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Abstract

In this work, I present experiments with a transient grating setup, that employs a four-wave mixing
process to selectively excite and detect phonon-polaritons. The phonon-polaritons arise due to a
strong coupling between electromagnetic terahertz radiation and transverse optical phonons in ionic
crystals. The occurrence of this coupling requires phonon modes that are both Raman and infrared
active. The ferroelectric material LiNbO3 was investigated due to its strong Raman and infrared
active transverse optical phonon modes.
I examined two samples of different thicknesses, a one millimeter thick bulk and a 50 micrometer
thin waveguide specimen of x-cut LiNbO3. Phonon-polaritons excited in bulk LiNbO3 have been
studied previously in greater detail in our group. As a part of this work, I rebuilt the setup used
for these studies and investigated the waveguide. I observe and rationalize the more complex
time-dependent diffraction signal in the waveguide by the superposition of multiple waveguide
modes. They arise due to the additional confinement of the phonon-polariton modes along the
out-of-plane direction in the thin dielectric slab. In this work, three transverse magnetic waveguide
modes are excited, and their properties compared to a theoretical prediction.
The impact of homodyne detection effects on the detected diffraction signal is compared for the
two samples using a systematic variation of the excitation fluence. For the bulk, a second peak in
the Fourier analysis at twice the actual frequency of the wave packets is apparent for high excitation
fluences due to superimposed left and right propagating phonon-polaritons. In the waveguide this
does not occur, and only the three waveguide modes are excited as predicted and simulated in the
theory part of this thesis.
Rotation of the c-axis of the sample with respect to the polarization of the excitation pulses leads
to a strong decrease of the amplitude of the oscillations caused by the phonon-polaritons and a
blue-shift in the observed frequencies. A displacement series of the probe beam with respect to
the pump region follows the propagating wave packets up to a displacement distance of 1.5 mm.
Higher order waveguide modes are found to be damped so that at large displacements only the
zeroth transverse magnetic mode is apparent. The group refractive index of ngroup=7.83 for the
LiNbO3 waveguide is determined and coincides to previous investigations in LiNbO3.
This work is the first time phonon-polariton waveguide modes have been studied in our group. They
may become useful in future experiments, since their confinement to the near surface region may
allow for a coupling of the tunable evanescent THz waves to excitations in materials that can be
placed next to the waveguide.





Zusammenfassung

In dieser Arbeit stelle ich Experimente mit einem transienten Gitteraufbau vor, bei dem ein
vier-Wellen-Mischprozess zur selektiven Anregung und zum Nachweis von Phonon-Polaritonen
verwendet wird. Die Phonon-Polaritonen entstehen durch eine starke Kopplung zwischen elektro-
magnetischer Terahertz-Strahlung und transversalen optischen Phononen in ionischen Kristallen.
Für diese Kopplung sind Phononenmoden erforderlich, die sowohl Raman- als auch infrarotaktiv
sind. Das ferroelektrische Material LiNbO3 wurde aufgrund seiner starken Raman- und infrarotak-
tiven transversalen optischen Phononmoden untersucht.
Ich untersuchte zwei unterschiedlich dicke Proben, eine einen Millimeter dicke Bulk-Probe und eine
50 Mikrometer dünne Wellenleiterprobe aus x-cut LiNbO3. Phonon-Polaritonen, die in LiNbO3 an-
geregt werden, wurden in unserer Gruppe bereits ausführlich untersucht. Im Rahmen dieser Arbeit
habe ich den für diese Studien verwendeten Aufbau umgebaut und den Wellenleiter untersucht. Ich
beobachte und erkläre das komplexere zeitabhängige Beugungssignal im Wellenleiter durch die
Überlagerung mehrerer Wellenleitermoden. Sie entstehen durch den zusätzlichen Einschluss der
Phonon-Polariton-Moden entlang der Richtung senkrecht zur Probenebene in der dünnen dielek-
trischen Platte. In dieser Arbeit werden drei transversale magnetische Wellenleitermoden angeregt
und ihre Eigenschaften mit einer theoretischen Vorhersage verglichen.
Die Auswirkungen von homodynen Detektionseffekten auf das aufgenommene Beugungssignal wer-
den für die beiden Proben unter Verwendung einer systematischen Variation der Anregungsfluenz
verglichen. Für die Masse ist bei hohen Anregungsfluenzen ein zweiter Peak in der Fourier-Analyse
bei der doppelten Frequenz der Wellenpakete zu erkennen, der auf überlagerte links- und recht-
spropagariende Phonon-Polaritonen zurückzuführen ist. Im Wellenleiter tritt dies nicht auf und nur
die drei Wellenleitermoden werden angeregt, wie im Theorieteil dieser Arbeit vorhergesagt und
simuliert wurde.
Eine Drehung der c-Achse der Probe in Bezug auf die Polarisation der Anregungspulse führt zu einer
starken Abnahme der Amplitude der durch Phonon-Polaritonen verursachten Oszillationen und zu
einer Blauverschiebung der beobachteten Frequenzen. Eine Verschiebungsreihe des Abfragestrahls
in Bezug auf den Anregungsbereich folgt den sich ausbreitenden Wellenpaketen bis zu einem
Verschiebungsabstand von 1.5 mm. Es wurde festgestellt, dass Wellenleitermoden höherer Ordnung
gedämpft werden, sodass bei großen Auslenkungen nur die nullte transversale magnetische Mode
auftritt. Der Gruppenbrechungsindex von ngroup=7.83 für den LiNbO3-Wellenleiter wurde bestimmt
und stimmt mit früheren Untersuchungen in LiNbO3 überein. Diese Arbeit ist das erste Mal, dass
Phonon-Polariton-Wellenleitermoden in unserer Gruppe untersucht wurden. Sie könnten sich in
zukünftigen Experimenten als nützlich erweisen, da ihre Bindung zum oberflächennahen Bereich
eine Kopplung der durchstimmbaren evaneszenten THz-Wellen mit Anregungen in Materialien
ermöglichen könnte, die auf oder neben dem Wellenleiter angeordnet werden können.
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1. Introduction and theoretical background

The continuing development of signal processing and telecommunication leads to a continuation
of miniaturization of switching circuits in micro- and nanoelectronics. Simultaneously, the speed
of data evolve up to high frequency electronics at 100 GHz and low frequency optics in the
region above 10 THz. High-bandwidth signal processing in the terahertz range, THz imaging and
spectroscopy are driven by the development of femtoseconds laser-based methods to generate THz
pulses [1], [2], [3].
In terahertz polaritonics the transport of the signal is carried by the quasiparticles phonon-polaritons,
a mixture of electromagnetic radiation and a vibrational mode of a polar dielectric medium, that
propagate through the sample at light-like speed and are a source of intense ultra-short terahertz
radiation [4]. One approach to excite THz phonon-polaritons is impulsive stimulated Raman
scattering (ISRS), a second order non-linear process. Since the first investigations of phonon-
polaritons in the sixties [5] the guidance, processing, characterization and interference has been an
active field of research. Ferroelectric materials are often used as samples since they contain modes
in the far-infrared frequency region, which are both optical Raman and infrared active [6].
One approach to selectively excite and detect electromagnetic waves in the terahertz region is the
transient grating setup [7], whose (re-)construction was part of this work. A transient grating setup
is used in fundamental and applied research [8], [9]. When two coherent pulses are crossed in the
sample as shown in Fig.1.1 an interference pattern is induced with a spatial period depending on
the intersection angle of the crossed pulses in air Θair. The interference pattern defines a spatial
period that excites quasiparticles in the sample with the corresponding wave vector, this process can
be described as a four-wave mixing process. This thesis examines the properties of two samples
of different thickness, consisting of x-cut lithium niobate (LiNbO3). I discuss different types of
measurements and compare the response of bulk with a thickness of 1 mm and a slab waveguide
specimen with a thickness of 50 µm. Phonon-polaritons in bulk LiNbO3 travel into the bulk, but
they are confined to the near surface region in the waveguide. This might be advantageous in
further studies on the propagation and coupling of phonon-polaritons of the group. To rationalize
the occurrence of additional waveguide modes that result from the confinement requires a more
advanced discussion of the phonon-polariton dispersion of LiNbO3. [10], [11].
This thesis is structured as follows: Chapter 1 presents the motivation and necessary theoretical
background required to understand the implemented experiments. Chapter 2 presents the description
of the experimental setup and data analysis routine. Chapter 3 discusses the results. The focus is on
the comparison of the recorded data between the bulk and slab waveguide. This thesis discusses the
fluence-dependent excitation of phonon-polaritons and emphasizes the importance of the orientation
of the optical axis of the ferroelectric sample with respect to the polarization of the excitation pulses.
The propagation of phonon-polariton wave packets in the bulk and the waveguide is analyzed.
Chapter 4 provides a summary of the findings and an outlook on possible further experiments. An
appendix contains mathematical derivations that would otherwise obstruct the flow of arguments.
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Figure 1.1.: Side and top view of the configuration of the excitation of the sample

1.1. Phonon-polaritons

Generally speaking, the quasiparticle that describes the coupling between an excited state, usually
charged particles and electromagnetic waves, is called a polariton. The dispersion of this quasi-
particle was introduced first by Kun Huang in 1951 [12]. Various excited states and its origins
result in different quasiparticles, e.g. the coupling with spin waves in ferroelectric samples are
indicated as magnon-polaritons [13], the coupling with collective electron vibrations that are known
as plasmon-polaritons or coupling with transverse optical phonon in a polar lattice, commonly
called phonon-polariton which is described furthermore in the following.
Vibrational excitations in crystals are well approximated by the harmonic oscillator model. Their
eigenfrequencies are determined by the material specific interatomic interactions. The energy
quanta of this excitation are called phonons, which are described in standard textbooks [14], [15].
When a transverse optical phonon is excited in an ionic structure, the oscillating ions act as dipoles
which emit electromagnetic radiation. By stimulating various neighboring ions within a few fem-
toseconds, the oscillations are in phase alongside the out-of-plane x-axis. Since the excitation
beams superimpose on the sample and induce a modulation of the electric field along the in-plane
z-axis, a macroscopic electromagnetic wave propagates through the ionic lattice in the in-plane
direction. The coupling between a transverse optical phonon mode and an induced electric field
of comparable frequency and wave vector is defined as phonon-polariton. The strong coupling
between light and phonons is shown in the dispersion relation in fig.1.2. In the long wavelength
range the phonon-polaritons branch approaches the electromagnetic light graph in the ionic material,
which is indicated as c/nTHz. The refractive index of the sample in the terahertz region is nTHz.
To excite phonon-polaritons, the sample that is excited needs to host infrared and Raman active
phonon modes that occur in a non-centrosymmetric unit cell [15]. In addition, to avoid high ab-
sorption of the electromagnetic waves incident on the sample, the probed materials are transparent.
Ferroelectric materials satisfy these properties, resulting in their broad usage for the study of
phonon-polaritons [16]. In polaritonics lithium niobate (LiNbO3) and lithium tantalate (LiTaO3)
are frequently used due to their low phonon damping rate and high refractive indices in the terahertz
range combined with large non-linear optical coefficients [17].
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Figure 1.2.: Calculated dispersion relation for phonon-polaritons in ionic materials with refractive index
n with arbitrary chosen parameters in blue. Additionally, the transverse optical phonon with
eigenfrequency ωTO represented as dashed green line and longitudinal optical phonon indicated
as dashed orange line are depicted. In between, the region of perfect reflection is located. In the
short and long wavelength-range, the graph of the polaritons approach the photon dispersion.
The refractive indices nTHz = 6.8 and nopt = 2.18 correspond to the refractive indices in the
terahertz and optical frequency, thus low and high wavelength region of the probed sample.

