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Abstract  

This	paper	describes	a	feasibility	study	for	the	computational	classification	of	

traditional	 three-voiced	 Georgian	 vocal	 music,	 based	 on	 characteristic	

harmonic	chord	sequences	extracted	from	digital	scores.	We	demonstrate	that	

for	 this	purpose	 the	differences	between	 the	notation	 in	Western	5-line	staff	

notation	 and	 a	more	 appropriate	 heptatonic	 system	 for	 traditional	 Georgian	

music	can	be	adjusted	for	by	a	simple	transformation.		A	corpus	of	about	500	

digital	scores,	consisting	of	labeled	song	classes,	i.e.	subsets	of	folk	songs	from	

different	regions	and	of	liturgical	songs	in	different	styles,	served	as	a	testbed	

for	 the	 development	 of	 a	 higher	 order	 Markov	 model	 based	 classification	

procedure	 that	 -	 in	 addition	 to	 the	 classification	 -	 yields	 chord	 progression	

sequences	for	each	song	class.	Their	interpretability	was	tested	by	one	hundred	

cross-validation	runs,	 in	which	randomly	selected	subsets	of	¾	of	 the	size	of	

each	song	class	were	used	to	train	classifiers,	which	were	then	applied	to	the	

remaining	¼	subsets.	The	sizes	of	the	intersections	of	the	successfully	classified	

songs	in	all	cross-validations	are	interpreted	as	direct	measures	of	the	degree	

of	representativeness	of	the	songs	for	their	respective	song	classes.	Based	on	a	

second	validation	experiment,	in	which	we	split	up	the	datasets	in	equally	sized	

subsets	 of	 ½	 and	 ¼	 	 of	 the	 original	 subsets,	 respectively,	 we	 estimate	 the	

smallest	 subset	 size	 for	 an	 interpretation	of	 the	observed	 chord	progression	

patterns	as	properties	of	a	song	class	to	be	on	the	order	of	50	songs.	Currently,	

in	our	 corpus,	 this	 requirement	 is	only	met	by	 the	 subsets	 from	Svaneti	 and	

Shemokmedi.	
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1 Introduction	

More	 than	 a	 decade	 ago,	 (Arom	 and	 Vallejo	 2008,	 2010)	 undertook	 a	 first	

attempt	 to	 investigate	 the	chord	syntax	of	 traditional	 three-voiced4	Georgian	

vocal	music	through	the	manual	analysis	of	a	small	number	of	scores.	Since	then,	

computational	methods	have	revolutionized	the	way	we	do	research	in	general	

and	have	led	to	a	wealth	of	new	tools	and	the	emergence	of	the	new	research	

field	 of	 computational	 ethnomusicology.	 As	 a	 consequence,	 we	 can	 now	

approach	the	still	open	key	questions	posed	by	(Arom	and	Vallejo	2008)		with	

new	 tools	 and	 a	 hugely	 enlarged	 dataset.	 Specifically,	 the	 present	 paper	

describes	the	computer-assisted	extraction	of	the	harmonic	chord	sequences	of	

traditional	 Georgian	 vocal	 music	 from	 transcription-based	 digital	 scores	 in	

Western	 5-line	 staff	 notation	 and	 the	 derivation	 of	 a	 workflow	 for	 the	

subsequent	 analysis	 of	 building	 blocks	 of	 their	 harmonic	 syntax	 using	 a	

classification	algorithm	from	the	field	of	machine	learning	(Bernard	2021).	In	

this	context,	we	have	collected	a	corpus	of	roughly	500	digital	scores	consisting	

of	 subsets	 of	 (folk)	 songs	 from	 different	 regions	 and	 of	 liturgical	 songs	 in	

different	styles.	These	subsets	will	be	neutrally	referred	to	as	“song	classes”.	We	

will	 illustrate	 that	 the	characteristic	patterns	 implicitly	encoded	 in	 the	chord	

progression	sequence	of	a	song	can	be	used	for	its	classification,	in	other	words	

for	the	identification	of	its	associated	song	class.	For	this	purpose,	we	employ	

the	popular	n-gram	method,	a	Markov-model-based	approach	that	is	commonly	

used	to	classify	texts,	e.	g.	to	identify	a	language	from	a	snippet	of	text	(Bernard	

2021).			

