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ABSTRACT

Larynx microphones (LMs) make it possible to obtain practically crosstalk-free
recordings of the human voice by picking up vibrations directly from the throat. This
can be useful in a multitude of music information retrieval scenarios related to singing,
e.g., the analysis of individual voices recorded in environments with lots of interfering
noise. However, LMs have a limited frequency range and barely capture the effects of
the vocal tract, which makes the recorded signal unsuitable for downstream tasks that
require high-quality recordings. In this paper, we introduce the task of reconstructing
a natural sounding, high-quality singing voice recording from an LM signal. With an
explicit focus on the singing voice, the problem lies at the intersection of speech
enhancement and singing voice synthesis with the additional requirement of faithful
reproduction of expressive parameters like intonation. In this context, we make three
main contributions. First, we publish a dataset with over 4 hours of popular music
we recorded with four amateur singers accompanied by a guitar, where both LM and
clean close-up microphone signals are available. Second, we propose a data-driven
baseline approach for singing voice reconstruction from LM signals using differentiable
signal processing, inspired by a source-filter model that emulates the missing vocal
tract effects. Third, we evaluate the baseline with a listening test and further show that
it can improve the accuracy of lyrics transcription as an exemplary downstream task.
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1. INTRODUCTION

Many tasks in the field of music information retrieval
(MIR), like automatic music transcription or fundamental
frequency (FO) analysis, become significantly easier
when separated, monophonic audio signals of individual
instruments and voices are available. Similarly, music
post-production and mixing rely on multi-track recordings
to selectively apply audio effects and balance levels. The
singing voice is often particularly challenging in those
scenarios, due to its large dynamic range and possibility
for nuanced expression. While in popular music the
separation into monophonic multi-track signals can
often be accounted for in the recording process, e.g.,
by consecutively recording individual singers with a
close-up microphone (CM), this is not always possible or
desirable. In order to facilitate the natural interaction (in
terms of timing, expression, intonation, etc.) between
musicians, voices, and/or room acoustics, it may instead
be preferable or even necessary to record multiple
musicians or instruments at the same time and in the
same space. This way, a choir performing in a church, an
ethnomusicological field recording of a vocal ensemble,
or a singer-songwriter accompanying themselves on
a guitar can become challenging for computational
analysis and post-production.

Larynx microphones (LMs) provide a practical way to
obtain almost crosstalk-free signals of the voice by picking
up vibrations at the throat. By design, such a sensor is
insensitive to sound waves transmitted through the air
and therefore to other interfering sound sources in the
environment. However, the LM signal quality is typically
degraded by a limited frequency response as well as
missing effects of the vocal tract, i.e., the contribution
of the oral and nasal cavity responsible for vowel and
consonant formation, which are only indirectly picked
up at the throat. This limits applications of LMs to cases
where audio quality is not a primary concern, like radio
communication in noisy environments.

In this paper, we explore the task of singing voice
reconstruction (SVR), which aims at obtaining high-quality
recordings of singing voice using impaired signals as the
input. By using the new term SVR, we want to emphasize
important differences to related and established tasks
in the research fields of signal processing and MIR, like
speech enhancement or singing voice synthesis. In
particular, the focus on the singing voice requires careful
treatment and preservation of expressive parameters,
while at the same time such recordings often include
many highly correlated interfering sources. With a focus
on SVR from larynx microphone signals (referred to as
LM-SVR in the following), we consider a particular SVR
scenario in this paper: reconstructing a high-quality
singing voice recording — as it could be recorded with
a typical CM in ideal conditions — from a monophonic
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Figure 1 Conceptual overview of SVR from LM signals. Time-
frequency representations of an exemplary LM signal and the
corresponding reconstructed signal are depicted in red and
grey, respectively.

LM signal, thus circumventing the problem of crosstalk
during recording, while faithfully retaining the nuanced
vocal expression captured in the original signal. Such
a reconstructed recording could then be used for
downstream applications like mixing or analyzing it with
computational systems that require high-quality input,
as outlined in Figure 1.