1.2. Selective excitation of phonon-polaritons in LiNbO3

This section discusses the general concept of a wave vector selective generation of phonon-polaritons
in LiNbO3. The pulse duration of the excitation laser is on the order of 150 fs, which is significantly
shorter than the period of the excited lattice modes that are on the order of 500 fs. Thus, the light
acts an impulsive force for the generation of phonon-polaritons. This has been described extensively,
for example in the PhD thesis of Brennan [18]. Here, I provide a short schematic overview.
Before propagating through the sample, the femtoseconds laser pulses are separated into two
coherent laser pulses, as described in section 2.1. They intersect in air at an angle Θair, shown in
fig.1.1. This type of excitation and detection is a four-wave mixture applied in a transient grating
setup, since another femtosecond pulse, the probe pulse diffracts partially at the excited material,
and is incident at the detector. This impulsive stimulated scattering (ISS) is schematically shown in
fig.1.3. The impulsive force on the phonons is an impulsive stimulated Raman scattering (ISRS)
mechanism [19]. The interfering electric fields of the excitation pulses induce a transient grating
of the electric field resulting in a spatially modulated oscillation amplitude of the atoms, which
wavelength is depending on the intersection angle in air Θair. A maximum in the intensity of the
electric field corresponds to a large oscillation amplitude of the atom. The oscillating atoms in turn
result in a modulated refractive index from which the probe pulse is diffracted.
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Figure 1.3.: Configuration of the ISS process, the four-wave mixture in the transient grating setup explains
excitation and detection of the signal consisting of the diffracted light of the delayed probe
pulse.

1.2.1. Impulsive stimulated Raman scattering

As described in fig.1.3, I consider two excitation pulses with wave vector k1 and k2 intersecting at
the sample with the angle Θ, which is related to the intersection angle in air Θair via Snell’s law of
refraction. Due to the experimental setup, furthermore explained in chapter 2, the excitation spot is
elliptically shaped. This is shown in fig.1.4. Since both excitation pulses are invested with the same
spectrum, fig.1.5 considers two cases, |k1|> |k2| and |k1|< |k2| .
ISRS processes are governed by energy and momentum conservation, described in the following.

E1 and E2 are photon energies of the excitation pulses, and EPP = }ωPP is the energy of the
generated phonon-polariton. This yields:

EPP = |E1−E2|

which is schematically shown in fig.1.5a). Since the stimulating pulse has a larger energy magnitude
compared to the pump pulse, this process is described by Stokes scattering. I discuss the case
|k1| > |k2|, E1 > E2 in the following. The beam with energy E1 excites the ground state of the
crystal G to the excited virtual state V. The laser used in this experiment has a finite spectral width,
as elaborated in section 2.1 resulting in the smeared excitation energy range around V and E. The
difference between the energy states E and G defines the energy of the phonon-polariton. The
momentum conservation describes the partition of k1 into k2 and kPP, which in the considered case
indicates a left propagating phonon-polariton. For the case |k1|< |k2| the arguments apply vice
versa, a right propagating phonon-polariton arises.
For the probe process, the energy and momentum conservation is schematically shown in fig.1.6.
In accordance to the detection process displayed in fig.1.4 where the probe pulse corresponding
to k3 is blocked. The wave vector k4 is shifted by left or right propagating phonon-polaritons
into the same direction the blocked probe pulse would have propagated. In that case, the signal is
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Figure 1.4.: Sketch of box-CARS geometry, used in the following four-wave mixing experiments; k1 and
k2 interfere at the position of the transparent sample to produce a transient grating, where the
k4-vector is diffracted to the direction of k′3 by ISRS. The wave vectors k1 and k2 lie within the
x-z-plane.
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Figure 1.5.: Schematic visualization of the generation process of phonon-polaritons via Stokes scattering. It
requires energy conservation, depicted in a) and momentum conservation, depicted in b). In c) a
comparison between the direction of the wave vector of the modulation of the electric field ktg
at the sample (i.e. transient grating) and the phonon-polariton wave vector is shown. Apparent
values for k1 and k2 due to the spectral width of the laser pulses are implied in beige. Left and
right are defined from the top view, like in fig.1.1b) from which the system of coordinates is
adapted.
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detected along the k3-direction as implied in fig.1.3. In contrast to the pump process, Stokes and
anti-Stokes scattering occurs, the phonon-polaritons act as seed in the anti-Stokes process. The
Stokes process describes the stimulated generation of left propagating phonon-polariton, where an
already existing left propagating phonon-polariton acts as seed. The incident beam with wave vector
k4 decomposes into a left propagating phonon-polariton and a wave vector in the k3-direction.
In contrast, the anti-Stokes process corresponds to the annihilation of right propagating phonon-
polaritons as indicated in fig.1.6b). In the following analysis, I approximate that the Stokes and
Anti-Stokes process are equally likely, and therefore the spectrometer detects both of them. Since

E4 E3

EPPG

V

E

E4 E3

EPP

Θ

k4 k3

-ql

+qr

E

V'

G

a) b)

Stokes anti-Stokes

Figure 1.6.: Sketch of detection of the phonon-polaritons via Stokes and anti-Stokes scattering that again
fulfill energy and momentum conservation, depicted in a) and b). In the Stokes process, the
incident beam experiences a red shift, for the anti-Stokes a blue shift with respect to the energy
of the incident beam.

left and right propagating phonon-polaritons contribute to the signal detected in the spectrometer
on a specific pixel dedicated to the energy }ω3, not solely the actual frequency but also another
analyzed frequency that equals twice the actual frequency of the phonon-polariton with wave
vector q may occur. To prevent this effect additional notch filters may be mounted in the setup,
as discussed by Crimmins et al. [20], which results in a more well-defined wave vector to e.g.
avoid right propagating phonon-polariton by decreasing the average wave vector of k1 [21, chapter
7]. However, a reduction of the spectrum also reduces the time-resolution, which may render the
excitation of high-frequency phonon-polaritons inefficient. The spectrometer is located along the
k3-direction
According to the Boltzmann distribution, all observed phonon-polariton modes < 6 THz * are occu-
pied at room temperature T=300K. However, the amount of thermally excited phonon-polaritons is
negligibly small compared to the amount of phonon-polaritons excited by ISRS [22], [23].

1.2.2. Propagation direction of phonon-polaritons

As depicted in fig.1.5c) the propagation direction of the phonon-polariton kPP is slightly different
to the wave vector of the transient grating which is collinear to the sample surface, because the
energy distribution of the excitation pulses results in a smeared momentum distribution. Every set
of scattered wave vectors that obey energy and momentum conservation contribute to the generation
of phonon-polaritons. The wave vector ktg corresponds to the average over the beige excitation
region in fig.1.5c). By trigonometry the magnitude of the wave vector of the transient grating ktg

*Calculated from the average thermal energy at room temperature of kBT=25 meV.
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can be calculated † from the magnitude of the central excitation wave vector kexc

ktg = 2kexc · sin
Θ

2
. (1.1)

Proceeding from this the wave vector of the phonon-polariton can be determined. Considering the
coordinates from fig.1.5c), the wave vector of the phonon-polaritons, kPP, in the following called q,
consists of two non-zero components derived by trigonometrical relations:

qx = |k1 cos
Θ

2
− k2 cos

Θ

2
|= cos

Θ

2
· (|k1− k2|) (1.2)

qz = |k1 sin
Θ

2
+ k2 sin

Θ

2
|= sin

Θ

2
· (|k1 + k2|). (1.3)

Since the excitation pulses are governed by the Gaussian distribution, the central excitation wave
vector yields kexc = (k1 + k2) /2, by applying the momentum conservation

k1,2 = kexc±q/2.

the z-direction of the wave vector in equation 1.3 can be re-written from equation 1.1

qz = cos
Θ

2
·2kexc

qz ≈ ktg. (1.4)

Additionally the x-direction combined with the energy conservation ωPP = copt(|k1− k2|) can be
determined, yields to the total q vector of the phonon-polariton

q2 = q2
x +q2

z =

(
ωPP

copt

)2

cos2 Θ

2
+ k2

tg (1.5)

Whereby copt is the velocity of an electromagnetic wave in the sample at optical frequency range.
The direction of propagation is described by trigonometrical calculation derived from fig.1.5c)

cosβ =
ktg

q
(1.6)

Both q and ktg depend on Θ, which is adjusted by the setup. See section 2.1.
The intersection angle in air Θair is derived in appendix B. Using the components of the optical
setup yields

Θair = 2arctan
(

f1λexc

f2λPM

)
. (1.7)

With the focal lengths of the cylindrical lens and spherical lens (cf. fig.2.2) f1 and f2, the central
wavelength of the excitation pulse λexc and the wavelength of a phase mask pattern λPM which is
also adjusted by the setup (cf. section 2.1).
By taking Snell’s law of refraction into account, the intersection angle at the sample can be
calculated with the refraction index of the sample at optical frequencies nopt, mentioned in the next
section. The small-angle approximation is applied since Θair is smaller than 10◦ (cf. eq.B.8).

