volume dependence of the phonon frequencies and the treatment of harmonic
vibrations in the internal energy is called quasi-harmonic approximation [19]. This is an approximation since, the
frequency of a purely harmonic oscillator is volume-independent and the vibrational energy of an anharmonic oscillator
includes higher orders in the atomic displacement.
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Figure 3.3: Comparison of a strictly harmonic
(gray) and an anharmonic inter-
atomic potential (black). The an-
harmonic potential induces a dif-
ference in repulsive and attractive
forces leading to a finite mean dis-
placement (blue dots) with occu-
pation of higher vibrational states
(light blue lines).

homogeneous distribution of the modes in reciprocal space. Thus all modes exhibits the same
Grüneisen constant and the total Grüneisen parameter Γph is strictly temperature-independent and
related to the negative strain dependence of the Debye frequency [46, p. 491].
However, in real solids not all modes exhibit the same Grüneisen constant. Therefore the total
Grüneisen parameter inherits the temperature dependence of the mode contribution to the total heat
capacity. At low temperatures low-frequency phonon modes are mainly occupied and their Grüneisen
constant determines the total Grüneisen parameter. The resulting temperature-dependent thermal
expansion in equilibrium can be calculated by determining the mode specific Grüneisen constants
by an anharmonic interatomic potential in the crystal structure [70, 76–78]. Since the Debye
temperature ΘD corresponds to the temperature leading to an occupation of all phonon modes, the
macroscopic Grüneisen parameter typically changes well below the Debye temperature (∼ 0.5ΘD)
[79]. In open structures like zinc blende or wurtzite the transverse phonons have low frequencies
and are therefore energetically favourable. Since transverse phonon modes potentially exhibit a
negative Grüneisen constant via the tension effect (see figure 3.2), it is common that in these
solids the total Grüneisen parameter is strongly temperature-dependent and in some materials even
negative at low temperatures (see section 3.1.2). Furthermore, high-frequency optical phonons
with a different mode-specific Grüneisen constant can vary the Grüneisen parameter at high
temperatures near the Debye temperature. For example in rutile (TiO2) the optical phonon modes
exhibit a significant smaller Grüneisen constant, therefore their occupation at high temperatures
reduces the macroscopic Grüneisen parameter [80] according to equation (3.26).

σph =
1
V ∑

ks
γksh̄ωS(k)δnks (3.27)

From a microscopic perspective this translates the lattice stress induced by phonons to be dependent
on the occupation of these modes. From this microscopic perspective the deposition of energy
leads to an occupation change of different modes δnks. Thus the deposited energy density reads
ρQ = 1

V ∑ks h̄ωS(k)δnks. In analogy to the general definition of the Grüneisen parameter (3.17)

the energy density per mode ρ
Q
ks =

1
V h̄ωS(k)δnks times the mode-specific Grüneisen parameter γks

defines the resulting lattice stress [31]. The formulation of the phonon stress in equation (3.27) is
also valid in strongly non-equilibrium situations that occur upon laser-pulse excitation.

3.2.2 Electron Grüneisen parameter

In solids the electrons together with the nuclei determine the crystal structure and interatomic
potentials. Therefore a changing occupation of electronic states also induces a lattice stress by
influencing the interatomic potentials. However, in non-magnetic metals at room temperature
the anharmonic phonon-phonon interactions dominate the equilibrium thermal expansion, due to
the negligible electronic specific heat. In equilibrium most of the energy density is deposited in
the phonon subsystem and the phononic Grüneisen parameter therefore determines the thermal
expansion according to equation (3.18). In equilibrium the electronic stress contribution only
becomes significant at low temperatures, where the electronic heat capacity Cel ∼ T becomes
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comparable to the phononic specific heat Cph ∼ T 3. Since the Grüneisen parameter linearly relates
the energy density to the lattice stress, the electron contribution to the volumetric expansion
manifests as a term linear in temperature [64]. Additionally, in non-equilibrium situations after
the excitation by ultrashort laser pulses the electronic stress contribution may be separable as
demonstrated for gold, aluminium, nickel and copper [6, 9–11, 81–84] in X-ray diffraction and
all-optical experiments. Since the pump pulse in the visible range excites exclusively the electrons,
their stress contribution significantly influences the generated picosecond strain pulse, which
provides access to the electronic Grüneisen parameter.
Equation (3.4) demonstrates the important role of entropy for thermal expansion minimising the
free energy. In regards to the simple Sommerfeld model for a free electron gas the entropy depends
on the density of states at the Fermi energy n(EF) and on the temperature T smearing out the
Fermi edge that enables the changing occupation of electronic states [19]:

Sel =
2
3

π
2k2

BT n(EF) =Cel . (3.28)

Equation (3.19) relates the volume dependence of the entropy ∂S/∂V |T to the product of heat
capacity CV and Grüneisen parameter Γ per volume V . Thus the electronic entropy (3.28) defines
the electronic Grüneisen Γel to:

Γel =
∂ lnn(EF)

∂ lnV

∣∣∣∣
T

. (3.29)

This formulation of the electronic Grüneisen parameter is generalised for anisotropic non-cubic
solids by a direction dependence as in magnesium [85] and iron-platinum [31]:

Γλ ,el =
∂ lnn(EF)

∂ηλ

∣∣∣∣
T ,η ′

. (3.30)

In case of free electrons described by the Sommerfeld model the density of states at Fermi energy
is proportional to V

2
3 . Inserting this dependence in equation (3.29) or (3.30) results in Γel =

2
3

independent of the direction. However, the electronic Grüneisen parameter of most of the metals is
between Γel = 1 and Γel = 3 and therefore differs significantly from this free electron value. For an
overview see [19], [16, p. 230] and [75, p. 70]. The band structure of a real solid with overlapping
bands contradicts the single band assumption of the Sommerfeld model and causes peaks in the
density of states enhancing its volume dependence at the Fermi energy.
In analogy to the phonons the lattice spacing dependence of the electronic states defines a
state-specific Grüneisen constant

γλ ,i,k =
∂ lnEi,k

∂ηλ

(3.31)

where Ei,k denotes the energy of the electronic state with wavevector k and electronic band index
i. The microscopic stress of the electronic subsystem is in analogy to equation (3.27) given by the
occupation change δnk and the state specific Grüneisen constant γλ ,i,k [3]:

σel = ∑
k

γk,elEi,kδnk . (3.32)

The dependence of the electronic state on the lattice spacing is also known as deformation potential,
that is often introduced in the context of semiconductors [86, p. 122ff]. The deformation potential
describes a change of the electronic band structure with changing interatomic distances, which
corresponds to changing interatomic potentials. The Grüneisen constant captures the inverse
process, i.e. the rise of a lattice stress by changing the occupation of electronic states.
In most materials, the electronic Grüneisen parameter is strictly positive and therefore induces an
expansion, except for strontium [68], barium [68], manganese [18] and chromium [87]. However,
the negative thermal expansion proportional to the temperature in chromium and manganese is
assumed to correspond to a magnetic contribution that arises from the magnetic order.
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3.2.3 Magnetic Grüneisen parameter

The previous sections exemplify the description of thermal expansion of non-magnetic metals by
electronic and phononic Grüneisen parameters. In magnetic metals the magnetic order provides an
additional energy reservoir and entropy source. Therefore the magnetic excitations influence the
thermal expansion both in equilibrium [24, 25, 88–95] and on ultrashort timescales [26–31, 35, 36]
for ferro- and antiferromagnetic coupling in various materials like 3d-transition metals or rare-earth
materials. This coupling of the magnetism to the lattice is called magnetostriction, which is divided
into the spontaneous (thermal) and forced (magnetic field) magnetostriction [96, p. 174f][21–23].
This section focuses on the spontaneous magnetostriction, which can be linked to a magnetic
Grüneisen parameter denoting the stress generation by magnetic excitations.
The strength of the magnetic order can be characterised by the parameter J(r)

kBT , where J(r) denotes
the exchange interaction parameter and kBT the thermal energy. Therefore the entropy depends
on the exchange interaction parameter, which depends intrinsically on the interatomic distances
by the overlap of the electronic wave functions [96, p. 149]. In analogy to equation (3.20) the
magnetic Grüneisen parameter is given by [18, 33, 34, 97]:

Γmag =−
∂ lnJ
∂ lnV

=−∂ lnTθ

∂ lnV
. (3.33)

Here, Tθ denotes the ferro- or antiferromagnetic order temperature corresponding to the exchange
interaction strength, thus the Curie temperature TC or the Néel temperature TN. This order
temperature denotes the vanishing of the long range magnetic order that corresponds to a
vanishing heat capacity. This full demagnetisation introduces an intrinsic saturability of the
magnetic stress. Since the exchange interaction parameter determines the frequencies of the
magnons, the magnetic Grüneisen constant can be associated with the volume dependence of the
magnon states [33]. In analogy to the Grüneisen parameter of phonons and electrons the magnetic
Grüneisen parameter may also be anisotropic via the lattice spacing dependence of the exchange
interaction along different crystal directions

Γλ ,mag =−
∂ lnJ
∂ηλ

. (3.34)

As discussed in section 3.1 the lattice constant in equilibrium corresponds to the minimisation
of the free energy. In the Heisenberg model the Hamilton operator H relates to the dot pro-
duct of neighbouring magnetic moments ~Si and ~S j and the exchange interaction parameter via

H =−J ∑i, j
~Si ·~S j. With increasing temperature the minimisation of the free energy corresponds to

a maximisation of the entropy (see equation 3.4). Since an enhanced exchange strength stabilises
the magnetic order, the number of micro states leading to the same macro state and therefore the
entropy increases with decreasing exchange interaction strength. In the case of a volume-dependent
exchange interaction the excitation of the magnetic subsystem results in a lattice stress by the
so-called exchange-striction mechanism [21, 22]. Therefore an increasing exchange strength with
increasing interatomic distances ( ∂ lnJ

∂ lnηλ

> 0) induces a contraction of the solid by maximising the
entropy. This is in agreement with the associated negative magnetic Grüneisen parameter, which
relates a deposited energy density to a contractive lattice stress.
The strain response caused by magnetic excitations shows large variations. It can be isotropic
[88–91, 95] or anisotropic [24, 25, 72, 93] and expansive (nickel [34, 88], titanomagnetites [98]
and cobalt [34]) or contractive (iron [34], chromium [34], strontium ruthenat [25] and dysprosium
[24]). In most of the magnetic materials the lattice stress originating from the magnetism is
only a small correction to the phonon stress due to small Grüneisen parameter and heat capacity
contribution. Therefore in some ultrafast experiments the magnetic stress contribution is even
neglected in the interpretation of lattice dynamics [10, 99, 100]. In contrast, the magnetic stress
dominates the lattice dynamics in rare-earth metals like holmium and dysprosium [28, 29].
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The magnetic Grüneisen parameter can be determined directly via the pressure dependence of the
order temperature Tθ [98] or via the separation of the heat capacity CV and the thermal expansion
αλ into the subsystem contributions [27–29, 34, 74] according to equation (3.17) and (3.18).
This subsystem separation is based on a model of the electronic and phononic heat capacity and
thermal expansion as discussed in detail for SrRuO3 in chapter 5 and dysprosium in chapter 6.

3.3 Grüneisen perspective on laser excitation of thin films

The Grüneisen model enables the investigation of the influence of the magnetic stress on the
picosecond strain by the separation of the time-dependent stress into the subsystem contributions.
In this section I present both the modelling of the ultrafast stress σ ext

λ
by subsystem-specific

Grüneisen constants Γλ ,r and the simulation of the corresponding strain response by a linear-chain
model of masses and springs. The first section discusses the limitations of a Grüneisen constant for
each subsystem under non-equilibrium conditions after the laser excitation. In the second section I
present briefly the main ingredients of the linear-chain model of masses and springs that I use to
translate the modelled spatio-temporal stress to a picosecond strain response.
A laser pulse in the visible range exclusively interacts with the electrons and causes intra- and
interband transitions. Right after the ultrashort laser pulse excitation the absorbed energy density
ρ

Q
abs is exclusively stored in the electronic system and the subsystems are in non-equilibrium.

Subsequently, the subsystems equilibrate by transferring energy (density) between the subsystems
via their coupling mechanisms. Thus the energy density ρ

Q
r (t) stored in the different subsystems

r is not only potentially different as in equilibrium but also strongly time-dependent if the
coupling timescales exceed the duration of the laser pulse. The coupling of the subsystems during
equilibration after the laser-induced non-equilibrium is sketched in figure 3.4. Due to the lack
of insight which modes and states are occupied during the relaxation of the subsystems, the
subsystems Grüneisen parameters Γr are in first order simplified to a macroscopic Grüneisen
constant that is strictly independent of the excited quantum states. The subsystem-specific
Grüneisen constants relate the time-dependent excitation of the subsystems to stress contributions
under the boundary condition of energy conservation. The time-dependent stress contributions
add up to the total lattice stress σ ext(t), which drives the strain dynamics according to the
inhomogeneous wave equation (2.26). Since the driven strain wave depends on the temporal stress
profile (see section 2.2.2), detecting the strain dynamics provides access to the subsystem coupling
timescales and stress mechanisms in case of different Grüneisen constants. The total lattice stress
after the laser pulse excitation of a magnetic metal reads:

σ
ext(t) = Γel ·

(
ρ

Q
abs−ρ

Q
ph(t)−ρ

Q
mag(t)

)
+Γph ·ρQ

ph(t)+Γmag ·ρQ
mag(t) . (3.35)

After the equilibration of the subsystems, their heat capacities determine the deposited energy
density in each subsystem in the static limit. The corresponding total lattice stress σ ext(t→ ∞))
is then given by:

σ
ext(t→ ∞) = Γel

T ′∫
T

Cel(T ′′)
V

dT ′′+Γph

T ′∫
T

Cph(T ′′)
V

dT ′′+Γmag

T ′∫
T

Cmag(T ′′)
V

dT ′′ . (3.36)

The difference between the temperatures T ′ and T denotes the laser-induced temperature increase.
This temperature increase results from the distribution of the deposited energy density ρ

Q
dep into

all subsystems according to their summed specific heat capacity Ctot:

ρ
Q
dep =

T ′∫
T

Ctot(T ′′)
V

dT ′′ (3.37)
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Figure 3.4: Sketch of the coupling of electrons, phonons and spins in a magnetic metal and their subsystem
contribution to the total lattice stress σ . The laser pulse excitation exclusively deposits
energy density ρ

Q
dep in the electronic system that is subsequently distributed to phonons and

magnetic excitations. The subsystem coupling mechanisms corresponds to material-specific
time constants determining the time-dependent energy density ρ

Q
r (t) stored in each subsystem

r. This energy density induces a time-dependent stress contribution via the subsystem-specific
Grüneisen constant Γr and these contributions add up to the total lattice stress driving the
strain response according to the inhomogeneous wave equation (2.25).

Equation (3.35) except for the magnetic term is commonly used to describe the lattice dynamics of
non-magnetic metals [6, 9, 11, 81–84, 99, 101, 102], where the phonon stress rises with 1−e−t/τel-ph

due to the energy density transfer from the electrons to the phonons during the equilibration
of the subsystems. The exponential temporal dependence of the energy transfer characterised
by the timescale τel-ph results from the two-temperature model introduced by Anisimov and
co-workers [103]. The material-specific electron-phonon coupling time constant τel-ph depends
on the temperature-independent electronic and phononic heat capacity and the electron-phonon
coupling parameter gel-ph [48, p. 5f] and ranges between hundreds of femtoseconds in nickel or
aluminium [9, 10] to several picoseconds in gold [11].
In magnetic materials the two-temperature model is extended by including the magnetic system.
The additional heat bath modifies the energy transfer rate between electrons and phonons [104]
by its additional coupling channels to the electrons τel-mag and the phonons τph-mag. Therefore
the two-temperature model is extended to a three temperature model including the magnetic
system, which is also used to describe ultrafast demagnetisation [105]. An Elliot-Yaffet phonon-
mediated spin-flip scattering was proposed to cause the coupling [106] of the magnetic system
to the other subsystems. The heat capacities of the phonons and the magnetic system and their
coupling constants to the electrons determine whether the magnetic system or the phononic system
equilibrates first with the electronic system. These two possibilities also correspond to the two
types of ultrafast demagnetisation reported for transition metals like nickel and rare-earth metals
like gadolinium [106, 107].

3.3.1 Limitations of the constant Grüneisen parameter

In the following chapters the analysis of the total stress arising from the subsystems assumes a
macroscopic Grüneisen constant of each subsystem, which I determine from thermal expansion data
of bulk material. This section discusses the limitations of this assumption on ultrafast timescales
and its thin film application. The assumption of a macroscopic Grüneisen constant for each
subsystem corresponds to a temperature-independent Grüneisen parameter, which neglects the
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temperature-dependent occupation of different quasi-particle states and their specific Grüneisen
constants. Furthermore, assuming a temperature for each subsystem on ultrafast timescales is
a simplification as demonstrated in various experimental and theoretical studies even for non-
magnetic metals [108–115]. The investigations reveal a mode-specific electron-phonon coupling
[111, 113, 115] and a long lasting non-thermal state of both electrons and phonons for several
tens of picoseconds [110, 112, 114, 116]. Furthermore, the electron-phonon coupling depends
on the non-thermal electron state after laser-pulse excitation [108, 109], which may be used to
manipulate the electron-phonon coupling by specific optical excitation [117]. In case of strictly
mode-specific Grüneisen constants for electrons and phonons these non-thermal distributions on
picosecond timescale influence the induced lattice stress and should be taken into account for an
exact solution as demonstrated in [31] by Reid et al.. In this case the description of the stress is
given by equations (3.27) and (3.32). However, this potentially long lasting non-equilibrium of the
phonons only influences the lattice stress, if the mode-specific Grüneisen constants of the strongly
excited modes by electron-phonon coupling differ significantly from the thermodynamic average
over all modes. In the simple case of a shared Grüneisen constant for all modes, the assumption
of a macroscopic Grüneisen constant is even exact.
In addition to this potential modification of the Grüneisen parameter on ultrafast timescales, the
thin film geometry also modifies the Grüneisen parameter with respect to its bulk values. On
ultrafast timescales the non-absorbing substrate does not influence the expansion of the thin film
by laser-induced elastic stress (see section 3.1.2). However, the lattice mismatch between substrate
and thin film induces a distortion of the unit cell of the film to ensure a coherent growth as for
SrRuO3 on SrTiO3 [118]. Since the Grüneisen parameter of various materials depends on the unit
cell volume changed by pressure [119–122], the substrate induced distortion potentially influences
the anisotropic Grüneisen parameter. The relevance of this effect depends on the magnitude of
the substrate-induced distortion, but also on the material. The out-of plane distortion of the SRO
unit cell by 5h corresponds to an additional elastic out-of plane-stress of about 1GPa, which
causes a increase of the Grüneisen parameter between 2 and 10% in various materials like sodium,
potassium, magnesium oxide or quartz. In contrast, the Grüneisen parameter of fluorite decreases
with expansive stress [120]. In summary, the substrate-induced stress arising from an in-plane
lattice mismatch between film and substrate potentially influences the Grüneisen parameter of a
thin film and should be kept in mind while using bulk Grüneisen parameter.

3.3.2 The one-dimensional linear-chain model

The analysis of the picosecond strain response measured by ultrafast X-ray diffraction and the
determination of the underlying stress require the modelling of the strain response to the spatio-
temporal stress modelled by the Grüneisen approach. In this thesis I use a one-dimensional
linear-chain model of masses and springs [123] to determine the picosecond strain response
including strain waves to a spatio-temporal stress. This section introduces the model and describes
the implementation of tensile and contractive stress.
On ultrafast timescales the laser excitation exclusively drives out-of-plane lattice dynamics, since
the lateral homogeneous excitation and the symmetry of the thin film geometry lead to vanishing
in-plane stresses and strains in the probed volume (see section 2.1.2). Therefore the laser-induced
total stress σ ext

3 is equal to the total stress σ3 due to the vanishing Poisson stress σ
poi
3 . The

description of the pump-probe experiment reduces to the out-of-plane direction x̂3. Section 2.1.2
introduces the inhomogeneous wave equation to determine the time-resolved strain response
η3(x3, t) to an external stress σ ext

3 (x3, t). This continuum approach can be simplified by the
discrete representation of the solid by a linear-chain of masses and springs following Hooke’s law
[123]. Here, the springs describe the elastic properties of the solid and the masses represent the
unit cells of the sample structure. The masses are harmonically coupled by the springs and the
chain behaves as coupled oscillators described by a set of coupled linear differential equations.
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Figure 3.5: The (negative) thermal expansion of a solid represented by a one-dimensional linear-chain
of masses and springs. The temperature-induced tensile or contractive stress is included by
inserting (a) or removing (b) spacer sticks, respectively. The external stress at constant lattice
spacing corresponds to the first conceptual step of thermal expansion (figure 3.1) and stresses
the springs. In the second step the springs relax back to their initial length corresponding to
the minimisation of the harmonic energy (2.7) as internal energy. This minimisation of the
relevant thermodynamic potential leads to a change of lattice spacing according to the sign of
the external stress and drives also strain waves for a stress rise faster than its relaxation.

In the modelling of the strain response to a laser-induced stress these coupled linear differential
equations are solved numerically by the modular Matlab library udkm1Dsim [124] to obtain
the time-resolved displacement of each mass. The thermal expansion with regard to this simplified
model for t → ∞ after the laser excitation is shown in figure 3.5. In analogy to figure 3.1 the
(negative) thermal expansion caused by tensile or contractive stress is separated into two steps.
First, inserting or removing spacer sticks represents the external stress and compresses or stretches
the springs. This shifts the minimum of the total energy of the coupled harmonic oscillators to a
new equilibrium spacing. In the second step the system minimises its thermodynamic potential and
the springs relax back to their initial length, so that the total stress reduces to zero (σ −σ ext = 0).
The relaxation of the springs finally changes the interatomic distances.� It is interesting to note,
this implementation of contractive stress includes an implicit saturability of the contractive stress
by completely removing the initial spacer stick. Although negative thermal expansion does not
have to be saturable in general, chapter 5 and 6 demonstrate a contractive magnetic stress, that
saturates upon complete demagnetisation of the material.
Figure 3.5 shows that the length of the spacer sticks directly determines the thermal expansion.
Therefore the length of the inserted or removed spacer sticks ∆a is given by�:

∆a(x3, t) =
a0

c33
σ

ext
3 (x3, t) =

a0

c33
∑
r

Γ3,rρ
Q
r (x3, t) . (3.38)

The simple relation between the thermal expansion ∆a(x3, t) and σ ext
3 (x3, t) by the elastic constant

c33 indicates the absence of an additional Poisson stress. The time- and depth-dependent stress
translates into time- and depth-dependent spacer sticks. The depth dependence of the external
stress is determined by the optical penetration depth of the laser pulse leading to a depth-dependent
energy density deposition. On long timescales the depth dependence is also influenced by heat
transport. Here, the temporal dependence of the stress captures the energy flow between the
subsystems after laser pulse excitation. The second term in equation (3.38) indicates that the
superposition of the stress contributions of the subsystems determines the total length of the
spacer stick. Inserting or removing the resulting total spacer sticks on a timescale faster than the
relaxation time of the stress induces next to the thermal expansion in figure 3.5 also strain waves
as coherent dynamic that are captured well by the linear-chain model.