Beyond introducing this novel MIR task, we make
three main contributions in this paper. First, we introduce
the Larynx Microphone Singer-Songwriter Dataset (LM-
SSD), a collection of twelve pop songs performed by four
amateur singers accompanied by an acoustic guitar,
comprising over 4 hours of unique recordings of LM and
corresponding CM signals. This dataset may facilitate
research on LM-SVR, but also other tasks like source
separation or singing voice analysis. Second, we describe
a baseline LM-SVR system which is inspired by source-
filter models of the vocal tract, using the LM signal as
a source signal and learning the control parameters of
a time-variant filter with a neural network. Third, we
evaluate the baseline LM-SVR system with a listening
test and show that this approach improves the subjective
quality of the LM recordings, while also improving
objective performance in the exemplary downstream
task of lyrics transcription.

The remainder of this article is structured as follows. In
Section 2, we consider SVR in the context of related signal
processing and MIR tasks, Section 3 describes related
work and use cases for LMs, and Section 4 introduces
LM-SSD including details of the two LM models used that
we compare in terms of their signal characteristics and
handling. Section 5 describes our baseline system for LM-
SVR, complemented by our experiments with a listening
test and objective evaluation on a lyrics transcription
task in Section 6.
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2. SINGING VOICE RECONSTRUCTION

We define singing voice reconstruction (SVR) as the
task of obtaining a natural sounding, artifact-free, and
broadband signal without crosstalk from an impaired
recording of the singing voice, without changing the
original expression in the recording. Typical impairments
include adverse recording conditions or limitations of the
sensor. With that, SVR is related to several established
research areas in signal processing and MIR.

Speech enhancement (SE) focuses on the suppression
of artifacts, noise, and other interfering sources from an
otherwise high-quality speech signal (Vincent et al. 2018).
While classical SE methods often rely on additional (e.g.,
spatial, see Benesty et al. 2008) information about the
recorded signals, state-of-the-art SE systems use data-
driven approaches to encode the impaired signal in a
typically lower-dimensional latent representation and
then decode a new, clean speech signal from that (e.g.,
Serra et al. 2022). Similar methods have been employed
for singing voice synthesis (SVS), where an interpretable
latent representation may enable general-purpose
synthesis models (Choi et al., 2021, 2022). Naturally, such
systems depend critically on the expressivity of the latent
representation and the distribution of training examples,
as the decoder may not learn to generate a signal with
characteristics that are not observable in the training set.
This lack of control is particularly problematic for singing
voice signals (Cho et al,, 2021), as important expressive
parameters like FO are highly variable within individual
notes (Dai and Dixon, 2019) and may not be accurately
reproduced by SE or SVS systems, even when FO is explicitly
given in the latent representation (Choi et al., 2022).

Furthermore, in music, desired and interfering sources
may be highly correlated, for example when multiple
musicians are singing in unison. This problem is subject
of the MIR task of musical source separation (MSS, Cano
et al. 2019). State-of-the-art systems often introduce
characteristic artifacts and reach signal-to-distortion
ratios of around 8 dB for vocals on popular music
recordings (Mitsufuji et al, 2022), so that separately
recording individual instruments and voices is still
preferable for many use cases. This recording-time
separation can be achieved, for example, with LMs. Since
these produce band-limited sensor signals, LM-SVR s also
related to blind bandwidth extension (BBWE). BBWE aims
for the reconstruction of high-frequency content from a
clean but band-limited audio signal without additional
side information. Systems often focus on a specific signal
domain like speech, where successful approaches model
aspects of speech production (Schmidt and Edler, 2021).
Apart from subjective quality, BBWE can also improve
performance of downstream tasks like speech recognition
(Lietal, 2019). Adapting such an approach to the singing
voice and larynx microphones is one objective of SVR as
introduced in this paper.

