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Zusammenfassung

In der vorliegenden Diplomarbeit wird ein eindimensionales Model für die
Propagation von Schallpulsen in Festkörpern, die einen strukturellen Pha-
senübergang aufweisen, vorgestellt. Ein struktureller Phasenübergang tritt ins-
besondere bei vielen Ferroelektrika auf. Als Modell wird eine lineare Ket-
te mit zwei Komponenten mit harmonischer Wechselwirkung zwischen über-
nächsten Nachbarn und anharmonische Wechselwirkung, gegeben durch ein
Morse-Potential, zwischen nächsten Nachbarn angenommen. Auf Grund einer
symmetrischen Anordnung dieser Morse-Potentiale kommt es zu einem konti-
nuierlichen Phasenübergang von zwei gleichwertigen Grundzuständen zu einem
einzelnen Grundzustand. Desweiteren spiegelt das Model diverse Eigenschaften
von Ferroelektrika und deren Phasenübergang wider. Zum Beispiel können das
Auftreten von Domänen in der ferroelektrischen Phase oder das Weichwerden
einer optischen Schwingungsmode beim Phasenübergang beobachtet werden.

Der Hauptaspekt liegt auf der Untersuchung der Dynamik. Innerhalb der
linearen Theorie werden die Stabilität und die Schwingungsmoden der Ket-
te, als auch die Schallgeschwindigkeit analytisch berechnet. Numerische Si-
mulation erweitern die Untersuchung auf nichtlinearer Effekte, wie die zeitli-
che Veränderung der Pulseform und der Kopplung von verschiedenen Schwin-
gungsmoden. Die letztgenannte Kopplung wird mit Hilfe einer Entropie des
räumlichen Fourierspektrums analysiert. Sie kann auch eine Ursache chaoti-
scher Dynamik sein, welche mittels des maximalen Lyapunov Koeffizienten
genauer untersucht wird.

Abstract

The thesis to hand investigates phonon propagation in solids exhibiting a struc-
tural phase transition with an one-dimensional model. These structural tran-
sitions mainly appear in ferroelectric solids with a permanent polarization
below the Curie temperature. A two component linear chain with harmonic
next-nearest and nearest neighbor interaction by a Morse potential will be in-
troduced. Merging the interactions within one unit cell shows, that either two
degenerate or one ground state exist depending on an external parameter. The
occurring phase transition is of second order. Furthermore the model reflects
properties of ferroelectric solids as for instance domains and the softening of
an optical vibration mode.

This thesis focuses mainly on dynamical aspects. The vibration normal
modes and the sound velocities will be derived within a linear theory. Numer-
ical simulations will be used to confirm the linear theory, but also to extent
the investigations into the nonlinear regime. Nonlinear effects as temporal
change of the pulse shape and coupling of vibration modes will be revealed.
Finally, strong coupling and nonlinearity give rise to chaotic dynamics, which
will be characterized by means of the maximum Lyapunov Exponent. The
strong coupling will be studied by an entropy of the spatial Fourier spectrum
and its temporal evolution depending on the initial energy density.
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Chapter 1

Introduction

A lot intriguing phenomena go beyond the linear theory. John Scott Russell
did one of the first observations of a nonlinear effect in 1834. He noticed a
water wave propagating a long distance without a significant change of its
shape. Sixty years went by until a theoretical description was found, the
Korteweg-de Vries equation. It shall need more than half a century again, until
the real significance of this phenomenon awoke when Kruskal and Zabusky
solved the Fermi-Pasta-Ulam problem analytically. They reduce the Fermi-
Pasta-Ulam problem to the Korteveg-de Vries equation and got their solitonic
solutions. The theory of solitons and solitonic waves was established and found
several applications. A famous one is the lossless propagation of a light pulse
within a waveguide, a so called envelope soliton, used for data transmission.
Solitons can be found in all scales and types in nature: The Pororoca, a water
wave, travels several hundred kilometers upstream the Amazonas River. The
“Morning Glory Cloud” is a special cloud, which “rolls” about a horizontal axis
without changing its size and speed. But solitons can also occur in proteins
and DNA as a collective motion of protons, so called Davydov solitons [Dav73,
Sco92].

What does that has to do with ferroelectric materials? Ferroelectricity
is defined by its non-vanishing polarization. Due to energetic reasons, the
whole bulk will not show a homogeneous polarization rather than different
domains. Domains are characterized by having a homogeneously distributed
polarization. Thus the polarization swaps at the border between two domains.
These domain walls can be related to topological solitons. Furthermore, a
transition from a ferroelectric to a paraelectric phase, exhibiting no permanent
polarization, is known to occur together with a change of the microscopic
structure of the material. This structural transition is the breeding ground for
strongly nonlinear propagation of sound and could deliver the ingrediences,
dispersion and nonlinearity, of another type of solitons as for instance the one
exhibited in the Korteveg-de Vries equation.

We know from thermal volume expansion, as well as pressure and temper-
ature dependent elastic properties like the speed of sound, that interatomic
forces within a solid have to be nonlinear. From a dynamical point of view,
this nonlinearity has been observed experimentally in SrTiO3 [BHS+12] by op-
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tical Brilluin scattering measurements in the GHz range. Even the detection
of solitons in solids at low temperatures has been reported [HM01, vCD10].

Nonlinearity in general gives rise to different phenomena, on the one hand
the set of possible solutions has to be extended to not only include phonons
but also solitons and breather. On the other hand, nonlinearity allows for
scattering of phonons and thus a relaxation towards thermal equilibrium or
even chaotic dynamics.

The thesis to hand is sectioned as follows. The first part (chapter 2) sum-
marizes what is known about lattice dynamics and phonons. Furthermore, a
short description of the ferroelectric phase transition exhibiting some interest-
ing phenomena like the softening of an optical phonon mode is given. The
following chapter 3 introduces the investigated model and its Hamiltonian.
The stability of a unit cell is analyzed and the linear theory is derived includ-
ing the dispersion relation and the sound velocity. Chapter 4 uses numerical
investigations to confirm the linear theory and extend the examination to the
nonlinear regime. That includes a qualitative view on the propagation of a
pulse, where also solitons and breathers will be observed. Exciting the chain
with a homogeneous spatial energy distribution allows to study the dispersion
relation from the linear limit, i.e. low energy density, up to the nonlinear
regime, thus high energy densities, where chaotic dynamics occur. An analysis
with the maximum Lyapunov exponent allows a quantitative characterization
of chaos. This view will be extended by studying the relaxation of a far-
from-equilibrium state towards thermal equilibrium by using an entropy of the
spatial Fourier spectrum. Finally chapter 5 summarizes the results and gives
some possible extensions and applications as an outlook.
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Chapter 2

Basics

This chapter contains a short introduction to the important ideas and methods
used throughout this thesis. It starts with the basic theory on lattice dynamics
and shall give first insights in the physical phenomena of ferroelectricity. It
also provides the used notation. The first section focuses on lattice dynamics
and the derivation of normal vibration modes of a two component linear chain
exhibiting an optical and an acoustic branch. The quantum mechanical ana-
logue leads to the definition of a phonon as the elementary excitation of the
chain.

Within the second section 2.2, the physical properties of ferroelectricity
will be introduced as well as observations at the phase transition from the
paraelectric to a ferroelectric state. One important feature is the softening of
an optical mode. In simple terms this means, that the linear restoring force
on at least one component of the unit cell vanishes. Higher orders in the
interaction get important approaching the nonlinear regime. In section 2.2.2
one theory considering the local electric field influenced by the microscopic
movement of ions and the macroscopic formation of a depolarization field due
to surface charges is given.

One early model of ferroelectric solids is the Aubry model, which was si-
multaneously introduced by Aubry as well as Krumhansl and Schrieffer in 1975
[Aub75, KS75]. The basic results of this model will be summarized in 2.3. It
exhibits thermodynamic as well as dynamic properties of ferroelectrics. In this
model a domain wall is described as a topological soliton due to using a one
dimensional chain with a quartic potential exhibiting two degenerate ground
states.

A nonlinear chain is likely to posses chaotic dynamics. Hence, a theoretical
method of describing chaos by using the Lyapunov exponent will be mentioned
together with an outline of a computational method of calculating the maximal
Lyapunov exponent.

2.1 Lattice Dynamics

A lattice is defined by its separability into translationally invariant smallest
cells, the unit cells. The forces on the atoms in the unit cell is determined by
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2.1. LATTICE DYNAMICS

complex interactions between occupied and unoccupied orbitals or charges of
each constituent. However, when investigating the lattice dynamics, the elec-
trons only provide the potential which instantaneously adjusts to the positions
of the nuclei. This is called the adiabatic approximation. During the much
slower movement of the lattice, the electron system will adiabatically reach
its corresponding electronic state. The second approximation, which is often
assumed when studying lattice dynamics, uses the fact, that small deviations
from an equilibrium state should only feel a linear restoring force and thus a
quadratic potential, also known from the harmonic oscillator.

2.1.1 Classical Linear Chain

A most simplified and idealized view on a crystal is provided by the linear
chain. Firstly it assumes propagation along an axis of high symmetry as for
example one of the unit cell axes. The layer perpendicular to the propagation
axis shall execute only collective motion. Thus, the motion can be described
effectively as a one dimensional chain.

Unit Cell with One Component

The overview given here follows mostly [KH07]. Imagine a one component
linear chain with harmonic interaction. The interaction shall be independent
of the position of the chain. Hence, the total interaction force Fs acting on the
oscillator s depends only on the relative position of its neighbor s− n:

Fs =
∑
n

κn (qs−n − qs) ,

where qs and qs−n are the displacement of the oscillator s and s−n. κn denotes
the coupling strength with its nth neighbor. In the general case all interactions
have to be taken into account and the sum ranges from −∞ to +∞. Newtons
second law then delivers

mq̈s =
∑
n

κn (qs−n − qs) .

The plane wave has the general solution qs = Aei(ksa−ωt), whereas k is the
wavenumber, which depends via k = 2π

λ
on the wavelength, and ω is the cor-

responding vibration frequency. a is the equilibrium distance between two
neighboring oscillators. In this simple case it corresponds to the lattice con-
stant. Using this plane wave solution as an ansatz gives the dispersion law

ω2 =
2

m

∞∑
n=1

κn (1− cos(kna)) =
4

m

∞∑
n=1

κn sin2 kna

2
, (2.1)

denoting a relation between a wave vector and the eigenfrequency, i.e. the
dispersion relation. Independently of the used κn, the eigenfrequency of a
small wave number goes linearly to zero. It is the characteristic feature of
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2.1. LATTICE DYNAMICS

qnQn

Figure 2.1: Scetch of the two component linear chain with nearest neighbor
interaction. Qn and qn are the displacements of the two components in
the nth unit cell.

an acoustic phonon mode. In a small wavenumber limit sin2 kna
2

simplifies to
n2a2

4
k2 and therefore the group velocity can be given as

v2 =

(
∂ω(k)

∂k

)2

=
a2

m

∞∑
n=1

n2κn. (2.2)

The influence of nth neighbor coupling increases quadratically, which impli-
cates, that the spring constant has to decrease faster than 1

n3 to ensure con-
vergence of the sum. The situation changes if the κn are alternating, then
convergence is sure if κn decreases with 1

n2 or faster.
Taking only nearest neighbor interaction into account, (2.1) and (2.2) sim-

plify to

ω2 =
2

m
κ1 (1− cos(kna)) (2.3)

and

v2 =
a2κ1
m

→ v = ±a
√
κ1
m
. (2.4)

Unit Cell with Two Components

The previous chain will now be extended with a second constituent, which has
to be distinguishable from the first one. This is done by assuming different
masses m and M . Only nearest neighbor interactions are considered. Then,
the equations of motion get:

mq̈n = κ (Qn+1 − 2qn +Qn) (2.5)

MQ̈n = κ (qn+1 − 2Qn + qn) , (2.6)

where qn and Qn are the displacements of the components with mass m and M ,
respectively. κ is the spring constant of the harmonic nearest neighbor inter-
action. Using again a plane wave ansatz, but now extended to two sublattices
shifted by a

2
against each other

qn = Aei(kna−ωt) Qn = Bei(k(n+
1
2)a−ωt),

one arrives at a dispersion relation with two solutions [KH07, (2.23), p. 88]:

ω2
o,a = κ

m+M

mM
± κ

√(
m+M

mM

)2

− 4

mM
sin2 kq

2
, (2.7)
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2.1. LATTICE DYNAMICS

with k being the wavenumber. Now two frequencies ωo and ωa belong to each
wavevector k. ωa shows the same linear behavior for small k as in the one
component linear chain. It is the acoustic mode describing the same motion of
neighboring oscillators. In the k → 0 limit it would approach a simple trans-
lation without any vibration. In contrast ωo reaches a finite value larger than
zero for small k. It is the optical phonon mode, where neighboring oscillators
perform opposite motion.

2.1.2 Phonons

By using a linear transformation, one can diagonalize the quantum mechanical
Hamiltonian of a linear chain. That corresponds to a system of uncoupled
harmonic oscillators. They do not belong to the dynamics of a single oscillator
in the chain rather than to an elementary excitation called phonons. Phonons
represent a collective oscillation of the whole chain. They have an energy
E = ~ω(k) and a momentum p = ~k similar to photons, but with different
dispersion relation. In that sense phonons behave like particles. Similar to
photons, they also follow the Bose-Einstein statistics.

From the classical point of view, phonons are the plane wave components
of an arbitrary excitation, i.e. the Fourier transform of a spatial displacement
distribution. These plane waves form an orthogonal basis. Hence, each exci-
tation can be given as a superposition of plane waves. The dispersion relation
ω = ω(k) determines the vibration frequency of a plane wave with wavevector
k. It will also be derived for the investigated Double-Morse chain in section
3.4.

2.1.3 Phonon Excitation and Detection

Experimental methods are based on inelastic scattering of neutrons or photons
at phonons. The inelastic scattering of photons at acoustic phonons is known as
Brillouin scattering and as Raman scattering at optical phonons. The scatter-
ing events are inelastic due to the creation or annihilation of phonons. Energy
(2.8) and momentum (2.9) conservation make it possible to draw conclusions
on the excited phonon spectrum as well as the dispersion relation.

Eq′ − Eq = ±~ωk (2.8)

q′ − q = ±k ±G, (2.9)

where q is the wave number of the incoming neutron or photon and Eq the
corresponding energy. q′ and Eq′ belong to the scattered neutron or light. In
addition to the inelastic scattering on phonons, also an umklapp process with
adding or subtracting the lattice wave vector G to the momentum equation
can occur. G is determined by the periodicity of the lattice. However, without
an inelastic scattering at phonons, this process would still conserve the energy
but not the momentum.

Due to the different energy-wavenumber relations of neutrons and photons,
both complement each other in detecting phonons in a wide frequency range.
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2.2. FERROELECTRIC PHASE TRANSITION

For instance, Brillouin and Raman scattering of light covers small wavenumber
phonons, i.e. around the Brillouin zone center.

2.2 Ferroelectric Phase Transition

Ferroelectricity is characterized by a switchable non-zero polarization without
applying an external electric field. A spatial distribution of charges must exist,
as is the case with ionic crystals, to form a microscopic electric dipole and thus
a polarization. The ferroelectric property of a material gets lost by approach-
ing a critical temperature named the Curie temperature. A phase transition to
a paraelectric phase, which is characterized by a linear response of the polar-
ization to an external electric field ~P ∝ ~E, occurs. This transition can either
be continuous or discontinuous. A continuous phase transition is also denoted
as a second or higher order phase transition and analogously a discontinuous
transition is denoted as a first order transition. A phenomenological model was
introduced by Devonshire using the Landau theory of phase transitions. It is
a mean field theory assuming that the free energy FP depends polynomially
on the mean polarization P , which serves as the order parameter:

FP =
a0
2

(T − T0)P 2 +
b

4
P 4 +

c

6
P 6.

This choice of the first coefficient is used to reflect the critical behavior of most
ferroelectric materials above the critical temperature, the Curie-Weiss law

ε(T ) ∝ 1

T − TC
.

Depending on the sign of the second coefficient b, either a continuous, if b > 0,
or a discontinuous phase transition, if b < 0, is obtained. The figures 2.2 and
2.3 sketch the differences of the temperature dependent free energy. It is the
most simplified Landau theory on ferroelectricity and further extensions exists.
See [RAT07, ch. 3] for a review on that topic.

