

Capsaicin Utilization for Cough-Response Elicitation (CURE): Variability in Healthy Persons – A Pilot Study

University of Potsdam, Cognitive Sciences Cluster, Swallowing Research Lab

Introduction

Cough reflex testing is essential for detecting airway protection deficits in dysphagia. Application under tidal breathing conditions is not yet standardized with respect to:

- materials and methods of application
- dose-response specification
- individual impact factors

To develop a tidal-breathing capsaicin challenge and establish a doseresponse normative data base for clinical application.

Research Questions

Dose-Response Specification:

Is there an association between increasing capsaicin doses and

- **Latency** from first tidal breath to first cough?
- 2. Number of cough responses?
- Urge-to-cough?

Impact Factors:

Do individual factors have an impact on cough sensitivity

- a. Gender
- Smoking habits
- Spicy-food consumption
- d. Spicy food tolerance

Results

1. Dose–Response Specification:

1. Latency to first cough: No significant dose effect

Cox proportional hazards $\to HR = 0.93$; 95% CI 0.69–1.26; p = 0.63

2. Cough count: No significant dose effect

Negative-binomial GLMM \rightarrow IRR = 0.87 per dose step; p = 0.27

3. Urge-to-cough: No significant dose effect

Linear mixed model $\rightarrow \theta = -2.55$; p = 0.40

2. Impact Factors:

- a. Gender => <u>no group differences</u> in
 - 1. Latency (U=493.5, z=-.238, p=.812)
 - 2. Coughs (U=492, z=-.259, p=.796)
 - 3. Urge-to-cough (U=473.5, z=-.465, p=.642)
- Smoking habits => <u>no group differences</u> in
 - **1.** Latency (U=704, z=-.672, p=.501)
 - 2. Coughs (U= 678.5, z= -.851, p= .395)
 - 3. Urge-to-cough (U=650.5, z=-1.16, p=.246)
- c. Spicy food consumption => <u>no group differences</u> in
 - **1. Latency** (χ^2 [2]= 1.82, p= .394)
 - 2. Coughs ($\chi^2[2]$ = .789, p= .674)
 - 3. Urge-to-cough (χ^2 [2]= .571., p= .752)
- d. Spicy food tolerance => <u>no association</u> with

a. Latency (r_s = -.063, p= .579)

- **b.** Coughs (r_s = -.085, p= .455)
- c. Urge-to-cough r_s = -.061, p= .592)

Methods & Materials

Participants:

20 healthy adults (24-45 yrs, M=27.7, SD=4.43), no neurological, respiratory or GI disease

- a. Gender: male = 16, female = 4
- Smoking: no = 12, yes = 8
- Spicy food consumption: daily = 9, weekly = 7, monthly = 4
- Spicy food tolerance (1-10): 3-8 (M= 6.2 , SD= 1.4)

Capsaicin Challenge:

- 0.64 mg/drop extract (500k SHU)
- Incremental doses of 1–4 drops mixed into 200 mL carbonated water (\sim 10.5–41.9 μ M).

solution mixed < 10s

washout after each dose 1 min

Data Collection:

- Latency (s) to first cough (video-timed, 60 fps)
- Cough count (first 15s post-inhalation)
- **Urge-to-cough** (0–100 Visual Analogue Scale VAS)

Interesting Observations

Significant associations:

- More coughs \Leftrightarrow higher urge-to-cough (r_s = .73, p< .001)
- Older participants \Leftrightarrow lower latency to first cough (r_s = -.18 , p= .045)
- Smokers \Leftrightarrow fewer coughs (M=0.9; SD=1.2; 0-3) and lower urge-to**cough** (M=26; SD=26.6; 0-98) than non-smokers (coughs: M=1.23; *SD*= 1.3; 0-4, urge-to-cough: *M*= 42; *SD*= 36; 0-100).

Discussion & Future Directions

- Surprisingly, we found no clear dose-response relationship in a tidal breathing Capsaicin Challenge => Higher capsaicin doses did not significantly alter latency, cough frequency, or urge-to-cough.
- No significant effect of gender, smoking habits and spicy-food consumption or tolerance. Occasional smokers trended toward fewer coughs and lower urge-to-cough
- Positive association between number of cough responses and subjective urge-to-cough => confirms general internal validity of the tidal breathing method

Limitations:

- > larger and more homogeneous sample size needed
- modification of the test procedure: dropper dosing may lack precision compared to nebulizer methods; aerosolization by carbonated water might increase response variability