�Note, this simplified picture exemplifies the induced external stress, whereas the internal stress arising as an
elastic response to the expansion is not represented explicitly.

�Equation (3.38) indicates in contrast to section 3.1, that in this approach the first step also includes the elastic
properties of the solid by the diagonal element of the elastic tensor.
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Chapter Four

Strain determination by
ultrafast X-ray diffraction

In this thesis I use the transient strain of the sample structure to investigate the laser-induced stress
contributions of phonons and magnetic excitations. The transient strain as observable requires the
time-resolved determination of the out-of-plane lattice constant, which I determine by ultrafast
X-ray diffraction using a pump-probe scheme. In this chapter I describe the concepts of strain
determination by X-ray diffraction and the setup for measuring time-resolved lattice dynamics at
the plasma X-ray source of the udkm group in Potsdam.
The first section summarises the basic principles of X-ray diffraction and relates the diffraction
signal to the lattice constant of the solid. The periodic arrangement of atoms in real space leads to
a constructive interference of the scattered X-rays. This intensity maximum at a certain scattering
vector is called Bragg peak. In the second section I quantitatively relate the shift of a Bragg peak
in reciprocal space to a lattice strain. The third section introduces the pump-probe technique to
measure the time-resolved strain after laser excitation using ultrashort X-ray pulses. These X-ray
pulses are generated by a laser-based table-top plasma X-ray source its setup and X-ray pulse
generation mechanism are briefly summarised.

4.1 Principle of X-ray diffraction

This section derives the relation between the lattice constant of a crystalline solid and an intensity
maximum in the diffraction called Bragg peak. The Bragg peak occurs when the scattering vector
~Q that links the incoming~kin and the detected X-rays~kout coincides with a reciprocal lattice point
of the probed crystal structure. The probed scattering vector depends on the diffraction geometry.
Its systematic variation in the experiment provides a scan of the reciprocal space.

In general, the phenomenon of diffraction from a lattice corresponds to the constructive or
destructive interference of different light waves. While the constructive interference occurs at a
summation of amplitude in phase, the destructive interference corresponds to a phase shift of π

between the scattered waves. In the case of spatially separated sources the difference in propagation
length ∆x determines the phase shift between the scattering contributions. Such a situation may

Figure 4.1: Scattering process at two electrons (e-) spatially sepa-
rated by ~r12 with the exemplary chosen combination
of the incident~kin and the scattered wave vector~kout.
The scattering vector is ~Q =~kin−~kout. Together with
the distance between the electrons it defines the phase
shift of the two contributions ∆φ = ~Q ·~r12. If this
phase shift is an integer multiple of 2π the contribu-
tions interfere constructively.
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be associated with an elastic scattering process at more than one object separated by~r. Figure 4.1
exemplarily displays such a scattering geometry for two electrons that are spatially separated by
~r12. The dashed gray lines indicate the difference in propagation length of the two parallel beam
components due to the spatial separation of the two scattering sources. Considering the geometry,
the difference in propagation length is ∆x = |~r12| · (sinω + sinθ). The corresponding phase is given
by ∆φ = 2π∆x

λ
with the wavelength λ . Introducing the scattering vector ~Q =~kin−~kout simplifies

the description of the scattering process and the phase relation of the scattered contributions.
Here, ~kin and ~kout denote the wave vector of the incident and the scattered light, respectively.
This scattering vector determines together with the distance between the scattering sources ~r12
the phase shift

∆φ = ~Q ·~r12 =
2π |~r|

λ
· (cos(90◦−ω)− cos(90◦+θ)) , (4.1)

which is in agreement with the definition of the difference in propagation length using the
trigonometric summation theorem. Since the wavelength λ determines the absolute value of the

wave vector
∣∣∣~kin

∣∣∣ = 2π

λ
, the phase is only relevant for the interference if the spacing ~r and the

wavelength are of the same order of magnitude. Therefore, X-rays are used for the diffraction from
the crystal structure of solids with a typical lattice constant of several Angstroms.
In a solid the X-rays scatter exclusively at the electrons, due to the mass in the denominator of
the cross section in the Thomson scattering. The simple case of the scattering at two electrons
is sketched in figure 4.1. In the following paragraphs I extend the description of the scattering
process to a crystal structure that consists of a periodic arrangement of atoms. The scattering
contribution of a single atom with many electrons is given by the atomic form factor f 0(~Q), which
results from the integral of the spatial electron distribution and the corresponding phase as in
equation (4.1):

f 0(~Q) =
∫

ρ
e(~r)ei~Q·~rd~r (4.2)

wherein ρe(~r) denotes the spatially distributed electron density. The integral in equation (4.2)
corresponds to a continuous summation of infinitesimal scattering sources with their associated
phase as in the two electron case. This relates the diffraction amplitude of an atom f 0(~Q) to the
Fourier transformation of its electron density ρe(~r) [125, p. 9].
In case of a crystalline solid the diffraction is determined by the periodic arrangement of atoms in
a crystal structure that consists of a lattice and a basis. The lattice denotes the periodicity of the
crystal and is given by one of the fourteen Bravais lattices [45, p. 17]. Due to its periodicity the
lattice can be described by a lattice vector ~R:

~Rn = n1~a1 +n2~a2 +n3~a3 (4.3)

where n1,n2,n3 ∈ Z. Here, the absolute values of the three primitive translation vectors ~a1, ~a2 and
~a3 denote the lattice constants of the unit cell. Integer combinations n1, n2 and n3 of the primitive
vectors reach every lattice point. To result in a crystal structure, this lattice is convoluted with a
basis consisting of different atoms j at the position ~r j in the unit cell. This convolution results in
a crystal structure with the basis pinned to every lattice point (see [125, p. 10]). This conceptual
separation of the crystal structure into a lattice with a basis simplifies the analysis of the scattering
contributions. The total scattering amplitude Fcrystal(~Q) is the sum of the scattering contribution
of each atom at the position ~Rn +~r j according to the specific atom from factor f 0(~Q) with their

phase given by the dot product with the scattering vector ~Q:

Fcrystal(~Q) = ∑
n, j

f 0
j (~Q)ei~Q·(~Rn+~r j) = ∑

j
f 0

j (~Q)ei~Q·~r j

︸ ︷︷ ︸
structure factor

·∑
n

ei~Q·~Rn

︸ ︷︷ ︸
lattice sum

. (4.4)
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In equation (4.4) the summation over n denotes the summation over all possible n1, n2 and
n3 combinations in case of an infinite crystal in regards to the kinematic description of X-ray
diffraction. The second term in equation (4.4) separates the sum over the atoms in the product of
the contribution from the basis (structure factor) and the lattice (lattice sum). Thus the Fourier
transformation of a convolution is the product of the Fourier transformations according to the
convolution theorem. The absolute square of Fcrystal(~Q) describes the intensity of the diffraction.
Constructive interference enhances the intensity and this maximum of the diffraction intensity is
called Bragg peak. Despite the fact that X-rays scatter exclusively from the electrons, the Bragg
peak encodes the arrangement of the nuclei. While the core electrons of the atoms are located
at the nuclei and inherit their periodic arrangement, the valence electrons form the interatomic
binding and are strongly delocalised in metals. The spatially distributed probability density of the
valence electrons leads only to weak constructive interference. Thus the constructive interference
leading to a Bragg peak is dominated by the electrons localised at the ion core and the position in
reciprocal space depends on the periodic arrangement of the nuclei [126].
In analogy to the diffraction from optical gratings the lattice sum describes an infinite periodic
arrangement of delta functions and the structure factor a real geometrical slit of finite size.
Following this analogy the lattice sum determines whether or not the Bragg peak (constructive
interference of the lattice contributions) is allowed and the structure factor defines an additional
amplitude factor, which could also be zero. In this case the Bragg peak is forbidden due to
the arrangement of the atoms in the unit cell. This atomic arrangement of the atoms changes
transiently due to the excitation of optical phonons that describe the counteracting oscillation
of the atoms in the unit cell. Since the atomic arrangement determines the structure factor, the
amplitude of the Bragg peak becomes time-dependent according to the frequency of the optical
phonon. A famous example is the A1g optical phonon mode in bismuth detected by an oscillation
of the Bragg peak intensity that can be observed by ultrafast X-ray diffraction [127].
In the following paragraphs I describe the conditions of a constructive interference of the scattering
contribution that are yielded by the lattice sum and lead to the occurrence of a Bragg peak. The
lattice sum in equation (4.4) leads to a constructive summation of the contributions under the
condition ~Q · ~Rn = m ·2π with m an integer as generalised description of the two electron case in
equation (4.1). This leads to the Laue condition ~Q = ~G for elastic X-ray scattering with ~G the
reciprocal lattice vector:

~G = h~b1 + k~b2 + l~b3 . (4.5)

Here, the vectors ~b1, ~b2 and ~b3 describe the primitive reciprocal lattice vectors defined by the
cyclic permutation of ~b1 =

2π

a1
â2× â3 with ~a1 = a1â1. The Miller indices h,k, l are integers and

characterise the studied Bragg peak (hkl) in a diffraction experiment. The combination of the
Miller indices h,k, l corresponds to a family of lattice planes [hkl]. Their spacing in real space
determines the scattering vector of the occurring Bragg peak. Thus the position of a Bragg peak
in reciprocal space directly depends on the lattice constant of the solid via the reciprocal lattice
vector ~G. This enables the individual determination of the strain of materials with different lattice
constants by monitoring the shift of the separated Bragg peaks.
Figure 4.2 sketches the co-planar diffraction geometry at lattice planes not parallel to the surface
of the sample. The crystal structure with the plotted lattice planes in real space reveals the
relevance of two sets of angles to describe the diffraction. The direction of the incident and the
scattered wave vector are described by the angles relative to the lattice planes (ω and θ) and
the angles relative to the solids surface (αin and αout). If the lattice planes of the diffraction are
parallel to the surface these two angle pairs coincide (ω = αin and θ = αout). The offset between
the angle pairs corresponds to the angle between the lattice planes and the surface of the sample.
In a diffraction experiment scanning the reciprocal space these angles are set by the rotation of
the sample and the detector relative to the X-ray source and the sample, respectively.
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Figure 4.2: Schematic sketch of a co-planar diffraction from lattice planes non-parallel to the surface of
the sample. The crystal structure (gray dots) and the plotted lattice planes with spacing ahkl
in real space (light blue lines) determine the diffraction. Two sets of angles (ω ,θ and αin,αout)

relative to the lattice planes and the surface describe the scattering vector ~Q =~kin−~kout. The
shown coordinate system of the reciprocal space is oriented with qz perpendicular to the solids
surface. The resulting geometrical relation between the two-dimensional scattering vector and
the diffraction angles is given by equation (4.7).

In the special case of diffraction from lattice planes parallel to the surface of the solid the geometry
simplifies the analysis by ω = θ . Under this condition the scattering vector is perpendicular to the
surface of the sample and the diffraction is described by Bragg’s law [45, p. 68]:

λ

2
= ahkl sinθB (4.6)

where ahkl denotes the spacing of the lattice planes [hkl] including the diffraction order. The
angle θB describes the angle between the incident X-ray beam and the lattice plane, where at 2θB

between incident and diffracted beam a Bragg peak occurs.
To relate these angles of the diffraction experiment to the corresponding scattering vector ~Q a
coordinate system has to be chosen. Since this thesis only investigates thin films, the out-of-plane
direction becomes the reference direction (see section 2.2.2) and is chosen as qz component of the
scattering vector. In the co-planar diffraction geometry the scattering plane contains the surface
normal of the sample. Therefore the scattering vector ~Q is characterised by only two components
qx and qz via the diffraction angles [128, 129]:

~Q =

(
qx

qz

)
=

(
cosαout− cosαin

sinαout + sinαin

)∣∣~k∣∣ (4.7)

where αin and αout denote the incident and scattering angle relative to the surface (see figure 4.2).
In the case of a diffraction from lattice planes parallel to the surface αin coincides with ω and
the Bragg peak occurs at αin = αout = θB. In this case the Bragg peak occurs at qx = 0 and the
condition ~Q = ~G simplifies the analysis to Bragg’s law (4.6).

4.2 Determination of strain from Bragg peak shifts

The change of the lattice constant of a crystalline solid translates into a shift of Bragg peaks
in reciprocal space. This section briefly describes the quantitative determination of the lattice
strain from the Bragg peak shift in full reciprocal space mapping and single-angle measurements.
Chapter 2 introduces the quantity strain as a relative change of the lattice spacing a of a solid
η = ∆a

a0
. This change of the lattice spacing translates into the change of the lattice vector ~R (4.3)
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and therefore also in a change of the reciprocal lattice vector ~G (4.5) via the reciprocal relation
between primitive lattice and reciprocal lattice vectors ~ai and ~bi. According to the Laue condition
~Q = ~G the Bragg peak (hkl) corresponding to the lattice spacing ahkl thus arises at a different
scattering vector ~Q, which corresponds to a different position in reciprocal space. This shift of the
Bragg peak in reciprocal space directly depends on the changed lattice spacing. The out-of-plane
laser-induced strain of thin films investigated in this thesis results in a shift of the Bragg peak at
qx = 0 along the qz-direction that originates from the changing spacing of the lattice planes parallel
to the surface of the sample. The corresponding shift of the Bragg peak along the qz-direction in
reciprocal space is monitored by a symmetric θ -2θ -scan, where ω is equal to θ and both angles
are changed together. The shift of the Bragg peak ∆qz observed by this routine determines the
out-of-plane strain η3 by:

η3 =
a3−a3,0

a3,0
=

qz,0−qz

qz
. (4.8)

The full reciprocal space mapping by rotating the sample and the X-ray detector is time consuming
especially in time-resolved measurements, which require a θ -2θ -scan for each time delay between
pump and probe pulse. Using a position-sensitive line or area detector provides an alternative
measurement routine called reciprocal space slicing [130].
As sketched in figure 4.2 a position-sensitive line or area detector detects simultaneously the
diffraction intensity for different angles θ . According to equation (4.7) this relates to different
scattering vectors and thus to a subset of the reciprocal space. If the detector only covers a small
range of ∆θ � θ , the detector can be approximated as a linear subset in the reciprocal qx-qz-space
that depends on the diffraction angle θ :

qz =−
qx

tanθ
+qz,0 . (4.9)

In the reciprocal space slicing scheme the diffraction angles are set to the Bragg angle (ω = θ = θB)
and the shift of the Bragg peak in reciprocal space is monitored within the subset of the reciprocal
space provided by the position-sensitive detector. This single angle measurement requires a Bragg
peak that is broadened along the qx-direction, because the Bragg peak otherwise shifts out of the
probed subset of the reciprocal space when an out-of-plane strain occurs.
In a diffraction experiment at a real solid the Bragg peak may become broad due to a non-
monochromatic, non-parallel X-ray beam, a pronounced mosaicity or internal strain gradient of
the sample. The mosaicity describes the tilting of crystallites in non-perfect crystals relative to
the out-of plane direction, which is often related to thin films. Due to the mosaicity the sample
intrinsically exhibits lattice planes slightly non-parallel to the surface. The diffraction from these
lattice planes leads to the occurrence of a Bragg peak at αout 6= θ corresponding to a broadening
of the total Bragg peak along qx. Therefore reciprocal space slicing is a time-effective and suitable
method to measure the strain of non-perfect crystalline thin films. The shift of the Bragg peak on
the detector corresponds to a change of the diffraction angle ∆θ , which translates via equation (4.7)
to a shift along qz. Thus the strain detected with this method for small ∆θ* reads [130]�:

η3 =
qz,0−qz

qz
≈ S · −∆θ

2
cotθB (4.10)

*In this context small means that the assumption of a Taylor expansion to the first order is justified:

sin(θB +∆θ) = sinθB · cos∆θ + sin∆θ · cosθB = sinθB + cosθB ·∆θ

�Note, inserting a3 =
2πk
qz

from Bragg’s law results in qz in the denominator of the relative qz change. Since the
relative shift of the Bragg peak typically does not exceed several permill, qz can be approximated by qz,0 to simplify
the relation between strain and angular shift on the detector.
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wherein the factor S denotes a geometrical scaling factor depending on the dimensions of the
Bragg peak in reciprocal space and the diffraction angle. In the case of mosaic thin films this
factor is of order unity but increases for perfect crystals by an order of magnitude. This geometric
scaling factor will be discussed in a dedicated publication from our group. [130]

4.3 Pump-probe experiments with X-ray diffraction

This section describes the experimental setup for the time-resolved X-ray diffraction experiments
presented in chapter 5 and 6. This includes the excitation conditions in a pump-probe experiment
and the generation of ultrashort X-ray pulses using the laser-based table-top plasma X-ray source
of the udkm-group in Potsdam [131, 132]. The previous sections demonstrate the capability of
X-ray diffraction to measure the lattice constant via the position of the Bragg peak in reciprocal
space. The change of the lattice constant translates into a Bragg peak shift in reciprocal space
and is monitored by full reciprocal space mapping or in case of mosaic thin films by reciprocal
space slicing. The time-resolved determination of the strain response to a laser-induced stress
may be realised by a pump-probe technique, which requires ultrashort X-ray pulses to probe the
time-resolved lattice spacing by ultrafast X-ray diffraction.
The pump-probe technique typically involves the splitting of an ultrashort laser-pulse into two,
where one excites the sample and the second probes the induced sample response. The time delay
between the pump and the probe pulse provides a snapshot of the induced dynamics at a certain
time after the excitation corresponding to the delay between the pump and probe pulse. Therefore
repeating the experiment with various time delays between pump and probe pulse reveals the
time-dependent processes. Therefore the pump-probe technique requires a reversible response of
the sample that comes back to the initial state within the inverse repetition rate of the laser. Since
the time-resolution of the technique depends next to geometrical time-smearing effects and the
uncertainty of the delay setting on the duration of the probe pulse, the time-resolved determination
of the strain response requires ultrashort X-ray pulses. Such an ultrashort X-ray pulse as probe
pulse for a pump-probe experiment is generated at the laser-based table-top plasma X-ray source
of the udkm group in Potsdam [131, 132]. Figure 4.3 schematically shows the experimental setup
for the experiments on SrRuO3 and dysprosium presented in chapter 5 and 6.
The laser system consist of a Mantis oscillator generating ultrashort laser pulses and a Legend
Elite Duo chirped-pulse amplifier system, which generates intense, near-infrared laser pulses with
a duration of approximately 40 fs and a repetition rate of 1kHz. The generated laser pulses are
split up into an intense probe pulse and a weak pump pulse by a beam splitter. Unlike typical
pump-probe experiments the ’probe’ laser pulse is relatively intense, because it is used to generate
the X-ray probe pulse. The pump pulse is led over the mechanical delay stage towards the sample,
which is mounted on a two-circle goniometer for the geometrical setting of the X-ray diffraction.
The mechanical delay stage determines the time delay between the pump and probe pulse. Their
temporal overlap is adjusted before the experiment using a superlattice reference sample [134, 135].
Additionally the spot size A and the power of the pump beam P = E ·1kHz with the pulse energy
E are adjusted by a lens telescope and a combination of a λ/2-plate and a pair of polarising
mirrors (not shown), which set the polarisation of the pump pulse to p-polarisation [14]. This
modification sets the excitation density called fluence F :

F =
E
A
=

E sin(ω +20◦)
πσx ·σy

. (4.11)