3. LARYNX MICROPHONES

Larynx  microphones  (LMs), also called throat
microphones, are a type of contact microphone. In
general, contact microphones are designed to record
vibrations of the surface they are attached to, while
being insensitive to sound waves transmitted through
air. For LMs, this is typically achieved using a piezo-
electric sensor placed on the skin of the neck. This way,
one can obtain well-separated signals of individual
speakers or singers in all kinds of acoustic conditions.
The quality of the recorded signal depends on two
factors: the properties of the sensor itself and the way
that vibrations are propagated from the source through
tissue and/or bones to the receiver. Notably, while the
vocal fold vibrations are predominant at the neck, some
influences of the vocal tract producing formants and
consonants are also present as vibrations in neck tissue
(Otani et al., 2006), so that for example speech recorded
with an LM can become intelligible. A detailed account
of the signal characteristics of two particular LM models
used for our dataset is given in Section 4.1.3. To get a
subjective impression of the signal qualities, we also refer
to the online examples accompanying this paper.!

Another sensor type for LMs has been subject of
research on non-audible murmur (NAM, Nakajima et al.
2003).Here, the goalis to pick up whispered speech, which
is achieved with a condenser microphone embedded in
a soft material that is attached to the skin (Shimizu et
al., 2009). Similarly, bone conduction microphones are
contact microphones that are adapted to the specific
impedance of the skull (Henry and Letowski, 2007). While
they may provide more flexibility in their positioning
(McBride et al.,, 2011), the quality of the recorded signal
for both NAM and bone conduction microphones is
generally comparable to that of LMs.

A different technique for picking up the vocal fold
vibrations is electroglottography (Herbst, 2020), where
the impedance change between open and closed states
of the vocal folds is measured. Recordings with this
method are particularly insensitive to any influences of
the vocal tract and do not contain enough information
to reconstruct a speech or singing signal, but can for
example be used to measure FO (Askenfelt et al., 1980).

LMs have shown their utility ina number of applications
in speech and music processing. Graciarena et al. (2003)
showed that the information from LMs can improve
speech recognition in noisy environments. Askenfelt
et al. (1980) used LM signals for FO estimation, which
recently received renewed attention in the context of
pitch and intonation analysis of Western choir recordings
(Rosenzweig et al.,, 2020). Scherbaum (2016) showed
how LM recordings can aid musicological research, e.g.
to computationally determine the tonal organization
of traditional Georgian music (Scherbaum et al., 2022;
Rosenzweig et al,, 2022).
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4. LM SINGER-SONGWRITER DATASET

As a main contribution of this paper, we introduce the
Larynx Microphone Singer-Songwriter Dataset (LM-SSD)
and make it publicly available. LM-SSD is a collection of
twelve pop songs that we recorded with four different
amateur singers accompanied by a quitar, featuring a
solo singer for nine songs and a duet for three songs.
In total, the dataset consists of 72 takes with a total
playback duration of 250 minutes, as detailed in
Table 1 below. While similar datasets exist for speech
(e.g., Dekens et al. 2008; Stupakov et al. 2009), this is,
to our knowledge, the first dataset with singing voice
recordings using LMs and a synchronous, high-quality,
and crosstalk-free CM signal.

LM-SSD is designed to provide signals with
consistent recording quality and conditions, as well as
instrumentation, while variables like sensor choice, singer,
song, and crosstalk are varied systematically. Beyond
research on LM-SVR and related tasks, the dataset can
for example be used for experiments on analyzing LM
signals directly (e.g., for FO estimation), or the evaluation
of domain adaptation in data-driven systems (see e.g.
Section 6.2). Additional mix tracks for each song, as well
as annotated lyrics furthermore enable use cases like
experiments with source separation (possibly informed
by LM signals) or lyrics transcription. In the following, we
will describe the sensors used (Section 4.1), the recording
process (Section 4.2) and the content of the dataset
(Section 4.3) in detail.

