What causes the processing advantage in the comprehension of German object relative clauses?

Anne Adelt, Romy Lassotta, Flavia Adani, Nicole Stadie, & Frank Burchert Department of Linguistics, University of Potsdam

COMPREHENSION OF OBJECT RELATIVE CLAUSES

Healthy adults	Individuals with aphasia (IWAs)	
 Offline performance: At ceiling ^[1] Morphological features play an important role in sentence comprehension ^[1] 	 Offline performance: Within chance range (in sentence-picture verification tasks) ^[1] Difficulties in the interpretation of morphologica 	
 Online processing: Processing advantage: Case marking > number marking (i.e., sentences disambiguated by subject- verb agreement)^[2,3] 	 case and number features But better preserved comprehension of case- marked than of number-marked sentences ^{[1,4} No online processing data available yet 	

Sentences

AIMS OF THE STUDY

Provide online (visual-world paradigm) and offline data in aphasia

- What causes the processing advantage for case marking over number marking?
 - 1. Functional differences between morphological features
 - \Rightarrow Prediction: Case \neq Number

OR

2. Differences in point of disambiguation ⇒ Prediction: Immediate > Early > Late disambiguation

PARTICIPANTS

MATERIAL – METHOD – ANALYSIS

Individuals with aphasia

ID	Age (yrs)	Sex	Time post- onset (yrs)	Aphasic syndrome, severity ^[5]	
Poi	62	М	20	Broca, moderate	
Po2	46	F	2	Broca, moderate	
Po3	70	М	2	Broca, moderate	
Po4	60	М	2	Broca, moderate	
Po5	49	F	20	Broca, mild	
Po6	43	F	15	Anomic, mild	
Po7	51	Μ	14	Anomic, mild	
Po8	61	М	12	Anomic, mild	
Po9	64	Μ	4	Anomic, mild	
P10	75	М	2	Wernicke, mild	

Age: Mean=58.1 yrs, range=43–75 yrs

> Comprehension:

• Single words and semantically irreversible sentences [6,7]

• Semantically reversible non-canonical sentences [7] X

Healthy adults

> 35 participants (19 female, Age: Mean=58.4 yrs, range=38–75 yrs)

\geq n=48 target sentences: Interrogative object relative clauses (ORCs), 3 conditions, 16 items per condition:

(ertes)/ j contaicions/ zo recins per contaicion				
Feature	Disambiguation point	Example		
Case	Immediate: Relative pronoun	Wo ist der Hamster, den gerade der Frosch wäscht? Where is the hamster that the frog is currently washing?		
Case	Early: Embedded subject	Wo ist die Ente, die gerade der Fisch wäscht? Where is the duck that the fish is currently washing?		
Number	Late: Verb	Wo ist das Kamel, das gerade die Vögel waschen ? Where is the camel that the birds are currently washing?		

> n=48 filler sentences: Subject relative clauses with immediate, early, or late disambiguation

Data analysis

> Offline: Accuracy in referent identification task

- > Online: Eye movements (proportion of looks to target)
- Regions of interest:

Baseline	Matrix clause	Relative clause	Silence
2000 ms before	Wo ist der	den gerade der	2000 ms after
sentence onset	Hamster	Frosch wäscht?	sentence offset

Visual-world paradigm

 \succ Eye tracking with referent identification task^[8]

RESULTS - ACCURACY

RESULTS – EYE MOVEMENTS

Controls (correct responses)

IWAs Correct responses

Incorrect responses

DISCUSSION

Controls:

Number

Late

63 | =

69 | =

56 | =

44 | =

69 | =

50 =

31 =

19 | <

56 | =

53 | =

51 | =

Early

63 | =

88 | >

56 | =

75 | >

81|>

75 | >

44 =

31 | =

56 | =

47 | =

62 | >

> Accuracy:

- Better comprehension of case-marked than of numbermarked ORCs^[1]
- Impact of morphological features instead of disambiguation point

> Eye movements:

 Incremental use of morphological features ⇒ Increase in target looks tied to disambiguation point

IWAs:

> Accuracy:

- No comprehension advantage for case- or numbermarked ORCs ⇒ Equally impaired comprehension
- Heterogeneous performance pattern across IWAs

> Eye movements:

- No processing advantage for any morphological feature or disambiguation point
- Incorrect responses: Misinterpretation of morphological features after sentence offset^[10]

CONCLUSION

Linear Mixed Models

 \succ Case: Immediate > Early from Region 2 to 3 (β =-0.03, p<.01), **Immediate < Early** from Region 3 to 4 (β =0.05, p<.001) \succ Case > Number from Region 2 to 3 (β =-0.03, p<.001)

Error bars =M±SE.

- **Case: Immediate = Early** for all regions (sliding contrast coding) (*p*>.05)
 - \succ Case = Number for all regions (p>.05)
 - Effect of accuracy: Correct > incorrect responses from Region 3 to 4 (β =-0.19, *p*<.001)

Functional difference or point of disambiguation – what causes the processing advantage?

Healthy adults' comprehension of ORCs benefits from case marking. The online data reveal that the processing advantage is caused by an earlier disambiguation point for case marking, rather than by functional differences between case and number features.

In IWAs, neither functional differences between features nor different disambiguation points result in a processing advantage.

References: ^[1] Burchert et al. (2003). *Brain and Language*. ^[2] Meng, & Bader (2000). *Language* and Speech. [3] Friederici et al. (1998). Biological Psychology. [4] Bates et al. (1987). Brain and Language. ^[5] Huber et al. (1983). Aachener Aphasie Test. ^[6] Stadie et al. (2013). LEMO 2.0. ^[7] Burchert et al. (2011). Sätze verstehen. ^[8] Adani, & Fritzsche (2015). Proceedings of the 39th Annual Boston University Conference on Language Development. [9] Jaeger (2008). Journal of *Memory and Language*. ^[10] Hanne et al. (2015). *Journal of Neurolinguistics*.

This work was supported by the German

Research Foundation (DFG, grant AD 408/1-1).

Contact Anne Adelt adelt@uni-potsdam.de