Furthermore, the ferroelectric transition is classified either as displacive or
order-disorder depending on the respective microscopic mechanism.

In the former, no microscopic dipole moment of the unit cell exists above
the critical temperature. Below the critical temperature, ions shift causing a
permanent electric dipole. The displacive transition appears in crystals with
a perovskite structure like PbTiO3 or BaTiO3. Simultaneously with the fer-
roelectric phase transition, a structural phase transition appears, which is of
special interest in this thesis as they give the motivation for the model which
is introduced and investigated later. The structure is shown in figure 2.5, but
a deeper view follows in the next section 2.2.1.

In the latter order-disorder transition the entropy plays a crucial role. Con-
sider the free energy F = U − TS. Depending on the temperature T , it can
either be minimized by minimizing the internal energy U , achieved by order,
or by maximizing the entropy S, achieved by disorder. Examples exhibiting an
order-disorder transition are crystals of polar molecules like Sodium Nitrite,
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2.2. FERROELECTRIC PHASE TRANSITION

Figure 2.2: (a) Free energy over polarization in the Landau-Devonshire
theory of a continuous phase transition [RAT07, p. 77]. (b) shows the
corresponding temperature dependence of the polarization, which is zero
in the paraelectric phase T > T0 and changes continuously to a finite
value by lowering the temperature below T0 and reaching the ferroelectric
phase.

Figure 2.3: (a) Free energy over polarization in the Landau-Devonshire
theory of a discontinuous phase transition [RAT07, p. 77]. (b) shows the
corresponding temperature dependence of the polarization exhibiting a
jump at the critical temperature T0.

NaNO2, or caused by hydrogen bonds as for example potassium dihydrogen
phosphate (KDP or KH2PO4). The mechanism is sketched in figure 2.4. The
proton has two possible positions between two phosphates. Either it is cova-
lently bonded to one and forms a Hydrogen bond with a second neighboring
phosphate or vice versa. In the paraelectric phase both positions are in average
equally occupied, due to the thermal fluctuations and its ambition to maximize
the entropy. Taking KDP as an example, this corresponds to randomly dis-
tributed KHPO−4 , KH2PO4 and KH3PO4 on the lattice giving rise to randomly
oriented dipoles. In the ferroelectric phase the entropy has a lower influence on
the free energy. The internal energy is minimized by approaching the ordered
state with two protons sitting on each phosphate. Thus, only KH2PO4 with a
dipole pointing in a defined direction sits on each lattice point.

2.2.1 Perovskites

In the highest temperature state, the paraelectric phase, the perovskites ex-
hibit a cubic structure with constituent A, for instance Pb2+ or Ba2+, sitting
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2.2. FERROELECTRIC PHASE TRANSITION

Figure 2.4: Schemata of order-disorder transition [GM12]. The left figure
shows the paralectric phase with disordered proton. Each proton has two
possible positions. In the ferroelectric phase (right figure) the interaction
between the protons mediated by the phosphate leads to a minimizing of
the internal energy and to an ordered state.

Figure 2.5: Perovskite structure of barium titanate BaTiO3 in the para-
electric phase (left) and in the ferroelectric phase (right) due to a dis-
placement of the central ion against the Oxygen octahedron [GM12].

at the corners. The second constituent B, usually Oxygen ions, forms an oc-
tahedron centered around A. Right in the middle the third constituent C,
often Ti4+, can be found. When decreasing below the Curie temperature, the
unit cell elongates along one of the primitive vectors. This particular one is
then denoted as the c-axis. The octahedron shifts along the c-axis as does the
central ion, but in the opposite direction. This leads to a net-dipole along the
c-axis featuring the ferroelectric phase. The central ion has two equal posi-
tions determining the direction of the polarization. This behavior is sketched
in figure 2.5.

Additional ferroelectric states exhibiting a different structure also exist.
Just to mention one, BaTiO3 becomes rhombohedral, the central ion has eight
equal positions along the space diagonals and no c-axis is allocated. However,
not all perovskites exhibit a ferroelectric phase transition. For instance, it is
suppressed in SrTiO3 by quantum fluctuations and in SrRuO3 by its metallic
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2.2. FERROELECTRIC PHASE TRANSITION

character.

2.2.2 Two Component Linear Chain with Charges

The initial equations of motion used for the two component linear chain (2.5)
and (2.6) can be extended by adding charges. One constituent gets the charge
+ne, whereas the second one gets the opposite charge −ne maintaining a
neutral chain of dipoles. Of special interest is the long wavelength limit, where
|Qn+1−Qn| and |qn+1−qn| of the displacements Qn and qn are small. Therefore
Qn+1 ≈ Qn and qn+1 ≈ qn holds. Thus, it is sufficient to examine the shift of
both sublattices, each denoted with ~q and ~Q. The shift shall now be allowed
to occur in any direction of the space and hence the vector notation is used.
Following [KH07], equations (2.6) and (2.5) then change to:

m
∂2~q

∂t2
= 2κ

(
~Q− ~q

)
+ ne ~Eloc (2.10)

M
∂2 ~Q

∂t2
= 2κ

(
~q − ~Q

)
− ne ~Eloc, (2.11)

where ~Eloc is the locally acting electrical field. Defining the relative shift
~d := ~q− ~Q, (2.10) and (2.11) can be combined to one differential vector equation

for the relative shift ~d:

µ~̈d+ µω2
o
~d = ne ~Eloc, (2.12)

with the reduced mass µ = mM
m+M

and the frequency ωo of the optical mode

at the small wave number limit k → 0 derived as ωo =
√

2κ/µ from equation
(2.7).

The local electric field ~Eloc remains to be investigated. In general it is
composed of the externally applied field, which shall be neglected, and the
field caused by the surrounding dipole moments, which itself can be split in the
following way. The first component is the depolarization field caused by surface
charges. It strongly depends on the geometry of the sample. A derivation for
a general ellipsoid can be found in [LL90a]. Here, the following two limits
are necessary. When assuming a thin layer parallel to the polarization, the
depolarization field becomes zero. In contrast it gets − 1

ε0
~P in the case of a

thin layer perpendicular to the polarization. The second component is the
Lorenz field of a fictive hollow sphere around the position of interest induced
by surrounding dipoles. A third component would be the microscopic dipole
moment of the unit cell, which vanishes for a cubic structure, but not for
perovskites [KH07, p. 205]. This contribution will not be considered here, but
by using a general ansatz at a later point.

As a result, the local field, still neglecting an external field, either adds to
the linear response force and increases the frequency as for a longitudinal op-
tical mode or counteracts and lowers the frequency as in the case of transverse
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2.2. FERROELECTRIC PHASE TRANSITION

vibrations.

~E
‖
loc = +

1

3ε0
~P (longitudinal)

~E⊥loc = − 2

3ε0
~P (transversal)

The polarization contains the polarizability of the bounded electrons depending
linearly on the local electric field and the ionic part due to displacements of
the ions.

~P = ε0NV αel ~Eloc +NV ne~d

Finally by including the local electric field in the optical phonon frequency
(2.7), one arrives at the corrected frequencies of the optical phonon mode in
the limit of k → 0

ωT = ω0

√
1−

1
3
NV αion(0)

1− 1
3
NV αel(0)

ωL = ω0

√
1 +

2
3
NV αion(0)

1 + 2
3
NV αel(0)

.

On the time scale of optical phonon vibrations the motion of electrons can be
seen as static, thus giving rise to the notation αel(0). The static polarizability
of the ionic part αion(0) is obtained from (2.12) as:

αion(0) =
(ne)2

ε0µω2
0

.

As already noted, the optical vibration modes get either softer or harder
depending on the direction of vibration of the ions. The longitudinal optical
phonon, denoted as ωL, has a higher frequency than in the case of two compo-
nent chain without charges. The opposite is true for the frequency ωT of the
transverse optical phonon mode giving rise to the following inequality:

ωT < ωo < ωL,

where ωo is the Brillouin zone center frequency of an optical vibration mode
in a chain without charges.

It is worth noting, that a relation between ωT and ωL depending on the
static dielectric constant ε(0) and the dielectric constant ε(ωS) within the vis-
ible spectrum exists

ω2
L

ω2
T

=
ε(0)

ε(ωS)
, (2.13)

which is known as the Lydane-Sachs-Teller relation.
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2.3. AUBRY MODEL

2.2.3 Polarization Catastrophe

Consider the prior mentioned, but neglected, microscopic polarisation with the
following general ansatz for the local electric field

~Eloc =
γ

ε0
~P , (2.14)

where γ is a general factor. γ = 1
3

would resemble the usual Lorentz-field. By
using (2.14), the polarization changes to [KH07, (4.91)]:

~P = ε0
NV α

1− γNV α
~E,

with ~E being the macroscopic internal field ~Eext + ~EN , thus the sum of the
externally applied field and the depolarization field, which is caused by surface
charges.

The main contribution to the polarization field of a perovskite comes from
the shift of the central ion against the Oxygen octahedron and leads to values
of γ much larger than 1

3
. In the case of γNV α approaching one, the denomina-

tor gets zero, and the polarization field diverges. In other words, an arbitrarily
small external field would lead to infinitely large polarization, hence the name
“polarization catastrophe”. The central ion would shift significantly with re-
spect to the Oxygen octahedron, thus leaving the limit of a linear restoring
force. Only the higher than quadratic orders in the interaction term ensure
an equilibrium state and the stability of the crystal. With decreasing the lin-
ear restoring force in the small amplitude approximation, used for phonons,
also the frequency drops until it might even vanish. In conclusion, the optical
phonon mode exhibits a softening in the small wavenumber limit, i.e. at the
Brillouin zone center. This is called a soft mode. It was first mentioned by M.
Born and K. Huang [BH54], that the stability of a crystal against small pertur-
bations is given as long as the normal modes have real frequencies. The crystal
would be unstable in the case of an imaginary frequency. The implication for
ferroelectric materials exhibiting a polarization due to the displacement of ions
is, that the involved normal mode(s) have to vanish. This implication was first
mentioned by W. Cochran [Coc59]. He derived the polarization catastrophe
and the soft mode behavior by using a core-shell model. The soft-mode be-
havior was found for a number of perovskites, for instance SrTiO3 [Cow62],
KTaO3 [SNM66] and PbTiO3 [BS73].

The consequence of the LST relation (2.13) is now, that for ferroelectrics
exhibiting a soft mode, the static dielectric function approaches rather large
values and leads to a strong reflectivity of low frequency light.

2.3 Aubry Model

A first classical model suitable for analytical and numerical studies of ferro-
electric materials was introduced independently by S. Aubry [Aub75, Aub76]
and by J. Krumhansl and R. Schrieffer [KS75] in 1975. [B82] gives an overview
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2.3. AUBRY MODEL

Figure 2.6: Sketch of the one component chain introduced by S. Aubry
[Aub75]. The figure is adopted from [DP06]. The rigid lattice forms an
on-site potential assumed to be of fourth order with two degenerate wells.
Only harmonic nearest neighbor interaction is considered. un denotes
the displacement of the central ion and the solid black arrows show the
corresponding polarization Pn.

of the early work including a lot of references, whereas [DP06] is more suitable
as an introduction to the model.

Here I follow the original view by S. Aubry. He assumes a two component
chain formed by two sublattices A and B. Both are coupled via a double well
potential with terms of quadratic and quartic order in the displacements un in
order to achieve two degenerate ground states arranged symmetrically around
u = 0. The sublattice A shall belong to the heavy background lattice and is
assumed to be rigid. Thus, the chain simplifies to an effective one component
chain with an on-site potential, i.e. a locally acting potential

V (un) =
E0

u40

(
u2n − u20

)2
.

Only harmonic nearest neighbor interaction with a coupling strength C is con-
sidered. The model is further simplified by taking only one degree of freedom
per oscillator into account. Accordingly, the Hamiltonian is written as [Aub75]

H =
∑
n

p2n
2m

+
∑
n

V (un) +
C

2

∑
n

(un − un+1)
2 .

The interactions, the displacements un and the corresponding polarization
direction are illustrated in figure 2.6.

Landau gave an argument, why any one dimensional system with finite
range interactions cannot undergo a phase transition at finite temperatures
[LL90b]. However, Aubry allocated different thermodynamic regimes corre-
sponding to the higher dimensional case, but did not find a transition exhibit-
ing critical behavior [Aub75].

It is obvious that in the lowest energy state, all oscillators will sit in the
same well, either left or right. This corresponds to a left or right polarization
and resembles the ferroelectric phase. At higher temperatures, but still in
the ferroelectric phase, thermal excitations arise. They can either be phonons,
small amplitude solutions, or domain walls, large amplitude solutions. Getting

13



2.3. AUBRY MODEL

more specific, two limits depending on the coupling strength relative to the
barrier height E0 exist.

In the case of low coupling strength (Cu20 � E0), Aubry found an order-
disorder transition. At lowest temperatures kBT � E0 the central ion sits
in one of the two wells. It can thus be described as a quasi-spin in an Ising

chain with an Ising transition occurring at around TI ≈ 0.844
Cu20
kB

. A phonon
description is valid in this regime. At higher temperatures the model reaches
the limit of uncoupled oscillators in a double well potential. A characteristic
temperature T0 is given by the temperature exhibiting oscillations above the
barrier from one well to the other. It would correspond to the phase transition
temperature in order-disorder ferroelectrics.

For large coupling strengths (Cu20 � E0) the model describes the displacive
regime. The energy to place one oscillator on the barrier is lower than the en-
ergy necessary for expansion or tension in the nearest neighbor interaction
if the polarization of neighboring oscillators swaps. Hence, the domain wall
spreads over several unit cells and the difference |un − un−1| is small. Large
wavenumber excitations will be solely due to phonons, whereas small wavenum-
ber will have a contribution from domain walls and thus, they depend more on
temperature. In contrast to the order-disorder transition, only one character-
istic temperature TS has been found. By decreasing the temperature towards
TS, the small wavenumber vibrations decrease their frequency and a central
peak occurs. This central peak denotes a peak in the frequency spectrum at
low wavenumbers. It has been observed by doing neutron scattering close to
temperatures at which the material exhibits a structural phase transition, for
instance in SrTiO3 [SASR72].

Furthermore, the domain walls are studied and an analytical expression
has been derived using a continuous approximation [Aub76, (2.8)]:

u(x, t) = ±u0 tanh

(√
2E0

Cl2u20
(
1− v2

c2

)(x− vt)

)
.

Where “+” is called a kink and “−” an antikink domain wall. l denotes the
length of the unit cell and v the propagation velocity of the domain wall. The
solutions are Lorentz-invariant and thus the domain walls exhibit a relativistic
behavior with an upper velocity limit given by the sound velocity c. They
are stable against small perturbations. However, they do not show a complete
solitonic behavior, as the collision of a kink and an antikink soliton can either
lead to an annihilation and excitation of optical phonons or they pass each
other with an phase shift, but with a small damping lowering the propagation
velocity of the kink and antikink [Aub76].

Studies of the displacive case in higher dimensions generally confirm the dif-
ferent temperature regimes and exhibit the predicted phase transition. Schnei-
der and Stoll did molecular dynamics simulations on a two dimensional lattice
with a similar on-site potential and harmonic nearest neighbor interaction as
in the one dimensional Aubry model [SS78]. They attribute the central peak to
be either caused by heat diffusion or by domain wall dynamics. The latter one
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increases towards the critical temperature and takes over at higher tempera-
tures. Dauxois and Peyrard give the following more descriptive explanation for
the central peak [DP06]: The low frequency field induces a motion of kink and
antikink solitons, the domain walls. The lower the frequency is, the higher is
the displacement of the domain walls. As kink and antikink move in different
directions, this leads to a larger macroscopic polarization. One can also say,
the external field induces a growth of the domains with a polarization parallel
to the external field or it induces a shrinking if the polarization is antiparallel.
This leads to a central peak in the susceptibility. Additional to the central
peak, Schneider and Stoll [SS78] observed an envelope soliton-like heat-pulse
at low temperatures, also known as second sound.

These investigations are done at thermal equilibrium. Besides relaxation
processes due to the nonlinear interaction, it is worth to study how regular or
irregular the dynamics in such a system are. This is a part of chaos theory
and some basic ideas shall be introduced in the following section.

2.4 Chaotic Dynamics

In a very simplified manner, one speaks of chaos, if a dynamical system is
sensitive to initial conditions and small perturbations. More mathematical
definitions can be found in the lecture notes of Ch. Skokos [Sko10] and refer-
ences therein.