4.1 LM MODELS USED

In order to analyze differences between sensors, their
handling, and their utility for singing voice recordings,
we used two LM models for recording the dataset: the
commercially available Albrecht AE-38-S2a (LM-2) and
a self-made microphone based on TE Connectivity CM-
01B piezo-electric vibration sensors (LM-B). A direct
comparison of their properties can be found in Section
4.1.3.

4.1.1 LM-A: Albrecht AE-38-S2a

LM-A is a commercially available device built for radio
communication in the security sector. It has two contact
microphones at either end of a size-adjustable neck
brace (see Figure 2, bottom left). With the adjustable
brace it suits a variety of neck sizes, even though it
tends to have a looser fit on smaller necks, resulting in
a higher probability of movement-induced noise. For all
recordings, we aimed to position the sensors as close to
the larynx as possible while allowing the musicians to be
comfortable while singing. The two analog sensor signals
are electrically summed by a connection in series, but
the manufacturer provides no details on frequency range
or other properties of the sensor. We adapt the 3.5mm

LM-B Detail

Figure 2 Photograph of the recording setup (top) and detailed
depiction of the LMs used (bottom). LM-A: Albrecht AE-38-
S2a larynx microphone; LM-B: self-made larynx microphone
with TE Connectivity CM-01B sensor; cM: close-up microphone
(Neumann U87); Ge: guitar pickup (AMG Electronics C-Ducer);
GL/GR: guitar stereo left/right (AKG C414).

TRS connector of the device to XLR using a Rede VXLR+,
which also converts 48V phantom power to the required
supply voltage of 3.8V.

4.1.2 LM-B: CM-01B

LM-B is a self-made larynx microphone using two piezo-
electric vibration sensors (TE Connectivity CM-01B) and
a 3D-printed neck brace. The sensor is optimized for
detecting body sounds, whose vibrations are transmitted
via a small rubber pad on the device. It is marketed with
a frequency range of 8 to 2200 Hz (¥3 dB). To achieve
comparability with LM-2A, we use two sensors on either
end of the brace and digitally sum the signals after
recording. The sensors are attached to the neck brace
with a screw that is glued onto the backside of the sensor
and a spring that pushes the sensor lightly towards the
skin of the neck (see Figure 2, bottom middle). The sensor
contact point can be adjusted and is further away from
the larynx than with LM-2, which singers reported to
be more comfortable. The neck brace is not adjustable
to different neck sizes, but it can be printed in different
dimensions, which also makes it possible to specifically
fit the brace for individual persons.

4.1.3 Signal characterization & comparison

Obtaining objective measurements of the LM voice signal
characteristics is challenging, as the properties of the
transmitting medium and the vibration source(s), as
well as possible losses at the contact point have to be
taken into account. A direct transfer function between
source and receiver cannot be measured, because the
ground truth “source signal” is not available. Instead, we
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Figure 3 Relative transfer function (RTF) estimates w.r.t. cM for
LM-A (top) and LM-B (bottom). RTF estimates for individual
singers are shown in grey (1M: solid, 2M: dashed, 3F: dotted,
4¥: dash-dotted). The black line indicates the mean RTF across
singers for each LM model.

consider the relative transfer function (RTF) between CM
and LM as a first indication of the similarity between the
LM signals and traditional microphone recordings. Using
an unbiased estimator (see Appendix A.1 for details), we
calculate RTF estimates for the two LM models using the
crosstalk-free recordings (cf. Section 4.2) from LM-SSD.
Results for signals from individual singers (in grey) and
their average (in black) are presented in Figure 3, where
an RTF value around 0 dB signifies that CM and LM signals
tend to have similar energy at a given frequency. The RTF
for LM-A remains around 0 dB below 700 Hz and drops
off at higher frequencies by -9 dB per octave on average.
LM-B boosts low frequencies by up to +20 dB below 20 Hz
and the RTF continuously drops towards high frequencies
by around -6 dB per octave. Between 80 to 700 Hz, the
approximate range of the FO of male singing voices,
energy levels of LM-A and TLM-B are fairly similar to the
CM signal. The estimates for different singers are similar
within + 5 dB in the relevant frequency range, which is an
indication that both LM models are fairly robust w.r.t. fit
and exact positioning.