Θ =
nair

nopt
Θair

†For this thesis the wavelength of the transient grating determined by measurement
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1.3. Crystal structure and optical properties of LiNbO3

Lithium niobate, respectively LiNbO3, is a birefringent ferroelectric material, which is transparent
because of its band gap that is on the order of 4 eV. The optical axis corresponds to the c-axis of
the crystal. The polarization of the electric field of the beam is set parallel to the c-axis. Since the
phonon-polaritons propagate mainly in that direction, their electric field is orientated perpendicular
to the c-axis, thus transverse optical phonon modes are excited. Thus, the ordinary refractive index
is considered. The ferroelectric polarization occurs also along this crystal axis. The Li+ and Nb5+

atoms within the unit cell break the symmetry of the crystal along the c-axis. One of the transverse
optical phonon modes is shown in fig.1.7, i.e. the motion of lithium and niobate along the c-axis. In
order to excite phonon-polaritons with a high efficiency and facilitate the measurement, the electric
field of the incident beams is polarized parallel to the optical axis, i.e. the c-axis of the ferroelectric
sample.
The extraordinary refractive index is ne=2.18 for 800 nm, which is in this thesis also called nopt
[24, page 9], [25]. In this thesis, only LiNbO3 fabricated in so called x-cut, shown in fig.1.7b) is
discussed. In that material, the c-axis lies within the plane of the sample surface [26]. In this work,
I chose the polarization of the incident beams to be parallel to the c-axis if not stated otherwise, e.g.
the sample rotation series discussed in section 3.2. Relevant properties of lithium niobate are listed
in table 1.1

Table 1.1.: Relevant properties of lithium niobate at room temperature and standard pressure [27],[28]. Since
the refractive index is frequency-dependent, the value for the optical range is taken at 800 nm
(375 THz) [29], respectively the value for the terahertz range at 1 THz [30].

property formula symbol value
density ρ 4.65 g/cm3

band gap Eg 3.7 eV
refractive index (optical range), ordinary nopt,o 2.26

refractive index (optical range), extraordinary nopt,eo 2.18
refractive index (terahertz range), ordinary nTHz,o 6.8

refractive index (terahertz range), extraordinary nTHz,eo 4.91
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Nb5+
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Figure 1.7: Schematic depiction of the crystal
structure of LiNbO3. View along the
c-axis a): This depiction shows two
unit cells on top of each other along
the c-axis. The oxygen atoms in blue
are arranged in two distorted plains
of each three atoms perpendicular to
the optical axis, resulting in a hexago-
nal configuration. The lithium atoms
in red are located above the planes.
The niobium atoms are slightly above
the center of two oxygen triangles.
The hexagon in b) represents the view
down the c-axis and indicates the di-
rection of the x-cut. This figure is
adapted from [21, page 7]
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1.4. Phonon-polariton dispersion relation in bulk LiNbO3

The next two sections contain the theoretical background which is required to derive the dispersion
relation within two specimens with different out-of-plane thickness. I consider one bulk specimen
of 1 mm thickness and a waveguide of 50µm thickness consisting of LiNbO3. I will approach
the dispersion relation of the bulk by considering the Lorentz oscillator model, from which the
permittivity and therefore the refractive index are deduced. The additional quantization due to
the boundary condition of the thin slab waveguide is central to the excitation and propagation of
phonon-polaritons modes in a LiNbO3 waveguide.
The Lorentz oscillator model assumes that an electric field E(t) excites the motion of electrons in
particular and charged particles in general. The electron with mass m bounded to the atomic core
can be approximated using a driven harmonic oscillator [31] as depicted in fig.1.8. The following
derivation is based on lecture 39 by Colton [32]. The equation of motion yields with damping Γ,
resonance frequency ω0, mass of electrons m with charge q:

m
d2x
dt2 +mΓ

dx
dt

+mω
2
0 x =−qE(t) (1.8)

The solution of the driven harmonic oscillator equation 1.8 is the Lorentzian function:

x(ω , t) =− q
m

1
ω2

0 −ω2− iΓω
E(t). (1.9)

The observable real space displacement is given by the real part of equation 1.9. The electric dipole
moment pelec can be re-written in two different ways, that are used to identify the polarizability
α(ω) as:

−q · x(ω , t) = pelec = ε0α(ω)E(t)

⇒α(ω) =
−qx(ω , t)

E(t)
=

q2

mε0

1
ω2

0 −ω2− iΓω
. (1.10)

Now two expressions for the polarization P of N independent oscillating atoms in a specific volume
V yield P=χ(ω) E(t) and P= N

V α(ω) E(t) resulting in a relation between the susceptibility χ(ω) and
polarizability α(ω) from which the dielectric function can be derived:

χ(ω) =
N
V

α(ω)

ε(ω) = 1+χ(ω) = 1+
N
V

α(ω)

ε(ω) = 1+
Nq2

V mε0

1
ω2

0 −ω2− iΓω
.

By considering the five significant transverse optical modes, which I provide with the index i and
define nV =N/V

ε(ω) = 1+
5

∑
i=1

nV ,iq2

mε0

1
ω2

0,i−ω2− iΓω
. (1.11)

In a dielectric solid like LiNbO3, there exist more than one type of polar vibration modes. Hence,
resonances in the range of ultraviolet or infrared light, e.g. atomic electron transition of valence
(ultraviolet) or near-core electrons (infrared) resulting in a higher dielectric limit for ω�ω0, which
was up to now assumed to be 1 and now set to ε∞. The higher dielectric limit for ω→ ∞ remains to
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+

x
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Figure 1.8.: Sketch of the bonding between two electrons and the atomic core, the bonding is approximated
with the Lorentz oscillator model

be 1.
Deriving the dielectric function quantum-mechanically, as described in [14], I obtain

ε(ω) = ε∞ +
5

∑
i=1

ω2
0,i(ε0,i− ε∞)

ω2
0,i−ω2− iΓiω

. (1.12)

Thus, by comparing equation 1.11 and equation 1.12 two adjustments become evident: As men-
tioned above, the limit of dielectric function for high frequencies modifies from 1 to ε∞ = 5.0,
which is material-specific. Every material-dependent value, ω0,i,Γi,ε0,i and ε∞, in the following,
has been measured by Barker and Loudon [33] via Raman scattering spectroscopy. There also the
five relevant transverse-optical modes are depicted.
Secondly, nV ,i can be extracted by comparison of equation 1.11 and equation 1.12:

nV ,i =
(ε0,i− ε∞)ω

2
0,imε0

q2 (1.13)

In that picture, the independent oscillating atoms per volume nV ,i may be interpreted as a modified
oscillator strength of mode i, which is generally identified as ε0,i-ε∞. Since the unit of the particle
density is [nV ,i]= 1

m3 , it describes the quantity of atoms oscillating with a specific resonance frequency
ω0,i for a particular mode i. The resulting dielectric function of the modified equation 1.11 is
visualized in fig.1.9 using the parameters given in table 1.2.

Table 1.2.: Data of Raman spectroscopy of LiNbO3, computing equation 1.13 yields nV ,i which has not been
reported by Barker and Loudon [33] by room temperature experiments

mode i ω0,i/2π in cm−1 Γ/2π in cm−1 ε0,i-ε∞ nV ,i in ·1023 1
m3

1 152 14 22 56.7
2 265 12 5.5 43.1
3 322 11 2.2 25.4
4 363 10 2.3 33.7
5 586 35 3.3 126.4

The frequency of the phonon-polaritons can be calculated from the following relation:

ωPP = c · k = c0

n(ω)
· k = c0√

ε(ω)
· k,
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Figure 1.9.: Graph of the resulting real and imaginary part of the dielectric function of bulk LiNbO3 for
electric fields polarized along the ordinary direction with annotated resonance frequencies

and the resulting dispersion relation ω(k) is given in fig.1.10. The dispersion relation applies for
bulk LiNbO3 where the incoming light is polarized along the c-axis. In a), the frequency-dependent
damping proportionality to the dispersion relation graph is depicted and the magnitude of the blue
line increases in the vicinity of the five phonon resonances depicted as dotted lines. On the other
hand side in b) the blue graph approaches the black line representing the coupling to light in the
terahertz region as mentioned in fig.1.2

Figure 1.10.: Computed dispersion relation of phonon-polaritons in LiNbO3. The calculation for the
imaginary part of the wave vector in a) and the real part of the wave vector in b) used the
parameters from reference [33]. The dotted lines represent the four transverse optical modes
in LiNbO3. The black curve in b) shows the dispersion relation of light that experiences a
constant average ordinary refractive index in the terahertz range nTHz ≈ 6.8 [30].
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1.5. Phonon-polariton dispersion relation in a waveguide

To understand the dispersion in waveguides of LiNbO3 I consider a planar dielectric waveguide
which is excited by wavelengths comparable to the thickness of the waveguide itself. In contrast to
the bulk, a thin specimen exhibits a quantization condition resulting in only certain discrete angles
Θi that allow propagating phonon-polaritons inside the waveguide. This leads to the fact that several
waveguide modes are possible, for a given wave vector. The wave vector of the phonon-polariton
yields k0. An extensive derivation is presented in [34]. In the following derivation, I examine first
an infinite plane boundary between two dielectrics with refractive index n1 and n2, where n2 < n1,
which is shown in fig.1.11. In the following the angle Θi describes the propagation angle of infrared
light, respectively phonon-polaritons, similar to β corresponding to the bulk, derived in section
1.2.2. One boundary condition for this problem is that the in-plane part of the k-vectors are equal

Θ Θi i

n2

n1

k2

k1k1

E

Θt

x

y
z

air

LiNbO3

Figure 1.11.: Reflection and transmission at a dielectric boundary, where n2 < n1

for the incident (i), reflected (r) and transmitted (t) beam.

k1z = k2z (1.14)

with use of equation 1.14 and trigonometry, e.g. k1x =k0n1cosΘi, k0=ω/c the Fresnel equations
arise as a result with the assigned index P for the case of p-polarized light that is used in our setup.

RP =

(
E0r

E0i

)
P
=

k1xn2
2− k2xn2

2

k1xn2
2 + k2xn2

1
(1.15)

TP =

(
E0t

E0i

)
P
=

2k1xn1n2

k1xn2
2 + k2xn2

1

Applying trigonometry in fig. 1.11 yields

k2
2x = n2

2k2
0− k2

z

⇒ k2
2x = (n2

2−n2
1 sin2

Θi)k2
0 (1.16)
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Hence, k2x is imaginary for the condition sin Θi > n2/n1, and I define k2x =−i · γ . Applying this to
equation 1.15 we then obtain: (

E0r

E0i

)
P
=

k1xn2
2 + i · γn2

1

k1xn2
2− i · γn2

1
= ei2Φ (1.17)

where the phase equals

Φ = arctan
(

γn2
1

k1xn2
2

)
(1.18)

Using the definition for k2x, substituting 1.16 and using the trigonometrical expression for k1x yields

Φ = arctan

(
n2

1

n2
2

√
n2

1 sin2
Θi−n2

2

n2
1 cos2 Θi

)
(1.19)

Since the magnitude of the reflectivity R in equation 1.17 equals 1 in all cases, it describes the
phenomenon of total internal reflection, i.e. the reflected wave is unchanged in its amplitude
compared to the incident wave but experiences a phase change. The condition mentioned above,
sinΘi > n2/n1 ensues from Snell’s law of reflection by setting Θt = π/2, such that total internal
reflection occurs. Since the absolute value of sin Θi is limited by 1, n1 is larger than n2. In the
following I assume n2=1 and medium 1 n1=6.8 which correspond to the refractive index of air
and LiNbO3 respectively are set for the calculations and graphs to follow. The phonon-polaritons
propagate along the extraordinary axis as mentioned in section 1.3 so that their electric field
component is perpendicular and experiences the ordinary refractive index [6]. The following
section covers the case where the beam propagates inside the waveguide undiminished due to
perfect total internal reflection and lossless propagation. The propagation of phonon-polaritons
is illustrated in fig.1.12. Please note the additional dielectric interface parallel to the first one at a
distance 2d. Considering total internal reflection we can express the electromagnetic wave in air by

n1

n2

n2

2Θi

2Θi

2Θi 2d

x

y
z

Figure 1.12.: Propagation of an electromagnetic wave in a dielectric slab-waveguide

substituting k = (k2x,0,kz) and the definition for k2x :

E = E0ei(ωt−kr) (1.20)

= E0e−γxei(ωt−kzz)