Here, σx and σy denote the spatial extension of the pump beam assuming a two-dimensional,
elliptical top-hat profile, where the pulse energy is spread homogeneously within the area. Fur-
thermore, the sample conditions can be set by a closed-cycle cryostat and a vacuum chamber
providing an adjustable sample temperature, which is particularly important in the context of
magnetic materials due to the arising magnetic order below the magnetic order temperature.
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Meanwhile, the probe beam is guided onto a parabolic mirror, which focusses the intense optical
probe pulse on a 10 or 20µm thick copper tape. The widening of the probe beam in front of the
parabolic mirror improves the focus on the copper tape. Focussing the intense ultrashort laser
pulse on the copper tape creates an electron plasma due to the changed nuclear potential by the
strong electric field releasing the valence electrons. The freed valence electrons are subsequently
accelerated in the oscillating electric field of the laser pulse and their recollision with the copper
band generates X-ray radiation [132, 133, 136]. The details of this complex X-ray generation with
a strong laser field are still an area of research that aims for improving the laser-based plasma
X-ray generation process [137, 138]. In a simple picture this generation process is very similar to
the generation mechanism in classical X-ray tubes. In a X-ray tube a static electric field accelerates
the electrons onto a metal target and the deceleration of the electrons in the target generates
radiation. This radiation contains X-rays, which can be classified either as Bremsstrahlung or as
characteristic radiation from the excitation of core electrons. In a plasma X-ray source the static
electric field is replaced by the oscillating electric field of the laser pulse accelerating the electrons
during the presence of the laser pulse. Thus the length of the generated X-ray pulse is of the same
order of magnitude as the optical laser pulse. At the plasma X-ray source the length of the X-ray
probe pulse is typically approximately 200 fs [128].
The generated X-ray radiation contains various wavelengths analogue to the classical X-ray tube.
Since a not well defined incident wave vector~kin due to different wavelengths broadens the Bragg
peak in reciprocal space, the precise determination of the lattice strain requires a monochromati-
sation of the X-ray pulse. A fraction of the isotropically emitted X-ray photons pass through a
Montel optic. The Montel optic monochromatises the X-ray pulse to Cu-Kα -radiation (λ = 1.54 Å)
and focusses the beam to a 300×300µm2 beam spot at the sample position [139]. The X-ray
generation efficiency strongly fluctuates, mainly due to the mechanical instabilities of the moving
copper tape in the laser focus. Therefore the generated X-ray intensity is recorded for each
incoming laser pulse using a reference detector that detects a fraction of the transmitted X-rays
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Figure 4.3: Schematic sketch of the plasma X-ray source to measure time-resolved laser-induced lattice
dynamics by X-ray diffraction. The laser system of Mantis and Legend Elite Duo generates
femtosecond laser pulses with a repetition rate of 1kHz. The laser pulses are separated into
a probe and a pump pulse. The parabolic mirror focusses the probe pulse on a copper tape
generating X-ray pulses. The subsequent Montel optic monochromatises and focusses the
X-ray pulse on the sample and the scattered X-ray photons are detected by a Pilatus area
detector. The diffraction geometry is adjusted by a two-circle goniometer orienting the sample
and the detector individually. A lens telescope and a combination of λ/2-plate and polarising
mirrors determine the excitation density and the mechanical delay stage adjusts the time delay
between pump and probe pulse in the pump-probe experiment. (Adopted from [133])
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for the normalisation [132]. The subsequent diffraction is determined by the orientation of the
sample and the detector on a two-circle goniometer. The orientation of the sample relative to
the incoming radiation defines the angles ω and αin and the wave vector~kin (see figure 4.2) by
rotating the inner circle. Since the Montel optic focuses the X-ray beam, the incoming beam
provides intrinsically different wave vectors~kin corresponding to the convergence of 0.3◦.
The X-ray photons of the probe pulse (≈ 1 ·106 Photons

s [136]) are scattered from the sample and
the intensity is detected by a two-dimensional Pilatus detector, whose position is adjusted by the
outer circle of the goniometer that determines the angles θ and αout. The gated single-photon area
detector is divided into 172×172µm2 sized pixels. Since each pixel corresponds to a different~kout

the intensity I(~Q) for different scattering vectors ~Q is measured. The intensity of the vertical pixels
(direction perpendicular to the diffraction plane) is summed [133] and the diffraction geometry
becomes co-planar as sketched in figure 4.2. Thus each horizontal pixel corresponds to specific
qx-qz-coordinates and the detector measures the intensity along a slice through the reciprocal
space as shown by equation (4.9). In the here reported ultrafast X-ray diffraction on thin magnetic
films I follow the shift of the Bragg peaks for different, mechanically set pump-probe delays. The
time-dependent peak position is determined using Gaussian fits or center-of-mass analysis of the
diffracted intensity distributions as detailed in the following chapters.
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Chapter Five

Saturation of the magnetic
stress in SrRuO3 probed by
double-pulse excitation

In this chapter I investigate the influence of the magnetic stress on the ultrafast expansion under
the facilitating conditions of a homogeneous excited transducer and a sub-picosecond equilibration
of the subsystems. The two different excitation fluences enables the investigation of the role
of the saturation of the magnetic stress for the temperature dependence of the picosecond
strain response. I present the temperature-dependent ultrafast strain response of a ferromagnetic
strontium ruthenate (SRO) metal film on an insulator strontium titanate (STO) substrate to
a double-pulse excitation measured by ultrafast X-ray diffraction. In the ferromagnetic phase
the magnetic excitations induce a contractive stress that counteracts the tensile phonon stress.
Therefore, the total lattice stress upon laser-excitation decreases below the Curie temperature
TC. The laser-induced full demagnetisation of the transducer is equivalent to a saturation of
the magnetic stress. The strain response to the second excitation indicates this saturation by
the absence of a contractive magnetic stress contribution exciting the fully demagnetised film.
The analysis of the temperature and fluence dependence of the total stress using an anisotropic
Grüneisen model reveals the role of the saturated magnetic stress.
In the first section I determine the anisotropic Grüneisen constant of the phonons and the magnetic
excitations by separating the thermal expansion and the heat capacity of SRO into the subsystem
contributions. The second section describes the determination of the picosecond strain response
by reciprocal space mapping in a pump-probe experiment including a double-pulse excitation.
In the last section I present the temperature- and fluence-dependent strain response. Below
TC, the excitation of the magnetic subsystem reduces the ultrafast expansion driven by the
total laser-induced stress. The Grüneisen model assuming equilibrated subsystems extracts the
temperature-dependent magnetic stress contribution. It is proportional to the magnetic heat
capacity in the limit of small fluences, but follows the integral of the remaining magnetic heat
capacity in the regime of high excitation fluences where SRO is transiently excited above TC.

5.1 Equilibrium properties of a thin SrRuO3 film

This section prepares the analysis of the ultrafast X-ray diffraction experiments that yield the
picosecond strain by summarising the equilibrium properties of SrRuO3. Below the Curie tem-
perature TC = 160K, SRO exhibits a ferromagnetic order. Its excitation induces a contractive
stress that leads to an Invar behaviour by the compensation of the tensile phonon stress. I use the
equilibrium expansion and the subsystem-separated heat capacity Ctot to determine the anisotropic
Grüneisen constants of the phonons and the magnetic excitations Γ3,ph = 1.6 and Γ3,mag =−26
that I use to model the temperature-dependent laser-induced stress in the following sections.
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Figure 5.1: Schematic sketch of the crystal structure of the perovsikte sample. (a) The sample structure
consists of a 19nm SRO metal film on an insulating STO substrate. The inset depicts the cubic
unit cell of the perovskite structure ABO3. The A atom is in the center of an oxygen octahedron
within the cubic arrangement of the B atoms. The panel (b) displays the orientation of the
orthorhombic and pseudocubic unit cell representation of SRO relative to the out-of-plane
direction in the thin film geometry given by ~a3,c.

The following paragraphs describe the crystal structure of the sample that consists of a 19nm
crystalline SrRuO3 transducer grown on a single crystal SrTiO3 substrate using pulsed laser
deposition [140, 141]. Both the transducer and the substrate exhibit the perovskite crystal
structure with the stoichiometry ABO3. In the case of a cubic lattice, the A atom in the center of
the unit cell is surrounded by an oxygen octahedron, which is embedded in the cubic arrangement
of the B atoms as depicted in figure 5.1(a). In STO the tilting of the oxygen octahedra leads
to a slight tetragonal distortion of the cubic unit cell below 105K. Above this structural phase
transition STO exhibits a cubic unit cell with a lattice constant of a = 3.905 Å at 300K [118, 142].
In contrast, the tilting of the oxygen octahedra in SRO remains up to 950K [143], which leads to
an orthorhombic unit cell of SRO at 300K with the lattice constants a1,o = 5.573 Å, a2,o = 5.554 Å
and a3,o = 7.851 Å [25, 144, 145]. Due to the only slight orthorhombic distortion (a1,o ≈ a2,o), the
orthorhombic unit cell can be associated with a pseudocubic unit cell [146, 147]. The relation
between these two representations is depicted in figure 5.1(b). The lattice vectors a1,o and a2,o
form the face diagonals of the pseudocubic unit cell and the lattice constant a3,o is twice the
pseudocubic lattice constant a2,c according to the doubling of the unit cell along this direction
due to the counterrotation of neighbouring oxygen octahedra. Thus the lattice constants of the
two representations are related by a2,c = 0.5 ·a3,o and a1/3,c =

1√
2
(a1,o +a2,o), which results in a

pseudocubic lattice constant of ac = 3.93 Å [146, 147].
The unit cells in the thin SRO film on the STO substrate are oriented with the orthorhombic
[110]o- and the pseudocubic [001]c-direction pointing out-of-plane [148, 149]. The small in-plane
lattice mismatch (−0.67%) of the bulk lattice constants of the pseudocubic SRO (3.93 Å) and
the cubic STO (3.905 Å) unit cells ensures a coherent growth of the SRO film on the STO
substrate. The coherent growth changes the in-plane lattice constants of the SRO unit cells at the
transducer-substrate interface to those of the STO substrate. Thus the lattice mismatch induces
an in-plane biaxial compressive stress that translates via the Poisson effect to a tensile out-of-plane
stress increasing the lattice constant by 0.5% with respect to bulk material [118].

5.1.1 X-ray diffraction perspective on the sample structure

In this section I present the characterisation of the sample by X-ray diffraction. In a co-planar
geometry (figure 4.2), X-ray diffraction using a microfocus Cu-Kα X-ray source yields a reciprocal
qx-qz-space map that determines the out-of-plane lattice constant of the materials by their Bragg
peak position along the qz-direction. The temperature-dependent Bragg peak position of SRO
displays a negative thermal expansion in the ferromagnetic phase while STO exclusively expands.
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Figure 5.2: Characterisation of the sample by X-ray diffraction. The integration of the reciprocal space
map at 300K (b) along the qx-direction yields the projection of the diffraction intensity on

the qz-axis (a). The barely separated (004)c Bragg peaks of SRO at 6.32 Å
−1

and STO at

6.39 Å
−1

as intensity maxima correspond to the similar out-of-plane lattice constant of the
materials. The temperature-dependent intensity distribution along qz displays the out-of-plane
contraction of the SRO film (c) and the expansion of the STO substrate (d) by the Bragg
peak shift. In (c) the SRO Bragg peak is scaled by a factor of ten to improve the contrast.

In figure 5.2(b) the reciprocal space map of the sample structure at 300K displays the barely
separated (004)c Bragg peaks of the film and the substrate as intensity maxima. The position of
the Bragg peaks along the qz-direction encodes the out-of-plane lattice constants* via qz =

m·2π

a3,c
.

Integrating the reciprocal space map along the qx-direction yields the projection on qz in figure 5.2(a),

which displays the Bragg peak of SRO at 6.32 Å
−1

and of STO at 6.39 Å
−1

.
The intensity distribution in reciprocal space is generally given by the convolution of the diffraction
intensity from the lattice according to equation (4.4) and the instrument resolution area [128, 130].
In case of the single-crystal substrate the shape of the Bragg peak corresponds to the instrument
resolution area, because the intrinsic diffraction yields a delta peak. As shown in figure 5.2(b)
the resolution area of the plasma X-ray source (see section 4.3) consists of two parallel, along qx

elongated ellipses, which correspond to the characteristic X-ray radiation Kα ,1 and Kα ,2 and the
convergence of the X-ray beam. The Bragg angle θB of the substrate determines their tilt angle
with respect to the qx-direction [128]. The absence of a pronounced instrument resolution area for
the SRO Bragg peak indicates a broad intrinsic diffraction intensity distribution. This relates to a
non-prefect periodicity of the only 48 unit cells thick crystal structure. The Bragg peak of the
SRO film appears as a shoulder on the left of the STO Bragg peak due to the similar out-of-plane
lattice constant. The only slight broadening along qx indicates a negligible mosaicity of the SRO
film. The broadening along qz may be related to a gradient of the substrate-induced deformation
along the out-of-plane direction in the film due to the in-plane lattice mismatch.

*The qz direction only describes the out-of-plane direction in regards to the choice of the reciprocal coordinate
system used in this thesis, which is introduced in section 4.1.



40 Chapter 5. Saturation of the magnetic stress in SrRuO3 probed by double-pulse excitation

The lattice mismatch also distorts the substrate [150]. The diffraction maximum at 6.36 Å
−1

resembles the ellipses of the instrument resolution area, which hints at a strained surface layer of the
substrate. The projection on the qz-axis provides access to the thermal out-of-plane expansion of
the thin film and the substrate. In figures 5.2(c) and (d) the temperature-dependent qz-projections
display a temperature-induced shift of the Bragg peaks along qz, which determines the out-of-plane
strain according to equation (4.8). Fitting the corresponding qz-projections with four Pseudovoigt
profiles according to the number of intensity maxima determines the temperature-dependent Bragg
peak positions�, which are denoted by black dashed lines. The shift of the Bragg peak of STO to
smaller qz values indicates a positive thermal expansion above 105K. In contrast, SRO contracts
along the out-of-plane direction up to the magnetic order temperature TC indicated by the shift of
the Bragg peak to higher qz values.

5.1.2 Magnetism influencing thermodynamic properties

In this section I briefly summarise the magnetic properties of SRO and their coupling to the lattice.
The coupling of magnetism and lattice results in an anisotropically reduced thermal expansion
in the ferromagnetic phase. Below the Curie temperature TC = 160K, the ferromagnetic order
provides an energy reservoir described by a magnetic contribution to the heat capacity contribution,
which I extract from the total heat capacity.
Bulk SRO becomes ferromagnetic below the Curie temperature of TC = 160K [151, 152]. The finite
magnetic moment of 1.62 µB per Ru-atom [145, 153] originates from the itinerant ferromagnetism
of the strongly hybridised Ru-4d and O-2p electrons [152–154]. The resulting macroscopic
magnetisation M points along the easy axis in [100]o-direction for bulk SRO. In case of a thin
film on STO the magnetisation points at 45◦ with respect to the surface normal at TC according
to the orientation of the orthorhombic unit cell (see figure 5.1). With decreasing temperature
the angle continuously changes to 30◦ [155, 156]. The orientation of the magnetisation in the
thin film geometry indicates an unusually high magnetocrystalline anisotropy with an anisotropy
field of around 7T [157] that dominates over the shape anisotropy. This high magnetocrystalline
anisotropy indicates a strong spin-orbit interaction, which is experimentally observed by a high
ferromagnetic resonance frequency and a fast phonon-mediated demagnetisation [157, 158]. These
findings indicate a pronounced interplay of the crystal structure and the ferromagnetism in SRO. In
thin film samples, the substrate-induced tetragonal distortion of the pseudocubic unit cell changes
the magnetic properties by reducing the Curie temperature to TC = 150K. It also broadens the
second order phase transition, which is especially pronounced in recently grown SRO nanodots
[118, 141]. The changing temperature-dependent magnetisation including the reduced Curie
temperature is depicted in figure 5.4(a). Vice versa, the magnetic order also influences the lattice
by freezing the temperature-dependent mutual oxygen octahedra tilting in the ferromagnetic phase
as observed by neutron diffraction experiments [144, 145]. This coupling between lattice and
magnetism leads to a finite lattice stress caused by the excitation of the magnetic order. In the
ferromagnetic phase this additional stress results in a vanishing volumetric expansion coefficient β

of SRO [25, 144, 145]. This volumetric Invar effect indicates a contractive stress contribution by
the magnetic excitations that counteracts the normal expansive phonon stress.
The temperature-dependent strain of the orthorhombic lattice constants from the literature
[25, 144, 145] is depicted in figure 5.3(a). The lattice constant along the [100]o and [001]o-
direction show an Invar behaviour up to the Curie temperature TC = 160K, while the lattice
constant along the [010]o-direction exhibits a positive thermal expansion. Despite the positive
thermal expansion the absence of a kink in the strain at the phase transition indicates a contractive
magnetic stress along the [010]o-direction. While in the paramagnetic phase the expansion along

�The Pseudovoigt profile contains four parameters: the amplitude, the width, the position and the weighting of
Gaussian and Lorentz profile. The parameters of the two Pseudovoigts describing the substrate Bragg peak with the
instrumental resolution area are related by temperature-independent factors.
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Figure 5.3: Anisotropic thermal expansion along the orthorhombic (a) and pseudocubic (b) unit cell
directions of SRO [25, 144, 145]. An anisotropic contractive magnetic stress results in an Invar
behaviour of η1,o and η3,o with nearly vanishing expansion below TC = 160K. In contrast, η2,o
displays a positive thermal expansion. The relation of the orthorhombic and the pseudocubic
unit cell representation determines the two different pseudocubic lattice strains according to
figure 5.1(b). Along the out-of-plane direction of the thin film sample (~a3) the pseudocubic
unit cell shows an expansion even in the ferromagnetic phase.

the orthogonal directions induces a contractive stress by the Poisson effect, in the ferromagnetic
phase the contractive magnetic stress replaces the vanishing Poisson stress due to the Invar
behaviour. In total, the direction-dependent behaviour of the strain displays an anisotropic
magnetic stress that counteracts the isotropic tensile phonons stress that results in the shared
temperature dependence of the lattice constants in the paramagnetic phase. The relation between
the orthorhombic (subscript o) and pseudocubic (subscript c) representation of the unit cell in
figure 5.1(b) determines the temperature-dependent expansion of the pseudocubic unit cell by

η1/3,c = 0.25 ·
√

(1+η1,o)
2 +(1+η2,o)

2−1 and η2,c =η3,o. The resulting strain of the pseudocubic

unit cell in figure 5.3(b) displays an identical positive expansion along two directions
(
η1/3,c > 0

)
and an Invar behaviour along the third direction in the ferromagnetic phase. In the Grüneisen
model the anisotropic magnetic stress originates from an energy density deposited to the magnetic
subsystem that is given by the integral of the magnetic heat capacity.
In the following paragraphs I extract the magnetic heat capacity contribution from the total heat
capacity at constant volume Ctot [159] by modelling the electronic and phononic temperature-
dependent heat capacity contributions. In the first step I use the Sommerfeld model to approximate
the electronic contribution by Cel = γST wherein γS denotes the Sommerfeld constant of SRO
γS = 30 mJ

mol·K2 = 0.8 mJ
m3·K2 [159]. In the second step I model the temperature-dependent phonon

contribution to the heat capacity. Since the Debye temperature ΘD becomes strongly temperature-
dependent in SRO due to the widely dispersed phonon density of states including high frequency
optical phonons, the phononic contribution to the heat capacity is not well described by a Debye
model. Instead I use the weighted sum of the heat capacities of the respective oxides SrO [160]
and RuO [161] to describe the phononic heat capacity contribution as frequently used in the
literature [162]. In the paramagnetic phase above 200K the phononic contribution to the heat
capacity is determined by the difference between the electronic contribution and the total heat
capacity. I determine the temperature-independent weighting factors of the oxide heat capacities
by fitting the phononic contribution in this temperature range. The weighting factors determine
the temperature-dependent phononic contribution to the heat capacity. Finally, the magnetic
contribution to the total heat capacity for bulk SRO is determined by the difference between
the total heat capacity and the contributions from electrons and phonons. Figure 5.4(b) depicts
the subsystem-separated heat capacity contributions. The magnetic contribution vanishes at
Tdemag = 200K slightly above the Curie temperature TC. The resulting finite integral of the
magnetic heat capacity contribution is equivalent to a saturation of the magnetic stress due to a
maximum amount of energy density storable to the magnetic excitations.
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Figure 5.4: Temperature-dependent magnetisation and subsystem-separated heat capacity for bulk SRO
and a thin film on STO. In panel (a) the temperature-dependent magnetisation [141, 155]
displays a shifting and broadening of the phase transition in the thin film. I consider this change
by a magnetic heat capacity of the thin film Cfilm

mag ∝ M · dM/dT via molecular field theory.
Panel (b) depicts the final separation of the total heat capacity [159] into the contributions
from electrons, phonons and the magnetic system (scaled by a factor of 10).

In thin films, the substrate-induced distortion of the pseudocubic unit cell influences the magnetism
by shifting the transition temperature to lower temperatures and broadening the phase transition.
To analyse my experiment in section 5.3, I include these changes of the magnetisation into the
magnetic heat capacity. The molecular field theory relates the magnetisation and the magnetic
heat capacity by Cmag ∝ M dM

dT [96, p. 179]. Using the magnetisation M(T ) of a comparable
film [141, 155] (figure 5.4(a)) yields the magnetic heat capacity of a thin film Cfilm

mag. Here, I

use the description of the magnetisation by Bloch’s T
3
2 law for temperatures below 130K [155].

The amplitude of the heat capacity is determined by fitting the heat capacity below 50K to the
magnetic heat capacity of bulk SRO. The comparison with the bulk magnetic heat capacity in
figure 5.4 displays a shift of the maximum by −10K with respect to bulk according to the reduced
Curie temperature in the thin film geometry.