The RTF does, however, not allow conclusions about
noise levels and distortion of the LM relative to the
CM signal. For that, we can additionally measure the
coherence between the two signals, showing whether
they are linearly related at a given frequency. When the
maximum coherence of 1 is achieved, a linear filter exists
to calculate the corresponding CM signal from an LM
recording and vice versa. Conversely, minimum coherence
of 0 is reached when no linear relationship exists, e.qg.,
when one or both signals are uncorrelated noise or one
signal contains non-linear distortions. Figure 4 shows
coherence estimates (see Appendix A.2 for details of
the method) for the signals from individual singers (in
grey) and their average (in black). Between 80 Hz and 3.5
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Figure & Coherence estimates w.r.t. cM for LM-2 (top) and
LM-B (bottom). Coherence estimates for individual singers are
shown in grey (1M: solid, 2M: dashed, 3F: dotted, 4F: dash-
dotted). The black line indicates the mean coherence across
singers for each LM model.

kHz (the range of FO and the first few harmonics of the
recorded voices), the CM and LM signals are somewhat
linearly related, but the coherence rarely exceeds 0.6,
hinting at the presence of noise and distortion in the LM
recordings. The low coherence at low frequencies is due
to the singing voice not being present on the CM below
FO, while the LMs, particularly LM-B, might still record
relevant signal. The mean coherence for LM-B is slightly
larger towards high frequencies, which can at least
partially be attributed to a stronger distortion in the LM-A
signal when singing with higher intensity.’

Finally, we also measure the sensitivity of each
LM w.rt. interfering sound transmitted through the
air. We consecutively record the LM signals while an
external noise source is playing and while the wearer is
singing, both reaching the same sound level at a fixed
measurement position in the room. The level difference
between these two recordings gives a relative measure
for the “crosstalk sensitivity”, indicating the dampening
of surrounding sounds compared to the voice of
the wearer. We estimate -60 dB for LM-A and -55 dB for
LM-B.

While the objective properties are similar for both LM
models, the high-frequency distortion of LM-A at higher
volumes also subjectively reduces the signal quality.
Furthermore, singers reported higher comfort wearing
LM-B, as the contact point of the sensors is less close
to the throat, while the self-made construction offers
higher flexibility due to the possibility of customizing
the neck brace and individually recording left and right
sensor signals. On the other hand, LM-A requires only
one recorder channel and is more robust in handling
(as it is constructed as a single piece without removable
parts) and fit (due to the adjustable brace), which can be
an advantage, e.qg., for field recordings.
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4.2 RECORDING SETUP & PROCEDURE

LM-SSD comprises recordings of two male (denoted
1M and 2M) and two female (3F and 4F) university
students. All musicians are amateur singers without
formal music training and only limited stage or
recording experience and consented in writing to the
processing and publication of the recordings. Each
singer selected three pop songs they felt comfortable
with in terms of vocal range and techniques. While 1M
and 2M accompanied themselves on the guitar, 3F and
4F were accompanied by a second musicians, while 3F
also sang in duet with 1M. Two of the songs have lyrics
in German language, while the others are in English.
An overview of the songs in the dataset is given in
Table 1.