Getting back to lattice dynamics, one is mostly interested in the frequency
or wavenumber spectrum of phonons. In an ideal solid the observed wavenum-
ber and frequency distribution would be sharply distributed around the dis-
persion relation. However, either due to impurities or nonlinearity, this dis-
tribution will spread. As only the last case is considered here, a numerically
obtained Fourier spectrum and the linewidth around an eigenfrequency would
also allow to study the influence of the nonlinearity and if the dynamics are
regular or chaotic. But a quantitative measure would be favorable and can be
obtained by using the Lyapunov exponent.

2.4.1 Characterizing Chaos - Lyapunov Exponent

The Lyapunov exponents are a measure of the exponential growth of a small
perturbation to an initial condition and how fast two trajectories in the phas-
espace, initially close together, start to deviate. For each dimension of the
phase space exists one Lyapunov exponent, but the largest one, the maximum
Lyapunov exponent, is sufficient to distinguish between regular and chaotic
dynamics [Sko10].

Let a dynamical system be denoted as ẋ = f(x, t) and introduce a small
perturbation to the initial condition x(0) as δx0. Then, the maximal Lyapunov
exponent (mLE) λm can be defined as:

λm = lim
t→∞

lim
δx0→0

∣∣∣∣δx(t)

δx0

∣∣∣∣ . (2.15)
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x(0)

δx(τ)

x(τ)

δx(2τ)

x(2τ)

δx(2τ)^

δx(τ)^

δx(0) = δx(0)^

Figure 2.7: Schemata of the numerical method for determining the maxi-
mal Lyapunov exponent [Sko10]. The time is sliced in equidistant inter-
vals in which the linear evolution of the perturbation δx is calculated. At
the end of each slice the exponential growth is stored and the perturbation
is subsequently normalized to unity.

If λm is larger than zero, exponential growth of the perturbation is indicated
and chaotic behavior displayed. The opposite case of λm < 0 denotes a stable
trajectory, the phase space shrinks. The system must be dissipative to achieve
this.

2.4.2 Maximal Lyapunov Exponent - Computational
Method

Numerical computations have to deal with discreteness in time and finiteness of
variables. That is why the definition (2.15) is not directly applicable and has to
be modified. Figure 2.7 sketches the general idea to separate the time in slices.
The initial condition is x(0) and the initial perturbation is randomly assigned
with norm unity. Then, the trajectory and the perturbation are calculated
by a numerical integration method. At each integer multiple jτ , the obtained
norm of the perturbation is saved as αj = δx(jτ) followed by a renormalization
of δx to unity. This is repeated until a predefined finishing time is reached.
The temporal evolution of the mLE can now be calculated with the recorded
αj as

λm(nτ) =
1

nτ

n∑
j=1

ln(αj).

Still, this method can only run a finite time, and thus the mLE differs from
cycle to cycle. Additionaly caused by the finite runtime, such a mLE would
correspond to a specific initial condition. To get a complete view on the
behavior of a dynamical system in its phase space, the initial condition can
also be randomly assigned. A constraint like the total energy might be used.

A detailed description of the method can also be found in the lecture notes
of Ch. Skokos [Sko10, p. 95].
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Chapter 3

Model

The model of the two component linear chain with harmonic next-nearest and
anharmonic nearest neighbor interaction by a Morse potential will be intro-
duced (3.2) in this chapter and analytical results presented. First it is im-
portant to show that the model exhibits the requested phase transition. This
will be done in section 3.3. Some crucial differences to the Aubry model exist:
The thesis on hand will investigate dynamical phenomena and neglects the
thermodynamical point of view. The phase transition will therefore be driven
by an external parameter. This is conceived to be altered by temperature
without specification of details. An external parameter for driving the transi-
tion avoids the fact, that a thermodynamic phase transition cannot occur in
a one dimensional chain at finite temperatures. Another crucial difference is
the translational invariance of investigated model. This gets important when
looking for small amplitude solutions in the sense of phonons. Generally the
phonon dispersion relation will exhibit two branches, because the unit cell has
two components. Only due to the translational invariance one ensures the ex-
istence of an acoustic branch with a linear behavior for small wavenumbers.
The derivation of the dispersion relation including a study of the sound veloc-
ity is part of section 3.4. Especially their behavior at the phase transition is
of interest, as experimentally observed features like the softening of an optical
phonon mode at the Brillouin zone center exist within this model despite of
studying only the linearized problem.

Due to the topology of the effective potential of the central ion, in particular
two degenerate ground states, caused by the unit cell lattice, one expects
to observe topological solitons. These are also known as kink and antikink
solitons and can be related to domain walls. An analytical derivation of them
is sketched in section 3.5. Similar to the Aubry model, one expects that a
maximal propagation velocity for these kink and antikink solitons exists.

It shall be noted that the same chain was used in the context of hydro-
gen bonded chains [SZ91, ZPS91, ZPS00, KZ04]. Especially the existence of
topological solitons and their stability as well as their energy spectrum was
studied.

Before starting with the model, a few thoughts shall be spent on why and
when a one-dimensional model could reflect a realistic behavior of solids.
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3.1. HOW TO GET TO A 1D MODEL?

qnQn

Figure 3.1: Scetch of the two-component linear chain with anharmonic
nearest neighbor and harmonic next-nearest neighbor interaction, each
oscillator corresponds to one layer of atoms perpendicular to the sound
propagation.

3.1 How to get to a 1D Model?

Assume that you have a bulk and excite a thin layer at its surface leading to
an expansion or contraction of this layer. This is illustrated as a gray layer
in figure 3.1. A strain or stress pulse is initiated. As long as the propagation
length d of the pulse is much smaller than the diameter r of the excited area
d � a, the pulse will exhibit a planar wavefront, which is parallel to the
surface and perpendicular to its propagation direction. Thus, the dynamics
are effectively one dimensional. Each layer of atoms perpendicular to the wave
propagation can be seen as one component of a one dimensional chain. Look
again at figure 3.1. The central ions marked in orange add up to one orange
oscillator within the chain. The blue ions sitting in the corner of the cubic
unit cell form a second layer and reduce to the blue oscillator in the chain.
Doing this for the whole substrate gives a chain of alternating blue and orange
oscillators. Each oscillator shall interact with its nearest neighbor of the same
type and with its nearest neighbor of the other type. Thus nearest neighbor
and next-nearest neighbor springs are added as shown in the same figure.

3.2 Hamiltonian

The chain consists of two components coupled via a Morse potential, which is
widely used within molecular and atomic physics. Additionally, next-nearest
neighbors are coupled via a harmonic potential, hence an ideal spring. The
couplings are illustrated in figure 3.1. Alternatively, the chain can be seen
as a composition of two chains, one for each component, with an additional
interaction term. One subchain describes the dynamics of the more rigid unit
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3.2. HAMILTONIAN

cell, thus it has heavier components and a larger spring constant. It will be
denoted as the Q-subchain. The q-subchain describes the dynamics of the
central ions. With these assumptions and notations, the Hamiltonian can be
introduced as [ZPS00]:

H =
∑
n

[
p2n
2m

+
P 2
n

2M
+
k

2
(qn+1 − qn)2 +

K

2
(Qn+1 −Qn)2

+ VM(Qn+1 − qn) + VM(qn −Qn)

]
, (3.1)

where qn and Qn are the displacements of the components with its point of
origin at (n + 1

2
)a and na respectively. Hence, the distance between the ions

in each subchain is given by the lattice constant a. Furthermore m, M , k and
K are the masses and spring constants of the central ion and the rigid unit
cell subchain. The Hamilton equations q̇n = ∂H

∂pn
and Q̇n = ∂H

∂Pn
determine the

relations between the momenta and the velocities of each component:

pn = mq̇n Pn = MQ̇n.

The momenta will be replaced by this relation in all further derivations.
The central ion subchain is shifted by a/2 with respect to the heavier Q-

subchain reflecting the unit cell dynamics. The Morse potential is thus given
as:

VM(x) = D
(

1− exp
(
−β(x+

a

2
− r0)

))2
,

with the dissociation energy D and the equilibrium distance r0, when consid-
ering only two atoms. β determines the curvature at the minimum x0 = r0− a

2
.

x has to be the difference of the displacements of two neighboring oscillators.
This use of two Morse potentials back-to-back with respect to qn was first
mentioned by Baker in 1954 [Bak54] and later in 1980 used by Lawrence and
Robertson [LR80] in the context of Hydrogen bonded ferroelectrics. It is now
worth rescaling the variables and eliminating some parameters for the purpose
of simplifying all further analytic investigations.

3.2.1 Rescaling of Hamiltonian

One has the freedom to rescale qn, Qn, time and energy. In this section this
freedom is used to minimize the number of parameters. Let us start with a
general linear transformation of the displacements

qn → Aqn Qn → BQn,

leading to the following Hamiltonian

H =
∑
n

[
A2mq̇2n

2
+
B2MQ̇2

n

2
+
kA2

2
(qn+1 − qn)2 +

KB2

2
(Qn+1 −Qn)2

+D
(
1 + ηe−β(Aqn−BQn)

)2
+D

(
1 + ηe−β(BQn+1−Aqn)

)2 ]
,

19



3.3. FERRODISTORTION

whereas η has been introduced as η = e−β(a/2−r0). As qn and Qn appear
together in the exponent, the same scaling A = B = 1/β for A and B is
chosen. It then follows

H

D
=
∑
n

[
mq̇2n

2β2D
+
mQ̇2

n

2β2D
+

k

2β2D
(qn+1 − qn)2 +

K

2β2D
(Qn+1 −Qn)2

+
(
1 + ηe−(qn−Qn)

)2
+
(
1 + ηe−(Qn+1−qn)

)2 ]
.

Note that the whole Hamiltonian has additionally been divided by D to obtain
a dimensionless energy and to leave only the parameter η within the nonlinear
interaction. Thus, one reasonable choice for rescaling the time would be

t→ 1

β

√
m

D
t ⇒ d

dt
→ β

√
D

m

d

dt
.

This eliminates β and D within the kinetic energy and lets one introduce the
mass ratio µ = M

m
. Finally, the Hamiltonian gets

H

D
=
∑
n

[
q̇2n
2

+
µQ̇2

n

2
+
k̄

2
(qn+1 − qn)2 +

K̄

2
(Qn+1 −Qn)2

+
(
1 + ηe−(qn−Qn)

)2
+
(
1 + ηe−(Qn+1−qn)

)2 ]
, (3.2)

with substituted k̄ := k
β2D

and K̄ := K
β2D

. By applying this rescaling, one ends

up with four independent parameters. k̄ and K̄ determine a weighting between
the three interactions, namely the harmonic interaction in each subchain and
the interaction between both subchains by the two Morse potentials. µ = M

m

is the mass ratio of the two components. η ascertains the shape of the Morse
potential and, as it will become clear in the next section, will be the crucial
parameter for tuning the phase-transition.

Other scalings could have been used, but the main goals here are to elim-
inate as many parameters within the nonlinear interaction as possible and to
assure that the scaling does not diverge at any η. In the literature rescalings
can be found which do not satisfy the last criterion [KZ04].

3.3 Ferrodistortion

The notion of ferrodistortion is used here in the sense, that for the central ion
two degenerate ground states exist. If one now assumes, that both constituents
have a positive and a negative charge, one gets ferroelectric behavior. The
two Morse potential can be added to one so called Double-Morse potential
exhibiting this feature depending on a phase transition parameter. To my
knowledge, the first application within a one dimensional chain can be found
in the work of Savin, Zolotaryuk and Pnevmatikos [SZ91, ZPS91].
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3.3. FERRODISTORTION

3.3.1 Double-Morse Potential

The ferrodistortive nature of this chain is revealed by considering only one unit
cell, thus the last three terms of (3.2). They contain the harmonic coupling of
the oscillators at Qn+1 and Qn and the two Morse potentials. Equation (3.3)
also includes the coupling between the central ions. Consider the ground state,
where all central ions sit together either in the left or the right well, thus the
distance qn+1 − qn is equal to Qn+1 −Qn.

Vuc(Qn+1, Qn, qn+1, qn) :=
K̄

2
(Qn+1 −Qn)2 +

k̄

2
(qn+1 − qn)2

+
(
1− ηe−(Qn+1−qn)

)2
+
(
1− ηe−(qn−Qn)

)2
(3.3)

Vuc(ρn, un) =
(K̄ + k̄)ρ2

2

+
(

1− ηe−(
ρn
2
−un)

)2
+
(

1− ηe−(
ρn
2
+un)

)2
(3.4)

The transition from equation (3.3) to (3.4) includes extending the exponent
within the Morse potentials by +Qn

2
− Qn

2
and +Qn+1

2
− Qn+1

2
accordingly and

introducing the two new variables

ρn = Qn+1 −Qn (3.5)

un = qn −
1

2
(Qn+1 +Qn) , (3.6)

where ρn describes the unit cell deformation and un the central ion displace-
ment. Further transposing and replacing η by η = 1

2α
leads to

Vuc(ρn, un) =
(K̄ + k̄)ρ2n

2
− e−ρn

2α2
+ 1 +

(
1− e

−ρn
2

α
cosh(un)

)2

. (3.7)

The first two terms show, that ρn decreases with smaller (K̄ + k̄). In other
words: the chain contracts, if the harmonic next-nearest neighbor interactions
are weak. This contraction depends on α. The implications of that will be
part of the next subsection.

The last term is the so called Double-Morse potential. Depending on 1
α
e
−ρn
2 ,

for convenience called ξn , it shows two regimes. For ξn < 1 two degenerate
wells arranged symmetrically around the middle of the unit cell exist. Their
position can be calculated exactly as

u0 = ± arccosh

(
1

ξn

)
. (3.8)

This regime corresponds to a ferrodistortive phase, which causes, under con-
sideration of positive and negative charges for each component, a dipole and
hence a polarization. Thus it can also be seen as a ferroelectric phase. For
ξn > 1 only one well in the middle of the unit cell u0 = 0 exists. This regime is
called the paraelectric phase. The potential for different ξn is shown in the left
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Figure 3.2: The Double-Morse potential given by equation (3.7) with ρn =
0 for different ξ (left) and its bifurcation diagram for the equilibrium
positions (right) according to equation (3.8). The phase transition from
two degenerate ground states to only one occurs at ξ = 1.

figure of 3.2. The corresponding bifurcation plot for the equilibrium position
for the central ion u0 can be seen in the right figure. It illustrates the phase
transition from the ferroelectric to the paraelectric phase. Considering the
Landau theory of phase transitions and u0 as the corresponding order param-
eter of the displacive transition, u0 changes continuously from a finite value to
zero implying a continuous or second order phase transition.

Note, that the phase transition from the ferroelectric to the paraelectric
phase can be achieved either by contracting the whole chain or by changing
α. The first case could experimentally done by applying a pressure. Secondly,
α could be temperature dependent and would correspond to driving a phase
transition by heating or cooling the sample. Yet both can be applied, which
is illustrated in figure 3.3. The line of the transition is calculated by setting
ξn = 1 leading to relation α = e−ρn/2

A similar, but slightly different, derivation of the Double-Morse poten-
tial can be found in [ZPS00]. They initially assume, that the pure Q-chain
has an equilibrium distance R0 > ρ0 between two neighbors. By adding one
constituent in between two neighboring Q-chain constituents interacting via
a Morse potential with each other, the chain contracts until this interaction
cancels the linear part of 1

2α2 e
−ρn . That implies an equilibrium distance R0,

which is chosen depending on α to maintain a constant ρ0.

3.3.2 Contraction of the Unit Cell

In the case of a free chain, that is with open boundaries condition, the total
length of the chain may vary due to the Morse interaction. Depending of
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the state of the chain, i.e. the equilibrium position of the central ion, the
Double-Morse potential in equation (3.7) either vanishes, as in the ferroelectric

case, or reduces to
(

1− 1
α
e
−ρn
2

)2
in the paraelectric phase. This requires a

differentiation in the following calculation. As only one unit cell is considered,
the index n will be omitted.

Ferroelectric Phase

In the ferroelectric phase the central ion sits in one of the wells and therefore
u0 = arccosh

(
α

e−ρ/2

)
will be plugged into (3.7). This gives

V (ρ)|u=u0 =
(K̄ + k̄)ρ2

2
+ 1− e−ρ

2α2
.