The	 classification	 of	 traditional	 Georgian	 music	 on	 the	 basis	 of	 symbolic	

representations	 in	 Western	 5-line	 notation	 seems	 at	 first	 glance	 to	 be	 a	

contradiction	 in	 terms	 since	 this	 notation	 is	 based	 on	 a	 12-tone	 equal	

temperament	 (12-TET)	 tuning	 system,	 which	 is	 well	 known	 to	 be	

inadequate	for	 Georgian	 traditional	 music.	 	 Plus,	 by	 using	 12-TET	 notation,	

 
4 Since all the music in this work is in three voices, we will omit this attribute in what follows. 
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these	transcriptions	have	as	consequence	to	let	key	signatures	appear,	as	if	it	

were	 tonal	 music.	 	 Since	 all	 recent	 acoustical	 analyses	 of	 recordings	 of	

traditional	Georgian	vocal	music	(Scherbaum	et	al.	2020,	2022;	Tsereteli	and	

Veshapidze	 2014,	 2015)	 indicate	 a	 clear	 heptatonic	 tuning	 system,	 we	

demonstrate	that	for	the	purpose	of	classification,	the	differences	between	the	

notation	of	a	traditional	Georgian	song	in	a	diatonic	scale	derived	from	the	12-

TET	system	(which	in	this	case	is	also	heptatonic)	and	what	one	believes	to	be	

a	more	 appropriate	heptatonic	 system	 for	 traditional	Georgian	music	 can	be	

adjusted	 for	by	an	appropriate	 transformation.	This	notwithstanding,	we	are	

aware	 that	 the	 task	remains	very	challenging	since	we	also	 face	 the	problem	

that	-	compared	to	Western	classical	music	-	the	corpus	available	for	analysis	is	

rather	 small	 (about	 digital	 500	 scores)	 and	 is	 not	 very	 balanced	 in	 terms	 of	

regions	 of	 origin	 and/or	 song	 styles.	 To	 complicate	 matters	 further,	 the	

durations	 of	 the	 songs	 also	 differ	 largely.	 All	 of	 these,	 however,	 are	 not	

uncommon	problems	in	computational	ethnomusicological	research	and	can	be	

accounted	for	by	the	choice	of	a	Bayesian	framework	for	analysis.			

Overall,	we	view	the	present	work	as	a	feasibility	study	with	the	long-term	goal	

of	developing	building	blocks	for	an	optimal	workflow	for	decoding	and	better	

understanding	the	rules	underlying	the	harmonic	syntax	of	traditional	Georgian	

vocal	music.	

2 Data	processing	

The	starting	point	for	our	analyses	is	a	corpus	of	about	500	pieces	for	three	

voices,	the	majority	of	which	(with	the	exception	of	the	composed	songs	from	

urban	regions),	were	created	from	transcriptions	made	by	ear	by	various	

Georgian	scholars	(cf.	Section	3,	Dataset).			

2.1 Cleaning and reduction of scores 

Our	current	processing	workflow	starts	with	«	cleaning	»	the	digital	scores.	

This	consists	of	separating	the	three	voices	of	a	song	onto	different	staves,	
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removing	extra	notes	(such	as	passing	and	escape	tones),	ossias,	or	

appoggiaturas,	so	that	the	cleaned	scores	contain	only	the	notes	from	the	three	

voices,	one	per	stave,	and	nothing	else.	This	is	a	purely	technical	preprocessing	

step	to	simplify	the	subsequent	analysis,	which,	however,	requires	great	care	

and	can	become	rather	time-consuming.		

A	 special	 long-term	 aspect	 of	 our	 study	 is	 to	 investigate	 the	 effect	 of	 the	

reduction	of	the	scores	to	their	presumably	essential	parts.	This	way	we	want	

to	 separate	 structural	 aspects	 from	 purely	 ornamental	 aspects	 of	 chord	

progression	sequences	in	other	words	from	aspects	which	are	-	grammatically	

speaking	-		not	essential.	The	motivation	for	doing	so	was	that	we	wanted	to	test	

if	 this	 increases	 the	 relative	 amount	 of	 class-specific	 feature	 information	 as	

compared	to	the	full	original	score,	which	usually	contains	also	non-specific	and	

purely	ornamental	traits.			The	decision	of	what	are	ornamental	traits,	however,	

is	at	 least	partially	dependent	on	the	cultural	context	 in	which	the	music	has	

developed	 and	 is	 usually	 performed.	 	 For	 this	 reason,	 we	 abstained	 from	

performing	the	reduction	of	the	scores	only	algorithmically.	Instead,	this	work	

was	done	by	Ana	Lolashvili,	a	graduate	of	the	Chant	University	and	currently	

studying	at	the	Tbilisi	Conservatory.	An	example	is	shown	in	Fig.	1.		
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Figure 1 Example of the ‘manual’ reduction of a score to its harmonic pillars. 

