Übungen zur Vorlesung Theoretische Chemie I: Teil 2, Chemische Bindung (Modul A8) Blatt 1

Aufgabe 1: Atomare Einheiten.

- a) Drücken Sie in atomaren Einheiten aus:
 - $3.0 \,\text{eV}$, $6.1 \times 10^{-21} \,\text{J}$, $2000 \,\text{cm}^{-1}$.
 - 2.0 Å, 15 m, 17 pm.
- b) Welches sind die atomaren Einheiten (ausgedrückt durch E_h , \hbar , a_0) der folgenden Größen? Geben Sie jeweils den Umrechnungsfaktor X von atomaren nach SI-Einheiten an (Bsp.: 1 $a_0 = 0.52918 \cdot 10^{-10}$ m).
 - Zeit
 - Geschwindigkeit
 - Kraft
 - Dipolmoment
 - Elektrische Feldstärke
 - Polarisierbarkeit
- c) Geben Sie die Energie folgender Systeme in atomaren Einheiten an:
 - C^{5+} in den Zuständen n=1 und n=3.
 - Li (Konfiguration $(1s)^2(2s)^1$) im Modell unabhängiger Elektronen.
 - Bonus: Wie lautet für Li (mit interelektronischer Wechselwirkung) der Hamiltonoperator in atomaren Einheiten?

Aufgabe 2: Elektronische Wellenfunktionen.

a) Gegeben seien zwei Spinorbitale

$$\chi_1(\underline{r},\omega) = \psi_{1s}(\underline{r}) \cdot \alpha(\omega)$$

$$\chi_2(\underline{r},\omega) = \psi_{2p_z}(\underline{r}) \cdot \alpha(\omega)$$

des Wasserstoffatoms.

Zeigen Sie, unter Berücksichtigung der Orthonormalität der räumlichen Orbitale ψ_{1s} und ψ_{2p_z} , sowie der Orthonormalität der Spinfunktionen $\alpha(\omega)$ und $\beta(\omega)$, dass auch die Spinorbitale orthonormal sind. Zeigen Sie hierzu, dass

$$\langle \chi_1 | \chi_1 \rangle = \int \chi_1^*(\underline{r}, \omega) \chi_1(\underline{r}, \omega) \ d\underline{r} d\omega = 1$$
$$\langle \chi_2 | \chi_2 \rangle = 1$$
$$\langle \chi_1 | \chi_2 \rangle = 0$$

b) Aus χ_1 und χ_2 kann eine Slater-Determinante für ein hypothetisches Zweielektronensystem ("H⁻-Ion ohne interelektronische Wechselwirkung")

$$\Psi(1,2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(1) & \chi_2(1) \\ \chi_1(2) & \chi_2(2) \end{vmatrix}$$
 (1)

erzeugt werden.

- i) Warum setzt man elektronische Wellenfunktionen in Determinantenform an?
- ii) Schreiben Sie die Determinante als Summe von Produkten von Raumorbitalen und Spinfunktionen.
- iii) Zeigen Sie, dass die Slater-Determinante auf 1 normiert ist, also $\int \int \Psi^*(1,2) \ \Psi(1,2) \ d\underline{r}_1 \ d\underline{r}_2 \ d\omega_1 \ d\omega_2 = 1.$
- iv) Versuchen Sie zu entscheiden, ob es sich bei (1) um einen Singulettoder einen Triplettzustand handelt. Versuchen Sie hierzu, $\psi(1,2)$ in der Produktfrom $R(\underline{r}_1,\underline{r}_2)\cdot\Phi(\omega_1,\omega_2)$ zu schreiben.
- v) Zeigen Sie, dass mit der Wahl $\chi_1 = \psi_{2p_z} \cdot \alpha$ und $\chi_2 = \psi_{2p_z} \cdot \alpha$, die Slater-Determinante (1) verschwindet. Welchen Schluss ziehen Sie daraus?