The minimum of this energy with respect to ρ determines the equlibrium unit
cell deformation ρ0

ρ0 = − e−ρ0

2α2(K̄ + k̄)
. (3.9)

Unfortunately, equation (3.9) is transcendental and no simple analytic solution
can be given.

ξ :=
e−

ρ0
2

α
(3.10)

But instead, the definition of ξ, see equation (3.10), can be reused here to get
a simple quadratic dependence of ρ0 on ξ

ρ0 = − ξ2

2(K̄ + k̄)
. (3.11)

Paraelectric Phase

In the paraelectric phase, the central ion sits in the middle and u0 = 0 holds.
Applied to (3.7), this leads to

V (ρ)|u=u0 =
(K̄ + k̄)ρ2

2
+ 2 +

e−ρ

2α2
− 2

e−
ρ
2

α
.

The equilibrium unit cell deformation ρ0 gets, by using the same method,
again a transcendental conditional equation (3.12). Similar to the ferroelectric
phase, the definition (3.10) can be used to get the simplified expression (3.13).

ρ0 =
e−ρ0

2α2(K̄ + k̄)
− e−

ρ0
2

α(K̄ + k̄)
(3.12)

ρ0 =
ξ2 − 2ξ

2(K̄ + k̄)
(3.13)

In summary, a free chain contracts towards the phase transition. Calcu-
lating ρ0 as a function of α is analytically not feasible, but the expression
simplifies significantly by using ξ. The ρ0-ξ dependence is shown in figure
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Figure 3.3: The phase diagram dependent on the unit cell deformation ρ0
and the Double-Morse parameter α (a) and the dependence of the ρ0 on
ξ for a free chain (b).

3.3b. The chain is most contracted at the phase transition with a contraction
depending on the strength of the next-nearest neighbor interactions. Hence,
ρ = 0 does not seem to be a valid equilibrium point for a Taylor expansion,
that will be needed in the small amplitude approximation for calculating the
phonon dispersion relation. This will be done in section 3.4. But adding the
constraint of constant total length (3.14) changes this situation.∑

n

ρn = 0 (3.14)

This constraint is necessary in the case of periodic boundaries.

Periodic Boundaries

Introducing a small perturbation δρ to the ith unit cell combined with the
constraint (3.14) gives the following total perturbation:

ρi = δρ ∀k \ i : ρi = − δρ

N − 1
, (3.15)

where N is the total number of unit cells in the chain. Plugging (3.15) into the
unit cell potential (3.7), where un is assumed to be in the equilibrium position
u0, thus neglecting the last term, gives:

V + δV =
∑
∀k\i

(
(K̄ + k̄)δρ2k
2(N − 1)2

− e
δρk
N−1

2α2
+ 1

)
+

(K̄ + k̄)δρ2i
2

− e−δρn

2α2
+ 1.

Transposing and subtracting the potential energy V without perturbation leads
to

δV =
N

N − 1

(
K̄ + k̄

2
− 1

4α2

)
δρ2. (3.16)
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This gives a threshold of stability against a collapse of the unit cell for the
situation, where all ρn are set to 0 and all un are set together to one of the
wells ±u0.

K̄ + k̄ >
1

2α2
⇒ δV > 0 (stable)

K̄ + k̄ <
1

2α2
⇒ δV < 0 (unstable)

One reason for the instability is, that the both Morse potentials added
back-to-back overcompensate the harmonic next-nearest neighbor coupling and
their minima overlap instead of forming a Double-Morse potential. Due to
that overlap, the unit cell shrinks to the size of approximately two times the
equilibrium distance r0 in the Morse potential. This must also overcompensate,
that in the case of periodic boundaries the unit cell has to be elongated in order
to satisfy the constraint (3.14).

Softening of the Next-Nearest Neighbor Interaction

The possible contraction in the case of a free chain, avoided in the case of
periodic boundaries, is not the only effect of adding two Morse potentials
arranged back-to-back. The other implication of the Double-Morse potential
on the unit cell is a softening of the spring constant K̄ obtained by rescaling
the original Hamiltonian. This softened spring constant χ can be read out
from (3.16) as

χ = K̄ − 1

2α2

assuming that the much softer q-subchain does not experience this softening.

3.3.3 Final Hamiltonian

It is time to summarize the applied rescaling of the initial Hamiltonian (3.1)
and write the final Hamiltonian, that will be used for in the following analytic
calculations and simulations. The displacements are rescaled by

qn →
1

β
qn Qn →

1

β
Qn.

While the time and energy are changed as follows:

t→ 1

β

√
m

D
t H → DH.

The rescaled Hamiltonian becomes thereby

H =
∑
n

[
q̇2n
2

+
µQ̇2

n

2
+
κ

2
(qn+1 − qn)2 +

χ

2
(Qn+1 −Qn)2

+

(
1− e

−ρn
2

α
cosh(un)

)2 ]
. (3.17)
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New spring constants κ and χ, determining the weighting between the inter-
action terms, have been introduced and depend in the following way on the
originally introduced parameter k and K as the originally introduced spring
constants of the central ions and the unit cell, respectively:

κ =
k

β2D
= k̄ χ =

K

β2D
− 1

2α2
= K̄ − 1

2α2
.

χ also includes the prior mentioned softening due to adding two Morse poten-
tials back-to-back, which is assumed to not occur in the much softer subchain
of the central ions. D denotes the dissociation energy and β the curvature
of the Morse potential. The last term of (3.17) is the Double-Morse poten-
tial, that has been derived in section 3.3. Furthermore, the masses have been
merged into the mass ratio µ = M

m
.

Let us now focus on the Double-Morse potential and what can already been
noticed by approximating it.

3.3.4 Approximation of the Double-Morse Potential

In this subsection a Taylor expansion of the Double-Morse potential in u
around two possible u will be made to get a few insights of its behavior. The
potential shall be written in the following way to emphasize, that a variation
of ρ is not of interest here. The starting point is

Vρ(u) := (1− ξ cosh(u))2 with ξ :=
e
−ρ
2

α
.

As considering only one unit cell, without loss of generality it could be any
unit cell of the chain, the subscripts n are neglected. In the paraelectric phase
the Taylor expansion is performed around u = 0:

Vρ(u)|0 ≈ (ξ − 1)2 + ξ(ξ − 1)u2 +
(4ξ2 − ξ)

12
u4 +O

(
u6
)
.

The same expansion can be performed in the ferroelectric phase. Then it
reveals the barrier height (ξ − 1)2 between both ground states.

In the ferroelectric phase exhibiting two minima it does make sense to
Taylor-expand around u = u0 = arccosh(1

ξ
). This gives a good approximation

of what happens with small oscillations of the central ion around one of the
two wells:

Vρ(u)|u0 ≈(1− ξ2)(u− u0)2 +
√

1− ξ2(u− u0)3

+

(
1

4
+

1

3
(1− ξ2)

)
(u− u0)4 +O

(
(u− u0)6

)
.

The existence of a third order term indicates, that the symmetry and degener-
acy of both ground states is broken. Additionally, due to the third order term,
this would be the limit of the successful used anharmonic linear chain model
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Figure 3.4: The 4th order approximation of the Double-Morse potential
for three different ξ in comparison to the exact solution. The following
ξ are used beginning from (a) to (c): ξ = {0.80; 1.0; 1.2}. Please refer to
the text for more explanations.

[BHS+12]. Even though additional harmonic next-nearest neighbor coupling
still exists.

The three plots in 3.4 compare the approximations with the exact solution
for three different ξ = {0.9, 1.0, 1.1}. Directly at the phase-transition (b) both
approximations match and the second order term vanishes. Thus the leading
interaction is of fourth order. This means, that for very small oscillations the
Double-Morse potential is negligible and the whole dynamics are given by two
independent linear chains. For ξ = 0.9 (a), i.e. in the ferroelectric phase,
both approximations differ. The expansion around u = 0 keeps the symmetry,
but does not yield the exact position of the degenerate ground states. Thus
the expansion around u = u0 is a better option, when studying phonons. For
completeness (c) contains the symmetric approximations at ξ = 1.1, which
nicely reflects the potential surface around u = 0.

Especially the second approximation helps to understand the following
small amplitude solutions based on a linearized theory, i.e. only up to sec-
ond order in the interaction potential is used. Two acoustic modes, one for
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each subchain, should be seen at the phase transition. One acoustic and one
optical branch is expected to occur otherwise. In contrast, the first approxi-
mation reflects the topology of the Double-Morse potential and can be useful
when studying large amplitude solutions.

3.4 Small Amplitude Solution - Phonon Dis-

persion Relation

The small amplitude solutions will be derived in this section. This involves
deriving the equations of motion from the Hamiltonian with the use of the
Hamiltonian equations and approximating the Double-Morse potential to sec-
ond order around the equilibrium position. In section 3.3.2 it has been shown,
that the boundary condition influences the ground state of the chain. In partic-
ular the chain contracts depending on the phase transition parameter α, which
is suppressed in the case of periodic boundaries, hence ρn = 0. The equilibrium
position of un is un = 0 in the paraelectric phase and un = ± arccosh

(
α

e−ρn/2

)
in the ferroelectric phase.

The equations of motion will then be solved by using a plane wave ansatz
corresponding to phonons. The solveability condition gives the phonon dis-
persion relation ω = ω(k) between frequency ω and wavenumber k, which will
be studied around the phase transition. This includes also an investigation of
the sound velocity. As mentioned previously, the optical mode will vanish at
the phase transition and two acoustic modes occur. This is called a soft mode
and will be studied in more detail.

A similar calculation was carried out in [KZ04] for the ferroelectric phase,
but in another context and thus with different purposes of the scaling.

3.4.1 Equations of Motion

As summarized in section 3.3.3, the rescaled Hamiltonian (3.17) with Double-
Morse potential looks like

H =
∑
n

[
q̇2n
2

+
Q̇2
n

2µ
+
κ

2
(qn+1 − qn)2 +

χ

2
(Qn+1 −Qn)2

+

(
1− e

−ρn
2

α
cosh(un)

)2 ]
. (3.18)

The dynamic variables ρn, which can be seen as the unit cell deformation, and
un denoting the displacement of the central ion with respect to the middle of
the unit cell are given as

ρn = Qn+1 −Qn

un = qn −
1

2
(Qn+1 +Qn) .
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They have been initially introduced in section 3.3. The Hamilton equations

ṗn = q̈n = −∂H
∂qn

Ṗn = µQ̈n = − ∂H

∂Qn

with the momentum velocity relation already shown in section 3.2, give the
equations of motion

q̈n = κ (qn+1 − 2qn + qn−1)−
∂

∂qn

∑
m

VDM (um, ρm) (3.19)

Q̈n =
χ

µ
(Qn+1 − 2Qn +Qn−1)−

∂

µ∂Qn

∑
m

VDM (um, ρm) . (3.20)

In both cases, the first term is equal to the harmonic linear chain and belongs
to the harmonic intra-subchain coupling. The second term, representing the
nonlinear inter-subchain coupling, will be approximated separately for each
phase. This will be done in the following starting with the ferroelectric phase.

3.4.2 Ferroelectric Phase

The ferroelectric phase is characterized by two degenerate positions for the
central ion. Without loss of generality the approximation is done only at the
right well u0 = arccosh

(
α

e−ρn/2

)
. A general ρ0 is chosen as the equilibrium unit

cell deformation. The Taylor-expansion of the Double-Morse potential up to
second order looks formally as

V (u, ρ) =V (u0, ρ0) + ~∇V |(u0,ρ0) ·
(
u− u0
ρ− ρ0

)
+

1

2

(
u− u0
ρ− ρ0

)T
Ĥ|(u0,ρ0)

(
u− u0
ρ− ρ0

)
. (3.21)

The second term containing ~∇V |(u0,ρ0) vanishes due to expanding around a

local extreme. The Hesse-Matrix Ĥ|(u0,ρ0) containing all second derivatives at
the ground state ρ = ρ0 and u = u0(ρ0) gets

Ĥ|(u0,ρ0) =

(
2(1− ξ2) −

√
1− ξ2

−
√

1− ξ2 1
2

)
.

Here, ξ = e−ρ/2

α
is reused. It generalizes the phase transition parameter to

account for the two reasons leading to the phase transition as described in
section 3.3. The phase transition can either occur due to contracting the chain
by external pressure or by varying α, which determines the form of the Morse
potentials and can thus be seen in a real system as temperature dependent.
Plugging (3.22) into (3.21) and transposing leads finally to the approximation
of the potential V (u, ρ) around the ground state

V (u, ρ) =
1

2

(
2
√

1− ξ2(u− u0)− (ρ− ρ0)
)2
.
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The sums ∂
∂qn

∑
m VDM (um, ρm) and ∂

∂Qn

∑
m VDM (um, ρm) occurring in (3.19)

and (3.20) can now be calculated directly. Applying them gives the approxi-
mated equations of motion:

q̈n = κ (qn+1 − 2qn + qn−1)

− 4(1− ξ2)
(
qn −

1

2
(Qn+1 +Qn)− u0

)
+ 2
√

1− ξ2(Qn+1 −Qn − ρ0)

Q̈n =
1

µ
(χ+ 1) (Qn+1 − 2Qn +Qn−1)

+ 2
1− ξ2

µ

(
qn + qn−1 −

1

2
(Qn+1 + 2Qn +Qn−1)− 2u0

)
− 2

√
1− ξ2
µ

(qn − qn−1 − ρ0).

They can be solved by using the plane wave ansatz as done for the simple one
and two component linear chain in chapter 2.1, but it has to be modified in two
ways. In the first place, it was assumed that the central ion oscillates around
the right well. This leads to the additional u0 term. Secondly, the equilibrium
unit cell deformation changes the distance between neighboring oscillators,
which can be accounted for by adding (n+ 1

2
) or (nρ0), respectively.

qn = qei(n+
1
2)k−iωt + u0 +

(
n+

1

2

)
ρ0 Qn = Qeink−iωt + nρ0 (3.22)

Using the ansatz (3.22) leads to a system of two linear equations with the two
variables q and Q, which can be written in matrix form(

0
0

)
= Mf

(
q
Q

)
=

(
mf

11 mf
12

mf
21 mf

22

)(
q
Q

)
, (3.23)

where the matrix elements are

mf
11 = 2κ(cos k − 1)− 2(1− ξ2) + ω2

mf
22 =

2χ+ ξ2

µ
(cos k − 1)− 2

1− ξ2

µ
+ ω2

mf
12 = µ

(
mf

21

)∗
=
√

1− ξ2(eik − 1)
(√

1− ξ2 + 1
)

+ 2(1− ξ2).

The super- and subscript f shall emphasize, that we are in the ferroelectric
phase. This system can be solved if 0 = det(Mf ) exists. By calculating this,
one gets

0 = ω4 + 2

[
(κ+

χ

µ
+
ξ2

2µ
)(cos k − 1)− 1− ξ2

µ
(1 + µ)

]
︸ ︷︷ ︸

Af

ω2

+ (
2κ

µ
(2χ+ ξ2))(cosk − 1)2 − 4(χ+ κ)

1− ξ2

µ
(cos k − 1)︸ ︷︷ ︸

Bf

. (3.24)
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Hence, the dispersion relation can be written in terms of the currently intro-
duced variables Af and Bf :

(ωfa,o)
2 = −Af ±

√
A2
f −Bf .

Deeper discussions on that will follow after deriving the dispersion relation
within the paralectric phase.

3.4.3 Paraelectric Phase

Only one minimum in the middle of the Double-Morse potential exists for
the central ion when considering the paraelectric phase. The Double-Morse
potential will therefore be approximated around u0 = 0, but still with the
same equilibrium unit cell deformation ρ0 as for the ferroelectric phase. The
general procedure remains the same. By doing the same expansion via the
Hesse-matrix one arrives at the approximated potential

V (u, ρ) ≈ ξ(ξ − 1)u2 +
1

4
ξ(2ξ − 1)(ρ− ρ0)2.

The equations of motion become then

q̈n = κ (qn+1 − 2qn + qn−1)− 2ξ(ξ − 1)

(
qn −

1

2
(Qn+1 +Qn)

)
(3.25)

Q̈n =

(
χ

µ
+
ξ(2ξ − 1)

2µ

)
(Qn+1 − 2Qn +Qn−1)

+
ξ(ξ − 1)

µ

(
qn + qn−1 −

1

2
(Qn+1 + 2Qn +Qn−1)

)
.