Since	the	‘manual’	score	reduction	is	very	labor	intensive,	it	was	only	done	on	a	

subset	of	the	complete	corpus,	consisting	of	a	total	of	182	songs.	This	subset	is	

intended	to	serve	as	a	reference	for	future	analysis.	

2.2 Tuning system transformation 

The	next	step	in	the	processing	chain	consists	of	modifying	the	digital	score	for	

the	‘distortions’	of	its	tonal	content	caused	by	its	representation	in	a	

fundamentally	inappropriate	western	staff	notation.	In	this	context,	it	should	

be	emphasized	that	the	question	of	the	characteristics	of	the	tonal	

organization	of	Georgian	traditional	music	has	been	one	of	the	most	

controversial	issues	in	scholarly	discussions	in	recent	decades.		A	review	of	the	

related	discourse,	a	considerable	part	of	which	has	been	conducted	detached	

from	reproducible	observational	evidence,	can	be	found	in		(Jordania	2022).			

Starting	with	the	pioneering	work	of	(Tsereteli	and	Veshapidze	2014,	2015)	

followed	by	the	study	of	(Scherbaum	et	al.	2020),	and	most	recently	

(Scherbaum	et	al.	2022),		this	discourse	is	now	becoming	more	and	more	

evidence-based	by	shifting	to	the	interpretation	of	increasingly	large	and	

openly	accessible	data	sets	of	objectively	verifiable	pitch	determinations	(in	
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total	estimated	more	than	1	million	pitch	and	interval	samples).		All	acoustical	

studies	show	that	the	melodic	pitch	inventories	used	in	traditional	Georgian	

vocal	music	differ	significantly	from	those	based	on	the	major	and	minor	

systems,	in	which	the	melodic	scales5	consist	of	intervals	the	size	of	half-	or	

whole-note	steps.	These	studies	agree	in	the	observation	that	the	melodic	

scale(s)	of	traditional	Georgian	music	are,	to	a	first	approximation,	composed	

of	roughly	equally	spaced	intervals.		For	the	larger	datasets,	in	particular,	the	

Erkomaishvili	dataset	(Scherbaum	et	al.	2020),		the	interval	between	the	

fourth	and	fifth	(scale)	degree	above	the	last	bass	note	of	a	song	often	

corresponds	to	a	whole	tone	step	(200	cents)	while	the	size	of	the	remaining	

intervals	is	on	the	order	of	5/6	of	a	whole	tone	(167	cents).	The	size	of	the	

melodic	2nd	as	the	most	frequent	melodic	step	size	of	the	songs	is	not	fixed,	

however,	but	varies	significantly	around	a	mean	value	of	approximately	170	

cents,	whereas	the	mean	value	of	the	harmonic	2nd	is	significantly	larger	(Fig.	

1).	This	can	possibly	be	explained,	among	other	things,	as	a	consequence	of	the	

1-4-5	chord,	very	popular	in	Georgian	music,	in	which	a	fourth	and	a	fifth	are	

simultaneously	intoned	as	pure	intervals	above	a	fundamental.		The	

differences	between	the	results	of	(Tsereteli	and	Veshapidze	2014,	2015),	

whose	observations	suggest	a	pure	unitonic	scale	with	a	step	size	of	6/7	of	a	

whole	tone	(171	cents),	and	the	results	of		(Scherbaum	et	al.	2020,	

2022)whose	synoptic	scale	model	suggests		a	combination	of	a	whole	tone	

step	and	six	equal	sized	intervals		with	a	step	size	of	approximately	5/6	of	a	

whole	tone	(167	cents)	are	probably	due	to	the	different	sizes	of	the	analyzed	

datasets	and	irrelevant	for	the	purpose	of	the	present	study,	especially	against	

the	backdrop	of	the	wide	spread	of	the	observed	melodic	2nds.	