This indicates an evanescent wave, resulting in an electric field outside the sample. I will distinguish
between Ecore inside the waveguide and Ecladding describing the electric field in medium 2, both are
derived in the end of this chapter.
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The eigenvalue equation

The waveguide geometry imposes boundary conditions on the electromagnetic wave, which result
in quantized modes. To obtain an adequate expression for the phase, I concentrate on the x-direction
of the k-vector inside the waveguide. In fig.1.13 two waves are depicted which are genuinely
similar because they are a reflection of themselves. They interfere constructively, if the overall
phase change α imposed by the wave of twofold crossing and reflecting inside the waveguide is a
multiple of 2π . We can find the phase change upon reflection:

2mπ = 2 · k1x2d−2 ·Φ︸ ︷︷ ︸
α

⇒Φ = k1xd− mπ

2
(1.21)

By comparing equation 1.19 with equation 1.21 I can re-write:

tan
(

k1xd− mπ

2

)
=

n2
1

n2
2

√
n2

1 sin2
Θi−n2

2

n2
1 cos2 Θi

⇔ tan
(

k0n1 cosΘid−
mπ

2

)
︸ ︷︷ ︸

F1

=
n2

1

n2
2

√
n2

1−n2
2−n2

1 cos2 Θi

n2
1 cos2 Θi︸ ︷︷ ︸
F2

, (1.22)

which is called the eigenvalue equation for transverse magnetic modes (TM), that occur when
the electric field is polarized parallel to the plane of incidence (p-polarized). By applying non-
negative integers for n different modes are selected, i.e. m = 0,1,2,... enumerates the orders of
the transverse magnetic modes. In fact, if I consider s-polarized light, transverse electric modes
(TE) arise. Equation 1.22 is a transcendent equation. A common approach to solve it, is to plot the

n1

n2

n2

2d

k1x k1x

x

y
z

Figure 1.13.: Wave vectors of two waves inside the waveguide, visualizing the boundary conditions for
quantized waveguide modes. X=0 defines the center of the waveguide.

left- and right-hand side of 1.22 for different m as shown in fig.1.14. By identifying the graphical
intersections of F1 with F2, I obtain the angle of propagation Θi and the corresponding k1x-vector
and γ for each mode as listed in tab.1.3.
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Figure 1.14.: Graphical solution of the eigenvalue equation including the first three transverse magnetic
(TM) modes, F1 and F2 on the y-axis as defined in equation 1.22.

Electric field pattern

As mentioned above, in fig.1.1 the terahertz electric field of the phonon-polaritons inside the
thin slab points in the in-plane y-direction. From fig.1.13 the direction of propagation is set to
x-direction, i.e.

Ey(x) = Ey(x)++Ey(x)−

= E0 · e−ik1xx +E0 · e+i(k1xx+Γ) (1.23)

⇒ Ey(0)+ = E0 and Ey(0)− = E0eiΓ

where Φ is a phase angle determined by the total phase change of the electric wave that traverses
the waveguide twice. The phase change for the propagating wave from the center (x=0) to the
boundary, reflecting and return is πn. As a result, re-writing and arranging equation 1.23 yields

Ey = E0e−i mπ

2︸ ︷︷ ︸
1
2 E ′0

(
e−i(k1xx−mπ

2 )+ e+i(k1xx−mπ

2 )
)

= E ′0 cos(k1x−
mπ

2
). (1.24)

The electric field beyond the boundaries of the waveguide is given by

Ey =

{
Ae−γx , for x > d
Aeγx , for x <−d

, (1.25)

wherein A represents the magnitude of the electric field at the boundary, that must satisfy the
condition of continuity across the interface. The values in tab.1.3 are used to determine the electric
field in fig.1.16.
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Table 1.3.: Characteristics of the first three TM modes (m=0,1,2) within a 50µm thick LiNbO3 waveguide,
which result from the numerical solution of the eigenvalue equation

TM mode 0 1 2
propagation angle Θi [deg] 83.42 76.76 69.91

k1x [· 103 m−1] 62.7 125.5 188.2
γ [· 103 m−1] 538.2 527.1 508.1

Dispersion

Yet to be deduced are the group velocity, the group index and hence the dispersion relation in the
LiNbO3 waveguide. There are two types of dispersion: intra- and intermodal dispersion.
The intermodal dispersion originates from the difference in group velocity between miscellaneous
modes, i.e. applying m in equation 1.22 resulting in various angles of propagation and therefore a
variation in the group velocity and index. In contrast, intramodal dispersion occurs within every
mode and can be separated into two parts once again; waveguide and material dispersion. The
material of the guide may have refractive indices which vary with frequency, resulting in material
dispersion. The former appears because the angle of propagation is frequency-dependent, since
k1x=k0n1 cosΘi as obtained from the wave vector triangle in fig.1.11. Moreover, as clarified in
equation 1.25, the penetration of the field into the medium 2, is likewise frequency-dependent

because of the definition of γ yields γ =
√

k2
z −n2

2k2
0.

By considering the finite penetration of the wave into the cladding leads to the so-called the

x

y
z

Δz, Δτ

z, τ

Θi

Figure 1.15.: Visualization of the contribution to phase shift between the reflected phonon-polariton waves:
the penetration of the supporting material and cover by a wave propagating along the guide.

Goos-Hänchen shift. This is schematically depicted in fig.1.15, that summarizes the contributions
to the phase shift that phonon-polaritons experience upon propagation in the waveguide contributes
in addition to the propagation along the waveguide. An alternative, more mathematical derivation
of the group velocity is given in the appendix A. Here I present a more schematic explanation.
Outgoing from fig.1.15 the group velocity yields:

vg =
∂ω

∂kz
=

z+∆z
τ +∆τ

, (1.26)
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which can be re-written with the use of the calculation in the appendix A where the material
dispersion is neglected since in fig.1.10b) the gradient of the blue graph, i.e. dispersion relation of
phonon-polaritons in bulk of LiNbO3 can be approximated linearly in the wave vector range 0 up
to 300 rad/mm. From this I obtain the relation:

vg =
∂ω

∂kz
=

d tanΘi +(∂Φ/∂kz)

(n1d/ccosΘi)− (∂Φ/∂ω)
(1.27)

From equation 1.27 the group index ngroup can be derived directly via vg=c/ngroup which results
in the graph shown in fig.1.16a). The dispersion relation in b) can be calculated by integrating
numerically over kz, since the phonon-polaritons are propagating in the z-direction (cf. fig.1.12).
By assuming the same electric field from equation 1.20 and by using the shorthand definition

Figure 1.16.: Group index in a), dispersion relation in b) and the magnitude of electric field in y-direction
inside and beyond the waveguide (represented as gray dashed lines) in c), for three transverse
magnetic modes in a slab waveguide of LiNbO3 of thickness 50µm compared to the dispersion
relation in bulk of LiNbO3 shown as dashed line.

EA(x)=E0e−γx the wave equation yields:

∂ 2Ey

∂x2 +
∂ 2Ey

∂ z2 =
1
c2

∂ 2Ey

∂ t2

⇔ ∂ 2EA(x)
∂x2 − k2

z EA =− ω2

c2︸︷︷︸
k2

0

∂ 2Ey

∂ t2

⇔ ∂ 2EA(x)
∂x2 +(k2

0− k2
z )EA = 0. (1.28)
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From the wave vector triangle trigonometry it is known that (k2
0-k2

z )=k2
1x applies in the core and

(k2
0-k2

z )=-γ2 in the cladding. Equation 1.28 then yields:

∂ 2EA(x)
∂x2 + k2

1xEA = 0, core

∂ 2EA(x)
∂x2 − γ

2EA = 0, cladding

with the generic solutions:

EA(x) = Acos(k1xx)+Bsin(k1xx), core

EA(x) =Ceγx +De−γx , cladding

In the core the cosine and the sine correspond to the even and odd modes m, which solution can be
simplified to

EA(x) = Acos
(

k1xx− mπ

2

)
(1.29)

In the region beyond the core I omit the nonphysical solution of an exponentially growing electric
field, which would violate energy conservation. Thus, the solution in the cladding can be re-written
to:

EA(x) =
{

Ceγ(x+d) ,x <−d
De−γ(x−d) ,x > d

(1.30)

The electric field inside and beyond the waveguide must satisfy the boundary condition:

∂Ey

∂x

∣∣
x=±25µm = const.

This is used to extract the magnitude of the constants A, C and D in order to plot the field distribution
shown in fig.1.16c) for the different modes inside and outside the waveguide. The paper by Yang et
al.[10] shows a similar derivation for TE-modes.
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2. Setup and data analysis

Excitation and detection of sub-picosecond signals with THz frequency components, have become
possible using femtoseconds-laser pulses that are often derived from Ti:Sapphire laser. The group
of Keith Nelson at MIT has introduced the phase mask interferometer as an efficient way to generate
a transient grating excitation in the sample [35]. This setup allows exciting quasiparticles at the
sample spot with a well-defined wave vector, e.g. generate selectively excited phonon-polaritons if
the sample is a ferroelectric material. The book of Pohl [36] discusses laser-induced gratings in
more detail.
This chapter contains a description of the experimental setup and explains the pump-probe experi-
ment. At first, I discuss the data-analysis routine based on a measurement of the frequency-resolved
optical gating experiment (FROG) on a thin SiO2 microscopy slide, in contrast to the additional
signatures that arise due to the presence of the phonon-polaritons in LiNbO3.

2.1. Experimental setup

Fig.2.2 shows a sketch of the setup that is described in the following.
The mode-locked Ti:Sapphire oscillator laser produces pulses, with a spectrum that is 8 nm broad,
centered at the wavelength 806 nm, as shown in fig.2.1 where also the spectrum of the laser in
cw mode and the spectrum of the amplifier is depicted. This corresponds in theory to a Fourier
limited pulse of the oscillator of 120 fs length. The average power of the oscillator laser amounts
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Figure 2.1.: Normalized spectra of the Ti:Sapphire oscillator laser in cw and mode-locked mode. The
amplifier output is also shown.

to 400 mW and the repetition rate is approximately 80 MHz resulting in a small pulse energy of
approximately 5 nJ. To study the fluence dependence of the phonon-polariton generation up to a
potentially non-linear regime, I require larger pulse energies. Thanks to the development of the
chirped pulse amplification technique by Strickland et al. in the 1980s, pulses with few mJ or even
more can be generated. In this experiment, I employ pulses with an energy of roughly 0.4 mJ per
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pulse at a repetition rate of 1 kHz, resulting in an average power of 400 mW. The actual power that
arrives at the sample is reduced as the pulses traverse the setup because of material absorption and
intended reflection at the polarizer-wave plate combination that is used to vary the intensity of the
beam.
The amplified laser pulses cover a spectral range with a bandwidth of FWHM = 5.7 nm centered at
approximately 807 nm, resulting in a Fourier limited temporal width τF,FWHM of approximately

τF,FWHM =
2ln2
∆ν

=
2ln2 ·λ 2

c∆λ
= 160fs (2.1)