By using the same modified discrete plane wave ansatz (3.22) used for the
ferroelectric phase

qn = qei(n+
1
2)k−iωt +

(
n+

1

2

)
ρ0 Qn = Qeink−iωt + nρ0,

but now without u0 because the central ion oscillates around the middle of the
unit cell. Rewriting in matrix form analog to (3.23) gives(

0
0

)
= Mp

(
q
Q

)
=

(
mp

11 mp
12

mp
21 mp

22

)(
q
Q

)
. (3.26)

The matrix elements are now:

mp
11 = 2κ(cos k − 1)− 2ξ(ξ − 1) + ω2

mp
22 =

2χ+ ξ2

µ
(cos k − 1)− 2ξ(ξ − 1)

µ
+ ω2

mp
12 = µ (mp

21)
∗ = ξ(ξ − 1)(1 + eik)
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Finally, by calculating 0 = det(Mp) one arrives at

0 = ω4 + 2

[
(κ+

χ

µ
+
ξ2

2µ
)(cos k − 1)− ξ(ξ − 1)

µ
(1 + µ)

]
︸ ︷︷ ︸

Ap

ω2

+
2κ(2χ+ ξ2)

µ
(cos k − 1)2 − 2

ξ(ξ − 1)

µ
(2χ+ 2κ+ 2ξ2 − ξ)(cosk − 1)︸ ︷︷ ︸

Bp

.

(3.27)

Analogous to the ferroelectric phase the dispersion relation is given as

(ωpa,o)
2 = −Ap ±

√
A2
p −Bp,

where the index p indicates the paraelectric phase.
Like in the case of a general linear chain with two constituents per unit

cell, the dispersion relation shows two branches. One of them is an acoustic
branch with a linear behavior for small wavenumber. This branch decreases
linearly to zero frequency by decreasing the wavenumber down to zero. This
is due to the claimed translational invariance of the chain. Shifting the whole
chain shall not change its behavior, nor shall there be any restoring force. The
second branch, the optical one, shows a finite frequency at small wavenumber
caused by the opposed movement of both constituents in an unit cell.

3.4.4 Dispersion Relation

Figure 3.5 shows the dispersion relations at three different ξ = {0.8, 1.0, 1.2}
starting from the left column and two different weightings of the interaction
terms, one in each row. The coupling constants are K̄ = {1, 10} and k̄ =
{0.2, 2}, where the first value corresponds to the first row and the second value
to the second row of plots. Both chains use a mass ratio of µ = 2. The second
chain has a more rigid next-nearest neighbor coupling. The frequencies at the
Brillouin zone center are determined purely by the Double-Morse potential as
it is the limit of two non-excited subchains shifted against each other. This
gives the opportunity to experimentally determine the curvature V ′′|(u0,ρ0) of
the wells of the Double-Morse potential. All interactions contribute to the
vibration frequencies at higher wavenumbers and by approaching the opposite
limit at the Brillouin zone boundary, the influence of the interaction within
its subchains on the frequencies increases, but the Double-Morse potential still
contributes to the frequencies.

The dispersion relation also reveals an avoided crossing of the optical and
the acoustic branch. This is not obvious a priori, but will be demonstrated in
section 4.4 by simulations.

Directly at the phase transition exist two acoustic modes. The optical
branch softens at the Brillouin zone center. This softening will be discussed in
more detail in the following.
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Figure 3.5: Dispersion relation at three different ξ and two different next-
nearest coupling constants. The first row belongs to the chain with K̄ = 1,
k̄ = 0.2 and µ = 2, whereas the second row belongs to K̄ = 10, k̄ = 2
and µ = 2. The second chain has a higher influence of the intra-subchain
couplings, which leads to higher frequencies at k > 0.

Soft Mode Behavior

A typical property of a displacive ferroelectric phase transition is the softening
of an optical phonon mode at the Brillouin zone center, see chapter 2.2 or for
instance [GM12]. Exactly the same behavior can be found in this model and
is shown in figure 3.6 using the same parameters as before. Towards the phase
transition at ξ = 1, either from above or below, the frequency ω(k) at the
Brillouin zone center k → 0 decreases until it reaches zero.

Right at the phase transition, two acoustic modes exist due to the small
amplitude approximations done. In section 3.3.4 has been shown, that the
leading order of the interaction between both subchains is of fourth order.
This implies, that the interaction between both subchains are negligible for
small amplitudes. The approximation up to second order does not contributes
a inter-subchain interaction and therefore two independent linear chains with
one acoustic mode per chain are revealed. This can be demonstrated by setting
ξ = 1 either in (3.26) or in (3.23). In both cases the same diagonalized matrix
occurs and its eigenvalues can be read off as

ω2
q = 2k̄(1− cos(k)) ω2

Q = 2
K̄

µ
(1− cos(k)). (3.28)

The dynamics are thus determined by the mass ratio µ and by the spring
constants k̄ and K̄ introduced previously as the rescaled harmonic next-nearest
neighbor interaction. Note, that the softening of the more rigid unit cell chain
does not show up here. The dispersion relations (3.28) are similar to the ones
derived for the one component linear chain assuming only nearest neighbor
interaction (2.3).
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Figure 3.6: Lower branch (left) and upper branch (right) of the dispersion
relation for various ξ. The upper row belongs to the chain with K̄ = 1,
k̄ = 0.2 and µ = 2, whereas the lower row belongs to K̄ = 10, k̄ = 2 and
µ = 2.

In summary, a softening of an optical mode occurs even at low phonon
amplitudes and is thus intrinsically included in this model and its Hamiltonian
(3.1) and (3.17), respectively. As a cause of this softening, the avoided crossing
moves to smaller wavenumbers and frequencies until it reaches the regime of
sound frequencies. Hence, it will influence the measured sound velocity and
attenuation around the phase transition. Thus, the following section shall
focus on the sound velocity.

3.4.5 Sound Velocity

For acoustic phonons with a small wavenumber k → 0 the group and the phase
velocity are the same, which is caused by its linear dispersion. Sound waves
lie in this regime and they therefore correspond to the sound velocity, which
is experimentally measurable. The sound velocity can be derived from the
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dispersion relation and is slightly different for each phase. Starting point for
the derivation is the definition of the group velocity

v2s =
ω2

k2

and the dispersion relation

ω2
a = −A+

√
A2 −B, (3.29)

where A and B have the general structure

A = a(cos k − 1) + b

B = c(cos k − 1)2 + d(cos k − 1).

For a small wavenumber A reaches the finite value b and B goes to zero. This
allows applying a Taylor series of the square root in (3.29) around A:

ω2
a ≈ −A+ A− 1

2A
B. (3.30)

In the same sense, (cos k − 1) can be approximated up to second order. The
leading order of (cos k − 1)2 is four and this term will thus be neglected. Col-
lecting all terms of lowest order independently in nominator and denominator
leads to

v2s =
ω2
a

k2
≈ d

4b
.

Note, that the velocity is also dimensionless due to the rescaling of the Hamil-
tonian. It corresponds to the number of unit cells per dimensionless time.

The equations (3.24) and (3.27) give the expressions for d and b for each
phase, so that the sound velocities for both phases in the k → 0 limit are
obtained as

vs,f =

√
χ+ κ

µ+ 1
=

√
K̄ + k̄ − ξ2

2

µ+ 1
(3.31)

vs,p =

√
χ+ κ+ ξ2 − ξ

2

µ+ 1
=

√
K̄ + k̄ + ξ2−ξ

2

µ+ 1
.

The velocities within both phases decrease slightly when going towards the
phase transition and exhibit a jump right at the phase transition. Special
care is necessary at that point. The phase transition occurs at ξ = 1 and
simultaneously A vanishes. That negates the validity of the approximation of
the square root done to get from equation (3.29) to (3.30). But from section
3.4.4 is known, that exactly at the phase transition the chain behaves like two
independent chains with its corresponding dispersion relations (3.28). Hence,

two distinct sound velocities vs,q =
√
k̄ and vs,Q =

√
K̄/µ exist. They are

similar to (2.4) derived for the one component linear chain.
In conclusion, it has been shown that a discontinuity at the phase transition

exists in two respects. The left limit as well as the right limit are distinct from

35



3.5. LARGE AMPLITUDE SOLUTION - DOMAIN WALL

0.8 0.9 1 1.1 1.2

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ξ

v
s

0.8 0.9 1 1.1 1.2

1.4

1.6

1.8

2

2.2

2.4

ξ

v
s

Figure 3.7: Analytically calculated phonon sound velocities and their de-
pendence on ξ. Directly at ξ = 1 two independent linear harmonic chains
exists and thus two sound velocities marked with a cross. The upper cross
belongs to the Q-subchain and the lower one to the q-subchain. The left
plot is calculated for K̄ = 1, k̄ = 0.2 and µ = 2, whereas for the right plot
K̄ = 10, k̄ = 2 and µ = 2 is chosen. Stronger intra-subchain coupling
leads generally to higher velocities and the jump at the phase transition
is smaller due to a lower influence of the Double-Morse potential.

.

each other and additionally they differ from the value directly at the phase
transition. This behavior is shown in Figure 3.7. The two sound velocities
at ξ = 1 are marked with a cross. Two same two sets of parameter for the
chain as for the dispersion relation are used. The left picture belongs to the soft
next-nearest neighbor couplings and a strong influence of the nonlinear Double-
Morse potential. This shows up in a more pronounced difference between the
sound velocity in each phase as well as in the steepness within each phase. For
the more rigid chain, the sound velocity is almost constant within the plotted
ξ range except at the phase transition. Here, both subchains have the same
ratio between the velocities within each subchain. The Double-Morse potential
has no influence on that.

3.5 Large Amplitude Solution - Domain Wall

Large amplitude solutions have been studied extensively in the literature in-
cluding mostly numerical investigations [ZPS91, SZ91, KZ02, KZ04]. Here I
want to follow briefly the analytical derivation of [ZPS00]. The equations are
slightly modified in order to account for the scaling and nomenclature used in
this thesis. The equations of motion (3.19) and (3.20) serve as the starting
point. Applying a continuum approximation to the equations of motion and
changing to the moving reference frame φ = x− vt, thus the time derivatives
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3.5. LARGE AMPLITUDE SOLUTION - DOMAIN WALL

transform as q̈ → v2qxx and Q̈→ v2Qxx, leads to [ZPS00, (14)]

(c20 − v2)qxx =
∂

∂u
V (u, ρ)

(v2 − c20)qx + µ
(
v2 − v20

)
ρ =

∂

∂ρ
V (u, ρ),

where c0 =
√
κ and v0 =

√
χ/µ denote the sound velocity in the q- and the

Q-sublattice, respectively. This set of ordinary differential equations can be
solved analytically by simplifying the Double-Morse potential with a potential
of fourth order [ZPS00, (9)]

V (u, ρ) = (1− ξ)2︸ ︷︷ ︸
ε0

(
1− u2

u20
+

ρ

u20

)2

,

where u0 = u0(ρ)|ρ=0 = arccosh(1/ξ) is the position of the well when the chain
is neither contracted nor expanded. ε0 is the barrier height separating the
two wells of the Double-Morse potential. The analytical solution is a two-
component topological soliton and either a kink or an antikink [ZPS00, (18)]

u(φ) = ±u0 tanh(γφ) ρ = ρ0 cosh−2(γφ) (3.32)

with the substitutions

γ2 =
1

u20

1 + µ
v20−v2
c20−v2

1
u40

+ µ
2ε0

(v20 − v2)

ρ0 = u20
2ε0 + u20γ

2(v2 − c20)
2ε0 ± u30γ(v2 − c20)

(3.33)

The plus (minus) sign in equation (3.32) and (3.33) correspond to the kink
(antikink) solution. They are plotted for three different velocities in figure 3.8.

Several important features show up in this solution. The first one to notice
is, that the width of a kink, thus a domain wall, depends on its velocity.
Secondly, these solitons exist only within two velocity regimes:

0 ≤v ≤
√
χ+ κ

1 + µ

v0 ≤v ≤

√
χ

µ
+

2ε0
µu40

The upper boundary of the first band occurred already in (3.31) as the sound
velocity within the ferroelectric phase. The second velocity regime allows ve-
locities larger than the velocity in the more rigid Q-sublattice. It corresponds
to supersonic solitons, i.e. domain walls which propagate faster than the sound
in an isolated Q-sublattice. For subsonic domain walls, the unit cell is either
strained around the kink soliton or compressed around the antikink soliton.
In the case of supersonic domain walls, the unit cell is compressed in either of
them.
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Figure 3.8: Analytical kink (a) and antikink (b) solutions at three different
propagation velocities v = {0.1, 0.4, 0.71}. The first two velocities are
subsonic, i.e. lower than the sound velocity of vs ≈ 0.52. The last velocity
is supersonic with an velocity slightly larger than sound velocity in an
isolated Q-sublattice: vQ = 0.707. The other parameters are chosen as:
ξ = 0.9, K̄ = 1, k̄ = 0.2 and µ = 2.

38



Chapter 4

Simulating Dynamics

Numerical investigations help to go beyond the scope of the linear theory,
which has been studied in the previous chapter. For instance, it is possible to
excite pulses with different amplitudes and observe their dynamics as will be
done in section 4.3. By varying the amplitudes, the analytical result will be
reflected on the one side, whereas nonlinear effects will be seen on the other
side of the amplitude range. The temporal evolution of the pulse profile will
greatly differ depending on the amplitude and phase. The same holds for the
sound velocity as an experimentally observable quantity. It will be studied as
the velocity of the pulse.

Another often experimentally examined feature is the dispersion relation.
The section 4.4 is devoted to the dispersion relation obtained numerically rang-
ing also from linear regime up to the nonlinear one. Here a system closer to
thermal equilibrium is used, as the initial excitation energy is homogeneously
spread over the whole chain. The nonlinear regime will show as a spreading of
the dispersion relation by approaching higher energy densities.

A more systematic view on the nonlinear influence follows in section 4.5.
The first one is a quantification of the nonlinear or chaotic behavior by using
the maximum Lyapunov exponent. It uses again a state with a homogeneous
energy density.

Finally in 4.6, more details on the relaxation towards thermal equilibrium,
i.e. thermalization, are revealed. One starts with a far-from-equilibrium state
with only two excited phonon modes. Due to the nonlinear interaction poten-
tial, these phonon modes will couple. This coupling is expected to be large
close to the phase transition.

However, before one can start with the simulation, the simulations itself
and some technical aspects shall be shortly introduced in the first section 4.1.
This includes the equations of motion. A very important point is the initial
condition. Some efforts have to be made on this topic in section 4.2.

4.1 Simulation Procedure

The numerical integration has been written in C++ and is called as a .mex
function within MATLAB. A MATLAB script provides the preparation of the
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initial state and commits all parameters to the .mex file including a time vector.
This time vector defines the times at which the .mex function takes a snapshot
of the actual state until it reaches the last value in the time vector. A matrix
including all displacements and velocities at these times is returned to the
script and can be evaluated including spatial or temporal Fourier transforms
depending on what in particular is investigated.

The differential equation to simulate is of second order in time. It is basi-
cally a sum of forces occurring for each oscillator based on its actual displace-
ments Qn and qn:

µQ̈n = K̄ (Qn+1 − 2Qn +Qn−1) + FM (Qn − qn−1)− FM (qn −Qn)

q̈n = k̄ (qn+1 − 2qn + qn−1) + FM (qn −Qn)− FM (Qn+1 − qn)

K̄ and k̄ are the rescaled spring constants and µ is the mass ratio. They have
been introduced in section 3.2.1. FM is the force acting on two neighboring
constituents caused by the Morse potential

FM(x) = − ∂

∂x
VM(x) = −e

−x

α

(
1− e−x

2α

)
.

Two boundary conditions will be used. One of them is the periodic chain
with periodic boundaries implemented by adding the following fictitious con-
stituents at the beginning and end of the chain:

QN+1 = Q1 qN+1 = q1

Q0 = QN q0 = qN .

The second one is the free chain with open boundary condition. It can be
implemented again by adding two fictitious constituents at the beginning and
end of the chain, but now with the substitution

QN+1 = QN qN+1 = qN

Q0 = Q1 q0 = q1,

where N is the number of unit cells of the chain.
This gives a differential equation system with 2N equations. They are

numerically integrated by a fourth order Nyström method with six function
calls [LR05, Ch. 6.2]. It belongs to the parted Runge-Kutta Methods. The
key feature of this method is its symplecticity implying that the total energy
of the chain is conserved up to a small error. The temporal evolution of the
relative error is illustrated in figure 4.1. A step size of h = 0.1 gives a relative
error of < 10−7 and seems to be a reasonable choice for the simulations.