 
5 The plural is used here to differentiate the different church modes as individual scales. 
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Figure 2. Comparison of the key elements of the 12-TET tuning system (orange labels) with the essential 

characteristics of the observed tuning systems in traditional Georgian vocal music (blue labels). The generic 
synoptic pitch distribution shown as density plot in the middle was generated by combining the key elements of 

the average scale models derived from the Erkomaishvili dataset (Scherbaum et al. 2020) with the average tuning 
systems obtained for all Svan ensembles (Scherbaum et al., 2022b). 

Note	that	Fig.	2	sketches	the	key	properties	of	the	tuning	of	traditional	

Georgian	vocal	music	only	in	a	rough	conceptual	way,	and	is	not	meant	to	be	

interpreted	as	representing	an	individual	dataset.	The	orange	and	blue	

interval	labels	in	Fig.	2	illustrate	the	interval	sizes	of	the	12-tone	equal	

temperament	(12-TET)	and	the	Georgian	tuning	system,	respectively.		

What	is	relevant	for	the	purpose	of	our	present	work	is	that	the	melodic	scale	

of	traditional	Georgian	vocal	music	is	heptatonic,	in	other	words	consists	of	

seven	tones	per	octave.	Since	this	is	also	the	case	for	all	diatonic	scales6,	any	

diatonic	scale,	even	if	it	is	represented	in	western	five-line	score	notation,	can	

be	mapped	onto	any	of	the	heptatonic	tuning	systems	which	have	been	

suggested	for	Georgian	traditional	music	(Scherbaum	et	al.	2020,	2022;	

Tsereteli	and	Veshapidze	2014,	2015).	In	this	context	it	doesn’t	matter	if	one	

 
6 A diatonic scale is any heptatonic scale that includes five whole steps (whole tones) and two half steps (semitones) in each 
octave. 
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assumes	a	pure	or	an	approximately	equidistant	scale	with	individual	larger	

intervals.		

Fig.	3.	illustrates	how	the	note	pitches	determined	from	an	actual	recording	of	

a	traditional	Georgian	song	and	displayed	as	pitch	and	note	trajectories	in	its	

original	tuning	(Fig.	3a)	and	the	corresponding	transcribed	values	(Fig.3d	and	

e)	are	related	through	the	pitch	distribution	in	Fig.	3c.	

	

Figure 3 The conceptual relationship between pitch and note trajectories of audio recordings and the tuning 
system used in transcriptions into to 5-line staff notation. For details see text. 

The	voices	of	all	three	singers	fluctuate	visibly	in	Fig.	3a	but	all	notes	

(horizontal	red,	blue	and	black	blobs	for	the	top,	middle	and	bass	voice,	

respectively)	can	still	be	seen	to	belong	to	discrete	pitch	groups,	identifiable	

by	the	peaks	of	the	pitch	distribution	shown	in	Fig.	3c.		In	this	example	we	

chose	the	most	salient	pitch	group	(the	one	with	the	highest	peak),	which	also	

happens	to	be	the	final	note	for	all	three	voices,		as	a	reference	and	assign	

positive	pitch	group	indices	to	the	pitch	groups	above	and	negative	ones	to	the	

pitch	groups	below,	respectively	(Fig.	3b).		The	horizontal	dashed	gridlines	in	

Fig.	3c)	corresponds	to	the	pitches	of	a	minor	scale	anchored	at	the	pitch	of	the	

reference	pitch	group.	One	can	see,	that	the	pitch	values	for	some	of	the	pitch	
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groups	of	the	tuning	used	in	this	song	(shown	by	the	orange	labeled	numbers	

close	to	the	solid	orange	circles	indicating	the	mean	value	of	a	pitch	group)	

come	very	close	to	pitches	of	the	minor	scale,	while	others	show	larger	

deviation.	What	is	important,	however,	is	that	in	all	cases	there	exists	a	unique	

1-to-1	match	of	a	note	of	the	minor	scale	(in	our	case	A-minor,	chosen	for	the	

convenience	of	an	accidental	free	scale)	and	a	pitch	group	of	the	tuning	system	

used	by	the	singers.	Therefore,	if	we	index	(count)	the	notes	of	the	A-minor	

scale	from	the	lowest	to	the	highest	by	integer	numbers	and	choose	A	as	the	

reference	note	to	which	we	assign	the	scale	degree	index	of	0,	we	can	

unambiguously	transcribe	the	whole	song	simply	by	setting	the	pitch	group	

index	(PGI)	(Fig.	3b)	of	a	sung	note	equal	to	the	scale	degree	index	(SDI)	(Fig.	