The actual pulse length is determined in a transient grating frequency-resolved optical gating
(TG-FROG) experiment discussed in section 2.2.
At the entrance of the setup, the polarizer is set so that only light that is polarized parallel to the
table enters the setup. Afterwards I employ a Galilean lens telescope that reduces the beam diameter
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Figure 2.2.: Sketch of the experimental setup

to approximately 1 mm x 1 mm, in order to be able to fit a pump and a probe beam through the
5 mm x 5 mm transmission gratings. The beamsplitter (BS) divides the incoming 800 nm pulses
into two parts with a reflection/transmission ratio of 80/20. The reflected part acts as the pump
beam and the transmitted part serves as the probe beam. The probe beam traverses a delay stage,
where the beam may be delayed by up to 150 ps. To implement a modifiable intensity change of the
probe beam, another system of wave plate and polarizer is added, right after the mirrors probe 2
and probe 3 that shift the beam 2 mm upwards. Subsequently, the pump and probe beam gather and
propagate through a 5 mm x 5 mm phase mask grating. The phase mask is designed for an efficient
diffraction of the first order. Residual higher and lower orders of diffraction are blocked, which
results in an additional loss of energy. By measuring the intensity before the phase mask and at the
sample position, the loss can be estimated to about 20%, i.e. 80% will arrive to the sample spot. In
the following chapter, only the values incident on the sample are discussed. The cylindrical lens
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has a focal length of f1=75 mm, the spherical a focal length of f2=100 mm.
The separated four beams, two for pump and probe beam each, are shown in fig. 2.3, that depicts
the so-called box-CARS geometry [37]. The scattered beam in the k3-direction is detected by the
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k3k4

k'3 k4

k1k2

transient grating

blocked

scattered

sample

y
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Figure 2.3.: Sketch of box-CARS geometry, used for the following four-wave mixing experiments; k1 and
k2 interfere at the translucent probe to produce a transient grating, where k4 is diffracted to the
direction of k′3 by ISRS.

fiber-optic spectrometer USB4000 by OceanOptics that contains a blazed grating CCD line array
made of 3648 pixels. The spectral range is roughly 650 nm up to 1300 nm resulting in a resolution
of δλ =0.2 nm in the region of interest around 800 nm. To capture as many diffracted photons
as possible, a focussing lens is placed in front of the spectrometer fiber. It is an advantage of the
box-CARS geometry that the diffracted signal is spatially displaced from the pump pulses, which
reduces the background to the signal from the pump light, thus increasing the signal. For adjusting
the detector position, we can open the normally blocked beam k3, which indicates the direction in
which the diffraction of k4 occurs.

2.2. Description of measured data

In the following, the analysis of data taken by the camera and spectrometer are shown and discussed
for one representative example.
In this thesis, I employ an area camera (model Basler acA4024-8g) in order to visualize the pump
spot. This camera has a small pixel size of 1.85 µm x 1.85 µm. It is also used to determine the
area of the pump and probe beam at the sample position, which is necessary for the calculation
of the excitation fluence F. The camera is placed at the sample spot instead of the specimen and
measures the intensity profile of strongly attenuated beams. The intersecting pump beams, and the
remaining probe beam, are depicted and analyzed in fig.2.4. By doing the Fourier transformation of
the induced transient spatial modulation signal in fig.2.4(a) I find a wavelength of 77.9 µm for the
modulation of the intensity.
The FWHM from fig.2.4(a) and fig.2.4(b) averages to approximately 60µm in height and 830µm
in length, resulting in an approximated elliptical area A = π FWHMx/2· FWHMy/2 ln(2)−2= 8.14·
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10−4(cm)2.

(a) Two pump pulses intersect resulting in spatial modulation of the excitation intensity that is detected with a CCD
camera, FWHM in height = 49 µm, FWHM in length = 884 µm

(b) Single probe pulse detected with a CCD camera, FWHM in height = 67 µm, FWHM in length = 757µm

Figure 2.4.: Representative beam profile of a) the pump and b) the probe pulse used in the transient grating
experiments at the sample spot and visualization of the intensity profile. A cut along the
longitudinal- (y-axis) and transverse-axis (x-axis) is provided besides the pattern in order to
estimate the beam dimensions. Both pump and probe pulses pass the same optics made of a
phase mask grating a cylindrical lens and a spherical lens before intersecting at the focal spot.
This leads to their comparable spatial dimension.

Pulse characterization using TG-FROG

Having considered the beam profile taken by the CCD camera, the focus is upon the measured
data from the spectrometer. First, I will consider glass as a sample, to measure the TG-FROG,
afterwards the frequency resolved data measurement from LiNbO3 is shown. In order to control
and measure the spectral chirp and the pulse duration, I applied the TG-FROG [38] method. The
result is depicted in fig.2.5. The utilized sample was a thin microscopy slide made of amorphous
quartz glass (SiO2), which does not show phonon-polariton excitations, that could distort the signal
from the electronic quasi-instantaneous response. The delay time 0 ps is set to the point in time
when the diffraction of the probe beam k4 from the transient intensity grating generated by the
pump beams k1 and k2 is largest. The four-wave mixing process described in section 1.2.1 and
shown in fig.2.3 results in an additional factor to calculate the actual pulse length τP. From the
diffracted probe intensity signal S, that is measured by the spectrometer one can extract the pulse
length as described by Trebino et al. [39] via:

S ∝ |
∞∫
−∞

e−iτωEsignal(t− τ)|Egate(t)|2dτ|.
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Therein I assume that the electric field of the probe pulses Egate(t) and the pump pulses Esignal(t)
share the same time-dependence. By considering

E ∝ e
− t2

2σ2
P ⇒ S ∝ e

− t2

3σ2
P

the ratio of the standard deviation of the pulse σP and signal detected via FROG-measurement
σFROG can be derived via

S ∝ e
−2 t2

3·2σ2
P

!
= e
− t2

2σ2
FROG

⇒ σFROG =
σP√

2
3

. (2.2)

The ratio of the FWHM (τ) and standard deviation (σ ) yields τ/σ = 2
√

2ln(2). With the use of
equation 2.2 the actual pulse length τP can be derived by extracting τFROG = 257 fs from fig.2.5 :

τP =
τFROG√

3
2

= 210 fs (2.3)

In fact, one can perceive a slight spectral chirp in fig.2.5 which may explain the difference according
to the calculated values between the theoretical Fourier limit in equation 2.1 and the measured
pulse length in equation 2.3.
Since the excitation of phonon-polaritons is an impulsive process, only phonon-polaritons with a
frequency less or equal to 1/τP = 4.76 THz with the pulse length derived in equation 2.3 are excited
efficiently.

Figure 2.5.: In b) the TG-FROG signal for the above-mentioned four-wave mixing pulses is recorded with
the spectrometer for different pump-probe delays. In panel c) a vertical cut at 0 ps is presented
and a Gaussian fit yields center and FWHM in the spectral range. In the top panel, a) the
spectrally integrated diffraction intensity from 795 nm up to 815 nm is shown. Gaussian fits to
the spectrum and the time-trace are used to analyze the data in c) and a) respectively.
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Analysis of frequency resolved data from LiNbO3 measured by spectrometer

In fig.2.6 the data taken by the spectrometer of bulk LiNbO3 excited by a transient grating with
wavelength λtg=77.9 µm, is depicted. In addition to the TG-FROG feature at t=0 one observes an

Figure 2.6.: Representative time-dependent spectrum of the diffracted probe intensity in a transient grating
excitation experiment on bulk LiNbO3. The oscillations in the diffraction intensity result from
the excitation of phonon-polaritons. The parameters for pattern a) and d) applies from fig.2.5,
i.e. d) shows the vertical cut of pattern c) at t = 0 ps and a) represents spectrally integrated
diffraction intensity from 795 nm to 815 nm

oscillation after 0 ps, visible in the colorized intensity pattern in c). The vertical d) and horizontal
a) sections arise similarly as described in fig.2.5. Panel b) shows the Fourier transform of the
time-dependent diffraction signal shown in a), and the frequency ν=0.63 THz with the maximum
Fourier amplitude is stated. Thereby, each wavelength in the region of interest is Fourier analyzed
individually, before summing all contributions. Thus, if there is any phase difference between
different wavelengths due to the chirp mentioned in fig.2.5, the frequency does not undergo a shift.

Analysis of the time resolved plot for different wavelengths

The wavelength range in fig.2.5 and fig.2.6 represents the relevant range in which phonon-polaritons
are detected. A time resolved plot for different wavelength for the measurement in fig.2.6 is
presented in fig.2.7. By considering the data for every wavelength, in the range from 795 nm up to
roughly 815 nm oscillations are visible. The integral over the range is also shown. In the following
discussion, I will only show and discuss the integrated spectral intensity
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Figure 2.7.: Time-resolved analysis at individual wavelengths in the range from 790 nm up to 820 nm for
bulk LiNbO3. This underlines that oscillations of the diffraction intensity are visible mainly
from 795 nm - 815 nm, which is the wavelength range used in further evaluations. This data set
is the same as shown in fig.2.6
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3. Results and Discussion

This chapter contains a set of systematic measurement series and their analysis. I present a fluence-
dependent study, a rotation series of the sample and a measurement series where the sample is
displaced with respect to the pump. For each experiment, I compare the bulk LiNbO3 and the
response of the 50 µm thin LiNbO3 waveguide sample. Both samples are fabricated in x-cut. The
measured frequencies and calculated wave vectors for the bulk and waveguide modes are compared
to the dispersion relations.

3.1. Fluence series of the pump beam

By adjusting the wave plates shown in fig.2.2 the power of the pump beam can be varied by
simultaneously maintaining the power of the probe beam constant and vice versa. The fluence F of
the excitation and detection beam is defined as F = E / A, where E is the energy of a pulse incident
on the sample (confer section 2.1) and calculated via E = P / r. Here, r is the repetition rate of the
laser and P the average power incident at the sample. The elliptical area A = 8.14 · 10−4 (cm)2

calculated in section 2.2 applies for the probe and pump beam likewise.

3.1.1. Homodyne detection effects

The signal detected by the spectrometer at one specific wavelength, i.e. one definite pixel of the
spectrometer detecting the electric field E3, is composed of three components depicted in fig.3.1
[21, chapter 5]. The incident beam k4 scatters from the right, respectively left propagating phonon-
polaritons. These wave vectors are indicated as anti-Stokes scattering k+4 (or E+), respectively
Stokes-scattering k−4 (or E−). In fact, the probe beam also scatters from impurities or inhomo-
geneities in the sample, where no momentum transfer occurs. This results in an elastic Rayleigh
scattering contribution Eela to the electric field signal ES at each pixel of the spectrometer. Thus,
the detected signal intensity at the spectrometer position results from the superposition of three
contributions:

ES = Eela +E++E−

⇒ IS = |Eela +E++E−|2. (3.1)

In the following I consider three cases: E+ ≈ E− ≈ Eela, E+ ≈ E− � Eela and Eela� E+ ≈ E−.
The electric fields are given by the initial magnitudes E0, damping rate γ , delay time of the probe
beam τ and a scattering phase Φ± = ±ωPPτ: ω ′3 represents the corresponding frequency to the
wave vector k′3.