The musicians were recorded in a studio room
with little reverberation and optimized acoustics for
pop music recording. As depicted in Figure 2 (top), the
recording comprises a traditional microphone setup,
including a close-up vocal microphone (cM; Neumann
U87, set to cardioid) with a pop filter, a stereo close-up
microphone pair for the guitar (6L and GR for left and
right channel, respectively; AKG C414, set to cardioid)
and a guitar pickup microphone (Gp; AMG Electronics
C-Ducer). In addition, all singers were wearing one of the
two LM models (see Section 4.1) at a time to record their
voice. Preliminary experiments showed that the optimal
positioning of the LM on the neck would be compromised
if both LMs were worn at the same time, as both record
the cleanest signals when positioned high on the neck
and as close as possible to the larynx without becoming
uncomfortable for the singer. Note that, depending on
the singer’s distance to the CM, there is a small time-

varying delay between the CM and LM signals,® which we
do not compensate for in the dataset.

In total, six takes were recorded for each song, three
with LM-A (T1-T3) and three with LM-B (T4-T6). Of
those takes, the first of each group (T1 and T4) was
played with live guitar accompaniment, i.e. the guitar
playing in the same room as the singer (singers 1M and
2M accompanied themselves, whereas 3F and 4F were
accompanied by a second musician). In takes T2, T3,
T5, and T6, singers performed the same song again
but with the guitar pickup signal from takes T1 and T4,
respectively, played back to them over headphones.
Thus, only takes T1 and T4 have crosstalk from the
guitar on cM. The presence of crosstalk is denoted by c1
in the naming scheme (see Table 2), while takes without
crosstalk are marked with co. By including these different
recording conditions in the dataset, it contains both a
real-world recording scenario (C1) which can for example
be used for validation of an LM-SVR system, as well as a
crosstalk-free reference (c0) which can serve as training
data. Similarly, the songs SG, oc, and PL are performed by
two singers at the same time, which provides a scenario
for computational analysis of unison singing.

4.3 DATASET CONTENT & STRUCTURE

LM-SSD can be accessed and explored in two ways: by
using our accompanying website' or by downloading
the complete dataset.” The website allows to play back
and compare all provided signals using a multi-track
player (Werner et al., 2017) directly in the browser. The
complete dataset contains 348 audio files in the WAV
format with single-channel audio at a sampling rate
of 44.1 kHz. The files follow the naming convention

ID SONG NAME ORIGINAL ARTIST SINGER TAKES LM-A  TAKES LM-B DURATION
ID C1 co C1 co (MM:SS)

AR All Alone Michael Fast 1M 1 2 1 2 27:03

Ts The Scientist Coldplay M 1 2 1 2 21:37
YF Your Fires All The Luck In The World 1M 1 2 1 2 24:21

DL Dezemberluft* Heisskalt 2M 1 2 1 2 14:47
BB Books From Boxes Maximo Park 2M 1 2 1 2 17:39
NB Narben* Alligatoah 2M 1 2 1 2 11:47
SG Supergirl Reamonn 3F, 1M 1 2 1 2 26:34
oc One Call Away Charlie Puth 3F, 1M 1 2 1 2 19:32
PL Past Life Trevor Daniel & Selena Gomez 3F, 1M 1 2 1 2 17:45

cc Chasing Cars Snow Patrol 4F 1 2 1 2 28:10
BT Breakfast At Tiffany’s Deep Blue Something 4F 1 2 1 2 22:16

LL Little Lion Man Mumford & Sons 4F 1 2 1 2 19:06
Total 12 24 12 24 250:37

Table 1 Overview of the songs and takes in LM-SSD. C1 and CO represent the number of takes with and without crosstalk, respectively.

Songs marked with * have German lyrics.
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SSD[UID] [SongID] [Type] [Crosstalk]
[Singer] [Take].wav, where each placeholder in
square bracket is filled with corresponding values as
summarized in Table 2. Furthermore, lyrics for each song,
as sung in the recordings, are provided in the dataset
with filenames [SongID] . txt.