3f)	of	our	chosen	A-minor	scale.	Hence	the	pitch	groups	in	Fig.	3b	would	be	

mapped	to	the	notes	in	Fig.	3d)	or	Fig.	3e),	depending	if	one	cares	to	indicate	

the	deviations	from	the	12-TET	tunings	system	by	little	arrows	or	not.	The	

former	used	to	be	common	practice	in	ethnomusicological	transcriptions	but	

is	nowadays		rarely	seen	in	digital	scores.		Since	all	the	notes	necessary	for	the	

transcription	are	part	of	the	A-minor	scale,	one	can	also	proceed	in	the	inverse	

direction.	Knowing	the	scale	degree	index	of	a	note,	one	also	knows	which	

pitch	group	the	note	actually	belongs	to.		By	representing	a	note	through	its	

pitch	group	index,	one	looses	the	precision	of	the	exact	cent	value	but	one	

gains	accuracy	by	being	able	to	correct	for	the	bias	of	the	12-TET	tuning	

system	with	respect	to	the	actually	used	tuning	system.		

So	far	so	good.	But	how	about	a	situation	in	which	a	score	also	contains	notes	

from	a	non-diatonic	scale?	In	this	case,	the	score	would	still	contain	

accidentals,	even	if	we	transpose	it	to	the	C-Maj/A-min	key,	because	we	have	

not	yet	left	the	12-TET	tuning	system.	In	this	case,	the	properties	of	the	generic	

pitch	distribution	shown	in	Fig.	2,	namely	that	the	tuning	system	is	

approximately	equidistant,	suggest	a	solution.	Since	in	terms	of	pitch,	the	pitch	

groups	making	up	the	Georgian	sound	scale	generally	lie	between	the	minor	
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and	major	variants	(in	the	12-TET	system)	of	the	same	scale	degree,	ignoring	

the	accidentals	will	map	all	minor	and	major	intervals	onto		“neutral	“	ones	and	

the	corresponding	scale	becomes	heptatonic,	even	if	their	interval	structure	is	

not	yet	correct.		

In	the	following,	we	illustrate	some	of	the	problems	that	might	arise	from	

trying	to	represent	actual	recordings	of	traditional	Georgian	songs	in	a	

major/minor-based	tuning	system.	The	individual	note	pitches	belonging	to	

the	pitch	group	with	PGI=	3	in	Fig.	3a)		fluctuate	within	the	green	shaded	

rectangle	indicating	the	pitch	band	between	a	minor	and	a	major	3rd	(above	

the	reference	pitch).	Looking	at	the	first	3-voiced	chord	in	the	song	

(highlighted	by	the	vertical	rectangle	with	rounded	edges),	one	can	see	that	

the	pitch	of	the	middle	voice	lies	pretty	much	between	the	pitch	for	the	minor	

and	the	major	3rd.	Hence	it	would	not	be	surprising	if	this	chord	would	be	

perceived	by	some	transcribers	as	an	A-minor	chord	{A,	C,	E}		and	by	others	as	

an	A-major	chord	{A,	C#,	E}.		However,	from		Fig.	2a)		it	can	be	seen	that	is	

actually	none	of	the	two	because	the	whole	concept	of	minor	and	major	3rd	is	

inappropriate.		In	order	to	resolve	the	ambiguity	we	need	to	interpret	both	

transcribed	triads		{A,	C,	E}	and	{A,	C#,	E}		simply	as	indicating	a	chord	build-

up	by	notes	from	the	pitch	groups	{0,	2,	4}.	Technically,		this	can		be	achieved	

by	simply	dropping	the	accidental	from	C#	and	determining	the	scale	degree	

indices	(Fig.	3f)	of	the	three	elements	of	the	triad	{A,	C,	E},		which	would	result	

in	the	list		{0,	2,	4}.		