5.1.3 Determination of anisotropic Grüneisen constants

In this section I relate the anisotropic Invar behaviour in the ferromagnetic phase of bulk SRO to
a contractive stress provided by the magnetic excitations. The out-of-plane external stress σ ext

3
extracted from the thermal expansion in equilibrium along the corresponding crystal direction
determines the phononic and magnetic Grüneisen constant. The Grüneisen approach separates
the total external stress into the contribution of the phonons and the magnetic excitations that
prepare the application to the laser-induced stress in the following.
The Grüneisen approach linearly relates the energy density ρ

Q
r in each subsystem r to an out-

of-plane stress contribution σ ext
3,r by a subsystem-specific Grüneisen parameter Γ3,r. These stress

contributions superimpose to the total anisotropic external stress σ ext
3 , which induces a lattice

strain η3 via Hooke’s law (2.13). In thermal equilibrium the thermal expansion along the orthogonal
crystal directions provides an additional Poisson stress σ

poi
3 = ∑λ 6=3 cλ3ηλ via the off-diagonal

elements of the elastic tensor cλ3. Therefore the thermal expansion η3 is induced by both the
external stress and the Poisson stress according to c33 ·η3 = σ ext

3 −σ
poi
3 . In case of SRO the

pseudocubic symmetry of the lattice simplifies the Poisson stress to σ
poi
3 = c12 (η1 +η2) and the
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definition of the anisotropic Grüneisen constant (3.17) to:

Γ3,r =
σ ext

3,r

ρ
Q
r

=
c33

ρ
Q
r

(
η3,c +

c13

c33
(η1,c +η2,c)

)
r

, (5.1)

wherein the subscript r denotes the contribution of the subsystem r to the strain components.
Figure 5.5 displays the extraction of the external stress from the total stress driving the expansion
in thermal equilibrium σ3 = c33 ·η3,c for both bulk SRO (a) and the thin film sample (b). In
the case of bulk material the in-plane expansion is given by the pseudocubic lattice strains η1,c
and η2,c that are depicted in figure 5.3(b). The pseudocubic elastic constants c13 = 132GPa and
c33 = 252GPa [163] result in the Poisson stress for bulk SRO depicted as gray line in (a). The
Poisson stress contribution is very similar to the total equilibrium stress (red line) and determines
the external stress (open symbols) by their sum according to equation (5.1). In the case of the
thin film the equilibrium stress is given by the out-of-plane expansion in figure 5.2(c). In contrast
to bulk material, the thin SRO film on the STO substrate exhibits a negative thermal expansion
below the magnetic order temperature. This is mainly related to an additional substrate-induced
Poisson stress contribution that originates from the in-plane expansion of the cubic STO unit
cells, which is identical to the out-of-plane expansion above the phase transition at 105K depicted
in figure 5.2(d). Due to the coherent growth of the SRO transducer on the STO substrate, the
in-plane expansion of the unit cells directly attached to the substrate follows the expansion of the
substrate, which changes the Poisson stress contribution with respect to bulk material. Therefore
I assume a linear change of the in-plane expansion of the thin film from substrate-like at the
interface to bulk-like at the surface. The assumed gradient of the substrate-induced deformation
along the out-of-plane direction is indicated by the broadening of the SRO Bragg peak along qz

in figure 5.2(b). This assumption results in a Poisson stress that differs quantitatively from the
Poisson stress for bulk material. The resulting external stress (open symbols) is well described by
a Grüneisen model (black solid line) using the phononic and magnetic Grüneisen constants as for
bulk material and the subsystem-separated heat capacity and the thin film.
Based on the extracted temperature-dependent out-of-plane external stress σ ext

3 of bulk SRO I
determine the phononic and magnetic Grüneisen constant that is needed to analyse the picosecond
strain response of the thin film. According to equation (5.1) the temperature-dependent subsystem
contribution to the external stress σ ext

3,r relates linearly to the deposited energy density in the
subsystem via its Grüneisen constant. The separation of the external stress into its subsystem
contributions is based on the vanishing magnetic stress in the paramagnetic phase due to the
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Figure 5.5: Separation of the temperature-dependent stress σ3 driving the expansion in thermal equilibrium
into the external σ ext

3 and Poisson σ
poi
3 contribution. The thermal expansion along the

orthogonal crystal directions determines the Poisson stress (gray lines). In bulk SRO (a) the
Poisson stress is negligible below the Curie temperature, whereas in the thin film geometry (b)
the in-plane expansion of the STO substrate enhances the Poisson contribution that causes the
contractive total stress in the ferromagnetic phase. The solid black lines denote the Grüneisen
model of the external stress using the Grüneisen constants of bulk material and the respective
magnetic heat capacity contribution.
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Figure 5.6: Determination of the Grüneisen constant of the phonons and the magnetic excitations. The
linear dependence of the external stress on the energy density stored in the phonons above
T bulk

demag (a) determines the phononic Grüneisen constant to Γ3,ph = 1.6, which defines the
phononic stress contribution (solid red line). The difference to the total stress corresponds to
the magnetic stress contribution (b) that depends linearly on the energy density stored in the
magnetic subsystem given by the respective heat capacity contribution (see figure 5.4(b)). The
resulting magnetic Grüneisen constant of Γ3,mag =−26 determines the temperature-dependent
magnetic stress contribution. Its superposition with the phononic stress contribution gives the
temperature-dependent total external stress (c).

finite magnetic energy reservoir. Figure 5.6 displays the determination of the Grüneisen constant
of the phonons (a) and the magnetic excitations (b) by a linear dependence of the external stress
contribution on the deposited energy density in the subsystem. The Grüneisen approach determines
the corresponding temperature-dependent external stress contributions (c) that superimpose the
total external stress. To reduce the number of free parameters, I simplify the following analysis
by assuming that the electrons and the phonons exhibit the same Grüneisen parameter. This is
a valid assumption, because the Grüneisen parameters of phonons and electrons typically have
the same order of magnitude and the heating from 20 to 250K deposits only 6% of the energy
density to the electrons resulting in a negligible stress contribution�. Since ultrafast experiments
report a quasi-instantaneous electron-phonon coupling [26, 49] the assumption that most of the
energy is stored in the phonons holds even on ultrafast timescales. In the following I will refer to
the combined electron-phonon system as phonon system.

The non-magnetic heat capacity contribution in figure 5.4(b) relates the temperature-dependent
external stress σ ext

3 to the deposited energy density in the phonons as shown in figure 5.6(a). Above
T bulk

demag = 200K, the total stress is exclusively caused by the phonons due to the vanishing magnetic
heat capacity. Therefore a linear fit determines the phononic Grüneisen constant to Γ3,ph = 1.6.
The temperature-independent phononic Grüneisen constant defines the temperature-dependent

�Below 30K, the phononic and electronic heat capacity become comparable and a significant fraction of energy
density is stored in the electrons inducing a non-negligible stress contribution. However, these low temperatures are
not the scope of the ultrafast X-ray diffraction experiment.
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expansive stress contribution of the phonons. The comparison of the phonon contribution (red solid
line) and the total stress σ ext

3 below the magnetic order temperature indicates an additional stress
contribution that originates from the magnetic system and vanishes with diminishing magnetic
order. Figure 5.6(b) displays this magnetic stress σ ext

3,mag as function of the deposited energy density
in the magnetic system given by the bulk magnetic heat capacity. The dependence on the magnetic
energy density can be approximated by a linear function, which yields the magnetic Grüneisen
constant along the out-of-plane direction of the thin film to Γ3,mag =−26. The large negative
magnetic Grüneisen constant denotes a large contractive stress induced by the small amount
of energy density storable in the magnetic system (see figure 5.4(b)). The resulting magnetic
stress contribution counteracts the expansive phonon stress and reduces the total stress in the
ferromagnetic phase, which leads to the Invar behaviour in thermal equilibrium. Figure 5.6(c)
shows the resulting temperature-dependent subsystem contributions to the external out-of-plane
stress in the Grüneisen model. The separation of the total stress σ ext

3 (T ) into the subsystem
contributions offers insight into the origin of the non-linear temperature dependence. Therefore
the Grüneisen approach including the Grüneisen constants Γ3,r is a useful concept to analyse the
induced lattice stress in magnetic materials.

5.2 Time-resolved reciprocal space mapping

In this section I describe the determination of the transient strain of the SRO transducer by a
pump-probe experiment using ultrafast X-ray diffraction. I use the setup described in section 4.3
to determine the transient shift of the Bragg peak in reciprocal space by time-resolved reciprocal
space mapping. Due to the partially transparent thin SRO film, the pump-probe experiment
contains an additional delayed excitation that results in a double-pulse excitation scheme.
Figure 5.7 provides a schematic sketch of the pump-probe experiment. The near-infrared pump
pulse is exclusively absorbed in the metallic SRO transducer. To first order this absorption is
described by Lambert Beer’s law. The temperature-independent optical penetration depth of the
800nm pump pulse of 52nm [26, 123, 164] exceeds the layer thickness. Therefore, a significant
fraction of the pump pulse is transmitted through the transducer and enters the STO substrate.
The back reflection at the substrate-copper interface at the sample holder leads to a second,
delayed excitation. The non-adjustable delay between the two laser-excitations is determined by
the optical propagation length through the substrate. Furthermore, the excitation fluence of the
initial pump pulse and the second excitation are related by a constant factor, which depends on
the transmission through the transducer and the reflectivity at the sample holder interface. In a
pump-probe experiment the induced lattice response to both excitations is probed by an ultrashort
X-ray pulse with a delay t relative to the first excitation. The ultrafast excitation condition in the
thin film geometry induces exclusively out-of-plane strain dynamics as discussed in section 2.2.2.
The laser-induced out-of-plane mean strain results in a shift of the SRO Bragg peak in reciprocal

Figure 5.7: Schematic sketch of the pump-probe experiment including a double-pulse excitation. Since
the optical penetration depth of the near-infrared pump pulse exceeds the thickness of the
metallic SRO transducer, a fraction of the pump pulse is transmitted through the film. Its
back-reflection at the sample holder leads to a second, delayed excitation. At a delay t with
respect to the first excitation an ultrashort X-ray pulse probes the induced strain response.
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space along the qz-direction. Section 4.2 describes the two routines of reciprocal space mapping and
reciprocal space slicing to quantitatively determine the shift of the Bragg peak. Since the Bragg
peak of SRO is located on the left shoulder of the substrate peak, the quantitative determination of
the shift is influenced by the non-constant background. Additionally, the shape of the Bragg peak
in reciprocal space and the large diffraction angle lead to a geometrical scaling factor of S≈ 10
for the strain determination by reciprocal space slicing according to equation (4.10). This large
scaling factor implies only small shifts of the Bragg peak on the position-sensitive area detector,
which corresponds to a bad signal-to-noise ratio. Therefore I use time-resolved reciprocal space
mapping to quantitatively determine the transient shift of the background-free Bragg peak of SRO
by modelling the underlying substrate Bragg peak.
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Figure 5.8: Results of a θ −2θ -scan with a position-
sensitive area detector at 250K. The varia-
tion of the diffraction angle θ = αin = αout

provides the diffraction intensity as func-
tion of the angle and the detector pixels
within the diffraction plane. While the cen-
terpixel corresponds to a symmetric diffrac-
tion, the other pixels probe an asymmetric
diffraction with αin 6= αout.

To determine the Bragg peak shift of SRO I map the reciprocal qx-qz-space around the (004)c

SRO Bragg peak by varying both the incident αin and the diffraction angle αout in a symmetric
θ − 2θ -scan of 21 angle steps of 0.07◦ for the low fluence and 10 angle steps of 0.2◦ for the
high fluence. With an integration time of 7s the position-sensitive area detector determines the
scattering intensity at each detector pixel within the diffraction plane. The resulting normalised
intensity as a function of incident diffraction angles θ and detector pixels is shown in figure 5.8
at 250K before the first excitation. Here, the intensity on the detector at the different angles is
normalised to the total number of incident X-ray photons during the integration time, which is
recorded by a reference detector behind the Montel optic [132]. The pixels within the diffraction
plane correspond to different diffraction angles αout as depicted in figure 4.2. The center pixel
of the detector fulfils the condition αin = αout and is determined by the intensity maximum of
the SRO Bragg peak§. Associating the detector pixels with individual angles αout depending on
the pixel size and the sample-detector distance, the detected intensity depends on the angles
αin and αout. This intensity distribution in angular space transforms by equation (4.7) to the
reciprocal qx-qz-space. The non-linear transformation relates the intensity of a rectangular area in
angular space to an intensity of a polygon in reciprocal space. The underlying change of the area
is corrected by the Jacobian matrix of the transformation [133].
In order to obtain the projection on the qz-direction yielding the out-of-plane lattice constant the
intensity has to be mapped onto a rectangular qx-qz-grid. During this mapping the intensity of a
rectangular grid cell is given by the intensity of the irregular shaped grid cell, which contains the
center point of the new grid cell. The reciprocal space map with the orthogonal grid is shown
in figure 5.9(b). Since the angle steps of the θ − 2θ scan are relatively large, the dimension
of the grid cells along qz are limited to avoid numerical artefacts for the integration along the
qx-direction. The integration yields the projection on the qz-axis (a) that displays the SRO Bragg

peak at 6.32 Å
−1

on the shoulder of the substrate Bragg peak. Associating the finite substrate
with a truncation rod I describe the substrate Bragg peak shoulder by a Lorentzian profile, which

§In the udkm group the center pixel is usually determined by the maximum intensity provided by the substrate
Bragg peak. In this experiment the STO Bragg peak is not fully recorded to reduce the measurement time. Therefore
the global maximum in intensity does not correspond to the center of the substrate Bragg peak.
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Figure 5.9: Determination of the time-resolved Bragg peak shift by reciprocal space mapping. The mapping
of the diffraction intensity in figure 5.8 to a rectangular grid in the reciprocal qx-qz-space by
equation (4.7) provides the reciprocal space map (b) before the first excitation. The integration
along qx yields the projection on the qz-axis (a). The Bragg peak of SRO is given by the
difference to the Lorentzian profile (gray line) that describes the diffraction from the substrate
truncation rod. The time-dependent projection on the qz-axis (c) displays the transient shift of
the Bragg peak of SRO that determine the picosecond strain response by equation (4.8).

is fitted to the diffraction intensity below and above the Bragg peak of SRO. The resulting
non-constant background of the SRO Bragg peak is depicted as gray solid line and defines the
Bragg peak of SRO. The mean out-of-plane lattice constant of the thin film belongs to the position
of the Bragg peak along qz, which I determine by a center-of-mass analysis. This routine applied
at each pump-probe time delay determines the time-resolved qz-position of the Bragg peak of
SRO. Figure 5.9(c) displays the time-dependent shift of the Bragg peak along the qz-axis in the
pump-probe experiment. The solid black line denotes the transient Bragg peak position modelled
by the modular Matlab library udkm1Dsim. The shift of the Bragg peak to lower qz-values for
positive pump-probe delays (t > 0) displays the laser-induced expansion that is enhanced by the
second excitation leading to an additional delayed shift of the Bragg peak to lower qz-values.

5.3 Fluence-dependent saturation of the magnetic stress

In this section I investigate the influence of the saturation of the magnetic stress on the total laser-
induced stress. Therefore I present the picosecond strain response of SRO at initial temperatures
above and below TC for two different excitation fluences. Under the condition of a saturated
magnetic stress the strain response to the second excitation becomes temperature-independent.
The saturation of the magnetic stress in the limit of high fluences qualitatively changes the
temperature dependence of the laser-induced stress by the changing excitation of the magnetic
system that becomes proportional to the integral of the remaining magnetic heat capacity.
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The first part provides the modelling of the temperature-dependent picosecond strain response
to the double-pulse excitation. The ultrafast equilibration of the subsystems results in a quasi-
instantaneous laser-induced stress that drives a bipolar strain wave propagating into the substrate.
The excitation of the magnetic subsystem provides an additional contractive stress that reduces
the amplitude of the ultrafast expansion. In the second part I model the underlying temperature-
and fluence-dependent total stress in a Grüneisen model assuming equilibrated subsystems. The
Grüneisen model captures the qualitative change of the temperature dependence of the stress with
increasing fluence. The extracted ultrafast temperature- and fluence-dependent magnetic stress
relates this qualitative change to the saturation of the magnetic stress.

5.3.1 Reduced lattice stress in the ferromagnetic phase

In this section I describe the strain response of the SRO transducer to a double-pulse excitation.
The shape of the transient strain is modelled by a linear-chain model of masses and springs and
encodes a bipolar strain wave propagating into the substrate that is driven by a quasi-instantaneous
tensile stress. The additional contractive stress provided by the magnetic excitations in the
ferromagnetic phase reduces the total stress. Under the facilitating conditions of equilibrated
subsystems a Grüneisen model captures well the resulting temperature-dependent amplitude of
the bipolar strain wave and the ultrafast expansion.
In a first step I analyse the picosecond strain response at 250K. In the paramagnetic phase the
laser-induced stress driving the strain response originates exclusively from the phonons due to the
absence of a magnetic energy reservoir. Under this condition the rise time and the amplitude of the
total ultrafast stress depend on the electron-phonon relaxation time and the phononic Grüneisen
constant, respectively. Figure 5.10 depicts the transient mean strain of the SRO transducer at
250K at an incident fluence of F = 1.4 mJ

cm2 . The strain response to the double-pulse excitation is
well described by a linear-chain model of masses and springs (solid line) that I calculate by the
modular Matlab library udkm1Dsim [124]. The laser-induced stress translates into inserted
spacer sticks (see section 3.3.2 driving a strain response according to the discretised inhomogeneous
wave equation of the coupled harmonic oscillators. The mean displacement of the masses translates
via dynamical X-ray diffraction theory to the shift of the SRO Bragg peak¶, which determines the
lattice strain as in a diffraction experiment by equation (4.8).
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Figure 5.10: Picosecond strain response to a double-
pulse excitation at 250K with F = 1.4 mJ

cm2 .
The linear-chain model of the Matlab li-
brary udkm1Dsim [124] (solid line) des-
cribes the transient strain of the acous-
tic impedance-matched film-substrate sys-
tem under the assumption of a quasi-
instantaneous tensile stress.

In agreement with the literature [26, 49], the strain model assumes an electron-phonon coupling
on the timescale of 100 fs. Therefore, the deposition of energy by the pump pulse induces a quasi-
instantaneous tensile stress. The unbalanced stress at the surface and the transducer-substrate
interface drive a bipolar strain wave as depicted in figure 2.3 for the general case of a thin
film on a transparent substrate. The superposition of the strain wave and the relaxation of the
laser-induced stress to strain with sound velocity determine the transient mean strain of the SRO
transducer. The propagation of the expansive part of the bipolar strain wave from the surface to

¶This includes the X-ray sensitivity function [165], which describes the dependence of a Bragg peak shift on the
specific location of a delta-like strain along the sample depth.
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the interface results in a maximum expansion of SRO 3ps after the excitation according to the
layer thickness d = 19nm and the sound velocity v = 6.31 nm

ps [143]. The subsequent propagation
of the expansive part into the substrate reduces the mean strain of SRO within the next 3ps
according to the spatial extension of the strain wave. The almost perfect acoustic impedance
match of the SRO transducer and the STO substrate suppresses a reflection of the strain wave
at the transducer-substrate interface and the strain wave enters completely the substrate. The
remaining expansion as quasi-static elastic response to the laser-induced stress depends linearly on
the total out-of-plane stress σ ext

3 by the elastic constant c33 and is 2/3 of the maximum expansion
[49]. At a pump-probe delay of 9.6ps the second excitation induces an additional stress that drives
a bipolar strain wave superimposing with the ultrafast expansion induced by the first excitation.
Since the remaining expansion after the strain wave has propagated into the substrate depends
linear on the stress, the strain from 6 to 9ps and from 16 to 20ps reveals the laser-induced stress
by the first and the second excitation, respectively. The modelling of the ultrafast expansion
calibrates the absorbed fluence to one third of the incident fluence and the ratio of the excitation
fluences of the first and the second pulse to 5/3. The further analysis of the strain response for
different initial sample temperatures is facilitated by the approximately temperature-independent
absorbed fluence and fluence ratio of the two excitations. The constant deposited energy density
originates from the temperature-independent reflection of the pump pulse from the surface of the
sample and transmission through the transducer due to the temperature-independent dielectric
function of SRO [26, 164].
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Figure 5.11: Comparison of the strain response at 20
and 250K with the same excitation fluence
of F = 1.4 mJ

cm2 . The reduced amplitude
and the identical temporal shape at the
initial sample temperature of 20K indicates
a contractive magnetic stress rising on the
electron-phonon coupling timescale in the
ferromagnetic phase.

In the second step I extend the modelling of the picosecond strain response to the ferromagnetic
phase below TC = 150K. Below the Curie temperature, the arising magnetic order provides
an additional energy reservoir. According to the negative Grüneisen constant Γmag = −26 the
excitation of the magnetic subsystem induces a contractive stress that counteracts the tensile
phonon stress and reduces the total stress σ ext

3 . The excitation of the magnetic subsystem by the
coupling to the laser-excited electrons determines the rise time of the additional stress contribution.
In figure 5.11 I compare the strain response at 20 and 250K for an incident fluence of F = 1.4 mJ

cm2 .
In the ferromagnetic phase the ultrafast expansion and the amplitude of the driven bipolar strain
wave are significantly reduced. However, the temporal shape of the transient strain turns out to be
temperature-independent, which indicates a quasi-instantaneous tensile total stress including the
magnetic stress contribution. The temperature-independent quasi-instantaneous stress indicates
an ultrafast equilibration of electrons, phonons and magnetic excitations in agreement with a
previous investigation of the magnetic stress in SRO [26]. In this publication the authors observe
a temperature-independent phase of the time-resolved intensity oscillation of the Bragg peak of a
superlattice consisting of SRO and STO layers. The sub-picosecond demagnetisation detected by
the magneto-optical Kerr effect [158] corroborates the underlying assumption of a sub-picosecond
excitation of the magnetic system by the coupling to the laser-excited electrons. The assumption
of an ultrafast equilibration of the subsystems implies to a time-independent distribution of the
laser-deposited energy density between the subsystems identical to equilibrium.
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In the Grüneisen model the temperature-dependent out-of-plane lattice stress results in:

σ
ext
3 (T ,z) = Γ3,ph

T+∆T (z)∫
T

Cph(T ′)dT ′+Γ3,mag

T+∆T (z)∫
T

Cmag(T ′)dT ′ . (5.2)

Here, ∆T (z) denotes the laser-induced temperature increase, which is defined by the total heat

capacity Ctot and the absorbed energy Qabs(z) via the condition Qabs(z) =
∫ T+∆T (z)

T Ctot(T ′)dT ′.
In consideration of the heat capacities of the thin film from section 5.1.2 and the Grüneisen
constants of the phonons Γ3,ph = 1.6 and the magnetic excitations Γ3,mag =−26 the Grüneisen
model (5.2) defines the temperature- and depth-dependent total stress. I use this stress to model
the strain response at 20K in a linear-chain model of masses and springs using the Matlab library
udkm1Dsim depicted by the blue solid line in figure 5.11.
In the following paragraph I describe the strain response at different initial sample temperatures
set by a closed-cycle cryostat for two excitation fluences 1.4 and 6.3 mJ

cm2 . Figures 5.12 (a) and
(b) summarise the temperature-dependent strain measured by time-resolved reciprocal space
mapping (dots) and modelled by the Matlab library udkm1Dsim (solid lines)� for the low and
the high fluence, respectively. The excitation fluence deposits temperature-independently the same
amount of energy to the transducer due to the temperature-independent dielectric function of
SRO. Therefore the temperature dependence of the total laser-induced stress σ ext

3 is exclusively
caused by the excitation of the magnetic system and the associated contractive stress in the
ferromagnetic phase. For both fluences the excitation of the magnetic subsystem below TC reduces
the total stress. However, the temperature dependence differs for both fluences. In case of the high
fluence of 6.3 mJ

cm2 the expansion after both the first and the second excitation decreases slightly
below the Curie temperature. In contrast, the expansion after the first and the second excitation
decreases step-like at the phase transition in case of the low fluence of 1.4 mJ

cm2 . Additionally, the
expansion after the first and the second excitation displays a different temperature dependence,
which leads to a larger expansion driven by the second pulse than by the first pulse at 140K. The
temperature-dependent stress of the Grüneisen model (5.2) results in the modelled strain response
(solid lines) in a linear-chain model of masses and springs using one set of parameters calibrated in
the paramagnetic phase. The modelled strain response captures the temperature dependence of
the laser-induced expansion. In the following section I extract from the ultrafast expansion the
temperature-dependent lattice stress induced by the first and the second pump pulse, respectively.
The stress induced by the second pump pulse is given by the difference between the strain after
the second and the first excitation due to the linear elastic response of SRO.

5.3.2 The temperature- and fluence-dependent magnetic stress

In this section I relate the fluence-dependent temperature dependence of the total laser-induced
stress to the saturation of the magnetic stress. The extraction of the ultrafast magnetic stress by
a Grüneisen model rationalises the temperature-dependent ultrafast expansion and exemplifies the
effect of the saturation on the total stress. The saturation of the magnetic stress is probed by
the temperature-independent stress induced by the second pulse exciting the fully demagnetised
sample. In the limit of high fluences, which transiently heat above the phase transition, the
magnetic stress is proportional to the integral of the remaining heat capacity. In contrast, in the
low fluence limit the magnetic stress follows the magnetic heat capacity.
The temperature- and fluence-dependent total laser-induced stress σ ext

3 relates linearly to the
ultrafast expansion remaining after the bipolar strain wave has propagated into the substrate.