4.2 Initial Condition

Before getting to the simulations, it is important to discuss the preparation
of the initial state of the chain. The basic idea is to set the displacements qn
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Figure 4.1: Temporal evolution of the error of the total energy relative
to the pulse energy. The dynamics are simulated with a fourth order
Nyström method at three different step sizes h = {0.01, 0.1, 1}. The
same chain as in section 4.3.3 and following with an high energy pulse
E = 10 is used. The step before t = 500 is caused by the collision of two
pulses. See also section 4.3.

and Qn in the lowest energy state, which is also a steady state with initial
velocities set to zero.

The dynamic variables un for the displacement of the inner ion and ρn have
been introduced in section 3.3 as:

ρn = Qn+1 −Qn

un = qn −
1

2
(Qn+1 +Qn)

They have been used to show analytically, that this ground state depends on
the boundary conditions. Periodic boundaries require that QN+1 = Q1. Hence
the sum over all unit cell deformations ρn has to be zero. This leads to non-
deformed unit cells as a ground state, which has been derived in 3.3.2. In the
same section it has been revealed, that open boundaries result in a polynomial
dependence (3.11) and (3.13) of ρ0 on ξ with the longest contraction at the
phase transition. Remember the definition (3.10) of ξ connecting ρ0 and α to
one phase transition tuning parameter. The phase transition occurs at ξ = 1
either due to changing ρ0 or by varying α. For ξ < 1 the chain is in ferroelectric
phase and it is in the paraelectric phase for ξ > 1. The results are summarized
as

ρ0 = 0 ξ =
1

α

for the periodic chain and as

ρfe0 = − ξ2

2(K̄ + k̄)
ρpe0 =

ξ2 − 2ξ

2(K̄ + k̄)
ξ =

1

α
e−

ρ0
2 (4.1)

for the free chain. A differentiation of the ferroelectric and paraelectric phase
is necessary. They are denoted with the subscripts fe and pe. K̄ and k̄
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4.2. INITIAL CONDITION

are the rescaled spring constants of the next-nearest neighbor interactions.
Irrespective of the boundary, the ground state position of the central ion is
either zero in the paraelectric phase or u0 = arccosh (1/ξ) in the ferroelectric
case.

The contraction (4.1) of the free chain can be numerically proven for suf-
ficiently long chains. The analytically derived contractions in both phases,
(3.11) and (3.13), are plotted in figure 4.2a together with the numerical re-
sults for a chain with 512 and a chain with 32 unit cells. They agree nicely
for the long chain, but significant differences exist for the 32 unit cell short
chain. This is caused by boundary effects, which have been neglected in the
derivation. They are illustrated in the upper figure of 4.2b for ξ = 1, where
the spatial unit cell deformation after the relaxation for both chain lengths
are plotted. To ensure a better comparability, the position is normalized to
[0, 1]. The contraction is lower at both ends than the contraction in the middle,
which approaches the theoretical value of ρ0 plotted as a dotted line. Relative
to the whole chain, the borders have a larger influence on the small chain.

The numerical procedure for getting the ground state is as follows. The
chain is initially prepared with ρn = 0 and u = −u0. α is calculated by
assuming that the analytical ρ0 for the free chain holds. The simulation runs
214 time steps with 213 interrupts at which the velocities are set to zero. This
leads to a decreasing of the total energy and therefore to a relaxation. Just
for validation, the temporal evolution of the kinetic energy density is plotted
in the lower figure of 4.2b. For any numerical investigation of the free chain,
this relaxation process will be done before adding the excitation and starting
the simulation.

In summary the general initial displacements of sufficiently long chain are

ρn = ρ0 un = −u0.

Thus the displacements used in the simulation are given by

qn =

(
n+

1

2

)
ρ0 − u0 Qn = nρ0. (4.2)

An additional freedom of the center of mass motion of the whole chain exists,
but is, without loss of generality, neglected. The same holds for the center of
mass velocity, which is also set to zero.

With a chain being in the lowest energy state one can start to think about
the excitation. Two ways are possible. The excitation could be either a pertur-
bation in the displacements or alternatively a velocity could be added. With
the nonlinear interaction terms and the requirement to change the energy of an
excitation in a controlled way, it is favorable to use the second way of adding
initial velocities. Different excitations will be investigated. They range from
independent identically distributed random noise over a pulse with a gaussian
spatial distribution to periodic excitations. The first one is closer to thermal
equilibrium, whereas the latter two resemble far-from-equilibrium states. In
all cases the energy or the energy density is used as a control parameter to
manipulate the influence of the nonlinearity. The excitation used in particular
will be introduced at the point there are used.
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Figure 4.2: The left plot (a) shows the contraction of a free chain. The
solid black line resembles the analytical solution, whereas the circles de-
notes the numerically calculated contraction for two different chain length
of 512 unit cells (blue) and 32 (red). The upper plot of (b) illustrates the
difference in the unit cell deformation ρn depending on the relative posi-
tion in the chain with respect to the analytical value (dotted black line).
The saturation of the chain is shown in the lower plot in terms of the
kinetic energy in the chain.

4.3 Pulse Propagation

4.3.1 Pulse Excitation

As mentioned before, the initial displacements are given in the general form
(4.2) valid for both boundary conditions and the excitation is done by adding
a spatial velocity distribution. The shape of the pulse shall be of a gaussian
profile given by

q̇n = εqe
(n+1

2−n0)
2

2σ2 Q̇n = εQe
(n−n0)

2

2σ2 , (4.3)

where the initial position of the pulse n0 and the pulse width σ shall be the
same for both subchains. The additional term 1

2
takes care of the relative

shift of the q-subchain with respect to the Q-subchain. These initial velocities
would lead to a moving chain as the mean velocity is different from zero. In
order to avoid this, all velocities are subtracted by its mean. This is not an
issue because all dynamics will be investigated with the dynamic variables ρn
and un. These variables only show the relative dynamics and hence they are
not influenced by the mean velocity of the whole chain. However, a small
contribution to the total energy exists as the kinetic energy of the center of
mass motion vanishes.
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Using the variables ρn and un, the initial velocities (4.3) change to

u̇n = e−
ν2n
2σ2

(
εq − εQe−

1
8σ2 cosh

( νn
2σ2

))
(4.4)

ρ̇n = −2εQe
− ν

2
n+1

4
2σ2 sinh

( νn
2σ2

)
, (4.5)

whereas νn has been introduced as νn := n + 1
2
− n0 in order to simplify the

expression.
It is possible to manipulate whether more acoustic phonons or more optical

phonons will be excited by varying εq and εQ. E.g. by setting εQ zero the initial
ρ̇n vanishes and only optical phonons will be excited. However, the opposite
is only possible in the limit of an infinitively wide pulse, which is the case for
σ approaching infinity.

The following investigations are all done with a σ of 5 corresponding to a
full width half maximum of approximately 11.8 unit cells. Each quoted energy
denotes the integrated energy of the pulse

E =
N∑
n=1

q̇n
2

+
µQ̇n

2
.

4.3.2 Temporal Pulse Profile Evolution

The main focus of this section is the temporal change of the pulse shape.
After exciting a pulse in the middle of a 512 unit cell long chain by adding the
previously mentioned velocity distribution, its space time map is computed
for a total time of 1024. Remember that the time is dimensionless due to
the rescaling applied in section 3.2.1. The temporal evolution of the unit cell
deformation and the displacement of the central ion can be derived from the
space time map with the help of (3.5) and (3.6). Figures 4.3, 4.5 and 4.7
show such maps of ρn (upper plot) and un (lower plot) for different phase
parameter ξ and excitation energies E. There are simulated using the follwing
parameter. The rescaled next-nearest neighbor spring constants are K̄ = 1,
k̄ = 0.2. The mass ratio is µ = 2. These values for the spring constants
lie at the lower border for a stable unit cell and assess the influence of the
Double-Morse potential.

In general, the excitation leads to two pulses. One pulse is tensile and
propagates from the middle towards zero, the left end of the chain. The second
pulse propagates to the right end and compresses the unit cell. The pulse
profiles are plotted in figures 4.4, 4.6 and 4.8 for two times marked as the
dashed and the solid green line within the corresponding space-time maps
4.3, 4.5 and 4.7 to reveal more detailes. The edge of the pulse is determined
by the first ρn beginning from left for the tensile pulse or from right for the
compressive pulse, that exceeds a certain threshold. Here this threshold is
set to one tenth of the maximal compression or tension and is denoted as the
origin of the x-axis in all pulse profile plots and as a cross in the space-time
maps. The arrows illustrate the propagation direction. Similar to the space
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time map, the dotted lines belong to the first time t = 50, while dashed and
solid lines belong to the second time t = 250. Additionally both boundary
conditions will be compared at the end of this section. That is why a further
differentiation in blue for the periodic chain and red for the free chain exists.

The features will be described in the following order. First a qualitative
overview of the pulse propagation and its temporal evolution is investigated
for one ξ each in the ferroelectric phase, at the phase transition and in the
paralectric phase. The next part continues with a more systematic view on
the pulse velocity. At last comes a evaluation of the differences between free
and periodic chain.

4.3.3 Ferroelectric Phase

The ferroelectric phase, discussed here for ξ = 0.95, exhibits two ground states
separated by a potential barrier. The excitation energy and thus the amplitude
determines which phenomena occur. In the case of low energies, plotted for
E = 0.1 in figure 4.3a, the small amplitude approximation holds and the pulse
propagates regularly with only a slight dispersion of the compressive pulse.
In contrast, domain walls are introduced, when exciting with sufficient energy
to overcome the potential barrier. An energy of E = 10 is chosen and the
corresponding space-time map plotted in figure 4.3b. The interaction between
domain walls and the pulse lead to a fast decay of the pulse and the dynamics
get rather chaotic. Note, that the sound velocities for compressive and tensile
part differ in the high energy case. The compressive part propagates faster
than the tensile part.

The pulse profiles are shown the figures 4.4. The upper row belongs to the
low energy excitation with the left propagating tensile pulse in the left column
and the right propagating compressive pulse in the right column.

The tensile pulse shows a very regular behavior with a gaussian shape and
almost no difference to the profile at the earlier time, whereas the compressive
pulse exhibits dispersion and a widening of the pulse. An attenuation of the
amplitude can also be noticed. In the ferroelectric phase, the tension leads
to an additional separation of the two degenerate wells in the Double-Morse
potential. This gives rise to the pulse in the central ion chain un with an
increased absolute value. Analogously, a compressive pulse leads to a pulse
with a decreased absolute value.

The high energy excitation, shown in figures 4.4c and d, is sufficient to
induce nonlinear effects. The tensile pulse gets narrower and grows in am-
plitude. In other words, the pulse fronts steepen up. A second pulse with
lower amplitude follows. This behavior seems to be similar to the splitting of
an arbitrary pulse into solitons appearing in the Korteveg-de Vries equation
and accordingly for water waves in a channel or river. In fact, the system has
the same ingredients: A nonlinearity responsible for an amplitude dependent
propagation velocity causing the steepening and dispersion.

The compressive pulse has an amplitude sufficient to change the potential
of the central ion from two separate ground states to only one. In other words,
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Figure 4.3: The space-time maps of the unit cell deformation ρn and
the central ion displacement with respect to the middle of the unit cell
un within the ferroelectric phase ξ = 0.95 and with two different pulse
energies.
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Figure 4.4: Pulse profiles corresponding to the times illustrated as dashed
and solid line within the space-time maps of figure 4.3. The upper plot
shows the pulse profile of ρn and the lower plot shows pulse profile of the
central ion un. The origin of the x-axis belong to the cross in 4.3. The
black arrow marks the propagation direction. Periodic boundaries are
used for the red lines and open boundaries for the blue lines.
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Figure 4.5: The space-time maps of ρn and un directly at the phase tran-
sition ξ = 1.0 and with four different pulse energies.

a transition from the ferroelectric to the paraelectric phase takes place within
the pulse. This transition seems to be responsible for the strong fluctuations
in both subchains, which follow the pulse. The central ion oscillates several
times from one well to the other until it resides in the opposite well. Thus, the
pulse induces domain walls. The pulse itself gets narrow and grows slightly in
amplitude. Hence, also a steepening occurs.

4.3.4 Phase Transition

The phase transition occurs at ξ = 1. The behavior changes depending on the
pulse amplitude and energy. To illustrate this, four different pulse energies
E = {10−5, 10−3, 0.1, 10} are chosen. Their space-time maps are shown in
figure 4.5. In the case of the lowest energy, two different characteristic velocities
exist. One fast and regular propagating pulse within the Q-subchain visible in
the ρn plot. The second velocity can be noticed in the un plot implying a slower
pulse within the chain of central ions. The pulses interact only weakly. This
behavior can be explained by the coupling between both subchains, which is of
fourth order and thus very small for such low energies. Remember the analytic
approximation of the Double-Morse potential in section 3.3.4. When going to
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higher energies and amplitudes, the interaction gets stronger and the dynamics
become chaotic. At an energy of E = 10−3 the influence of both subchains is
still visible, but a collective compressive pulse appears. This pulse is even more
pronounced and stable at a pulse energy of E = 0.1. However, the tensile pulse
decays rapidly and the dynamics of the inner ion start to be rather chaotic. The
compressive pulse splits at the highest energy of E = 10. The dynamics of the
inner ion are strongly chaotic except around the compressive pulse. This can
be explained by remembering what happens with the Double-Morse potential
if the unit cell is compressed. These unit cells get off the phase transition into
the regime of one well and a second order interaction between the subchains
arise leading to smaller oscillations of the central ion around un = 0. In the
case of a tensile stress, two minima exist enabling stronger fluctuations and a
strong attenuation.

The pulse profiles for the three energies E = 10−5, 0.1 and 10 are plotted
in figure 4.6. The first row includes the lowest pulse energy E = 10−5. The
shape of the pulse in the unit cell deformation does not alter much between
both times. Tensile and compressive pulse propagate regularly. A second pulse
propagates in the chain of the central ions. It is slower and lags behind the
first one. Comparing ρn and un, the faster pulse is more pronounced in ρn and
thus in the Q-subchain, whereas the slower pulse is more pronounced in un and
thus in the q-subchain. This confirms the idea of two almost non interacting
linear chains.

At an energy of E = 0.1, both, the compressive and the tensile pulse,
show strong deviations from the initially excited gaussian pulse. The tensile,
left propagating, pulse has two parts, a faster low amplitude one with nearly
no influence on the central ion displacements and a second part with higher
amplitude, that propagates more slowly, but with a stronger displacement of
the central ion. This part would show a stronger polarization, when including
charge effects. But remember, that charges are not directly included in the
model. They are included indirectly by contributing to the effective potential.
The compressive, right propagating, pulse does not show such a pronounced
sectioning, but a tendency is still noticeable. Still, the edge propagates faster
than the peak. This reveals a strong asymmetry, which will be confirmed
by studying the pulse velocities more systematically. In addition to the unit
cell deformation, the amplitude of the inner ion is larger for the left propa-
gating tensile pulse. This can again be explained by the effect on the Double-
Morse potential. Tension leads locally to a transition in the ferroelectric phase.
Hence, the central ion starts to move towards and to oscillate around one of
the two wells and a higher amplitude is achieved. On the contrary, the com-
pressive pulse leads to a stabilization of the one well in the middle of the unit
cell, explaining also, why the pulse in the central ion displacement follows the
compressive pulse.

The tensile pulse excited with the highest energy of E = 10 exhibits the
same self-steepening as in the ferroelectic phase, but without the second pulse
and with stronger fluctuations, especially in the central ion subchain. The
chain within the pulse is effectively in the ferroelectric phase with an high
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Figure 4.6: Pulse profiles corresponding to the times illustrated as dashed
and solid line within the space-time maps of figure 4.5. The upper plot
shows the pulse profile of ρn and the lower plot shows pulse profile of
the central ion un. The black arrow marks the propagation direction.
Periodic boundaries are used for the red lines and open boundaries for
the blue lines.

49



4.3. PULSE PROPAGATION

amplitude pulse in the central ion displacement. The compressive pulse shows
stronger fluctuation in ρn, but much less in un due to being effectively in
the paraelectric phase. A steepening does also occur suggesting an amplitude
dependent velocity.