E+ = E+
0 e−γτei(ω4++ωPP)t+Φ+ = E+

0 e−γτei(ω ′3)t+Φ−

E− = E−0 e−γτei(ω4−−ωPP)t+Φ− = E−0 e−γτei(ω ′3)t+Φ−

Eela = Eela
0 e−γτei(ω ′3)t

An extended derivation for every case is presented in the PhD thesis of Goldshteyn [21, appendix



28 Chapter 3. Results and Discussion
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Figure 3.1.: Sketch of three different components of the electric field contributing to the signal detected by
the spectrometer at a specific wavelength. Different wavelength components of the incident
beam k4 contribute to the electric field E3 on a pixel along k′3 are a) diffracted by impurities, b)
left propagating phonon-polaritons or c) right propagating phonon-polaritons in k′3-direction

A.1].
A mixed term |E−0 ·E

+
0 | states I±0 , thus equation 3.1 can be re-written for the case E+ ≈ E−� Eela

I′S = |E++E−|2

I′S = 2I±0 (1− cos(2ωPPτ))e−2γτ (3.2)

In contrast, the case E+ ≈ E− ≈ Eela yields the more complicated form for I′′S , where Iela
0 , Iela

± and
I± are mixed terms of magnitudes of the electric fields

I′′S = |Eela +E++E−|2

I′′S = Iela
0 −4Iela

± e−γτ sin(ωPPτ)+4I±e−2γτ sin2(ωPPτ). (3.3)

Figure 3.2.: Magnitude of the intensity of the signal incident at the spectrometer for three different cases
indicated in equation 3.2,3.3 and 3.4. with arbitrary parameters

The third case Eela� E± has two possible origins. A residual electric field with wave vector k3
incident at the spectrometer, either because it is not perfectly blocked or by using a neutral density
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filter as described in [20] or because the probe beam k4 and maybe both excitation beams k1 and k2
are scattered at impurities and the surface of the sample. The magnitude of Eela can then be large.
It is not determined in the thesis which effects apply for this work. In contrast, the magnitude of
E± decreases if less phonon-polaritons are excited, e.g. because the excitation pulses contain a low
fluence, so that less photons may excite phonon-polaritons through ISRS. Thus also increases the
importance of Eela. The intensity yields with the mixed term Iela

± of the magnitudes of the electric
fields E± and Eloc

I′′′S = |Eela +E++E−|2

I′′′S = Iela
0 +2Iela

± cos(ωPPτ)e−γτ (3.4)

The intensities of the simulated signals for all three cases are shown in fig.3.2 for different relative
scaling of E+, E− and Eela.
Here I discuss the measurements of the fluence series for the pump beam.
The integral over all wavelengths from 795 nm up to 815 nm (cf. fig.2.6) is plotted for different
fluences in fig.3.3 and fig.3.5. For every fluence, a dashed line shows the respective initial intensity
at -2ps delay time. The Fourier analyzed data corresponding to the time resolved data is depicted
in fig.3.4 and fig.3.6. For the fluence series for both samples, the phase mask pattern has a spatial
period of λPM=114.8 µm. The fluence of the probe beam is constantly 7 mJ/(cm)2, except for pump
fluences below 35 mJ/(cm)2. For these cases, the fluence of the probe beam yields one fifth of the
fluence of the pump beam since the beamsplitter has a fixed transmission/reflection ratio of 20% so
that a constant probe intensity could not be maintained. The beam profile for this measurement
series is provided in the appendix C.

3.1.2. LiNbO3 bulk

Figure 3.3.: Time resolved data of excitation beams with different fluences for bulk LiNbO3

For low fluences, i.e. 6 mJ/(cm)2 up to 25 mJ/(cm)2, the plot in fig.3.2 corresponding to Eela � E±

describes the data in fig.3.3 quite well. Only the frequency of the phonon-polaritons occurs in the
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Fourier analysis, fig.3.4, while the second harmonic is absent. For higher fluences, 49 mJ/(cm)2

up to 197 mJ/(cm)2 a second peak in the Fourier analysis emerges at a frequency that is twice the
frequency of the phonon-polaritons that equals the frequency that is obtained for low fluences. By
increasing the fluence of the pump beam, the intensity of the second peak increases. For fluence
around 100 mJ/(cm)2 the approach Eela ≈ E± fits better to the qualitative structure of the measured
signal whereas the time resolved data for 197mJ/(cm)2 corresponds to E±� Eela. Since the electric
field Eela is determined by the probe pulse scattering at impurities in the sample this component
should remain constant. A comparison of the intensity of the signal at the peak frequencies results
into a signal amplitude depending on the fluence plot in fig.3.4. As described above, the intensity of
the second peak at 1.69 THz increases with increasing fluence. On the contrary, the first peak at 0.85
THz increases from 6 mJ/(cm)2 to 50 mJ/(cm)2 and decreases afterwards. That effect originates
in two reasons; The high fluence enables a non-linear process, three-photon absorption, which is
unlikely for low fluences [40]. Since ISRS is an inefficient process, the non-linear influences the
signal amplitude strongly, expresses in a decrease of the signal amplitude for the lower frequency.
Upon decreasing the fluence, further non-linear effects may also affect the second order FFT peak
at 1.69 THz. Secondly, the scattering of the pump beams on impurities may become more relevant
and increase the time-independent background relative to the phonon-polariton contributions in the
spectrometer.

Figure 3.4.: Fourier analysis of the time resolved data from t=0.6 ps to 26 ps for different fluences of the
pump beam in bulk LiNbO3 and the signal amplitude at selected frequencies.

3.1.3. LiNbO3 waveguide

For the waveguide, the same experiment with comparable fluences was implemented for com-
parison. As derived in chapter 1 one expects multiple waveguide modes to be excited in a thin
slab. The superposition of these signals leads to the more complex shape of the oscillations in
the fluence series shown in fig.3.5. In contrast to the bulk measurement, with increasing fluence,
an additional peak at twice the frequency of a single mode does not occur, but three transverse
magnetic waveguide modes (m=0,1,2) and two transverse electric waveguide modes (m=0,1) are
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excited, the signal of the zeroth TM mode superimpose with the signal of the first TE mode in the
Fourier analysis. The transverse electric modes may occur because the c-axis of the waveguide
sample is not parallel to the propagation direction of the phonon-polaritons but slightly tilted (5 5◦),
as described in [10]. Since the excitation of transverse electric modes was not intended, I will only
discuss the transverse magnetic modes in the following. The transverse electric modes indicated
at 0.68 THz and 0.8 THz are marked in fig.A.1. However, the signal amplitude increases nearly
linearly with increasing fluence, as depicted in fig.3.6.

Figure 3.5.: Time resolved data of excitation beams with different fluences for waveguide LiNbO3 with a
transient grating wavelength of 77.9µm.

Since the waveguide thickness is limited by 50 µm, the interaction volume between the probe
and the pump beam is finite. Thus, less phonon-polaritons are excited in the waveguide in total
compared to the bulk because of the smaller interaction volume, so E± is much smaller and hence
Eela� E± . Simultaneously, the beams scatter at the surface as they do in the bulk such that the
elastic contribution to the electric field Eela is not as strongly affected from the confinement of the
waveguide, thus the case Eela� E± applies for the waveguide.
By comparing the time resolved data for the bulk with the time resolved data for the waveguide in
fig.3.5 the long-lasting phonon-polariton oscillations are remarkable. In case of the bulk specimen,
the phonon-polariton wave packet propagates into the depth of the bulk according to the direction
of propagation calculated in section 3.4 and derived in section 1.2.2. At a delay time of the probe
pulse of 25 ps the oscillations in the waveguide are still apparent and the varying electric field
approaches one specific frequency. More detailed discussed in section 3.3.
In the Fourier analysis for the higher frequency in bulk at 1.69 THz and three transverse magnetic
modes (m=0,1,2) in waveguide at high fluences, a saturation of the signal amplitude occurs. Thus,
I also observe a saturation of the phonon-polariton generation in the waveguide, that may arise
from the onset of three-photon absorption processes [40]. The time resolved data for the waveguide
fig.3.5 show a significantly smaller than the corresponding bulk signal in fig.3.3. The phonon-
polaritons propagate much further parallel to the sample surface in the waveguide as compared
to the bulk specimen. This may be due to the large contribution of the evanescent THz field that
propagates outside the waveguide, as shown in fig.1.16c), which experiences no damping to lattice
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vibrations.

Figure 3.6.: Fourier analysis of the time resolved data from t=0.6 ps to 26 ps for different fluences of the
pump beam in waveguide LiNbO3 and the signal amplitude at selected frequencies.

3.2. Rotation series in bulk and waveguide

For the bulk and the waveguide, the samples were rotated as depicted in fig.3.7. Thus, the c-axis
described in section 1.3 is rotated by the angle Θrot with respect to the z-component of the wave
vector of the phonon-polaritons. If the incident light beams are polarized parallel to the c-axis,
the excitation and detection of phonon-polaritons is highly efficient since the polarizability for the
modes excited by light polarized parallel to the c-axis is roughly ten times higher compared to
terms with a mixed polarizability, i.e. a tilted c-axis * [41], [42].

sample axis
Θrot

c-

Figure 3.7.: Description of the method to measure rotation series in bulk and waveguide. The angle of
rotation Θair is varied by turning the whole sample and thus the c-axis. The orientation of the
transient grating excitation remains fixed.

*respectively light with a non-zero part polarized transverse to the c-axis which does not apply for this thesis



3.2. Rotation series in bulk and waveguide 33

I present the data in a similar manner as in section 3.1 and compare the bulk LiNbO3 and the slab
waveguide. The beam profile for the pump and probe beam is provided in the appendix C. For the
rotation series, the phase mask pattern is set to λPM = 38.3µm.

3.2.1. LiNbO3 bulk

(a) Time resolved data for different rotation angles of the sample in bulk LiNbO3.

(b) Fourier analysis of the data from t=0.6 ps to 13 ps at different rotation angles of the
sample in bulk LiNbO3

Figure 3.8.: [Time resolved data and Fourier analysis for different rotation angles of the sample in bulk
LiNbO3.The wavelength of the transient grating is λtg = 26.2 µm, the fluence of the pump
yields 86 mJ/(cm)2 and for the probe beam 7 mJ/(cm)2.

Since the polarizability decreases with tilted c-axis as described above, the oscillations of the
intensity ∝ |E|2 shown in fig.3.8(a) decreases proportional with increasing rotation angle.
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The relation between polarizability and dielectric function was derived in section 1.4, more precisely
equation 1.10 and equation 1.11. With decreasing polarizability, the modified oscillator strength
(eq.1.13) decreases, leading into a disappearance of the magnitude of the oscillation. This is in
qualitative agreement with the Fourier analysis presented in fig.3.8(b).