�The following analysis is restricted to the total laser-induced stress due to the ultrafast equilibration of the
subsystems that results in a temperature-independent shape of the driven strain wave. Therefore I measure at some
initial sample temperatures only the ultrafast expansion depending linearly on the stress.
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Figure 5.12: Temperature-dependent strain response to a double-pulse excitation with an incident fluence
of 1.4 (a) and 6.3 mJ

cm2 (b). The dots denote the measured strain from time-resolved reciprocal
space mapping and the solid lines result from the linear-chain model of the Matlab library
udkm1Dsim [124] using the temperature-dependent stress of the Grüneisen model (5.2).
The laser-induced lattice response for the two fluences show a qualitative difference in the
temperature dependence of both the expansion after the first and the second excitation.

Therefore I use the strain from 6 to 9ps and 16 to 20ps in figure 5.12 to extract the laser-induced
stress. The resulting temperature-dependent, laser-induced stress is shown in figure 5.13(a) and
(c) for the small and the high fluence, respectively. Here, the blue points denote the stress induced
by the first excitation and the red squares denote the stress induced by the second excitation.
With non-zero magnetic heat capacity below T film

demag = 170K the total stress decreases and the
different temperature dependencies are rationalised in the following paragraphs. This analysis is
supported by a Grüneisen model that captures the temperature-dependent stress induced by both
excitations for both fluences and simplifies in the limit of high and low fluences.
In the case of the small fluence of F = 1.4 mJ

cm2 , the total stress induced by the first and the
second pulse shows a step-like decrease at 170 and 135K, respectively. This shifted step-like
temperature dependence is rationalised by the sketch of the excitation of the magnetic subsystem
in figure 5.13(b). The blue and the red arrows describe the laser-induced temperature increase
relative to the magnetic heat capacity Cfilm

mag induced by the first and the second pulse, respectively.
At low temperatures the magnetic stress is not saturated, because both pulses together do not
heat above the phase transition. Under this condition the magnetic excitations cause a reduced
total stress for both excitations. Since the magnetic heat capacity exhibits a peak at the phase
transition, the maximum fraction of energy density is transferred to the magnetic system, when
the laser pulse transiently heats up to the transition temperature. The enhanced energy density
deposited to the magnetic system corresponds to a maximal magnetic but a minimal total stress.
Therefore the initial sample temperature corresponding to this full demagnetisation defines the
lower bound of the step-like change of the total stress. With increasing temperature the magnetic
stress becomes saturated and the energy density storable to the magnetic excitations decreases.
With vanishing magnetic heat capacity at 170K the magnetic stress contribution vanishes and the
total stress is maximised and becomes temperature-independent. This analysis of the temperature
dependence relates the width of the step-like change to the laser-induced temperature increase
by the first laser pulse. It increases the effective temperature of the SRO film before the second
excitation and shifts the step-like change of the total stress induced by the second pulse to 135K.
The observed temperature dependence is well described by the Grüneisen model (5.2) depicted
by the solid lines for the homogeneous excitation of the layer exceeding the optical penetration depth.
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In the limit of an infinitesimal deposited energy Qdep inducing a sufficiently small temperature

step ∆T =
Qdep

Ctot
, the temperature-dependent stress induced by the first excitation results in

σ
low
3 (T ) =

Qdep

V

(
Γmag,3Cmag(T )+Γph,3Cph(T )

Ctot(T )

)
. (5.3)

Here, the deposited energy density in the subsystem r is given by ρ
Q
r = Cr ·∆T/V **. Since

the phononic heat capacity contribution exhibits a pronounced temperature dependence in the
investigated temperature range, the total stress according to equation (5.3) inherits the temperature
dependence of both the phononic and magnetic heat capacity. However, around the phase transition
the phononic heat capacity is approximately temperature-independent and the laser-induced stress
becomes proportional to the magnetic heat capacity. In this limit the magnetic heat capacity
provides the step-like change of the total stress as already observable for 1.4 mJ

cm2 .
Increasing the fluence and thus the laser-induced temperature change qualitatively modifies the
temperature dependence of the stress induced by the first and the second pulse. In the case
of the fluence of F = 6.3 mJ

cm2 , the stress induced by the first pulse increases continuously with
temperature up to the Curie temperature, whereas the stress induced by the second pulse shows
no temperature dependence at all. Since the same amount of energy is deposited at each initial
sample temperature the temperature-independent stress indicates the absence of a magnetic
stress contribution for initial sample temperatures in the ferromagnetic phase. This reveals the
saturation of the magnetic stress by the first excitation for all temperatures, which is equivalent
to a transient heating above the phase transition. The underlying excitation of the magnetic
system in the double-pulse excitation scheme is sketched in figure 5.13(d). The arrows denote
the laser-induced temperature increase relative to the magnetic heat capacity for different initial
sample temperatures. Irrespective of the temperature, the first pump pulse (blue arrow) transiently
heats above the Curie temperature and deposits the maximum amount of energy to the magnetic
system given by the temperature-dependent integral of the magnetic heat capacity. Therefore
the temperature-dependent integral of the remaining magnetic heat capacity determines the
magnetic stress contribution that counteracts the tensile phonon stress. Under the assumption of
a homogeneous excitation, the temperature-dependent stress induced by the first pulse results in

σ
high
3 (T ) = Γph,3ρ

Q
dep +

(
Γmag,3−Γph,3

)
ρ

Q
mag(T ) . (5.4)

Due to the conservation of energy, the energy density ρ
Q
mag(T ) =

∫ 170K
T Cfilm

mag(T
′)dT ′ deposited to

the magnetic system reduces the fraction of the total deposited energy density ρ
Q
dep deposited in

the phonons. In total, the excitation of the magnetic system results in a decreased total stress
due to the reduced energy density stored in the phonons and the additional contractive magnetic
stress contribution according to the negative magnetic Grüneisen constant. The saturation of
the magnetic stress by the first pump pulse causes an exclusive excitation of phonons by the
second pump pulse leading to the observed temperature-independent stress. The solid lines in
figure 5.13(c) represents the Grüneisen model of the temperature-dependent stress according to
equation (5.4). Above T film

demag = 170K, the stress induced by the second excitation is scaled by the
fluence factor of 0.6 relative to the maximum stress induced by the first excitation. The good
agreement between the measurement and the model demonstrates the suitability of the Grüneisen
model to describe the ultrafast stress in the magnetic metal SRO.
In figure 5.13 the comparison of the temperature-dependent stress for the two fluences displays a
fluence dependence that originates from the laser-induced saturation of the magnetic stress. Under
the facilitating conditions of homogeneous excitation of the transducer and ultrafast equilibrated

**Note, deviations from the approximation by equation (5.3) become larger with decreasing heat capacity at low
temperatures, because even small excitations induce large temperature steps including a significant variation of the
heat capacity contributions.
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Figure 5.13: Extracted temperature-dependent stress induced by the first and the second excitation for
both fluences. (a,c) The blue dots and red squares denote the extracted laser-induced stress
from the measurements in figure 5.12 for the first and the second excitation, respectively. The
solid lines relate to the Grüneisen model (5.2) describing well the temperature dependence.
The schematic sketch of the excitation of the magnetic subsystem by the laser-induced
temperature increase (arrows) in comparison to the magnetic heat capacity (b,d) rationalises
the fluence-dependent temperature dependence of the total stress.

subsystems, the Grüneisen model captures this fluence dependence. In figure 5.14 I present the
temperature-dependent total and magnetic stress for different fluences modelled by the Grüneisen
approach. The temperature- and fluence-dependent magnetic stress exemplifies the influence of
the magnetic stress on the dependencies of the total stress. The Grüneisen model describes the
crossover from the low-fluence to the high-fluence temperature dependence of the total stress
in panel (a). In the limit of infinitesimal excitations the total stress according to equation (5.3)
(gray solid line) decreases in a step-like fashion slightly above the phase transition and exhibits a
minimum at the Curie temperature corresponding to a maximum in the magnetic stress contribution
depicted in panel (b). This maximum corresponds to an enhanced amount of deposited energy
density due to the maximum of the magnetic heat capacity at the phase transition. Since the
deposited energy density to the magnetic excitations depends also on the phononic heat capacity,
the temperature-dependent magnetic stress is not exclusively given by the magnetic heat capacity.
Below 50K, the different temperature dependencies of the phononic and magnetic heat capacity
contribution approximated by ∼ T 3 and ∼ T

1
2 enhances the fraction of energy density stored to

the magnetic system that leads to an increasing magnetic stress. Under the assumption of a
constant phononic heat capacity in the Dulong-Petit limit the magnetic stress contribution is
indeed proportional to the magnetic heat capacity as depicted by the gray dashed line.
With increasing fluence the pump pulse transiently demagnetises the SRO transducer for lower
initial sample temperatures, thus the corresponding minimum in the total stress shifts to lower
initial sample temperatures and the step-like change of the stress around the Curie temperature
is broadened. Starting from a fluence of F = 3.5 mJ

cm2 , the first excitation heats above the phase
transition and saturates the magnetic stress independently of the initial sample temperature. The
corresponding temperature-dependent magnetic stress contribution becomes maximal and stays
constant with further increase of the fluence. In this case the magnetic stress is proportional
to the integral of the remaining magnetic heat capacity described by the squared magnetisation
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Figure 5.14: Crossover from the low-fluence to the high-fluence temperature dependence of the total and
magnetic stress. The Grüneisen model of the ultrafast stress (5.2) determines the temperature-
dependent total (a) and magnetic stress (b) for different fluences. In the limit of infinitesimal
excitations and a temperature-independent phononic heat capacity the magnetic stress is
given by the magnetic heat capacity (gray dashed line). However, the temperature-dependent
phononic heat capacity influences the energy density deposited to the magnetic excitations
and thus it changes the magnetic and the total stress (gray solid line). In the limit of
high fluences the temperature dependence of the total stress is given by the integral of the
remaining magnetic heat capacity following 1−M(T )2 (black solid line).

M(T )2 in regards to the molecular field approximation. This dependence is in agreement with
the temperature dependence of the spontaneous magnetostriction in equilibrium [166] due to
the ultrafast equilibration of the phonons and the magnetic excitations. The dependence of the
magnetic stress results in a total stress described by 1−M(T )2 as demonstrated by the black
solid line in figure 5.14(a). However, with increasing fluence the additional energy is exclusively
stored in the phonons. The decreasing fraction of energy density stored in the magnetic excitation
reduces the relative decrease of the total stress in the ferromagnetic phase.
In the case of SRO, the analysis of the laser-induced stress is facilitated by the ultrafast equilibration
of the subsystems that results in a time-independent energy distribution as in equilibrium. Therefore
the equilibrium temperature-dependent external stress in figure 5.5 describes the ultrafast stress
according to the laser-induced temperature increase given by the total heat capacity. However, the
application of the Grüneisen model reveals the origin of the temperature and fluence dependence of
the ultrafast stress by the separation into the phononic and magnetic contribution. This exemplifies
the Grüneisen concept to be a useful approach for analysing picosecond strain dynamics and
to investigate the role of the magnetic excitations. In the next chapter I extend the Grüneisen
approach to a laser-induced non-equilibrium of the subsystems.
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Chapter Six

Spatio-temporal magnetic stress
in the rare-earth dysprosium

In this chapter I examine the question how the excitation of the magnetic subsystem on two
timescales in an inhomogeneously excited transducer influences the total stress and the driven
strain pulses. I focus especially on the influence of the spatial-dependent saturation of the magnetic
stress on the transient expansion of the transducer and the strain pulses. Therefore I present
the analysis of the temperature- and fluence-dependent strain response in a heterostructure that
consists essentially of an optically excited dysprosium transducer and a buried niobium detection
layer. Below the Néel temperature, the excitation of the antiferromagnetically ordered spin system
in dysprosium results in a contractive stress that even dominates over the tensile phonon stress.
The inhomogeneous excitation of the transducer and the laser-induced non-equilibrium between
the phonons and the magnetic excitations cause an explicit spatial and temporal dependence of
the total stress in dysprosium that is captured by a Grüneisen model.
This chapter is based on our recent publication that is dedicated to the unconventional picosecond
strain pulses that are triggered in a rare-earth transducer [29]. In that publication I conducted the
modelling of the strain response using the Grüneisen concept in cooperation with my colleague
Alexander von Reppert, who together with Jan-Etienne Pudell conducted the X-ray diffraction
measurements. This chapter extends the publication by the simulated heat transport providing a
first attempt to model the remagnetisation of the laser-excited dysprosium and an analysis of the
strain response to a double-pulse excitation. In the first section I determine the Grüneisen constant
of the phonons and the magnetic system using the subsystem-separated heat capacity and the
equilibrium expansion of the hexagonal unit cell. The second section describes the modelling of
the subsystem-separated spatio-temporal stress in the heterostructure by the Grüneisen approach.
The excitation of the magnetic subsystem on two timescales reduces the energy density stored in
the phonons and is assumed to share the spatial profile of the phononic stress, which is calibrated
in the paramagnetic phase. In the third section I present the modelled strain response including
unconventional strain pulses driven by the complex total spatio-temporal stress. The depth-
dependent saturation of the magnetic stress rationalises the temperature- and fluence-dependent
strain response. The last section presents the application of the Grüneisen model to a variable
double-pulse excitation scheme wherein the expansion driven by the second pulse verifies the
saturation of the magnetic stress at the top side of the dysprosium layer.

6.1 Equilibrium properties of dysprosium

This section summarises the equilibrium magnetic and thermodynamic properties of the rare-earth
metal dysprosium that acts as a transducer in the investigated heterostructure. Dysprosium
exhibits large magnetic moments originating from the localised 4 f -electrons that order anti-
ferromagnetically below the Néel temperature TN = 180K and ferromagnetically below the Curie
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Figure 6.1: Schematic sketch of the investigated crystalline heterostructure. The 80nm-thick dysprosium
layer (Dy) between the two yttrium (Y) layers serves as an optically excited magnetic transducer.
The hexagonal-closed packed crystal structure of these materials is exemplary sketched in the
inset. The buried body-centred cubic 102nm thick niobium layer (Nb) is used as a detection
layer, which also enables the crystalline growth on the sapphire substrate (Al2O3).

temperature TC = 85K (see review by Koehler [167]). The magnetic order provides an additional
energy reservoir and the magnetic excitations result in a pronounced negative thermal expansion
along the a3-axis of the hexagonal unit cell. The negative thermal expansion indicates a contractive
magnetic stress contribution that dominates over the tensile stress due to anharmonic phonon-
phonon interactions. The magnetic stress arising from the excitation of the magnetic order is well
described by an anisotropic Grüneisen constant of Γ3,mag =−2.9 along the a3-axis of the unit cell
pointing along the out-of-plane direction in the sample structure.

In the following paragraphs I summarise the structural properties of the heterostructure supported
by a X-ray diffraction measurement that provides the lattice constants of the materials by the
separated Bragg peaks. The investigated sample structure is sketched in figure 6.1. The crystalline
heterostructure consists of various layers and different materials. The (0001)-oriented dysprosium
(Dy) transducer (80nm) is located between two (0001)-oriented yttrium (Y) layers (22nm and
5nm). These materials exhibit a hexagonal-closed packed (hcp) crystal structure that is depicted
in the inset of figure 6.1. The hexagonal unit cells in these layers are oriented with the a3-axis
pointing out-of-plane and the a1-axis within the basal plane corresponds to the in-plane lattice
constant. The buried body-centred cubic (110)-grown niobium (Nb) detection layer (102nm)
ensures the crystalline growth on the hcp-(11−20) sapphire (Al2O3) substrate.
Reciprocal space mapping with a convergent beam and a X-ray area detector [128] provides
additional information on the individual out-of-plane lattice constants of the materials and the
crystalline quality of the layers. In a co-planar diffraction geometry a symmetric θ -2θ scan
maps the reciprocal qx-qz space. The reciprocal space map in figure 6.2(b) measured by a
microfocus Cu-Kα X-ray source displays the well separated Bragg peaks of the different materials
as diffraction maxima. The Bragg peaks of dysprosium (0002), yttrium (0002) and niobium

(110) at qz = 2.22 Å
−1

, 2.07 Å
−1

and 2.7 Å
−1

show an elongation along qx, respectively. This
broadening of the Bragg peaks along qx indicates a mosaicity of the layers where the tilting of the
crystallites leads to an asymmetric diffraction relative to the sample surface so that αin 6= αout.
This corresponds to an imperfect crystal structure of these layers. In contrast, the sharp Bragg
peak of the sapphire substrate exhibits the instrument resolution area of the setup [128] indicating
the well-defined periodicity of the crystal structure. Integrating the reciprocal space map along
qx yields the projected diffraction intensity on the qz-axis, which encodes the out-of-plane lattice
constants a3 of the different materials by the position of the Bragg peaks along qz =

2π·m
a3

*.
The equilibrium thermal expansion of the materials in the heterostructure can be used to determine
the Grüneisen constants and thus yields an important reference for the interpretation of the
ultrafast pump-probe experiments. The out-of-plane expansion results in a peak-shift of the
material-specific Bragg peak along qz. Figures 6.2(c) and (d) display the temperature-dependent
peak shift of dysprosium and niobium, respectively. The black dashed lines denote the Bragg

*The qz direction only describes the out-of-plane direction in regards to the choice of the reciprocal coordinate
system used in this thesis, which is introduced in section 4.1.
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Figure 6.2: Characterisation of the investigated heterostructure by X-ray diffraction. The reciprocal space
map (b) displays the Bragg peaks of the yttrium (Y), dysprosium (Dy) and niobium (Nb)
layers and the sapphire (Al2O3) substrate as intensity maxima. The integration along qx yields
the projection on qz (a), which determines the out-of-plane lattice constant. The thermal
expansion of dysprosium (c) and niobium (d) corresponds to a shift of the Bragg peak along
the qz direction. While niobium exhibits the common positive thermal expansion, dysprosium
shows a negative thermal expansion below 180K. (Adopted from [29])

peak position that determines the out-of-plane lattice constant. The niobium Bragg peak shifts
monotonously to smaller qz, which corresponds to the common positive thermal expansion that
originates from anharmonic phonon-phonon interactions. In contrast, the temperature-dependent
expansion of dysprosium is non-continuous including a step-like change at 40K and a change from
negative thermal expansion to positive thermal expansion at 180K. The unusual thermal expansion
of dysprosium hints at an additional contractive magnetic stress arising at low temperatures.

6.1.1 Magnetism-induced negative thermal expansion

This section relates the negative thermal expansion of dysprosium in the range between 40 and
180K in figure 6.2(c) to the magnetism of the rare-earth metal. The giant magnetostriction results
from a pronounced coupling of the magnetism to the lattice by exchange-striction and spin-orbit
coupling. These mechanisms originate from the indirect Rudermann-Kittel-Kasuya-Yosida (RKKY)
interaction [168–170] and the anisotropic 4f orbitals providing the magnetic moments.
Elemental bulk dysprosium exhibits a large magnetic moment of 10.6 µB per atom, which mainly
originates from the partially filled 4f orbitals and lies within the basal plane of the hexagonal unit
cell [171]. According to Hund’s rules the nine 4f electrons contribute 10 µB to the total magnetic
moment [45, p. 673] whereas the remaining moment is associated with the spin polarisation of
the itinerant 5d6s conduction band electrons [172]. The 4f orbitals are localised at the nucleus
and their probability density decays rapidly with interatomic distance [173]. Therefore there is
no direct overlap between the electronic wave functions of adjacent lattice sites and the direct
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exchange interaction of these moments is inhibited. Instead, the large 4f magnetic moments
are coupled indirectly by the itinerant 5d6s conduction band electrons via the RKKY interaction
[174, p. 200ff], which includes an intra-atomic coupling between the 4f- and 5d6s-magnetic
moments and an inter-atomic coupling of the spin polarised delocalised conduction band electrons.
This coupling of the magnetic moments of adjacent lattice sites is described by a Heisenberg
Hamiltonian including the exchange parameter JRKKY

i, j [174, p. 207]. The corresponding exchange
energy provides a minimum in the Free energy, which favours a collective magnetic order at low
temperatures. In bulk dysprosium the magnetic moments order ferromagnetically (FM) below
the Curie temperature T bulk

C ≈ 85K [167] with the easy axis along the a1-axis of the unit cell
[171]. Growing dysprosium as thin film on yttrium reduces the Curie temperature to TC ≈ 60K,
which corresponds to a stabilisation of the anti-ferromagnetic order [175, 176]. Above the
Curie temperature dysprosium becomes antiferromagnetic (AFM) up to the Néel temperature of
TN ≈ 180K [167]. The antiferromagnetically ordered magnetic moments form a helix with a finite
angle between the magnetic moments of neighbouring unit cells along the a3-axis. This rotation
angle of the helix increases with increasing temperature. The helical order arises from an interplay
of nearest-neighbour and next-nearest-neighbour interaction and is typical for the class of the
rare-earth metals [177, p. 99]. Heating above the Néel temperature finally disturbs the long-range
magnetic order and dysprosium becomes paramagnetic (PM).
These magnetic phase transitions are accompanied by a change of the thermal expansion of
dysprosium. At low temperatures, dysprosium is orthorhombic with three independent lattice
constants a1,o = 3.592 Å, a2,o = 6.188 Å and a3,o = 5.686 Å at 90K [178] (see figure 6.3(b)) under
the condition of a2,o <

√
3a1,o [179]. At the Curie temperature T bulk

C ≈ 90K, dysprosium undergoes
a first order structural phase transition, which results in a hexagonal closed-packed crystal structure
(a2,hcp =

√
3a1,hcp) with the lattice constants a1,hcp = 3.5903 Å and c3,hcp = 5.6475 Å [180]. The

structural phase transition corresponds to a step-like decrease of the lattice constant a1,o and a step-
like increase of the lattice constant a2,o as depicted in figure 6.3(a). In the antiferromagnetic phase
dysprosium shows a pronounced negative thermal expansion along the a3-axis of the hexagonal
unit cell, whereas the lattice constants within the basal plane a1,hcp and a2,hcp show an identical
positive expansion. In contrast, dysprosium expands along all crystal directions in the paramagnetic
phase. The negative thermal expansion along the a3-axis indicates an anisotropic and contractive
magnetic stress in the antiferromagnetic phase, which dominates over the tensile stress caused by
phonons. The temperature-dependent lattice strain along the a1,hcp-axis and a2,hcp-axis exhibits a
discontinuous slope at the Néel temperature, which is related to the changing sign of the Poisson
stress arising from the changing thermal expansion along the a3-axis.
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Figure 6.3: Temperature-dependent thermal expansion of bulk dysprosium. The temperature-dependent
strain (a) displays a negative thermal expansion along the a3-axis up to TN = 180K. At
the Curie temperature TC = 90K dysprosium undergoes a first order phase transition from a
hexagonal (a2,hcp =

√
3a1,hcp) to an orthorhombic (a2,o <

√
3a1,o) unit cell (b). The structural

phase transition corresponds to a step-like change of the lattice constants of the unit cell.
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The dominant, contractive magnetic stress in dysprosium along the a3-axis in the antiferromagnetic
phase indicates a large magnetostriction and a strong interaction between lattice and magnetism.
This giant magnetostriction is typical for the class of the heavy rare-earth metals from gadolinium
to erbium as shown in figure 6.4. The temperature-dependent lattice strain of all materials exhibits
a pronounced negative thermal expansion below the magnetic order temperature of the AFM
(Dy, Ho, Er) and FM (Gd, Tb) phase [172, 181]. The spontaneous magnetostriction in the heavy
rare-earth metals is described by E. Callen and H. B. Callen [21, 22]. Their formalism includes both
spin-orbit interaction and exchange-striction as single-ion and two-ion interactions, respectively.
The lattice deformation with changing magnetisation via spin-orbit interaction originates from the
strongly anisotropic 4f orbitals in the crystal field [23, 182]. The demagnetisation with increasing
temperature leads to a reorientation of the magnetic moments with diminishing magnetic order.
In a simplified picture, the orientation of the magnetic moments determines the orientation of the
4f orbitals via spin-orbit interaction, which influences the lattice spacing via the overlap of the
orbitals of neighbouring lattice sites.
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Figure 6.4: Comparison of the thermal expansion of the
heavy rare-earth metals along the a3-axis.
Without exception all heavy rare-earth me-
tals exhibit a negative thermal expansion
below the magnetic order temperature of
the AFM (Dy, Ho, Er) and FM (Gd, Tb)
phase [172, 181]. This indicates a giant(
> 10−3

)
spontaneous magnetostriction in

this class of materials.