4.3.5 Parelectric Phase

Figure 4.7 shows ρn and un for ξ = 1.05, which lies in the regime of only one
minimum in the Double-Morse potential. The same two pulse energies E = 0.1
and E = 10 as for the ferroelectric phase are used. The low energy pulse
shows some dispersion, whereby more for the tensile than for the compressive
pulse. Also an optical mode is excited due to the gaussian excitation, which
can be seen in the un plots in between the left and right propagating pulse.
The excitation of an optical mode has been predicted by the equation (4.4).
The high energy pulse has a tension sufficient to get over the phase transition,
which exhibits a strong attenuation of the tensile pulse. The compressive pulse
instead propagates regularly with a stronger dispersion as in the case of the
low energy excitation.

The same is observed, when looking at the pulse profiles in figures 4.8. At
low energies, the tensile part shows dispersion and additional fluctuations of
the central ions behind the pulse in ρn. Energy transfers from the pulse to
the central ions lead to an attenuation. The compressive pulse looks more
regular with only a slight dispersion and attenuation. The reaction of the
central ion seems to lag slightly behind the unit cell deformation. Getting to
the high energy excitation, the tensile pulse has enough amplitude to get into
the ferroelectric phase. The velocity is much slower and thus the pulse decays
rapidly. The wide but low amplitude pulse in front of the oscillations confirms
this idea. Due to reaching the ferroelectric phase, strong oscillations in un
are excited suggesting an energy transfer to optical phonons. The compressive
pulse exhibits self-steepening and dispersion with relatively small oscillations
of the central ions.

In conclusion, the dispersion is stronger, when the pulse leads to a shift
of the local ξn towards the phase transition, that means compression in the
ferroelectric and tension in the paralectric phase. An effective ξeff depending
on the amplitude and the initially used ξ can be introduced. This ξeff cor-
responds to the sound velocity of the pulse, as can be seen in the following
section or by going back to figure 3.7. Additionally, it lets one analyze the sta-
bility of the pulse. If v(ξeff ) > v(ξ), the peak propagates faster than the front
and self-steepening occurs. The spectral weight shifts to higher wavenumbers,
which have lower group and phase velocity due to the dispersion. Thus the
dispersion counteracts the steepening. If v(ξeff ) < v(ξ), then the pulse widens
and has a higher attenuation. Additional strong fluctuations get involved, if
the excitation is strong enough to get from one phase to the other.

The idea of the effective ξeff will be checked in the following by studying
the front velocity.
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Figure 4.7: Space-time maps of ρn and un within the paraelectric phase
ξ = 1.05 and with two different pulse energies.
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Figure 4.8: The pulse profiles belong to the space-time maps of 4.7. The
black arrow marks the propagation direction. Periodic boundaries are
used for the red lines and open boundaries for the blue lines.
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Figure 4.9: Both plots show the pulse front velocity obtained numerically
in comparison to the analytically derived one. A low energy pulse has
been excited for the left plot (a) confirming the analytical results. The
velocity of a high energy pulse is plotted in (b) showing a symmetrical
velocity splitting on the sides and an asymmetric splitting around the
phase transition.

4.3.6 Pulse Front Velocity

The method of finding the edge or front of a pulse can be used to compute the
sound velocity and its depends on ξ. If the edge at two times is known, then
follows

vs =

∣∣∣∣n2 − n1

t2 − t1

∣∣∣∣ ,
where n1 and n2 are the positions of the edge at the corresponding times t1
and t2. The sound velocity has been derived in section 3.4.5 within the small
wavenumber limit. But this limit leads to two twofold singularity, that the left
and right limit differ each and from the value directly at the phase transition.
The behavior of small but finite wavenumber might not be reflected properly.
However, also in the case of the numerical study, difficulties and a strong
influence of the used threshold exist for a ξ close to one. Known from the
previous section, look for instance at figure 4.6c, two characteristic velocities
exist, but only the faster front can be detected with confidence.

Only the periodic chain with 1024 unit cells is simulated for a time of 512.
Both were increased by a factor of two to get a better accuracy. The same
parameters K = 1, k = 0.2 and µ = 2 at two different energies are used. The
threshold is set to be half of the peak compression and half of the peak tension.
The sound velocities are presented in figure 4.9 together with the analytical
results.

The low amplitude pulse in figure 4.9a confirms the analytical derived sound
velocity. At the phase transition the numerical result depends on, whether the
fast part or the slow part is detected. In the case of the low energy excitation,
the faster part is detected confirming the analytical result of its velocity marked
as a asterisk.
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The right plot of 4.9 shows the pulse velocities of large amplitude pulses
excited with an higher energy. Far from the phase transition exists a clear
trend, that the tensile pulse exhibits a larger and the compressive pulse a
lower velocity split symmetrically around the analytic solution. This splitting
depends on the amplitude with a larger splitting observed for the high energy
excitation, i.e. the large amplitude pulse. Compression and tension cause an
effective shift of ξ towards larger values and smaller, respectively. Around
the phase transition is a continuous transition from the lower velocity in the
ferroelectric phase to the higher velocity in the paralectric case observed for
the compressive pulse. This transition already starts at ξ = 0.9 implying that
the amplitude of the compressive pulse is high enough to get in the paraelectric
phase and sense the higher velocity. The tensile pulse has a dip at a ξ slightly
above ξ = 1 down to a velocity even lower than the analytic one for the softer
subchain of the central ions.

This asymmetric velocity splitting of second kind around the transition
can be observed qualitatively when going back to figures 4.6c and 4.6d on
page 49. Compressive and tensile pulses propagate differently far. This can

also be explained by effective ξeff := 1
α
e−

ρeff
2 introduced previously, where

ρeff is either the maximal for a tensile or the minimal value for a compressive
pulse. ξeff is either larger one for tension or smaller one for compression. The
pulses feel therefore different sound velocities.

In summary, two kinds of velocity splitting occur. The first one exhibits
a symmetrical shift for compressive and tensile pulse with respect to the low
amplitude value. This shift crosses at the phase transition. In the ferroelectric
phase propagates the compressive pulse slower than the tensile pulse and vice
versa within the paraelectric phase. The velocity splitting of second kind
occurs around the phase transition and is a nonlinear effect with a strongly
asymmetric splitting.

4.3.7 Breather

Equation (4.4) suggests the possibility of exciting mostly optical modes. By
choosing εq = −εQ with a pulse energy of E = 10−2 not large enough to
get over the barrier and being in the regime of two degenerate ground states
ξ = 0.95, a breather mode is excited. Breathers cannot be described within
a small or a large amplitude approximations. They occur for instance in the
Sine-Gordon equation [DP06]. The Sine-Gordon equation also exhibits kink
and antikink solitons, which correspond to the class of topological solitons. If
kink and antikink solitons have an attractive interaction, a bounded state, i.e.
the breather mode, can exist. A decaying breather mode has been noticed by
Zolotaryuk [ZPS91] using the same Double-Morse potential as in this thesis,
when a kink and an antikink soliton with a certain velocity collide. It shows up
as a local oscillation of the lighter subchain corresponding to the dynamics of
the central ion. The heavy subchain deforms accordingly but not fast enough,
so that the central ion remains in its initial potential well.

Note, that the breather mode shows a small shift with time. For the case
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Figure 4.10: An complementary excitation of both subchain with E =
10−2 within the ferroelectric phase ξ = 0.95 leads to a locally oscillating
breather mode. The complete space-time map is shown in the upper left
plot and a cut-off of the first quarter in time in the upper right plot. The
lower plot contains the numerically obtained dispersion relation. The
nearly horizontal line at ω = 0.5 and its second harmonic belong to the
breather mode.

of two potential wells the initial condition, that all central ions sit in the left
well already marks a symmetry break. A preferred direction of the breather
can therefore exist. The picture can be mirrored by choosing the other well as
initial condition for the central ion and mirroring the initial velocity distribu-
tion. The breather mode appears as a nearly horizontal line at ω ≈ 0.5 and
its second harmonic at ω ≈ 1 in the dispersion relation. The steepness deter-
mines the group velocity and thus the propagating velocity of the breather.
The numerical method of gaining the dispersion relation will be introduced in
the next section, but shall be used here without further explanations.

4.3.8 Comparison of Periodic and Open Boundaries

All pulse profile plots do not reveal any significant difference between both
boundary condition. However, there are some small differences in the initially
prepared ground state right at the phase transition as seen for example in figure
4.6a and b. But the pulses and their propagation are similar. Differences will
arise for sure, when the pulse arrives at one of the ends. The pulse swaps at an
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open end from being compressive to tensile or vice versa, whereas such a swap
does not occur for a periodic chain. Thus, the long time behavior is different.
In conclusion one can say, that both behave the same as long as the pulse does
not reach one of the ends.

4.4 Numerical Dispersion Relation

The dispersion relation for the Double-Morse chain has been derived for small
amplitude vibrations in section 3.4 in a completely analytical way based on
the Hamiltonian calculus. This section deals with the numerical determination
of the dispersion relation and shall confirm the main results gained by the
analytical calculation. The main feature is the softening of the optical mode
by applying an external pressure or changing α. Both have been merged to
the general parameter ξ.

The velocity splitting noticed in the prior section lets one expect, that
the eigenfrequency of a vibration mode depends on its amplitude. This leads
together with the random distribution of amplitudes in the chain to a wider
spectral distribution of the excited frequencies compared to the sharp eigen-
modes obtained in the linear theory.

The procedure is as follows. The chain is set in the ground state explained
in section 4.2. A chain with 512 unit cells is used. Then random noise with
a gaussian distribution is added to the velocities. The velocity distribution is
scaled to give a desired energy density. A simulation for t = 1024 time steps
is carried out and the temporal evolution is recorded in a space-time map.
A Fourier transform in space and time gives a map of Fourier coefficients
depending on frequencies ω and wavenumbers k as exemplary shown in figure
4.11a using an energy density of E

N
= 10−5. Doing this 32 times and taking

the average of the same Fourier coefficient from different runs, yields a smooth
dispersion relation and decreases the noise. The Fourier coefficients are plotted
logarithmically for a better visualization. Black corresponds to the maximal
value of the whole Fourier map and white belongs to a ten orders of magnitude
smaller value. The same can be done for the dynamic variable un and ρn, which
leads to the figures 4.11b in the second column and 4.11c the third column.
Three different ξ = {0.95, 1, 1.05} corresponding to the ferroelectric phase, the
phase transition and the paraelectric phase are used. They have the same
order starting from the top row.

The ferroelectric phase is shown in the upper row. Both branches can be
seen in the Fourier map suggesting, that the unit cell deformation and the
central ion motion are strongly correlated. Indeed, a change of ρn always leads
to a different equilibrium position u0(ρn) of the central ion according to what
has been seen for a propagating pulse in section 4.3.3.

Both branches behave like acoustic modes at the phase transition. The
central ion Fourier map has a strong spectral weight at the small wavenumbers,
which could be due to the existence of domains and could be a hint of a
central peak. Only a slight tension is sufficient to induce domains, which are
spread over several unit cells and thus contribute to the small frequency and
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Figure 4.11: Dispersion relations for the complete displacement map (a),
for un (b) and for ρn (c). un reflects the optical mode and ρn the
acoustic phonon mode. E = 10−5 and from top row to bottom row
ξ = {0.95, 1.0, 1.05}. The grayscale in (a) ranges over ten orders of mag-
nitude, whereas in (b) and (c) over six orders.

wavenumber spectrum. Schneider and Stoll [SS78] argue, that moving domains
and domain walls give rise to a central peak in the frequency spectrum at a
wavenumber of zero. However, a more detailed view on the spectra would
be necessary to conclude, that the same phenomenon occurs in this model.
Nevertheless the central peak was observed in several perovskites by neutron
scattering methods in the 1970s [SASR72, KSMS73]. It appears as a narrow
peak around ω = 0, i.e. the elastic scattering, and was first attributed to the
elastic scattering on impurities, which turned out to not be the whole picture
and the dynamics of domains as stated above has to be taken into account.

The last plot containing the Fourier map of the unit cell deformation indi-
cates, that the upper branch belongs to the unit cell deformation and thus to
the more rigid Q-subchain.

The last row, the paraelectric phase, reveals an avoided crossing. The oscil-
lations of the central ions with respect to the unit cell un belong to the optical
mode, which goes from an approximate frequency of 0.4 via the crossing to
around 0.95. This is shown by a darker line corresponding to higher Fourier
coefficients. For ρn its acoustic behavior can be seen, as the darker line in-
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Figure 4.12: The plots give a comparison of the analytical dispersion rela-
tion (solid black line) with the numerical results obtained in an 512 unit
cell chain with either periodic boundaries (red circles) or open bound-
aries (blue crosses) at three different ξ (f.l.t.r.): ξ = 0.95, ξ = 1.00 and
ξ = 1.05.

creases linearly towards the crossing. After the crossing it belongs to the upper
branch reaching a frequency slightly below 1.5.

Going back to figure 4.11a and determining the two maxima in the fre-
quency distribution for some wavenumbers k, gives the opportunity to compare
analytical and numerical dispersion relation. The standard Matlab function
findpeaks() serves well for getting the frequencies belonging to these max-
ima. A comparison of analytical, open boundaries and periodic boundaries
can be seen in figure 4.12. The red circles belong to the numerical dispersion
relation gained for the periodic chain. Blue crosses are used for the free chain
and the analytical result is plotted as a solid black line. Both, the numerical
results for periodic and free chain as well as numerical and analytical results
agree nicely and confirm the analytical calculation with its small amplitude
approximation.

An interesting question to ask is, how the dispersion relation changes reach-
ing the nonlinear regime. Figure 4.13 gives an overview. Five ξ including the
three previously chosen are used: ξ = 0.90, 0.95, 1.0, 1.05 and 1.1 ordered
from top to bottom. Each ξ is simulated at three different energy densities be-
ginning from left: E

N
= 10−5, 10−3 and 0.1. The dashed green lines correspond

to the analytic solution.
The left column confirms again the linear limit, as analytical and numerical

dispersion relation agree. The dispersion relation starts to smear out, when
going to the intermediate energy density. This effect is most pronounced at
the phase transition, the middle row, and decreases with increasing distance
from the phase transition. Both modes start to form one joint mode for small
wavenumbers directly at the phase transition. It expands to larger wavenum-
bers and even to a wider range of ξ in the high energy case shown in the
right column. This mode lies between both small amplitude modes and splits
into two strongly blurred modes. A strongly blurred optical mode for small
wavenumbers can also be noticed and is shifted to lower frequencies for ξ = 1.1
and to higher frequencies for ξ ≤ 1.0.

The joint acoustic mode suggests a collective but chaotic phonon mode.
The nonlinearity leads to scattering events of the phonons, but as they cannot
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Figure 4.13: Dispersion relation at five ξ: ξ = 0.90, 0.95, 1.0, 1.05 and
1.1 ordered from top to bottom and at three different energy densities
beginning from left: E

N
= 10−5, 10−3 and 0.1. The dotted blue line

corresponds to the analytic solution. Shown are the logarithms of the
Fourier coefficients obtained by a discrete Fourier transform in time and
space of the displacements. The gray code ranges over ten orders of
magnitude with black being the highest value.
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Figure 4.14: The temporal evolution of the maximum Lyapunov Expo-
nents five different ξ = {0.5, 0.9, 1.0, 1.1, 1.5} and at two different energy
densities E

N
= 10−3 (a) and E

N
= 10−2 (b).

transfer energy to impurities or even to the lattice via an umklapp process,
the momentum and energy is conserved. This would be the regime of Second
Sound, whose existence in perovskites such as SrTiO3 is controversial [SCL00,
KTS07].

The widening of the spectral lines and the existence of excited states far
from the dispersion relation, which has been obtained in the linear theory,
imply fluctuations and chaotic dynamics, which will be studied systematically
in the next section.

4.5 Lyapunov-Exponent Analysis

The main concern of this section is the characterization of the chaotic behav-
ior of the chain based on the maximal Lyapunov Exponent, in the following
abbreviated as mLE. The mLE is a measure of how fast a perturbation grows
with respect to original phase space trajectory. The theory on this is described
in section 2.4. As the system has to evolve for long times, only a short chain
of 16 unit cells is simulated. Periodic boundaries are used, thus no contraction
of the whole chain occurs and ξ = 1

α
holds as shown in section 3.3.2.

The initial conditions are similar to what has been used for determining the
dispersion relation numerically. The displacements are again in a ground state
and random noise is added to the initial velocities, which are normalized to the
desired total energy. This gives a energy density homogeneously distributed
over the whole chain. The deviation vector characterizing a perturbation is
also randomly chosen, but normalized to unity.