In addition to the raw microphone signals, we provide
two stereo mixes for takes T1 and T4. For the first mix
setting (Mixa), we use no effects and just combine
CM, GL and GR with appropriate levels and panning. In
the second mix setting (MixB), we apply additional
compression, reverb, equalization, and a saturation effect
to cM, GL and GR, creating a genre-typical mix. While
mixes use an additional limiter, raw microphone signals
are normalized to 0 dB true peak. Apart from mixing, all
takes remain unedited, so that occasional inconsistencies
or mistakes are preserved in the performances.

5. BASELINE SYSTEM FOR LM-SVR

In this section, we illustrate how our dataset could be
used for training a data-driven baseline LM-SVR system
with its LM signals and corresponding high-quality CM
singing voice recordings. As shown for example by Serrd
etal. (2022) for the task of SE, or Choi et al. (2022) for SVS,
large generative models require careful conditioning of
the decoder to preserve the desired characteristics of an
encoded example. To avoid this issue for the fundamental
frequency in particular, we base our approach on the
direct processing of an LM input signal with a system that
is inspired by source-filter models for speech and singing
production. Using differentiable digital signal processing
(DDSP, Engel et al. 2020), we train a neural network (NN)
that controls several DSP building blocks to transform the
LMinputintoanoutputasclose aspossibletoourreference
CM signal. This approach has several advantages. First,
we can keep the number of trainable weights of the
NN relatively low so that good results can be achieved
with a limited amount of training data. For example, in
our experiments below, we train singer-specific models
with as little as 20 minutes of training data. Second, the
musically motivated model architecture is inherently

interpretable, so that the contributions of individual
model components can be inspected individually to
analyze certain reconstructed characteristics, like vowel
formants or unvoiced consonants. Finally, signals with
different lengths or a changing frame size can easily be
accounted for without retraining the model.

5.1 RELATED WORK

The term DDSP was introduced by Engel et al. (2020)
for the concept of using fixed DSP building blocks in
NN architectures. These building blocks, while having
no trainable weights themselves, are ensured to be
differentiable which allows for training an NN (utilizing
standard back-propagation) that in turn controls the DSP
blocks. Engel et al. (2020) use spectral modeling synthesis
(Serra and Smith IIT, 1990) for the generation of musical
instrument sounds using a superposition of sinusoidal
oscillators and filtered white noise. The NN outputs the
time-varying frequency and amplitude parameters of the
oscillators as well as band-wise magnitudes from which
the noise filter is designed.

With its interpretability and natural way of including
domain knowledge in the model architecture, DDSP has
recently been adapted for various audio synthesis task,
e.g, to generate piano sounds (Renault et al. 2022).
However, sinusoidal synthesis is not particularly suitable
for SVS, as it does not sufficiently constrain the output to
produce consistent phonemes (Alonso and Ertut, 2021).
A source-filter model can help with singing-specific
constraints as demonstrated for the task of musical
source separation by Schulze-Forster et al. (2022),
where they modeled individual singers in a mixture with
a synthesis module followed by a time-varying “vocal
tract” filter. Similarly, Wu et al. (2022) generate time-
domain singing voice signals from a time-frequency
representation using a DDSP source-filter model, where
a synthetic sawtooth waveform is filtered and enriched
with subtractive noise synthesis.

5.2 MODEL ARCHITECTURE

Let x, and x, denote the LM input signal and the
corresponding reference CM  signal, respectively.
Furthermore, let y be the output signal of our model. The

FIELD DESCRIPTION VALUES

UID Unigue numerical identifier for a take across songs 001 - 072

SongID Two-letter abbreviation of the song cf. Table 1

Type Microphone type or mix setting LM-A, LM-B, CM, GP, GL, GR, MixA,
MixB

Crosstalk  Whether guitar crosstalk is present on cM (C1) or not (C0) c1, coO

Singer Singer identifier (with gender) 1M, 2M, 3F, 4F

Take Take number for the given song (T1-T3 use LM-A, T4-T6 use LM-B) T1 - T6

Table 2 Dataset di