In the case of gadolinium the half filled 4f shell causes a vanishing orbital momentum. The
nonetheless occurring magnetostriction indicates the importance of the exchange-striction for
the coupling of magnetism and lattice. The exchange-striction describes the dependence of the
exchange parameter JRKKY

i, j on the interatomic distance. In case of the indirect RKKY exchange
interaction in the heavy rare-earth metals the exchange parameter even shows an oscillating
dependence on the interatomic distance with changing sign [174, p. 207]. Therefore the exchange
energy affects the equilibrium spacing of the magnetic ions by their alignment and leads to the
giant magnetostriction in the heavy rare-earth metals in general and in particular in dysprosium.

6.1.2 Determination of Grüneisen constants

The negative thermal expansion of dysprosium relates to a contractive magnetic stress that arises
from the excitation of the additional magnetic degrees of freedom and dominates over the tensile
phonon stress. In the Grüneisen model (3.17) this stress relates linearly to an energy density
stored in the magnetic system by a Grüneisen parameter Γmag. In this section I determine the
out-of-plane Grüneisen constants of dysprosium as thin film. The Grüneisen constants of the
phonons and the magnetic excitations in the thin film are used in the next section to analyse the
spatio-temporal stress driving the picosecond strain response.
The determination of the Grüneisen constants of the phonons and the magnetic excitations
in dysprosium require the separation of the temperature-dependent heat capacity to relate the
temperature-dependent lattice stress to an energy density. The total heat capacity of bulk
dysprosium [183] separated into the subsystem contributions is depicted in figure 6.5. The
separation is adopted from the master thesis of my colleague Alexander von Reppert [133]. The
electron contribution is approximated by the Sommerfeld model with the Sommerfeld constant
of γS = 4.9 mJ

molK2 [184]. In the following determination of the Grüneisen constants I neglect
the electron contribution due to the small fraction of energy density stored in the electrons in
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thermal equilibrium. The contribution of the phonons is determined by the heat capacity of the
non-magnetic rare-earth Lutetium [185, 186], whose temperature dependence is scaled to match
the Debye temperature ΘD = 183K of dysprosium [187]. The difference to the total heat capacity
determines the magnetic heat capacity that vanishes above the Néel temperature at which it
exhibits a distinct peak. This separation routine of the total heat capacity assigns the latent heat
of the structural first order phase transition at 90K to the magnetic system as a simplification.
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Figure 6.5: Temperature-dependent subsystem-separated heat capacity of bulk dysprosium. The con-
tributions of the electrons and the phonons are determined by the Sommerfeld constant
γS = 4.9 mJ

molK2 [184] and the heat capacity of the non-magnetic rare-earth Lutetium [185, 186]

scaled by the Debye temperature ΘD = 183K of dysprosium [187], respectively. The difference
to the total heat capacity describes the magnetic heat capacity that vanishes above TN = 180K.

In the next step I determine the temperature-dependent out-of-plane external stress σ ext
3 . In the

Grüneisen model it relates to the temperature-dependent energy density stored in the subsystems
given by the heat capacity contributions. In equilibrium the anisotropic thermal expansion ηλ

is the elastic response to a total stress consisting of the uni-axial external stress σ ext
λ

and the

additional Poisson stress σ
poi
λ

. In consideration of the general definition of thermal expansion (2.13),
the elastic tensor of a hexagonal crystal (2.17) determines the out-of-plane Poisson stress to
σ

poi
3 = c13 (η1 +η2). The Poisson stress enables the determination of the external stress σ ext

3 using
the equilibrium out-of-plane stress σ3 = c33η3:

σ
ext
3 = c33η3 +σ

poi
3 (6.1)

where η3 denotes the strain in thermal equilibrium. Equation (6.1) determines the external stress
along the a3-axis of bulk dysprosium that denotes the out-of-plane direction of the thin film. To
determine the Poisson stress in the thin film sample I assume the same external in-plane stress
as the bulk material that I determine from the thermal expansion of bulk dysprosium shown in
figure 6.3(a). Under this assumption, figure 6.6(a) displays the separation of the total equilibrium
out-of-plane stress σ3 into the Poisson stress σ

poi
3 (gray dots) and the external stress σ ext

3 (black
dots) using the elastic constants c13 = 22.5GPa and c33 = 78.3GPa [188].
Figure 6.6(b) shows the external stress as function of the temperature-dependent energy density
stored in the phononic subsystem according to the respective heat capacity contribution in figure 6.5.
The external stress exhibits a linear dependence on the energy density stored in the phonons
well above the Néel temperature. The linear dependence determines the out-of-plane phononic
Grüneisen constant along the a3-axis of the hexagonal unit cell to Γ3,ph = 1.1�. The phononic
Grüneisen constant determines the phononic stress contribution σ ext

3,ph over the full temperature
range denoted by the red solid line in (a). The difference to the total out-of-plane stress defines the
temperature-dependent magnetic stress contribution σ ext

3,mag. Panel (c) depicts the magnetic stress
mapped to the energy density stored in the magnetic subsystem by its heat capacity contribution.

�There are different measurements on the sample, which observe different expansion coefficients in the paramag-
netic phase. Here, I choose the measurement used in the recent publication [29].
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Figure 6.6: Determination of the phononic and magnetic Grüneisen constant of dysprosium. (a) The
temperature-dependent external stress (black dots) results from the equilibrium expansion
considering the additional Poisson stress (gray dots) according to equation (6.1). The phononic
heat capacity contribution in figure 6.5 maps the stress to the energy density stored in the
phonons ρ

Q
ph in (b). The linear dependence above TN determines the phononic Grüneisen

constant to Γ3,ph = 1.1, which defines the phononic stress contribution (red line). The difference
to the total stress corresponds to the magnetic stress in (c). The linear dependence on the energy
density stored in the subsystem ρQ

mag in the AFM phase determines the magnetic Grüneisen
constant to Γ3,mag =−2.9. The Grüneisen model of the external stress as superposition of the
subsystem contributions is denoted by the black line in (a).

Well above the first order phase transition the magnetic stress contribution depends linearly on
the deposited energy density and determines the magnetic Grüneisen constants to Γ3,mag =−2.9.
However, the Grüneisen model does not capture the step-like stress contribution arising from the
first order phase transition, which indicates the limitations of the usage of a single temperature-
independent Grüneisen constant for each sub-system. The phononic and magnetic Grüneisen
constants determine the respective temperature-dependent stress contribution. Its superposition
corresponds to the total out-of-plane external stress (black solid line), which describes well the
stress calculated from the equilibrium expansion (black dots) in figure 6.6(a).

6.2 The Grüneisen model of the spatio-temporal stress

In this section I describe the application of the Grüneisen approach to determine the spatio-temporal
stress of electrons, phonons and magnetic excitations in the inhomogeneously excited dysprosium
transducer. The model captures the electron-phonon coupling as well as the excitation of the
magnetic subsystem on two timescales via coupling to the electrons and the phonons. The
transferred energy density translates via the subsystem-specific Grüneisen constants to stress
contributions that drive the strain response. In addition to the finite subsystem coupling timescales,
the spatial redistribution of energy by heat diffusion on a timescale of hundreds of picoseconds
results in a time-dependent total stress in the different layers of the heterostructure.
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In the first part of the section I present the modelling of the strain response in the dysprosium
transducer and the niobium detection layer in the absence of a magnetic stress contribution at
250K in the paramagnetic phase. The modelling of the strain wave and the transient thermal
expansion governed by the heat diffusion determine a spatio-temporal electron-phonon stress. The
calibration of the non-magnetic properties of the heterostructure prepares the implementation of
the magnetic subsystem at initial sample temperatures below TN. The second part provides the
transient strain of the dysprosium transducer and the niobium detection layer, which provides first
insights into the temperature- and fluence-dependent magnetic stress. In the last section I describe
the implementation of the magnetic stress into the model by transferring locally energy density
from the electron-phonon system to the saturable magnetic subsystem under energy conservation.

6.2.1 The spatio-temporal electron-phonon stress

In this section I model the spatio-temporal stress of the electrons and the phonons in the
paramagnetic phase, which drives the strain response of the dysprosium transducer and the
niobium detection layer. The strain response consists of propagating picosecond strain pulses and
the quasi-static expansion as elastic response to the out-of-plane stress. The different propagation
times of sound and heat result in the separation of these two contributions in time when detected
in the buried detection layer. The optical penetration depth and the electron-phonon coupling
determine the temporal shape of the strain wave. Its propagation through the heterostructure is
determined by the layer thickness. In contrast, the temporal shape of the delayed expansion of the
niobium layer depends on the heat conductivities of the materials. In total the modelling provides
the spatio-temporal electron-phonon stress using Fourier’s heat law.
In figures 6.7(a) and (b) the open symbols denote the time-resolved mean strain of dysprosium and
niobium measured by ultrafast X-ray diffraction using reciprocal space slicing with an area detector
(see chapter 4). The dysprosium transducer rapidly expands within the first picoseconds after the
laser excitation and recovers to the initial mean lattice constant on nanosecond timescale via heat
diffusion. The rapid expansion originates from an expansive stress in dysprosium, which exceeds
the expansive stress in the yttrium capping layer and drives a bipolar strain wave at the interface.
The maximum expansion of dysprosium at 29ps corresponds to the propagation of the expansive
part of the bipolar strain wave through the layer to the dysprosium-yttrium interface. Subsequently,
the expansive part propagates into the niobium layer and leads to a maximum expansion at 52ps.
This expansion of niobium is preceded by a compression indicating the bipolar shape of the driven
strain wave. The absence of a strain response of niobium for the first 15ps indicates the negligible
optical excitation of the buried detection layer. The partial reflection of the driven strain pulses at
the interfaces with non-perfect impedance match leads to a damped oscillation of the strain of
dysprosium and a second bipolar feature in the niobium layer between 80 and 125ps. In addition
to these signatures of the strain waves, the average strain of the niobium layer slowly increases due
to the deposition of energy via heat diffusion on the nanosecond timescale. The strain response of
niobium demonstrates the separation of the picosecond strain pulses and the thermal expansion
in the time domain due to the different propagation velocities of sound and heat. This enables
the background-free detection of the driven strain wave in the niobium layer that facilitates the
modelling and interpretation of the results.

In the following paragraphs I describe the modelling of the strain dynamics of dysprosium and
niobium using the modular Matlab library udkm1Dsim [124]. The homogeneous lateral excita-
tion of the probed volume in the thin film geometry limits the strain response to the out-of-plane
direction (see section 2.2.2). The one-dimensional linear-chain model of masses and springs of
udkm1Dsim simulates the strain response of the heterostructure on the basis of a spatio-temporal
stress. The spatial dependence of the stress originates from the inhomogeneous excitation of the
hundreds of nanometres thick heterostructure. The subsequent heat diffusion and the electron-
phonon coupling add a temporal dependence to the stress. Table 6.1 summarises the static
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Figure 6.7: Modelled strain response to a spatio-temporal laser-induced stress in the paramagnetic phase.
The strain response of the laser-excited dysprosium transducer (a) and the niobium detec-
tion layer (b) at 250K and 7.2 mJ

cm2 (open symbols) are modelled using the Matlab library
udkm1Dsim [124] (solid lines). The modelling provides the spatio-temporal electron-phonon
stress in the absence of magnetic excitations (c). A linear-chain model of masses and springs
calculates the corresponding spatio-temporal strain (d) including strain waves. The modelling
calibrates the layer thickness, the optical penetration depth, the electron-phonon coupling time
and the heat transport, which are fixed in the further modelling including magnetic stress.

properties of the different layers and materials. To match the measured strain response I need to
adjust certain parameters with respect to the literature values�. In the table these adjustments are
marked by stars and the corresponding literature values are given additionally in brackets. The
parameters which are changed in respect to our recent publication [29] are underlined and are
limited to the heat conductivities. To account for the dimensionality of the dynamics I use the
thermal expansion coefficients αc

⊥ under clamped in-plane lattice dimensions. These expansion
coefficients depend linearly to the phononic out-of-plane Grüneisen constant Γ3,ph. I determine the
phononic Grüneisen constants of yttrium, niobium and sapphire in consideration of equation (3.15)
using the bulk equilibrium thermal expansion.
The following paragraphs describe the influence of various parameters on the strain response of
dysprosium and niobium. In the first step I model the temporal shape of the driven strain wave
depending on the electron-phonon coupling, the phononic Grüneisen constant and the optical
penetration depth. The strain wave and therefore these parameters determine the temporal shape
of the rapid expansion of dysprosium and the compression of niobium. First, I increase the optical
penetration depth of the yttrium capping layer to λ film

Y = 72nm and reduce the phononic Grüneisen
constant by 65% to ΓY

3,ph = 0.45. As already mentioned, the immediate expansion of dysprosium
within the first picoseconds requires a larger tensile stress in dysprosium than in the yttrium
capping layer at the yttrium-dysprosium interface. The adjustments reduce the expansive stress in
yttrium by reducing both the deposited energy density and the stress generation efficiency. These

�For example, the adjusted out-of-plane lattice constant of yttrium accounts for the separation of the Bragg
peaks of Y and Dy in the RSM in figure 6.2, which may be due to a growth induced epitaxial strain.
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assumptions may be rationalised by an oxidation of the capping layer that leads to a partially
transparent layer that reduces the laser-induced tensile stress§. The dominating tensile stress in
dysprosium at the yttrium-dysprosium interface drives a bipolar strain wave. I use the expansion
of dysprosium within the first picoseconds to determine the stress rise time. The compression
of the niobium detection layer determines the spatial shape of the strain wave that translates
by the sound velocity to a temporal shape. Assuming a finite electron-phonon coupling and an
electronic Grüneisen constant smaller than the phononic one provide an effective stress rise time
that delays the expansion of the dysprosium transducer. To match the measurements I choose an
electron-phonon coupling time constant of τel-ph = 2ps and an electronic Grüneisen constant of
Γ3,el = 0.5 ·Γ3,ph for both yttrium and dysprosium. Under the condition of the transducer thickness
exceeding the optical penetration depth, the spatial shape of the strain wave depends on both
the the optical penetration depth of dysprosium and the modelled electron-phonon coupling (see
section 2.2.2). I adjust the optical penetration depth of dysprosium to λ film

Dy = 22nm.
In the second step I model the propagation of the strain wave whose partial reflection at interfaces
with non-perfect impedance match results in the oscillatoric behaviour of the mean strain of
dysprosium. The propagating strain wave influences the mean strain of a layer by the propagation
into and out of the layer. The propagation of the expansive or the compressive part of the bipolar
strain wave into a layer increases or decreases the mean strain of the layer, respectively. The
propagation of the bipolar strain pulse out of the probed layer then has the inverse effect. Thus
the local maxima and minima in the mean strain denote the propagating strain waves and their
pump-probe delay determines the layer thickness. In analogy to the simple film-substrate system
in figure 2.3, the maximum expansion of dysprosium corresponds to the left compressive part of
the bipolar strain wave and thus to the thickness of the dysprosium layer with respect to its sound
velocity. The maximum compression of niobium relates to the entering of the expansive part of
the strain wave. Therefore, the delay to the maximum expansion of dysprosium determines the
thickness of the bottom yttrium layer. The subsequent propagation of the compressive part of
the bipolar strain wave into the substrate causes the maximum expansion of niobium and the
delay with respect to the maximum compression defines the thickness of the niobium layer. The
thickness of the capping yttrium layer is determined by the temporal delay of the strain wave
echo at 90ps. This bipolar feature relates to the bipolar strain wave reflected at the non-perfect
impedance matched yttrium-niobium interface and the surface. The inverted sign in the mean
strain of niobium indicates the phase jump during the reflection of the strain wave at the surface.
This analysis is summarised by the strain map in figure 6.7(d) provided by the modelling.
In the last step the quasi-static expansion of the niobium detection layer in the absence of co-
herently excited strain pulses is modelled. The quasi-static expansion as elastic response to the
laser-induced stress is given by the time-dependent energy density in the layers, which depends
on the heat diffusion. To match the energy transport from dysprosium to the substrate that
transiently deposits energy to the intermediate niobium layer, I adjust the thermal conductivity of
the layers except dysprosium. The reduced thermal conductivity in yttrium, niobium and sapphire
slows down the heat transport and mimics interface resistances in the real sample. The reduced
thermal conductivities are summarised in table 6.1 and to some extend deviate from the values
given in our recent publication [29]. The corrections become necessary to correct an error in the
modelling of the time-dependent heat transport that mainly affects the modelled strain at times
larger than 200ps. This timescale is not relevant for the picosecond strain pulses but for the
remagnetisation process that is discussed in the remainder of this thesis. The modelling of the
strain response up to 3ns provides the spatio-temporal electron-phonon stress in the absence of a
magnetic order depicted in figure 6.7(c).

§Note, the shape of the expansion of dysprosium within the first picoseconds indicates a bipolar strain pulse
propagating from yttrium into the dysprosium layer. Thus the assumption of a complete oxidation contradicts the
diffraction data.
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Property Y Dy Nb Al2O3

layer thickness (nm) 22 (37) 80 (142) 103 (220) 900 (1890)

5 (8)

lattice constant (Å)

a3-axis out-of-plane 6.03? (5.73) 5.65 4.67 4.76
a1-axis in-plane 3.65 3.59 4.67 12.80
a2-axis in-plane 3.65 3.59 3.30 8.24
elastic constants (GPa) from [189] from [188] from [190] from [191]

c33 77.8 78.3 246.7 498.1
c13 20.0 22.5 133.7 110.9
c11 79.0 74.2 246.7 496.8
c12 28.7 25.5 133.7 163.6
density ρ (g cm−3) 4.47 8.6 8.57 4.05
sound velocity vs (nm/ps) 4.15 3.10 5.08 11.14
lin. therm. expansion (10−6 K−1) from [180] from [180] from [192] from [193]

clamped: out-of-plane αc
⊥ 8.1? (22.9) 20.7 18.2 9.1

bulk: out-of-plane α⊥ 19.7 20.3 7.6 6.2
bulk: in-plane α‖ 6.2 4.7 7.6 6.2 / 7.1
specific heat CV (J kg−1K−1) 291.49 [186] 167.3 [183] 270.88 [184] 657.22 [194]

Grüneisen constant Γ3,ph 0.45? (1.3) 1.1 1.5 1.7
thermal conductivity κ (W m−1K−1) 17.4? 11.1 [195] 26.5? 23.3?

24.8 [195] 53.0 [195] 58.3 [196]

optical penetration depth (nm) 72? (24) 22? (24) 25 ∞

Table 6.1: Thermo-elastic properties of the materials in the heterostructure determined by the modelling of
the transient strain by the Matlab library udkm1Dsim [124]. The thickness of the different
layers is determined by the modelling of the strain response and corresponds to a number of
unit cells in the simulation given in the brackets. The quantities marked by a star are adjusted
in the model and deviate from the literature value given in the brackets. The underlined values
of the heat conductivity differ from our recent publication [29].