Figure 4.14 shows the temporal evolution of the mLE for different ξ and
at two different initial energies. If the dynamics are chaotic, then the mLE
saturates to a finite value. In the case of regular dynamics, the mLE decreases
linearly in the log-log plot and thus corresponds to a power-behavior. It can be
seen, that there is a lower bound for the smallest achievable mLE depending
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Figure 4.15: The histogramm shows the distribution of the maximum
Lyapunov Exponents at different energy densities. The used parameters
are: ξ = 1, K̄ = 1, k̄ = 0.2 and µ = 2. The lowest achieved mLE is
determined by the total time, the simulation runs. That is why a sharp
distribution at 2 · 10−5 occurs for lowest energy.

on the total time the simulation runs. At both energy densities the mLE takes
its maximal value at or slightly above the phase transition, in particular at
ξ = 0.9 and 1 for the higher energy density of E = 10−2 and at ξ = 1 for the
lower energy density of E = 10−3. Less chaotic or even regular behavior shows
up for both far from the phase transition ξ = 0.5 and 1.5.

As the initial conditions are random, the mLE fluctuates and it is favorable
to get some statistics. In order to achieve that, the simulations were done 256
times for the same ξ and total energy. This leads to a distribution shown in the
histogram in figure 4.15 for different energies directly at the phase transition
ξ = 1. The lowest energy density has a sharp distribution of the mLEs around
the lowest achieved mLE determined by the total simulated time. Regular
dynamics are observed. Whereas at the highest energy density the largest
mLEs of around 4 · 10−2 appear, which are sharply distributed again. For the
intermediate energy densities, the mLE distribution is wider. But it is obvious,
that the mLE increases with the initial energy density due to stronger nonlinear
coupling. One could also argue, that more phonon scattering events per time
occur.

For determining whether chaotic dynamics occur or not, a threshold mLE
of λt := 10−4 is chosen and the probability of chaos can be introduced as:

pchaos :=
1

N

N∑
n=1

Θ(λn − λt), (4.6)

where N is the total number of trials and Θ(x) is the Heaviside function, which
is either zero, if the argument is negative or one, if the argument is positive.
Thus, the definition (4.6) counts the number of trials with a mLE larger than
the threshold divided by the number of trials. This was done for several energy
densities at five different ξ and is plotted in figure 4.16.

One can clearly see, that for each ξ a transition exists. The lowest energy
density that is necessary for chaotic dynamics grows with getting away from
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Figure 4.16: Plot of the chaos probability based on 4.6 depending on
the initial energy density. For each ξ exists an energy threshold between
regular and chaotic dynamics. This threshold is smallest directly at the
phase transition point ξ = 1. A chain with K̄ = 1, k̄ = 0.2 and µ = 2
is used for the left plot and K̄ = 10, k̄ = 2 and µ = 2 for the right one.
The threshold shifts to higher energy density, when the influence of the
Double-Morse potential is lowered by using higher K̄ and k̄.

the phase transition. The transition is slightly sharper in the ferroelectric
phase, which might be due to the potential barrier between the two wells.

Again a second chain with one order of magnitude lower weighting on the
Double-Morse potential is used. It shows in comparison a shift of the chaos
probability threshold towards higher energies. Henceforth, the thresholds move
closer together.

We have seen, that the dynamics are more chaotic around the phase tran-
sition. This is caused by a larger influence of the nonlinearity of the Double-
Morse potential. Imagine now a far-from-equilibrium state. Due to the stronger
nonlinearity and hence a interaction of vibration modes, this state would relax
faster towards a thermal equilibrium and an energy density distributed ho-
mogeneously over the whole chain. We will check this behavior in upcoming
section.

4.6 Mode Interaction

The excitation is done by choosing an appropriate initial condition. The de-
sired wavenumber k and the total energy of that excitation can be achieved
by using a certain periodicity and amplitude. Due to the nonlinear nearest
neighbor interaction, there is no analytic way to find an initial condition of
the displacements with a sine periodicity based on the wavenumber and energy.
Therefore it is favorable to choose an initial spatial momentum distribution.
However, this already excites higher harmonics in the Fourier transform of
the spatial displacement distribution, that is in the k-spectrum, due to the
nonlinear interaction potential.
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4.6. MODE INTERACTION

All oscillators are initially set in the ground state introduced in section
4.2. Only the periodic chain is used. For controlling the initial energy per
mode, a mode is excited by adding a spatial momentum distribution with the
corresponding periodicity. Therefore the initial velocities reads as

q̇n = εqsin
(
a
π

N
n+ φ(0)

q

)
Q̇n = εQsin

(
b
π

N
n+ φ

(0)
Q

)
.

The amplitudes are given by εq and εQ, respectively. a and b have to be integers
and stand for the periodicity determined by the wavenumber by kq = aπ

N
and

kQ = bπ
N

. For generality, also the phases φ
(0)
q and φ

(0)
Q are denoted, but these

are set to zero in all simulations.
As already mentioned, the amplitude is related to the total energy. The

energy deposited in one subchain is given by equation (4.7).

EQ =
N∑
n=1

µQ̇n

2
=
µ

2

N∑
n=1

ε2Qsin
2

(
b
2π

N
n

)
(4.7)

For simplicity and without loss of generality the phase φQ is assumed to be
zero. A continuous approximation in the limit of N →∞ transforms the sum
in (4.7) into an integral (4.8) over x = πn

N
on the interval (0, π].

EQ ≈
µε2Q

2

∫ π

0

sin2(x)dx (4.8)

It can be transposed to get the amplitude-energy relation (4.9) used for the
initial condition.

εQ =

√
4EQ
µ

(4.9)

The same derivation can be done for the amplitude in the q-subchain:

εq =
√

4Eq. (4.10)

4.6.1 Thermalisation

The initial condition introduced previously represents a state far from equi-
librium. The system may tend towards an equilibrium, but depending on the
coupling between modes, this occurs on different time scales. Figure qualita-
tively 4.17 shows the time-evolution for the k-spectrum for exemplary chosen
parameters. Their exact values shall not be of interest here. The initially ex-
cited modes are k1 ≈ 0.4 and k2 ≈ 0.6. Modes with k = mk1 + nk2, m, n ∈ Z
are already excited, partly due to the initial condition together with the non-
linear potential as stated in the previous section and partly due to mode cou-
pling. They form a discrete spectrum that vanishes later. A quasi-continuous
spectrum grows on the long timescale. Note, that the spectrum is still discrete
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Figure 4.17: An over four consecutive time intervals averaged k-spectrum
for arbitrarily chosen parameters is shown. k1 ≈ 0.4 and k2 ≈ 0.6 are ini-
tially excited. Shortly after excitation these both modes couple and modes
with k = mk1 + nk2, m, n ∈ Z grow and forming a discrete spectrum.
This discrete spectrum vanishes at later times and a quasi-continuous
spectrum evolves.

due to the finite length of the chain, but in contrast to the discrete spectrum
due to interaction between two excited modes, the grid is much smaller.

It is an interesting question to ask, whether a Boltzmann distribution
evolves exhibiting an effective temperature and if a measure of the distance of
a state from the equilibrium could be found. This would involve a thermody-
namic point of view like for the Aubry model in section 2.3, but goes beyond
the scope of this thesis.

4.6.2 Entropy of the Wavenumber Spectrum

In order to characterize the evolution of the k-spectrum, one may use the
entropy, also used within the frame of computer sciences and in that context
known as Shannon entropy. The entropy of the wavenumber spectrum can be
defined as

S = − 1

ln(N)

∑
k

Akln(Ak). (4.11)

The sum is carried out over all wavenumbers within the Brillouin zone and
the Ak are the Fourier coefficients of a discrete Fourier transform with respect

to the displacements. The Ak itself are normalized by Ak = Ãk∑
k Ãk

, so that

the sum over all Ak is unity. N shall be the number of discrete modes due to
the finite length of the chain. Thus the prefactor 1

ln(N)
normalizes the entropy

to the interval [0, 1]. The maximal value of one will be reached, if all Ak are
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uniformly distributed, that is Ak = 1
N

. The entropy is zero in the case where
only one mode is excited and all other modes are zero.

By exciting a low entropy state, e.g. two modes, and looking at the time
evolution of the entropy, it is possible to obtain a measure of how strong differ-
ent modes interact. This is done for different ξ and energy densities illustrated
in figures 4.18 as a map of entropy. The parameters of the chain are the same
as in the previous sections: K̄ = 1, k̄ = 0.2 and µ = 2. The map of entropy
is obtained by spatial Fourier transform of the space-time map computed by
the numerical integration of the equations of motion. The obtained k-time-
map is split into four consecutive time intervals and for each time interval the
k-spectrum is averaged. The entropy (4.11) can now be calculated and is plot-
ted against the energy density on the y-axis and the general phase-transition
tuning parameter ξ on the x-axis. As shown in section 3.3.2, ξ = 1

α
e−ρ0 holds.

By using the periodic boundary condition, this reduces to ξ = 1
α

. The energy
density is given by the initial condition and does not change during the numer-
ical integration due to using a symplectic Nyström method. The blue regions
in figure 4.18 depict low entropy, meaning regular behavior and low coupling,
whereas the red regions correspond to high entropy. These choices of ξ and
energy density lead to a strong coupling and fast thermalisation. Especially
for ξ very close to 1 the coupling exists even for lowest energies. Note that the
energy is plotted in log10-scale. For ξ far from the phase transition the energy
threshold between regular and chaotic regime shifts towards higher energies.
At least for the case of two minima (ξ < 1) this shift can be explained by the
growing barrier height

EB = (1− ξ)2. (4.12)

At later times this energy threshold moves slightly towards smaller energies
suggesting, that there is a timescale of thermalisation involved. This means,
that one only has to wait long enough for the thermalisation to happen.

When shifting the weighting of the interaction terms towards the next-
nearest neighbor interactions, i.e. when the Double-Morse potential has lower
influence on the dynamics, the threshold shifts towards higher energy densities
as well. It is shown in figure 4.19 for the parameters K̄ = 10, k̄ = 2 and µ = 2.
The steepness of the threshold between regular and chaotic behavior is slightly
lower. That means, the shift is more pronounced around the phase transition,
than at some distance from it.
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Figure 4.18: Entropy map for the chain with K̄ = 1, k̄ = 0.2 and µ = 2.
The total integration time is divided into four equal sections. The k-
spectrum, the spatial Fourier transform of the displacements, is averaged
over one section and its entropy calculated. (a) belongs to the first time
interval, whereas (b) belongs to the last one.
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Figure 4.19: Entropy map for the chain with K̄ = 10, k̄ = 2 and µ = 2.
(a) belongs to the first quarter, whereas (b) to the last quarter.

65



Chapter 5

Summary and Outlook

Summary

In summary, the present model reveals a lot features of ferroelectric materials
and suggests further possible phenomena. In the linear theory, the model per-
forms a continuous phase transition from a paradistortive phase at high tem-
peratures to a ferrodistortive phase at low temperatures. These correspond to
paraelectric and ferroelectric phases, if one assigns opposite charges to the two
components of the chain. The softening of an optical phonon mode, as a char-
acteristic feature of a structural phase transition, is reproduced. Additionally,
the experimentally detectable sound velocity in the long wavelength limit has
been calculated and reveals a twofold discontinuity. The left and right limit
differ and directly at the transition two velocities exist. Here, the central ion
motion is only weakly coupled to the unit cell background.

The numerical simulations confirm the linear theory, but also enable study-
ing nonlinear effects. It has been shown, that the nonlinearity caused by the
two back-to-back Morse potentials strongly influences the dynamics around
the phase transition. Looking at the qualitative behavior of the pulse, either a
strong attenuation due to an amplitude dependent dispersion or even a steep-
ening and growing of the pulse has been observed. In fact, the ingredients
for Korteveg-de Vries solitons, nonlinearities leading to the steepening and the
counteracting dispersion, are available. They would add to the topological
solitons corresponding to domain walls, which has been studied a lot in the
literature. The velocity and attenuation of compressive and tensile pulses dif-
fer. In contrast to what has been observed considering a linear chain with up
to third order nearest neighbor interactions [BHS+12] the velocity changes for
compressive and tensile strain are not equal in magnitude. The pulse velocities
obtained numerically show that two nonlinear regimes exist. One exhibiting a
strongly asymmetric velocity splitting around the phase transition. Addition-
ally, this regime increases with a larger amplitude. The second regime appears
sufficiently far from the phase transition and shows a symmetrical velocity
splitting. However, this is cannot be assigned one to one to the pulse atten-
uation. Here, the steepness of the sound velocity depending on general phase
transition parameter ξ is crucial. A compressive (tensile) pulse feels an effec-
tive increase (decrease) of ξ and does influence the actual sound velocity. For
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instance, a compressive pulse within the paraelectric phase propagates faster,
when it has a larger amplitude and gives rise to a self-steepening. On the
other side, the tensile pulse will decay. Within the first regime, the effective
ξ changes from one phase the other phase leading to the mentioned strong
nonlinearity.

The nonlinearity also emerges in the simulated dispersion relation. At
higher energy densities the two distinct branches merge to one very pronounced
acoustic branch with a wide spreading and a less pronounced optical phonon
mode appears. This starts for long wavelengths around the phase transition,
but extents to shorter wavelengths and a wider regime around the transition.
The dispersion relation of the central ion exhibits even at low energies, when
the branches match with the linear theory, a strong spectral weight on the
long wavelengths, which is caused by moving domains and domain walls and
suggesting a central peak.

At high energy densities, the dispersion relation spreads due to the depen-
dence of the vibration frequency on the amplitude. This spreading is most pro-
nounced around the transition and suggests a strong nonlinearity and chaotic
dynamics. A study of the Lyapunov exponent confirms this strong interact-
ing regime. With increasing the energy density a clear transition to chaos is
observed. This energy threshold is significantly lower at the transition and
increases with getting away from transition point.

Within the picture of a phonon perturbation theory, one says, that the non-
linearity leads to interaction of phonons. An entropy of the Fourier spectrum
of the displacements has been introduced and temporal evolution starting with
an low entropy state was analyzed. The conclusion is, that these interactions
are strong around the phase transition even for lowest energies. This would
show up in an experimental measurement as a strong attenuation of the modes
excited initially. Thus the model explains attenuation within a limited spec-
trum even though the model is conservative and without dissipation. That
means the experimentally observed attenuation has to be divided in either
being caused by nonlinearity or by dissipation.

Outlook

As always with such models the work can be extended in various directions.
One, to my view most interesting, would be to include an external (electric)
field, which tilts the Double-Morse potential. This could give further insights
into the behavior of domains and the dynamics of domain walls. A similar
extension was already done on the Aubry model [PF87] and could be applied
to the present model.

The thesis on hand has focused on the dynamical features. A thermo-
dynamic view, as summarized for the Aubry chain, is lacking. Question in
this context, which one might ask are: Does the far of equilibrium chain ap-
proach a thermodynamic equilibrium consistent with the Boltzmann distribu-
tion? What would be the temperature? According to the thermodynamic view
on the Aubry model, one should also think about the influence of noise and
how it correlates to the temperature. To stretch this thought, does the noise
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influence, in which thermodynamic regime the chain currently is?
It would also be interesting to find realistic parameters, which could re-

semble experimental behavior of for instance lead titanate. Nonlinear effects
of sound propagation as the self-steepening and the sound velocity splitting
have already been observed. Do they agree with the same features occurring
in the model? Realistic parameters have to be found to be able to answer this
question.

Leaving the thermodynamic view and getting back to the dynamics, the
long time pulse propagation including the temporal evolution of the spectrum
would be of interest. Especially whether the model could also explain the
nonlinear phonon propagation observed in SrTiO3 [BHS+12].

When remembering the observations, some applications come into mind. It
has been shown, that external pressure will influence how “deep” the chain is
in one of the phases. Assuming the chain is in the ferroelectric phase, applying
external pressure or initiating a strong pulse could decrease the electrical field
necessary to swap the polarization. This would be a pulse or pressure assisted
polarization switching. Secondly, the asymmetric pulse propagation suggests
the possibility of an acoustic rectifier. Imagine a monodomain substrate and
a pulse propagating parallel or antiparallel to the polarization. They would
feel a different attenuation. However, the strength of this effect for realistic
parameters remains to be investigated.
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