3.2.2. LiNbO3 waveguide

For the slab waveguide, the same effect of decreasing amplitude of the electric field generated by

(a) Time resolved data for different rotation angles of the sample in waveguide LiNbO3

(b) Fourier analysis of the data from t=0.6 ps to 13 ps at different rotation angles of the
sample in a LiNbO3 waveguide

Figure 3.9.: Time resolved data and Fourier analysis for different rotation angles of the sample in waveg-
uide LiNbO3. The wavelength of the transient grating is λtg = 26.2 µm, the fluence yields
86 mJ/(cm)2
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the phonon-polaritons with increased rotation angle due to varying polarizability is evident in
fig.3.8(a). In contrast to the bulk, even for an angle of 90 degrees, a small oscillation of the intensity
is apparent. Since in literature the polarizability is approximated for bulk samples there might be a
slight difference regarding the absolute values for the slab waveguide and bulk [41] resulting in a
weaker decrease of the oscillation amplitude of the electric field generated by phonon-polaritons
for waveguide modes than for bulk. Additionally, as mentioned above, the damping of phonon-
polaritons that are excited in the LiNbO3 waveguide, may undergo a weaker damping since a large
contribution of the evanescent THz field propagates outside the waveguide.
The Fourier analysis in fig.3.9(b) for 0◦ rotation exhibits two peaks of the intensity at different
frequencies, i.e. two excited modes inside the waveguide, that shift with increasing rotation angle
due to a mixture of TE and TM modes. Such effects are described in the paper by Yang et al.[10]
but not discussed here, where I only study the behavior of TM modes. In theory, three modes
should be excited by using a phase mask pattern with a wavelength of λPM = 38.3µm, but only two
are observed in this experiment.
In general, oscillations with frequencies that approach a resonance frequency experience large
damping rates since the imaginary part of the dielectric function, respectively refractive index,
peaks at resonance frequencies (cf. fig.1.9). The frequency-dependent damping rate γPP of a
phonon-polaritons yields

γPP = ωPP
Im(n(ωPP))

Re(n(ωPP))
= vPh ·Im(n(ωPP)). (3.5)

In the waveguide another effect occurs due to the distribution of the electric field of phonon-
polaritons in the anisotropic waveguide, more extensively discussed in the next section.
Hence, the signal of the oscillations in the intensity pattern of the second mode (m=2) is attenuated
by damping effects and thus the second mode is not visible in the signal. In [10] this behavior
occurs as well for the second transverse magnetic mode for similar wave vectors.

3.3. Displacement series in bulk and waveguide

The following section employs the propagation behavior of low frequency phonon-polariton wave
packets providing low damping rates according to equation 3.5 and fig.1.10a). The low energy
phonon-polaritons possesses light-like behavior and properties† like reflection [43], diffraction
effects [44], guidance behavior [45], interference[6] or propagation through material for several
millimeters can be observed better [46], [10].
The propagation of phonon-polariton wave packets is discussed in detail in the following section
for both samples, the bulk and a slab waveguide containing a thickness of 50 µm. By displacing the
probe beam with respect to the pump beam up to roughly 1.5 mm in five steps, the time resolved
data and their Fourier analysis for different displacements are provided. The combination of low
damping rates for the resulting wave vector for this phase mask pattern and the feasible block
of one of the probe beam, respectively k3, leads to the choice of using a phase mask pattern of
λPM=114.8 µm for both samples. For larger phase mask patterns the probe beams are insufficient
separated spatially. Blocking the probe beam entirely was not provided for those. The displacement
of the probe beam relative to the pump beam is measured by analyzing the images of the CCD-
camera, which are included in the appendix C for the two representative displacements of 0 µm
and 1550 µm.

†Some of these properties also occur for high energy phonon-polaritons which are not discussed furthermore.
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3.3.1. LiNbO3 bulk

Since the signal amplitude in fig.3.4 is maximized for fluences between 40 and 100 mJ/(cm)2,
the propagation was investigated with a fluence of 98 mJ/(cm)2 for the pump and 7 mJ/(cm)2

corresponding to the probe beam. In fig.3.10 the time resolved data for different displacements of
the probe beam compared to the pump beam is presented. From this figure, the temporal center

Figure 3.10.: Time resolved data for different displacements of the probe and pump beam in bulk LiNbO3.
The dip of the graph corresponding to 0 µm displacement at 35 ps dedicates an instability of
the laser.

of the wave packets may be selected by determining the delay time associated with the highest
amplitude of oscillation of the intensity. It is evident that for slightly displaced probe and pump
beams (0-1100 µm) the intensity at 0ps reaches its maximum. If a Fourier analysis over a temporal
range of 10 ps is implemented the range providing the highest amplitude at the phonon-polariton
frequency, only for 1100 µm and 1550 µm reasonable central delay times are calculated. Thus, only
for the displacement of 1550 µm the group velocity vg and group index ngroup is examined explicitly.
The central delay time thus propagation time yields τ = 40.1 ps, by my own experience I estimate
the uncertainty of the displacement to be 50 µm based on a not perfect overlap of both pump pulses.
The uncertainty of the delay time is estimated to 1ps due to the vague determination of the highest
amplitude of oscillation of the intensity. The propagation distance of the phonon-polariton wave
packet requires considering the propagation direction of phonon-polaritons in LiNbO3 discussed
in section 1.2.2. The wave packet propagates into the depth of the sample by ∆s, which is the
identified with the actual propagation distance, determined by the angle β that is defined as shown
in fig.1.1c). The wave vector of the transient grating is calculated in the appendix C.

β = arccos
ktg

q
= 19.7◦⇒ ∆s =

∆d
cosβ

= 1700 µm

The group velocity and refractive index yields

vg =
∆s
τ

= 4.24 ·107 m
s
⇒ ngroup = 7.07±0.35
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The literature value of ngroup,lit=6.8 is in agreement with the observation and within the calculated
uncertainty [30].
The Fourier analysis over the entire temporal range of time resolved data shown in fig.3.11 exhibits
the disappearance of the second peak of the frequency that was already discussed in section 3.1.
The decrease of the second maximum occurs because the amplitude of the electric field generated
by the phonon-polaritons is damped with time, i.e. with the distance of propagation. The rate of
probe beam diffraction at impurities remains nearly constant, thus Eela� E± approximates the
behavior of the graph for larger displacements.

Figure 3.11.: Fourier analysis of the time resolved data from 0.6 ps to 70 ps for different displacements of
the probe and pump beam in bulk LiNbO3.

3.3.2. LiNbO3 waveguide

The same fluences and phase mask pattern parameters from the bulk apply for the waveguide
measurement to allow for direct comparison between the displacement series experiments in the
LiNbO3 bulk and waveguide.
The time resolved data for the waveguide displacement series is depicted in fig.3.12. Similar to
the fluence series at the waveguide previously, three transverse magnetic waveguide modes are
excited at perfect overlap of the pump and probe beam, i.e. 0 µm displacement. The decrease of
the peaks in the Fourier analysis in fig.3.13 of the first and second mode is explained by fig.1.16c),
a large fraction of the electric field is located outside the waveguide and this fraction is estimated to
experience less damping as it propagates in free space. It is apparent, that the amount of the field
outside decreases with rising mode number m. Thus, the higher modes are more strongly damped
than the zeroth mode. The peak of the zeroth waveguide mode in the Fourier analysis persists for
long displacements, hence long delay times.
To derive the group velocity and thus the group index of the three transverse magnetic waveguide-
modes excited in this experiment similarly to the bulk only the calculation is derived for a displace-
ment ∆d = 1550 µm since for the waveguide the propagation direction of the phonon-polaritons is
approximated to be perpendicular to the surface of the sample and parallel to the wave vector of the
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transient grating due to the confined thickness of the waveguide.

Figure 3.12.: Time resolved data for different displacements of the probe and pump beam in slab waveguide
LiNbO3.

Figure 3.13.: Fourier analysis of the time resolved data from 0.6 ps to 70 ps for different displacements of
the probe and pump beam in a slab waveguide LiNbO3

Since the first and second excited TM mode are damped significantly apart from 450 µm, only the
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zeroth mode is analyzed. Its delay times states τ = 40.5 ps.

vg =
∆d
τ

= 3.83 ·107 m
s
⇒ ngroup = 7.83±0.39

The calculated value of ngroup,sim=8.14 extracted from fig.1.16a) lies within the estimated uncertainty
range of the experimentally obtained result.

3.4. Comparison with the dispersion relations

To conclude the previous measurements, the data is compared to the dispersion relations of the slab
waveguide and of bulk LiNbO3, that have been derived previously in chapter 1. Fig.3.14 shows the
comparison between the experimental data and the theoretical results. The calculated wave vector
of the transient grating ktg is derived in the appendix for every measurement series, in Appendix C.
A summary of the calculated and measured data is given in tab.A.1 in the appendix.

Figure 3.14.: Dispersion relation of the first three excited TM modes in the waveguide and the bulk, both
consisting of LiNbO3 x-cut. The waveguide branches are shown in color, whereas the bulk
is depicted as a black dashed line. Crosses mark the peaks of the Fourier spectrum in the
experimentally observed spectra from the data presented in this thesis

The measured data are in reasonable agreement with the theoretical calculation of the disper-
sion relations. A determination of the uncertainty is omitted due to the manifold experimental
contributions that are difficult to disentangle at this stage.
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4. Conclusion and outlook

This thesis covers the transient grating excitation of phonon-polaritons in an anisotropic waveguide
in comparison to a bulk specimen of lithium niobate. The propagation, damping behavior, detection
and dispersion relations of phonon-polaritons in the slab waveguide are examined and compared to
the bulk, that was investigated by previous work in the group [21].
In the thin waveguide sample of 50 µm thickness, several transverse magnetic modes are excited.
Their origin and dispersion branches are derived theoretically, and their presence has been confirmed
experimentally [34].
The experimental setup using a transient grating of this pump-probe experiment makes use of
the box-CARS arrangement, where three spatially separated beams overlap at the sample spot to
selectively excite phonon-polaritons with a tunable wave vector that is determined the angle of
intersection between the two pump-beams. In the first part of this thesis, the fluence dependence
of the pump beam on the detection signal of the phonon-polaritons is investigated. Homodyne
detection effects in three different limiting cases of the magnitude of the electric field parts incident
at the spectrometer explain the occurrence of a second peak in the Fourier analysis at twice the
actual frequency of the phonon-polaritons. The exact origin of the elastic scattering contribution
that limits Eela� E± is narrowed down to two possibilities, a residual electric field incident at
the spectrometer from the not perfectly blocked probe beam k3 or scattering at impurities and the
surface of the sample of the excitation beams k1 and k2 or the probe beam k4. In a future study a
neutral density filter may be used instead of a block as already done in [20] to control the intensity
of the attenuated reference beam. A limiting factor in the experimental work was the difficulty of
completely blocking the reference probe beam (k3) and no parts of the other beams, especially at
for large wavelengths of the phase mask pattern. For the waveguide, the second peak in the Fourier
spectrum does not occur, but three modes are excited as predicted previously.
Afterwards, another phase mask pattern with a smaller wavelength is used and the rotation angle of
the c-axis regarding the wave vector of the transient grating alters in 45◦ steps. In this experiment
the importance of a well-oriented sample is shown for the bulk and waveguide likewise. The signal
vanishes for the bulk entirely at a rotation angle of 90◦ between the c-axis and the wave vector
of the transient grating, i.e. when the c-axis is oriented perpendicular to the polarization of the
excitation beams. In contrast, for the waveguide, the peaks in the Fourier analysis decrease in
their magnitude and are blue shifted with increasing rotation angle. A possible explanation is the
simultaneous excitation of transverse electric and magnetic modes, which was already observed in
[10], where the c-axis and the polarization of the beam remain parallel, but the wave vector of the
transient grating is rotated within the plane of the sample. Since this is a different experimental
approach than in this thesis, it requires an additional theoretical model to describe the blue shift,
which is not provided in this work.
In the third part, the propagation of phonon-polaritons is examined with displacements of the
pump beams up to 1.5 mm with respect to the probe beam. The distance between both beams is
determined with an analysis of the beam profiles on a camera at the sample position, and the delay
time is extracted from the presented time resolved data of the phonon-polaritons oscillations. For
the bulk sample of LiNbO3 a group index of ngroup = 7.07±0.35 is calculated. In the anisotropic slab
waveguide the first and second mode disappear at large displacements due to their higher damping
rates compared to the zeroth mode. This damping occurs because a larger fraction of the electric
field of the phonon-polaritons located inside the waveguide for increasing mode number. The group