6.2.2 Temperature- and fluence-dependent strain pulses

The excitation of the magnetic subsystem below the Néel temperature results in a temperature-
dependent contractive magnetic stress, which reduces the total laser-induced stress. This section
summarises the temperature and fluence dependence of the strain response of the dysprosium
transducer and the niobium detection layer to investigate the spatio-temporal magnetic stress.
The strain response of dysprosium encodes the excitation timescale of the magnetic subsystem. In
contrast, the strain response of niobium encodes the spatial profile of the magnetic stress by the
detected strain pulses. Figures 6.8(a) and (b) display the time-resolved strain at different initial
sample temperatures with a constant excitation fluence of 7.2 mJ

cm2 . Panels (c) and (d) display
the strain response to different excitation fluences at an initial sample temperature of 130K. In
the previous chapter I already demonstrated that both the initial sample temperature and the
excitation fluence determine the saturation of the magnetic stress due to the finite integral of the
magnetic heat capacity. While the initial sample temperature determines the maximum amount
of energy storable in the magnetic system, the excitation fluence determines the energy that is
potentially transferable to the magnetic system. The saturation of the magnetic stress enhances
the fraction of energy density stored in the phonons and thus the total stress driving the strain
response. In the following paragraphs I describe the analysis of the strain response that indicates
the role of the saturation of the magnetic stress.
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In the first step I analyse the strain response of dysprosium and niobium as function of the initial
sample temperature. Cooling the sample below the magnetic order temperature TN = 180K leads
to a reduced expansion of dysprosium that indicates the additional contractive stress arising from
the magnetic excitations. Below 100K, the rapid expansion of dysprosium that is observed in
the paramagnetic phase changes to a slow contraction. In the intermediate temperature range
dysprosium expands within the first picoseconds and contracts subsequently. Since the zero-strain
crossing at 35ps for 130K exceeds the strain propagation time through the dysprosium layer, the
changing sign of the average strain must relate to a changing sign of the mean total stress and is
not fully explained by propagating strain pulses. In consideration of the slow contraction at 31K
this indicates an excitation of the magnetic system on a timescale that exceeds the electron-phonon
coupling time and delays the rise of the contractive stress. However, the vanishing expansion
of dysprosium within the first picoseconds indicates a compensation of the rapidly rising tensile
electron-phonon stress by a quasi-instantaneous magnetic stress contribution. This observation
is rationalised by an excitation of the magnetic subsystem on two timescales. In conclusion, the
transient mean strain of dysprosium indicates a mean total stress in the layer that changes its sign
at intermediate temperatures. This occurs because the magnetic subsystem is excited on both a
quasi-instantaneous and a timescale exceeding the rise of the tensile phonon stress.
The strain pulses driven by the total stress in dysprosium are detected as an average strain of
the buried niobium layer. The strain pulses extend the analysis by an insight into the spatial
dependence of the total stress. The signature of the driven strain pulses changes from a bipolar
shape to a uni-polar shape at low temperatures. At intermediate initial sample temperatures,
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Figure 6.8: Strain response of the dysprosium transducer and the niobium detection layer at different initial
sample temperatures (a,b) and for different excitation fluences (c,d). The rapid expansion
of dysprosium in the paramagnetic phase changes to a slow contraction at low temperatures.
The changing response of dysprosium is accompanied with a change of the driven strain pulse
from bipolar to uni-polar. In the intermediate temperature range, dysprosium expands within
the first picoseconds but contracts afterwards. This changes the strain pulses detected in
niobium to an asymmetric bipolar strain wave preceded by a fast expansion. The decrease of
the excitation fluence changes the response to a pure contraction of dysprosium and a uni-polar
expansion of niobium. The shaded areas approximate the thermal expansion of niobium due to
heat transport. It decreases with the excitation of the magnetic system in dysprosium while
the temporal shape stays temperature- and fluence-independent.
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niobium shows an expansion within the first picoseconds followed by a bipolar strain pulse that
becomes asymmetric with decreasing temperature. The expansion within the first picoseconds
is related to a contractive total stress at the bottom of the dysprosium layer driving an expan-
sion, which propagates into the adjacent niobium layer. In contrast, the following bipolar strain
pulse with identical timing as in the paramagnetic phase indicates an expansive total stress at
the front side of the dysprosium layer. Thus the strain response of niobium hints at a total
stress that changes its sign within the dysprosium layer at intermediate temperatures. In con-
sideration of the inhomogeneous excitation of the dysprosium layer which is thicker than the
optical penetration depth, this conclusion is rationalised by a spatially-dependent saturation of
the magnetic stress. The associated maximum contractive stress leads to a to a dominating
electron-phonon stress in the front part of the layer. At the backside of the dysprosium layer
the unsaturated magnetic stress dominates and induces an contraction. With increasing tem-
perature the part where the electron-phonon stress dominates extends further into the layer and
the bipolar feature of the strain wave becomes dominant in the strain response of the niobium layer.

In addition to the initial sample temperature, the excitation fluence determines the saturation
of the magnetic stress. The strain response to different excitation fluences at 130K is depicted
in figures 6.11(c) and (d). With decreasing fluence, the response of dysprosium changes from
expansive within the first tens of picoseconds to purely contractive and the expansion of niobium
changes to uni-polar. This fluence dependence is similar to the temperature dependence because
both originate from the saturation of the magnetic stress. For fluences above 2.9 mJ

cm2 the mean
strain of niobium exhibits a bipolar shape indicating the saturation of the magnetic stress and the
domination of the electron-phonon stress at the front side of the layer. This also increases the
total average stress in the dysprosium layer, which reduces the contraction at 60ps with increasing
fluence. Furthermore, the time dependence of the mean strain of dysprosium between 30 and
120ps changes. At low fluences the mean strain stays rather constant, while for higher fluences
the contraction of dysprosium increases with time. This indicates a delayed cooling of the spins
with respect to the phonons by heat diffusion under the condition of a saturated magnetic stress.
The long-lasting excitation of the magnetic subsystem provides a remaining contractive stress.
The remaining contractive stress results in an increasing contraction of dysprosium and a delayed
maximum contraction after about 500ps. Under the condition of temperatures near the Néel
temperature and high fluences, the fraction of the fully demagnetised layer increases and shifts
the delayed maximum contraction to larger delays. In general, the temperature- and fluence-
independent shape of the thermal expansion of niobium depicted by the shaded areas corresponds to
a similar heat diffusion in the presence of an excitable magnetic subsystem. However, the amplitude
of the thermal expansion is temperature-dependent and decreases with decreasing temperature.
Since the decreasing initial sample temperature corresponds to an increasing maximum amount
of energy storable in the magnetic subsystem of dysprosium, the reduced thermal expansion of
niobium indicates the magnetic system to act as a saturable heat sink.

6.2.3 The spatio-temporal excitation of the magnetic system

This section presents the implementation of the magnetic subsystem to the total laser-induced
stress in dysprosium using the Grüneisen approach. The presented model results in a spatio-
temporal subsystem-specific stress that extends the discussion of the simple case of homogeneous
excitation and ultrafast subsystem equilibration for SRO in the previous chapter. The laser-induced
non-equilibrium between the electrons, phonons and spins requires the explicit modelling of the
energy transfer between the subsystems under the constraint of energy conservation. I model the
excitation of the spins on a quasi-instantaneous (< 1ps) and a 15ps timescale. In addition, the
inhomogeneous excitation and the subsequent heat transport provide a time-dependent spatial
distribution of the energy, which I assume to be identical for phonons and magnetic excitations.
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Under the assumption of temperature-independent Grüneisen constants, the excitation of the
magnetic order below the Néel temperature TN = 180K extends the electron-phonon stress in the
paramagnetic phase by an additional stress contribution. Therefore the total stress is given by the
superposition of the electron-phonon stress and the spatio-temporal magnetic stress that depends
on the time-dependent energy density stored in the magnetic system and its time-dependent spatial
distribution. The conceptual steps of the modelling routine are summarised in figure 6.10 at 104K.
The figure provides an overview about the time-dependent energy density stored in each layer
(a-d), the time-dependent energy distribution between the phonons and the magnetic subsystem
in dysprosium (e-h) and the subsystem separated spatial stress profile that illustrates the spatial
distribution of the energy density (i-l).

Figure 6.9: Schematic sketch of the subsystem coup-
ling in dysprosium. The laser-excited elec-
trons distribute the deposited energy to the
phonons τel-ph = 2ps and the magnetic ex-
citations τel-mag < 1ps. Additionally, the
spins are excited by phonon-spin coupling
with τph-mag = 15ps. The energy density
stored in each subsystem relates finally to a
stress contribution by the subsystem-specific
Grüneisen constant Γr.

The basis of the model is the spatio-temporal energy distribution in the paramagnetic phase in the
absence of a magnetic order determined in section 6.2.1. In the first step a fraction of the energy
density stored in the electron-phonon subsystem (e) is transferred to the magnetic subsystem under
energy conservation (f). The underlying coupling of the subsystems is sketched in figure 6.9 and
displays the excitation of the spins by electron-spin and phonon-spin coupling. Thus, the excitation
of the magnetic system is described by four parameters: the two timescales and the transferred
amount of energy density. In agreement with the recent investigation of the demagnetisation
of dysprosium by Thielemann-Kühn and co-workers [197] I choose an instantaneous electron-
spin energy transfer time τel-mag < 1ps that captures the sub-picosecond demagnetisation and a
phonon-spin energy transfer time of τph-mag = 15ps that captures the delayed demagnetisation.
The excitation on two timescales accounts for the vanishing strain in the first picoseconds and the
subsequent slow contraction of dysprosium at 31K in figure 6.8(a). Although the demagnetisation
of the rare-earth metals has been shown in multiple experiments [197–201], the microscopic
interpretation is still under debate¶. In my model I transfer on each of these two timescales 24% of
the energy density stored in dysprosium to the spins. The two excitation timescales in combination
with the transferred amount of energy density determine the time-dependent energy density in
the magnetic subsystem (f). I assume the spatial distribution of the magnetic energy density to
follow the phonon energy distribution determined in the paramagnetic phase as depicted in (j).
This assumption is supported by the observation of a temperature-independent heat diffusion in
a comparable heterostructure of dysprosium [35]. The energy transfer to the magnetic system
reduces the energy density stored in the phonons and thus also the expansive phonon stress
contribution (j). However, the layer-specific energy density is up to here not affected by the
excitation of the magnetic order in dysprosium (comparison of (a) and (b)).

¶Thielemann-Kühn and co-workers attribute the quasi-instantaneous demagnetisation to the optical excitation
of the itinerant 5d6s electrons and the second timescale to the demagnetisation of the 4f magnetic moments by the
coupling to the phonons. This is supported by the observed different demagnetisation behaviour of the itinerant
conduction band electrons and the 4f electrons reported by Frietsch and co-workers [198]. However, Rettig and
co-workers [199] observe a simultaneous demagnetisation of the 5d6s and 4f electrons by resonant X-ray diffraction
in holmium.
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Figure 6.10: Modelling of the spatio-temporal magnetic stress at 104K and 7.2 mJ
cm2 separated into the

four conceptual steps. The figures (a-d) display the time-dependent energy density stored in
the layers of the heterostructure. The energy density in dysprosium is divided between the
phonons and the magnetic system (e-h), which results in a total lattice stress as superposition
of the subsystem contributions (i-l). The starting point of the routine is the spatio-temporal
energy density distribution in the heterostructure at 250K (a) in the absence of a magnetic
excitation (e). In the first step energy is transferred from the electron-phonon system to
the magnetic subsystem (f) under energy conservation (b). Subsequently I introduce the
saturation of the magnetic stress according to the start temperature (k) and assume no
recovery of the saturated unit cells. In the last step I reconstruct the phonon diffusion in the
heterostructure by transfer energy from the adjacent layers to the phonons in dysprosium,
which reduces the energy density stored in these layers (d).

In the next step I include the saturation of the magnetic stress by a maximum amount of energy
storable to the magnetic system. The storable energy density is defined by the magnetic heat
capacity. Since this maximum amount depends on the initial sample temperature, the saturation of
the magnetic stress provides the temperature dependence of the magnetic and total lattice stress.
The modelling of the temperature-dependent strain response determines the maximum amount of
energy density storable in the magnetic system in dysprosium to ρsat

mag(T ) = 0.72
∫

∞

T Cmag(T ′)dT ′�,
which is reduced with respect to the equilibrium bulk heat capacity in figure 6.5. The inhomogeneous
excitation of the dysprosium layer results in an inhomogeneous saturation of the magnetic stress
as depicted in (k). I assume the saturated unit cells of dysprosium to stay fully demagnetised.
This accounts for the delayed cooling of the magnetic subsystem in comparison to the phonons
under the condition of a saturated magnetic stress as observed in figure 6.8.

�Note, this saturation level is slightly lower than in our recent publication [29] due to the changed ratio of the
phononic and magnetic Grüneisen constant by including the Poisson stress correctly.
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The underlying assumption of a long lasting non-equilibrium is in agreement with the previous
investigation by my colleague Alexander von Reppert [27], which observed a non-equilibrium
between the phonons and the magnetic system even on the nanosecond timescale. The saturation
of the magnetic stress reduces the energy density stored in the magnetic system (g). The
maximum in the contractive stress changes the total stress (k). At the same time, the neglected
remagnetisation of the fully demagnetised unit cells suppresses the cooling of the magnetic system
on the nanosecond timescale. The additionally required energy density is taken from the phonons
to fulfil energy conservation (c) and reduces the phononic energy density as depicted in (g).
In general, the excitation of the magnetic system reduces the energy density stored in the phonons
and thus leads to discontinuities in the phonon temperature profile resulting from heat diffusion.
In the last step I reconstruct the phonon temperature profile. Therefore, I transfer time-dependent
energy from the adjacent layers to the phonons in dysprosium to compensate the energy density
transferred to the spins. Since this procedure increases the total energy density stored in the
dysprosium layer it also affects the excitation of the magnetic system. Repetition of the three
last steps of the routine leads to a continuous phonon temperature profile in the heterostructure
reduced by the energy density stored in the magnetic subsystem of dysprosium. This reduces the
energy density stored in the adjacent layers of the heterostructure and the lattice stress as depicted
in (d) and (l). At the same time the energy density in the phonons and the magnetic excitations
in dysprosium increase (h), which leads to an additional, expansive stress in the dysprosium layer.

6.3 Saturated magnetic stress causes unconventional strain waves

This section analyses the transient strain in a linear-chain model that results from the Grüneisen
model of the ultrafast stress presented in the previous section. The agreement of the modelled strain
with the temperature- and fluence-dependent strain using a single set of parameters quantitatively
verifies the model of the spatio-temporal magnetic excitations. Furthermore, it reveals the role of
the space- and time-dependent saturation of the magnetic stress for both the delayed contraction
of dysprosium and the unconventional strain pulses detected in niobium. The saturation of the
magnetic stress in the front part of the layer leads to a dominant tensile electron-phonon stress
driving a bipolar strain wave. The bipolar strain wave superimposes with the expansive strain pulse
driven at the bottom dysprosium-yttrium interface by the dominating contractive magnetic stress.
The presented results extend our recent publication [29] by the calculation of the heat diffusion.
The model predicts the thermal expansion due to heat diffusion in dysprosium and niobium for
non-saturated magnetic stress at low fluences. The reduced thermal expansion of niobium at
temperatures below the magnetic order temperature directly relates to the energy density stored
in the magnetic subsystem, which acts as a saturable heat sink. However, the deviation on the
nanosecond timescale for high fluences indicates that the remagnetisation of the fully demagnetised
unit cells in dysprosium is not captured by the model.
Figure 6.11 depicts the strain response to the modelled stress by the Grüneisen approach (solid
lines) in comparison to the measured strain by ultrafast X-ray diffraction (open symbols) at different
initial sample temperatures (a,b) and for different excitation fluences (c,d). The Grüneisen model
captures the temperature- and fluence-dependent strain response of dysprosium and niobium. The
model contains only five parameters that describe the excitation of the magnetic subsystem and
the assumption of a shared spatial distribution of the energy density for phonons and magnetic
excitations. The agreement with both the time-dependent expansion of dysprosium and the
driven strain pulses detected in niobium indicates a well modelled spatio-temporal magnetic stress.
Here, the expansion of dysprosium depends on the average total stress and its spatial profile
determines the driven strain pulses. In this thesis I extend our previous publication [29] by the
calculation of the thermal expansion of niobium up to 3ns. The model captures the temperature-
dependent amplitude of the thermal expansion of niobium that decreases below the magnetic
order temperature. However, the model underestimates the expansion of niobium at initial sample
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Figure 6.11: Modelled strain response of dysprosium (a,c) and niobium (b,d) at different initial sample
temperatures (a,b) and to different excitation fluences (c,d). The modelling now extends up
to 3ns, which goes beyond the simulation that is presented in our recent publication [29].
The transient strain response predicted by the model (solid lines) captures the systematic
variation of the measured results (open symbols) using a single set of parameters. The
reduced phonon heat transport into niobium due to the excitation of the magnetic system
matches the observed reduced thermal expansion of niobium. (Adopted from [29])

temperatures slightly below the Néel temperature and for high fluences. The underestimation of the
expansion originates from on overestimation of the energy stored in the magnetic subsystem due
to the neglected remagnetisation of the fully demagnetised unit cells. The resulting overestimation
of the contraction of dysprosium on nanosecond timescale demonstrates that it is necessary to
incorporate a remagnetisation mechanism of the fully demagnetised dysprosium unit cells into
the modelling. In contrast, the modelled remagnetisation under the condition of non-saturated
magnetic stress describes well the measurements for fluences below 2.9 mJ

cm2 .
Under the condition of non-saturated magnetic stress, the time-dependent energy density stored
in the unit cell determines both the energy density in the phonons and the magnetic excitations.
This assumption leads to a simultaneous cooling of the phonons and magnetic excitations via
heat diffusion. The identical cooling behaviour results in a time-independent fraction of energy
density stored in the subsystems after the phonon-spin coupling. The constant energy distribution
describes to first order an equilibrium between the subsystems on the nanosecond timescale. This
situation changes with the occurrence of fully demagnetised unit cells for high fluences. The
measurements in figure 6.8 display an increasing contraction of dysprosium with time under the
condition of saturated magnetic stress indicated by the bipolar shape of the niobium strain. This
additional contraction arising on the timescale dominated by heat diffusion is captured by the
model (see figure 6.11) and increases for high fluences and initial sample temperatures near TN.
The model captures the increasing contraction of dysprosium by neglecting the remagnetisation
of the fully demagnetised unit cells exhibiting saturated magnetic stress. Therefore, my analysis
relates the additional contraction to a remaining magnetic stress provided by the fully demagnetised
unit cells while the expansive phonon stress decreases due to heat diffusion. In conclusion, the
delayed remagnetisation of the fully demagnetised unit cells causes a local non-equilibrium between
phonons and spins on the nanosecond timescale as observed by von Reppert et al. [27].
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Figure 6.12: Distribution of energy density between the phonons and the magnetic excitations in the
heterostructure for (a) different initial sample temperatures for a fluence of 7.2 mJ

cm2 and for
(b) different fluences at an initial sample temperature of 130K. The red squares denote
the thermal expansion of niobium normalised to the expansion at 250K with 7.2 mJ

cm2 . The
blue squares denote the fraction of the energy density stored in the magnetic subsystem as
difference to unity. The solid lines denote the interpolated normalised maximum expansion
of niobium provided by the model that matches the temperature- and fluence dependence.
Under the condition of saturated magnetic stress, the model underestimates the expansion of
niobium due to the neglected remagnetisation of the fully demagnetised unit cells.

In the following I analyse the temperature- and fluence-dependent phononic heat transport in more
detail by extracting the temperature- and fluence-dependent expansion of niobium. Figure 6.12
summarises the findings and highlights the role of the magnetic subsystem as a saturable heat
sink that reduces the amount of energy transported by the phonons into niobium. The red squares
denote the measured thermal expansion of niobium that I determine by fitting the temporal shape
from the paramagnetic phase to the transient strain between 300 and 3000ps. The resulting
temperature- and fluence-dependent amplitude is normalised to the expansion at 250K and a
fluence of F = 7.2 mJ

cm2 . The difference to unity determines the fraction of the total deposited
energy stored in the magnetic subsystem on nanosecond timescale (blue squares). Figure 6.12(a)
displays a decreased thermal expansion below the Néel temperature TN = 180K with a maximum
amount of energy stored in the magnetic system at 31K. This dependence is in agreement with the
thermal expansion described by the model (solid lines). However, the neglected remagnetisation
of the fully demagnetised unit cells overestimates the energy stored in the magnetic system in
the model. This overestimation becomes pronounced at temperatures slightly below the magnetic
order temperature where most of the layer exhibits saturated magnetic stress.

Figure 6.12(b) displays the thermal expansion normalised to the fluence as function of the excitation
fluence at 130K. The explicit fluence dependence of the thermal expansion normalised to the
fluence indicates the saturation of the magnetic stress that enhances the fraction of energy in
the phononic heat transport. With decreasing fluence the fully demagnetised fraction of the
layer decreases and the overestimation of the energy stored in the magnetic subsystem by the
model vanishes. The Grüneisen model of the spatio-temporal stress predicts a minimum in the
fluence-normalised thermal expansion of niobium between 4 and 6 mJ

cm2 where the magnetic system
is just saturated. For higher fluences the saturation of the magnetic stress enhances the fraction of
energy stored in the phonons, while for lower fluences the magnetic subsystem transfers energy back
to the phonons during remagnetisation. For low fluences the small absolute fluence uncertainty
becomes large in this representation due to the normalisation to the fluence. The deviation to the
measurements for 1.4 mJ

cm2 may be related to this effect.
In the following paragraphs I present the modelled subsystem-separated spatio-temporal stress
at the different initial sample temperatures and for the different excitation fluences depicted in
figures 6.13 and 6.15, respectively. The one-dimensional linear-chain model of masses and springs
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Figure 6.13: Modelled spatio-temporal stress and strain in the heterostructure at different initial sample
temperatures and a fluence of 7.2 mJ

cm2 . The superposition of the phononic stress (a-e) and
the magnetic stress (f-j) determines the total lattice stress (k-o). The Matlab library
udkm1Dsim calculates the spatio-temporal expansion and propagating strain pulses (p-t)
from the spatio-temporal total stress. Decreasing the temperature below TN = 180K enables
magnetic excitations that contribute a finite contractive stress. At high temperatures almost
the complete dysprosium layer is fully demagnetised and the tensile electron-phonon stress
dominates. With decreasing temperature the fraction of the fully demagnetised dysprosium
decreases and the contractive magnetic stress dominates. The change of the total stress is
accompanied with an enhanced contraction of dysprosium and a reduced bipolar strain wave.
(Adopted from [29])

of the modular Matlab library udkm1Dsim [124] calculates the spatio-temporal strain of the
heterostructure including the coherently excited strain pulses from the total spatio-temporal stress
as superposition of the contributions of phonons and spins. This is analogous to the inhomogeneous
wave equation (2.26) with external driving stress discussed in section 2.2.2. The separation of the
total stress into the contributions from the phonons and the magnetic excitations exemplifies the
influence of the temperature- and fluence-dependent magnetic stress on the strain response.

