

Sanne Houtenbos^{*1,2}, Yangyang He¹, Karin Wuertz-Kozak^{4,5} and Pia-Maria Wippert^{1,3}

¹Medizinische Soziologie und Psychobiologie, Universität Potsdam, 14469 Potsdam, Germany ²Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany ³Faculty of Health Sciences Brandenburg, Joint Faculty of the University of Potsdam, the Brandenburg, Medical School Theodor Fontane and the Brandenburg University of Technology Cottbus—Senftenberg, 14469 Potsdam, Germany ⁴Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA ⁵Spine Center, Schön Klinik München Harlaching, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), 81547 Munich, Germany

Difference in miRNA expression between depressed patients and healthy controls and their association with bone health – an experimental study

Introduction

- Depression is a risk factor for osteoporosis and mechanisms behind the influence of depression on bone health are not fully comprehended^{4,5}
- Molecular changes play a role in the pathways of stress-related disorders such as depression⁴
- miRNAs are non-coding parts of RNA that influence gene

miR-20b, miR-223 and miR-23a, respectively

- All five miRNAs mentioned above were down-regulated.
- miR-106a, miR-20b, miR-223 show exceptionally high expressions in bone tissue compared to other tissues, and play roles in osteogenesis, and osteoclast differentiation, respectively^{2,6,7}

Depression vs Healthy Controls • Up • Not sig • Down

expression and used as biomarkers for several diseases^{1,3}

Aim: determine the five most altered miRNAs in people affected by depression and their association with bone health

Methods

- A subsample of depressed patients were selected out of a previous study (n=220) and additionally n=14 healthy controls were recruited in Potsdam, Germany
- 10mL blood per person was drawn into EDTA blood tubes

Figure 1. Sample selection and the procedure for miRNA analysis

- miRNA expression was analysed through extracellular vesicle isolation and qPCR analysis, and analysed with qPCR analysis software
- Associations of the five most altered miRNAs with bone health were examined through the miRNA TissueAtlas2.0 from the Saarland University, Germany

Figure 2. miRNAs with the biggest differences (2-fold regulation change; adjusted *p*-value<0.05) between the depressed and healthy sample

Discussion

- Various miRNAs show an altered expression in depressed patients and simultaneously play a role in bone metabolism.
- These miRNAs could potentially be used as biomarkers for the influence of depression on bone
- Future analyses should investigate the association of altered miRNAs due to stress-related disorders with bone health in more detail and within a bigger sample to confirm or deny the current findings

Results

Literature

- Data of n=20 participants: 11 depressed ($M=47\pm11y$; 64%) female) and 9 healthy controls ($M=32\pm11y$; 56% female) were analysed (Figure 1)
- 380 miRNAs were analysed: 3 were significantly up- and 16 downregulated in the depressed sample compared to the controls
- (2-fold regulation change; adjusted *p-value*<0.05; Figure 2)
- The five miRNAs with the highest alteration and significance in expression in depressed patients were **miR-106a**, **miR-24**,
- 1. He, Y., Kuehl, L. K., Wuertz-Kozak, K., Wippert, P.-M. (2021). Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis. Bone Ontogeny, Embryology, and Homeostasis. International Journal of Molecular Sciences, 22. doi: doi.org/10.3390/ijms22115846
- 2. Jing, D., Hao, J., Shen, Y., Tang, G., Li., M.-L., Huang, S.-H., Zhao, Z.-H. (2015). The role of microRNAs in bone remodelling. International Journal of Oral Science, 7. doi: <u>https://doi.org/10.1038/ijos.2015.22</u>
- 3. O'Brien, J., Hayder, H., Zayed Y, Peng C (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 9:402. doi: 10.3389/fendo.2018.00402
- 4. Wippert, P-M., Rector, M., Kuhn, G., Wuertz-Kozak, K. (2017). Stress and alterations in bones: An interdisciplinary perspective. Front Endocrinol (Lausanne), 8(96). doi: 10.3389/fendo.2017.00096
- 5. Wippert PM, Block A, Mansuy IM, Peters EMJ, Rose M, Rapp MA, Huppertz A, Wuertz-Kozak K. (2019). Alterations in Bone Homeostasis and Microstructure Related to Depression and Allostatic Load. Psychother Psychosom 88(6). doi: <u>10.1159/000503640.</u>
- 6. Wu Y, Ai H, Zou Y, Yang Q, Dou C, Xu J. (2023). Osteoclast-derived extracellular miR-106a-5p promotes osteogenic differentiation and facilitates bone defect healing. Cell Signal. 102:110549. doi: 10.1016/j.cellsig.2022.110549.
- 7. Xie, Y., Zhang, L., Gao, Y., Ge, W., Tang, P. (2015). The multiple roles of Microrna-223 in regulating bone metabolism. MDPI: *Molecules, 20(10).* doi: <u>10.3390/molecules201019433</u>

Universität Potsdam, Humanwissenschaftliche Fakultät, Professur für Medizinische Soziologie und Psychobiologie E-Mail: sanne.houtenbos@uni-potsdam.de; Telephone: (0331) 977-153039