41

index of the first excited mode, thus the zeroth waveguide mode states ngroup = 7.83±0.39, slightly
underestimates the theoretical value.
The work by Yang et al. [10] studies the excitation of transverse electric and transverse magnetic
modes in a similar slab waveguide and compares the energy stored in the electric field of different
modes. They find that TE modes are excited more efficiently than TM modes when a similar
excitation fluence is used. Thus, future studies could investigate the propagation of TE modes and
extend the displacement series and observe reflections at the edge of the sample. In this work,
a displacement distance of roughly 2000 µm did not provide any visible signature of phonon-
polaritons in the time resolved data for TM modes.
The frequencies and wave vectors of the excited phonon-polaritons are extracted from the measured
data and plotted with the simulated dispersion relation of the bulk and waveguide of LiNbO3.
With an increased magnitude of the signal and further propagation of the wave packets, a thin
antiferromagnetic sample, e.g. erbium orthoferrite ErFeO3 could be placed onto the bulk sample
of LiNbO3 and magnon-phonon-polariton modes may be induced and investigated as previously
demonstrated by Sivarajah et al. [47]. Generally, this allows selective excitation of samples in close
proximity to the waveguide with well-defined THz frequency.
To examine the entire dispersion relation the experimental setup phase masks with different wave
vectors are needed. By sending the pump beam directly onto the sample without the use of a phase
mask, multiple phonon-polaritons with different wave vectors would be excited at the same time.
The dispersion relation may then be extracted from Fourier analyzing space-time images as done
by Feurer et al. or Yang et al. [6], [10].
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A. Appendix

A. Derivation of the group velocity

The calculation of the group velocity of different phonon-polariton branches in waveguides fol-
lows the steps present in the book of Cronin[34], pages 73-76, adapted to transverse magnetic
modes. Starting from the eigenvalue equation 1.22 and the trigonometric relation kz = n1k0 sinΘi,
differentiating with respect to kz yields

d
dkz

[
k1xd− mπ

2

]
=

d
dkz

[Φ]

d · cosΘi

c

(
n1 +ω

dn1

dω

)
dω

dkz
− k0n1d sinΘi

dΘi

dkz
− dΦ

dkz
= 0 (A.1)

and

d
dkz

kz =
d

dkz
[n1k0 sinΘi] (A.2)

1 =
sinΘi

c

[
n1 +ω

dn1

dω

]
dω

dkz
+ k0n1 cosΘi

dΘi

dkz
. (A.3)

Since the dispersion relation in fig.1.10b) may be approximated linearly for small wave vectors,
material dispersion dn1/dω is neglected. I can extract dΘi/dkz by rearranging equation A.1. Insert
that in equation A.3 yields the group velocity vg as:

vg =
dω

dkz
=

d tanΘi +
∂Φ

∂kz

dn1
ccosΘi

− ∂Φ

∂ω

,

wherein I use the expansion of the total differential dΦ

dkz
= ∂Φ

∂kz
+ ∂Φ

∂ω
· ∂ω

∂kz
. Differentiating the expres-

sion for Φ in equation 1.18 results in:

d
dkz

tanΦ =
d

dkz

γn2
1

k1xn2
2

⇔ (1+ tan2
Φ)

∂Φ
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=

n2
1

n2
2
·

k1x
∂γ
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 .

The Pythagorean theorem in γ =
√

(n2
2−n2

1 sin2(Θi))k2
0 yields the derivatives:

∂k1x

∂kz
=− kz

k1x
and

∂γ

∂kz
=

kz

γ
.

With these expressions and again equation 1.22 the final result emerges

∂Φ

∂kz
=

n2
1n2

2
[
kzk2

1x + γ2kz
]

k3
1xγn4

2 + γ3k1xn4
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.
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For the derivation with respect to ω the same procedure and k0 = ω / c is applied

∂Φ

∂ω
=−

n2
1n2

2
[
k2

1xωn2
2 + γ2n2

1ω
]

c2
(
k3

1xγn4
2 + γ3k1xn4

1

) .

Both expressions are slightly more complex than the corresponding equations for the TE modes:

∂Φ

∂kz
=

kz(k2
1x + γ2)

k1xγ(n2
1−n2

2)k
2
0

∂Φ

∂ω
=−

k2
1xn2

2 + γ2n2
1

ω(n2
1−n2

2)γk1x
.

Both, transverse electric and magnetic modes and their coupling is extensively discussed in [10]. A
comparison of their dispersion relation is depicted in fig.A.1

Figure A.1.: Comparison of the dispersion relation of transverse electric (TE) and transverse magnetic (TM)
waveguide modes.

B. Calculation of the intersection angle Θair

To derive the wave vector of the phonon-polaritons, the intersection angle of the beams on the
sample and the wavelength of the transient grating are required, to confer equation 1.5, both
variables are calculated in the following two sections and summarized in section D. The condition
for an optical grating or transmission grating yields for the first order

λexc = sin
Θ′air

2
λPM

⇒
Θ′air

2
= arcsin

(
λexc

λPM

)
(B.4)

Trigonometry applied on the left triangle between the phase mask, cylindrical lens and the separated
beams provides

tan
Θ′air

2
=

∆x
f1

⇒ ∆x = f1 tan
Θ′air

2
(B.5)
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Δx Δx

Figure A.2.: Simplified sketch of the lens-system that is used to image the phase mask as intensity patter
non the sample. (View from top)

Similar the right triangle by substituting equation B.5

tan
Θair

2
=

∆x
f2

=
f1

f2
tan

Θ′air
2

Inserting into equation B.4 yields

Θair

2
= arctan

[
f1

f2
tan
(

arcsin
λexc

λPM

)]
(B.6)

(B.7)

In the setup shown in chapter 2 the focal lengths are set to f1 = 75 mm and f2 = 100 mm, the central
wavelength of the excitation light is approximately λexc = 807 nm and the most frequently used
phase mask pattern in this thesis has a period of 120 µm so the intersection angle Θair can be
calculated to be:

Θair = 0.58◦ = 0.01rad (B.8)

Thus the small-angle approximation is well satisfied and equation B.6 simplifies to:

Θair

2
= arctan

[
f1

f2

(
λexc

λPM

)]
.

C. Calculation of the wavelength of the transient grating

Here, I shortly explain the transient grating excitation and analysis of the beam profiles. The real
space imaging of the intensity of the intersecting pump beams, or incident probe beam is depicted
in the lower left pattern, the pixel size of the CCD detector of 1.85 µm x 1.85 µm is used for
conversion to length. At the maximum of the x and y component a horizontal, respectively vertical
cut is made and the FWHM for each cut is determined by fitting a Gaussian envelope function.
Additionally, a Fourier analysis of the horizontal cut is provided in order to determine the spatial
period of the transient grating excitation.
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Fluence series

(a) Beam profile of the pump beam for the fluence series

(b) Beam profile of the probe beam for the fluence series

(c) Fourier analysis of the pump beam profile for fluence
series

Figure A.3.: Beam profiles for the pump beam depicted in a) and probe beam, shown in b) and the Fourier
analysis of the pump beam in c) for the fluence series experiments.

The transient grating wave vector ktg of the fluence series yields

λtg = 77.9µm

⇒ ktg = 80.6
rad
mm



46 Chapter A. Appendix

Rotation series

(a) Beam profile of the pump beam for the rotation series

(b) Beam profile of the probe beam for the rotation series

(c) Fourier analysis of the pump beam profile for rotation series

Figure A.4.: Beam profiles for the pump beam depicted in a) and probe beam, shown in b) and the Fourier
analysis of the pump beam in c) for the rotation series experiments.

The transient grating wave vector ktg of the rotation series yields

λtg = 26.2 µm

⇒ ktg = 240.0
rad
mm
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Displacement series

(a) Beam profile of the pump beam for the 0µm displacement

(b) Beam profile of the probe beam for the 0µm displacement

(c) Fourier analysis of the pump beam profile for 0 µm

Figure A.5.: Beam profiles for the pump beam depicted in a) and probe beam, shown in b) and the Fourier
analysis of the pump beam in c) for the displacement series experiments at a displacement of
0 µm.
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(a) Beam profile of the pump beam for the 1550 µm displacement. The observed x-range is shifted by
1550 µm compared to the probe beam, thus the displacement amounts to 1550 µm and the resolution remains
sufficient

(b) Beam profile of the probe beam for the 1550 µm displacement.

Figure A.6.: Beam profiles for the pump beam depicted in a) and probe beam, shown in b) for the displace-
ment series experiments.

The transient grating wave vector ktg of the displacement series yields

λtg = 77.9µm

⇒ ktg = 80.6
rad
mm

D. Summary of the measured and calculated data

The derivation of the wave vector of the phonon-polaritons q is given in equation 1.5. Every series
is separated into the two examined samples, the bulk and waveguide (wg). For the waveguide data,
I distinguish between the three excited modes (0th, 1st and 2nd.)
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Table A.1.: Summary of the measured and calculated data
series sample λPM [µm] λtg[µm] ktg[rad/mm] Θair[

◦] q[rad/mm] fPP[THz]
fluence bulk 114.8 77.9 80.6 0.60 89.4 0.85
fluence wg 0th 114.8 77.9 80.6 0.60 88.4 0.80
fluence wg 1st 114.8 77.9 80.6 0.60 99.4 1.28
fluence wg 2nd 114.8 77.9 80.6 0.60 112.2 1.72
rotation bulk 38.3 26.2 240.0 2.65 253.3 1.80
rotation wg 0th 38.3 26.2 240.0 2.65 252.5 1.74
rotation wg 1st 38.3 26.2 240.0 2.65 256.2 1.99

displacement bulk 114.8 77.9 80.6 0.60 85.6 0.63
displacement wg 0th 114.8 77.9 80.6 0.60 88.2 0.80
displacement wg 1st 114.8 77.9 80.6 0.60 98.6 1.25
displacement wg 2nd 114.8 77.9 80.6 0.60 112.4 1.73
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