Figure 6.13 displays the temperature-dependent magnetic excitations and the change of the total
spatio-temporal stress under the systematic variation of the initial sample temperature. This
temperature-dependent stress rationalises the temperature dependence of the transient mean strain
of dysprosium and the driven strain pulses that are detected in the buried detection layer. The
temperature dependence of the total stress mainly originates from the temperature-dependent
saturation of the magnetic stress. In contrast, the stress contribution of the phonons exhibit a
nearly temperature-independent spatio-temporal shape that scales by the energy density transferred
locally to the magnetic excitations. At 160K the dysprosium layer is fully demagnetised after 200ps
and the total stress is mostly dominated by the tensile electron-phonon stress up to 400ps. With
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decreasing temperature the fraction of the layer exhibiting a saturated magnetic stress decreases
and the contractive magnetic stress becomes dominant down to 31K where the total stress is
exclusively negative. Additionally, decreasing the initial sample temperature leads to a faster
domination of the contractive magnetic stress at the front side of the layer, which corresponds to
the changing sign of the mean strain after 35ps at 130K. The subsequent increasing contraction
of dysprosium results from the heat diffusion that induces both an additional excitation of not
fully demagnetised unit cells and a cooling of the phonons. The transport of energy density to the
backside of the layer provides the additional excitation of the non-saturated magnetic subsystem
indicated by the growing fraction of the layer showing saturated magnetic stress (g-j). The cooling
of the phonons in dysprosium to the subsequent layers is indicated by the reduced phononic stress
(a-e). The domination of the magnetic stress at the front side of the layer clearly demonstrates
the neglected remagnetisation of the fully demagnetised unit cells. Especially the excitation of
the spins by phonon-spin coupling on the 15ps timescale is clearly observable in the magnetic
stress contribution and leads to a time-dependent decrease of the total stress. The reduced total
tensile stress at the front side of the layer at low temperatures corresponds to a reduced amplitude
of the driven bipolar strain wave at the yttrium-dysprosium interface as displayed by the strain
maps (p-t). In contrast, the increased contraction of dysprosium at the backside of the layer
due to the increased amount of energy storable to the magnetic system at low temperatures
drives an expansion propagating into the niobium layer. In the intermediate temperature-range
the unconventional strain pulses are a superposition of the uni-polar expansion of niobium driven
by the contraction at the backside of dysprosium and the bipolar strain wave driven by the total
tensile stress at the front side of the layer.
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Figure 6.14: Difference in the fluence-normalised mean strain of niobium for 2.9 and 7.2 mJ
cm2 at 130K.

The difference ηdiff
Nb exhibits a bipolar shape. This difference essentially confirms that the

high fluence mostly leads to the excitation of expansive stress by phonons. Furthermore, it
separates the unconventional strain pulses into the contribution from the contractive total
stress at the bottom and the expansive total stress at the top side of the dysprosium layer.

This superposition is exemplified in figure 6.14 that displays the mean strain of niobium for a
fluence of 2.9 and 7.2 mJ

cm2 at 130K. The stress and strain maps for the systematic variation of the

excitation fluence in figure 6.15 display the vanishing saturation of the magnetic stress for 2.9 mJ
cm2 .

in contrast, the magnetic stress saturates for 7.2 mJ
cm2 and the tensile phonon stress dominates at

the front side of the layer. The qualitative difference in the total stress in dysprosium induces
a uni-polar expansion of niobium for the low fluence and a bipolar strain pulse preceded by an
expansion for the high fluence. The difference in the transient fluence-normalised strain of niobium
ηdiff

3 relates to the saturation of the magnetic stress for 7.2 mJ
cm2 . This difference is depicted in

figure 6.14 by the gray line and exhibits a bipolar shape. This essentially confirms that the high
fluence mostly leads to the excitation of expansive stress by phonons, which drives a bipolar strain
wave. The superposition with the contraction-driven fast expansion results in the unconventional
strain pulse consisting of an asymmetric bipolar strain wave preceded by an expansion.
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Figure 6.15: Modelled spatio-temporal stress and strain in the heterostructure induced by different fluences
at 130K. The superposition of the phononic stress (a-e) and the magnetic stress (f-j)
determine the total lattice stress (k-o). The Matlab library udkm1Dsim calculates the
spatio-temporal expansion and propagating strain pulses (p-t) from the spatio-temporal
total stress. High fluences saturate the magnetic energy reservoir almost everywhere in the
dysprosium layer and most of the energy density is stored in the phonons leading to an
expansive total stress at the front side of the layer. With decreasing fluence the energy density
exceeding the saturation level of the magnetic stress decreases and the contractive magnetic
stress becomes dominant. The increasingly dominant magnetic stress suppresses the bipolar
strain wave. (Adopted from [29])

The subsystem-separated spatio-temporal stress for the different excitation fluences in figure 6.15
at an initial sample temperature of 130K displays a similar dependence of the total stress with
increasing fluence as with increasing initial sample temperature (see figure 6.13). For higher
fluences the laser-deposited energy density exceeds the energy density storable to the magnetic
subsystem and the dysprosium layer at the front side exhibits saturated magnetic stress. This
saturation vanishes with decreasing fluences and the magnetic stress becomes dominant in the
complete dysprosium layer. The domination of the magnetic stress also in the front side of the
layer changes the strain response of niobium from bipolar to uni-polar. Furthermore, the magnetic
subsystem of the not fully demagnetised unit cells cools on the same timescale as the phonons due
to heat diffusion. In contrast, the model neglects the remagnetisation of the fully demagnetised
unit cells as displayed for 4.3 mJ

cm2 in figure 6.15(h). The saturated magnetic stress in the front
part of the layer remains up to 500ps, while in the neighbouring region of the layer the magnetic
stress decreases due to heat diffusion. The remaining excitation of the fully demagnetised unit
cells provides a remaining contractive stress that causes an increasing contraction of dysprosium
during the cooling of the phonons to the subsequent layers.
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6.4 Demagnetisation probed by double-pulse excitation

In a double-pulse excitation scheme the strain response to the second laser pulse reveals the
excitation of the magnetic subsystem by the first pulse due to the saturability of the magnetic
energy reservoir. In this section I present the strain response of dysprosium to a double-pulse
excitation with a systematic variation of the fluence of the first pulse. The modelling of the
strain response by the model presented in section 6.2 provides the spatio-temporal magnetic stress
induced by the second excitation. With increasing fluence the first pulse fully demagnetises the
transducer. Therefore, the contractive stress induced by the second pulse vanishes in the fully
demagnetised part of the layer resulting in a dominant tensile stress by the phonons.

Figure 6.16 briefly provides an overview of the pump-probe experiment using a double-pulse
excitation scheme. The experiment is conducted at 35K and an in-plane magnetic field of 600mT
that shifts the first order phase transition to 90K. The strain response to the two excitations
with a pump-pump delay of 100ps of dysprosium (a) and niobium (b) shows a pronounced fluence
dependence. In panel (a) the filled dots denote the strain response to the first excitation at the
pump-probe delay t = 0ps. For the fluence of 8 mJ

cm2 the delayed maximum contraction indicates
a saturated magnetic stress as discussed in the context of figure 6.11. The saturated magnetic
stress limits the contraction of dysprosium that increases with the fluence for lower fluences. The
open squares denote the strain response to both excitations. The difference to the strain response
to only the first excitation yields the strain response to the second delayed pump pulse. The strain
response of dysprosium to the second pulse changes from purely expansive for a high fluence of
the first pulse to purely contractive for a low fluence of the first pulse. This change for dysprosium
is accompanied with a change of the driven strain pulse detected in niobium from a bipolar to
a uni-polar shape. In consideration of the findings in the last section the strain response to the
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Figure 6.16: Strain response to a double-pulse excitation with the pump-pump delay of ∆t = 100ps and
an in-plane magnetic field of 600mT at 35K. The double-pulse excitation scheme in a pump-
probe experiment using ultrafast X-ray diffraction is sketched in the inset. The transient strain
of dysprosium (a) and niobium (b) exhibits a clear signature of the second laser excitation
after 100ps that changes with the fluence of the double-pulse excitation. The filled dots
denote the strain response of dysprosium in the absence of a second pulse, while the open
squares denote the strain response to both delayed excitations.
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Figure 6.17: Strain response to a double-pulse excitation with varying fluence of the first pulse. The
difference between the strain response to the first pulse (dots) and to both pulses (squares)
in (a) defines the transient strain induced by the second excitation (b). The gray squares
correspond to the strain response to only the second pulse with a fluence of 1.8 mJ

cm2 . The
solid lines denote the modelled strain response to both the first pulse with different fluences
and the double-pulse excitation under constant fluence of the second pulse. With increasing
fluence of the first pulse the transient strain induced by the second pulse becomes expansive.

second excitation reveals a full demagnetisation of the transducer for the highest fluence and a
non-saturated magnetic stress in the case of the lowest fluence combination.
The changing strain response to the second excitation in figure 6.16 originates from both the
increasing fluence of the first and the second pulse. To investigate the saturation of the magnetic
stress by the first pulse the fluence of the second pulse has to be kept constant. Under this
condition, the changing strain response exclusively depends on the saturation of the magnetic stress
by the first pulse due to the constant energy density deposited by the second pulse. Figure 6.17(a)
displays the strain response to the first pulse (dots) and to both pulses (squares) with a pump-pump
delay of 100ps. The gray squares denote the strain response to the second pump-pulse in the
absence of a preceded excitation. While the fluence of the first pulse is systematically varied from
1.5 to 8.5 mJ

cm2 , the fluence of the second pump pulse is kept constant 1.8 mJ
cm2 . The horizontal

dashed lines denote the zero-strain of the corresponding measurement that are shifted for clarity.
The measurements are conducted at 60K with an applied external magnetic field of 600mT along
the in-plane direction that shifts the first order ferromagnetic phase transition to 90K. The
solid lines denote the modelled strain response that describes well the strain response to both
the first excitation and the double-pulse excitation. The model underestimates the contraction
of dysprosium originating from the first order phase transition, because the model is based on
temperature-independent Grüneisen constants. This underestimation is already observable for the
measurement at 31K in figure 6.11(a). Thus, I shift the modelled strain to the measurement
results at 100ps by a fluence-dependent offset. However, since the first pulse transiently heats
above the Curie temperature, the first order phase transition barely influences the strain response
to the second pulse that is well predicted by the model.
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Figure 6.18: Spatio-temporal stress induced by the first and the second excitation in a double-pulse
excitation scheme. The total stress induced by the first pulse (P1) (a-e) determines in
combination with the total stress induced by the double-pulse excitation (p-t) the total stress
induced by the second excitation. This total stress is separated by the Grüneisen model into
the contribution from phonons (f-j) and magnetic excitations (k-o). The fully demagnetised
part of the dysprosium layer by the first pulse for high fluences is not further excitable by the
second pulse, so that the additional magnetic stress vanishes in this part of the layer. The
reduced energy density transferred to the magnetic subsystem enhances the phonon stress.
The total stress induced by the second pulse becomes tensile at the front side of the layer as
indicated by the increasing total stress after the second excitation in (q-t).

The difference between the strain response to the first pulse and to the double-pulse excitation
defines the induced strain by the second excitation due to the linear dependence of the strain on the
energy density. Figure 6.17(b) displays the strain response to the second excitation with a constant
fluence. With increasing fluence of the first pulse the strain induced by the second excitation
changes from purely contractive to purely expansive within the first 500ps. The expansion of
dysprosium indicates the saturation of the magnetic stress by the double-pulse excitation. The
deviation of the modelled strain response of the first pulse on the nanosecond timescale for fluences
above 5 mJ

cm2 is related to the neglected remagnetisation of the fully demagnetised dysprosium unit
cells. This observation indicates the saturation of the magnetic stress by the first excitation. The
saturation of the magnetic stress by the first pulse inhibits a further excitation of the magnetic
system in fully demagnetised unit cells. Furthermore, the second excitation saturates the magnetic
stress in the bottom part of the layer that was previously not fully demagnetised. In total, the
saturation of the magnetic stress by both excitations reduces the contractive stress induced by the
second pulse. This enhances the fraction of energy density stored in the phonons. Therefore, the
total laser-induced stress becomes expansive and results in an expansion of dysprosium.
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Further insight is provided by the subsystem-separated spatio-temporal stress that can be obtained
from the Grüneisen model. The analysis of the measured results identifies the saturation of the
magnetic stress by both the first and the second pulse to be responsible for the changing response
to the second pulse with increasing fluence of the first excitation. The spatio-temporal stress
induced by the first pulse in figure 6.18(a-e) and the phononic (f-j) and magnetic (k-o) stress
induced by the second pulse separate the two contributions. The subsystem-separated stress
induced by the second excitation is determined by the difference between the total stress induced
by the double-pulse excitation (p-t) and the first pulse (a-e). For fluences above 4 mJ

cm2 the first
pulse saturates the magnetic stress and with increasing fluence the fraction of the dysprosium
transducer exhibiting saturated magnetic stress increases. This part of the dysprosium layer is fully
demagnetised and no more energy is storable to the magnetic system. Thus, the magnetic stress
induced by the second pulse vanishes in the fully demagnetised part of the layer as depicted in
(m-o). In this case the full demagnetisation by the first pulse mainly reduces the contractive stress
induced by the second pulse. The reduced energy density transferred to the magnetic system also
increases the phonon stress in comparison to the low fluence limit (f) as observable in (h-j). In
contrast, for lower fluences the saturation of the magnetic stress by the second pulse determines
the reduced contractive stress in dysprosium. However, in both cases, the reduced excitation of
the magnetic system results in an enhanced total expansive stress after the second excitation at
the front side of the dysprosium transducer (p-t). This total expansive stress causes the expansion
of dysprosium induced by the second pulse observed in the ultrafast X-ray diffraction experiment.
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Chapter Seven

Summary and Outlook

In this thesis I analysed the strain response of the laser-excited strontium ruthenate and dyspro-
sium thin films measured by ultrafast X-ray diffraction. The ultrafast expansion and the driven
picosecond strain pulses in both metals change due to the additional contractive stress provided by
the magnetic excitations that occur below the magnetic order temperature. The modelling of the
picosecond strain response reveals the spatio-temporal laser-induced stress that is the superposition
of the contributions from phonons and magnetic excitations. I used the thermodynamic Grüneisen
concept to separate the total spatio-temporal stress into the subsystem contributions. This
approach linearly relates the deposited energy density in the subsystems to a stress contribution
via subsystem-specific Grüneisen constants.
I determined the anisotropic Grüneisen constants using the equilibrium thermal expansion of
the bulk materials. In both metals the arising magnetic order provides a contractive stress that
counteracts the expansion due to anharmonic phonon-phonon interactions. In thermal equilibrium
the expansion is driven by an external stress and a Poisson stress that originates from the thermal
expansion along the other crystal directions. The vanishing magnetic stress contribution in the para-
magnetic phase enables the separation of the external stress into the contributions of phonons and
magnetic excitations. The subsystem-separated heat capacity relates the temperature-dependent
external stress contributions to the energy density stored in each subsystem. The resulting linear
dependence determines the Grüneisen constants. On ultrafast timescales the thin film geometry
restricts the lattice response to the out-of-plane direction. The underlying out-of-plane stress is
determined by the Grüneisen constants along the corresponding crystal direction.
The application of the Grüneisen model to the strain response of strontium ruthenate and dys-
prosium exemplifies the possibility to describe the spatio-temporal stress in magnetic transducers
under different complementary conditions. In strontium ruthenate the homogeneous excitation and
the ultrafast equilibration of the subsystems facilitate the analysis. In contrast, the inhomogeneous
excitation of dysprosium and the long-lasting non-equilibrium of phonons and spins require the
explicit modelling of the subsystem coupling. The transient full demagnetisation of the magnetic
transducer is equivalent to a maximum amount of energy density storable to the magnetic ex-
citations. This saturation of the magnetic stress is responsible for the temperature and fluence
dependence of the strain response upon laser excitation.
In strontium ruthenate I studied the temperature-dependent total stress for the low and the high
fluence regime. The homogeneous excitation of the thin film in combination with the ultrafast equi-
libration of the subsystems results in a time-independent total stress also below the magnetic order
temperature. The quasi-instantaneous expansive total stress results in a temperature-independent
shape of the driven strain pulses. In the high fluence regime the laser excitation saturates the
magnetic stress at all initial sample temperatures. This is verified by a temperature-independent
stress induced by a second delayed excitation. Under this condition the total stress depends on the
temperature-dependent squared magnetisation, which is proportional to the temperature-dependent
integral of the magnetic heat capacity. In contrast, in the low fluence limit the total stress follows
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the temperature-dependent magnetic heat capacity. The vanishing saturation at low temperatures
and the arising contractive magnetic stress slightly below the magnetic order temperature lead to
a step-like change of the total laser-induced stress at the Curie temperature.
In the inhomogeneously excited dysprosium transducer the saturation of the magnetic stress results
in a depth-dependent sign of the total stress. At the front side of the layer the full demagnetisation
limits the energy density transferred to the magnetic subsystem and the tensile electron-phonon
stress dominates. At the backside of the layer the non-saturated magnetic stress dominates the
expansive phonon stress and the total stress becomes contractive. The resulting total stress drives
strain pulses with unconventional shape that are detected in a buried niobium detection layer.
The mean strain of the niobium layer shows an asymmetric bipolar strain wave preceded by a fast
expansion within the first picoseconds. The analysis of the spatio-temporal stress relates the fast
expansion to the contraction of dysprosium at the backside and the superimposed bipolar strain
wave to the tensile total stress at the front side of dysprosium. A double-pulse excitation scheme
was used to further investigate the fluence-dependent saturation of the magnetic stress. In that
scheme the fluence of the second pump pulse is kept constant whereas the fluence of the first
pulse is varied systematically. My analysis showed the spatial extension of the fully demagnetised
region in the dysprosium layer. For the fully demagnetised unit cells the further excitation of the
magnetic subsystem is inhibited and all additional absorbed energy excites the phonon system.
The resulting expansion of dysprosium driven by the second excitation is well captured by the
Grüneisen model.

In further experiments the remagnetisation of the fully demagnetised unit cells could be studied
using a double-pulse excitation with a variation of the pump-pump delay. The remagnetisation
of the fully demagnetised unit cells will enable the excitation of the magnetic subsystem by the
second pulse. Therefore, the variation of the pump-pump delay would probe the time-dependent
saturation of the magnetic stress induced by the first excitation. Furthermore, the presented
double-pulse experiments could be extended by additionally measuring the strain of niobium. Since
the expansion of niobium within the first picoseconds relates to the contraction of dysprosium
at the backside, the reduced expansion of niobium with increasing fluence reveals the spatial
extension of the not fully demagnetised part of dysprosium. These experiments demonstrate the
possibility to study the spatio-temporal excitation of the magnetic subsystem independently of the
type of the magnetic order using ultrafast X-ray diffraction with double-pulse excitation. A further
investigation of strontium ruthenate could answer the more fundamental question which magnetic
states are excitable on ultrafast timescales. In the low fluence regime the temperature-dependent
total stress will reveal the magnetic heat capacity on ultrafast timescales. However, the used
plasma X-ray source with a pronounced instrument function and a low X-ray flux cannot perform
this experiment with the required resolution in strain. It could be conducted at a synchrotron with
a minimum time resolution of around 20ps or at the free electron laser.
In conclusion, I presented the analysis of the temperature- and fluence-dependent strain response
of two different magnetic metals using the thermodynamic Grüneisen concept to describe the
stress contributions of both phonons and magnetic excitations. This thesis provides a detailed
analysis of the magnetic stress contribution that relates to the spatio-temporal excitation of the
magnetic subsystem and therefore provides insights into the subsystem-coupling and energy transfer
timescales. Next to the temperature- and fluence-dependent mean stress in the optically excited
transducer, I studied the strain pulses driven by the saturable magnetic stress.
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and M. Aeschlimann: ”Explaining the paradoxical diversity of ultrafast laser-induced
demagnetization”, Nature materials 9, 259 (2010)

[107] J. Kimling, J. Kimling, R. Wilson, B. Hebler, M. Albrecht and D. G. Cahill: ”Ultrafast
demagnetization of FePt: Cu thin films and the role of magnetic heat capacity”, Physical
Review B 90, 224408 (2014)

[108] Z. Lin, L. V. Zhigilei and V. Celli: ”Electron-phonon coupling and electron heat capacity of
metals under conditions of strong electron-phonon nonequilibrium”, Physical Review B 77,
075133 (2008)

[109] B. Mueller and B. Rethfeld: ”Relaxation dynamics in laser-excited metals under nonequilib-
rium conditions”, Physical Review B 87, 035139 (2013)

[110] M. Sentef, A. F. Kemper, B. Moritz, J. K. Freericks, Z.-X. Shen and T. P. Devereaux:
”Examining electron-boson coupling using time-resolved spectroscopy”, Physical Review X
3, 041033 (2013)

[111] L. Waldecker, R. Bertoni, R. Ernstorfer and J. Vorberger: ”Electron-phonon coupling and
energy flow in a simple metal beyond the two-temperature approximation”, Physical Review
X 6, 021003 (2016)

[112] P. Maldonado, K. Carva, M. Flammer and P. M. Oppeneer: ”Theory of out-of-equilibrium
ultrafast relaxation dynamics in metals”, Physical Review B 96, 174439 (2017)

[113] U. Ritzmann, P. M. Oppeneer and P. Maldonado: ”Theory of out-of-equilibrium electron and
phonon dynamics in metals after ultrafast laser excitation”, arXiv preprint arXiv:1911.12414
(2019)

[114] S. T. Weber and B. Rethfeld: ”Phonon-induced long-lasting nonequilibrium in the electron
system of a laser-excited solid”, Physical Review B 99, 174314 (2019)

[115] P. Maldonado et al.: ”Tracking the ultrafast nonequilibrium energy flow between electronic
and lattice degrees of freedom in crystalline nickel”, Physical Review B 101, 100302 (2020)

[116] W. Fann, R. Storz, H. Tom and J. Bokor: ”Electron thermalization in gold”, Physical
Review B 46, 13592 (1992)

[117] A. Krishnamoorthy et al.: ”Optical control of non-equilibrium phonon dynamics”, Nano
letters 19, 4981 (2019)

[118] Q. Gan, R. Rao, C. Eom, J. Garrett and M. Lee: ”Direct measurement of strain effects on
magnetic and electrical properties of epitaxial SrRuO3 thin films”, Applied Physics Letters
72, 978 (1998)

[119] R. Boehler, I. C. Getting and G. C. Kennedy: ”Grüneisen parameter of NaCl at high
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[138] J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner and T. Elsaesser: ”Theoretical analysis of
hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal”,
Structural Dynamics 2, 024102 (2015)

[139] M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Wörner and T. Elsässer:
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