Generalizing	this	idea	and	dropping	all	the	accidentals	of	a	score,	but	

interpreting	the	resulting	notes	simply	as	indicators	of	their	scale	degree	

indices,	allows	one	to	unambiguously	map	any	score	in	western	5-line	staff	

notation	onto	a	heptatonic	tuning	system,	without	having	to	make	any	

assumptions	regarding	the	details	of	the	interval	structure.	One	can	think	of	the	

effect	of	removing	all	accidentals	as	combining	all	pairs	of	major/minor	

variants	of	non-pure	intervals	into	single	(neutral)	versions.	As	a	consequence,	
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the	pair	(3rd-min/3rd-maj)	will	result	in	a	single	3rd,	and	the	same	for	2nd,	6th,	

and	7th.	Therefore,	removing	all	the	accidentals	of	a	score	results	in	a	diatonic	

tuning	system	and	therefore	a	heptatonic	scale	which	can	be	mapped	onto	the	

Georgian	tuning	system	by	setting	the	scale	degree	indices	equal	to	the	pitch	

group	indices.	Furthermore,	because	the	pitch	groups	of	the	generic	Georgian	

tuning	for	the	non-pure	intervals	(2nd,	3rd,	6th,	7th)	are	located	between	their	

minor	and	major	variants,	removing	the	accidentals	results	in	exactly	the	

mapping	which	inverts	the	note	assignment	during	the	transcription	process.			

Therefore,	the	tuning	system	modification	for	the	differences	between	the	12-

TET	tuning	system	and	any	of	the	suggested	Georgian	heptatonic	tuning	

systems	consists	simply	of	two	components.	First,	the	removal	of	all	

accidentals	from	the	score	and	second,	the	choice	of	a	reference	note	and	the	

calculation	of	the	scale	degree	indices	for	all	notes	with	respect	to	the	chosen	

reference	note.		The	only	assumption	that	we	make	in	this	context	is	that	the	

1:1	mapping	of	the	scale	degree	indices	in	the	accidental-free	score	to	the	pitch	

group	indices	in	the	actual	Georgian	tuning	system	used	makes	sense,		which	

seems	pretty	obvious	from	Fig.	2.	

The	choice	of	the	reference	note	is	somewhat	arbitrary	but	very	important	for	

how	the	different	songs	of	a	corpus	are	quantitatively	represented	relative	to	

each	other.		For	our	study,	we	chose	the	final	bass	note	of	a	song	as	reference	

note	which	means,	that	for	each	song	a	pitch	group	index	of	1	refers	to	the	first	

pitch	group	above	the	final	bass	note,	a	pitch	group	index	of	-1	to	the	first	pitch	

group	below	the	final	bass	note	and	so	forth.		Choosing	the	final	bass	note	(the	

finalis)	as	reference	note	does	not	mean	that	one	has	to	attach	a	functional	

meaning	to	the	finalis,	but	it	facilitates	for	example	the	quantitative	

comparison	of	the	final	cadences	of	different	songs	by	simply	comparing	the	

numerical	values	of	the	last	few	pitch	group	indices.		
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2.3 Representations for subsequent processing 

As	a	result	of	the	tuning	system	modification,	for	each	of	the	three	voices	in	a	

song	we	obtain	a	sequence	of	«	notes	»,	each	represented	by	a	pitch	group	

index	and	a	duration,	from	which	it	is	straightforward	to	calculate	the	

corresponding	harmonic	states,	each	defined	by	a	concomitance	of	three	pitch	

group	indices	and	a	duration.		For	the	purpose	of	the	subsequent	analysis,	we	

ignore	the	duration	of	the	notes	and	analyze	(for	now)	only	the	sequences	of	

pitch	group	indices.		Fig.	4	shows	the	score	(a)	and	the	result	of	tuning	system	

modification	(b)	for	the	song	‘Kriste	Aghdga’.		

	

Figure 4 Score of the song ‘Kriste Aghdga’ (a) and the corresponding sequence of harmonic states (chord 
sequence) expressed by the pitch group indices of the three voices  (b). Note that the duration of the notes is 

ignored and if successive chords have identical pitch values, they are joined into a single harmonic state. 

 
For	the	subsequent	analysis,	it	turned	out	to	be	advantageous	to	transform	the	

sequence	 of	 pitch	 group	 indices	 of	 the	 three	 voices	 shown	 in	 Fig.	 4b)	 into	

different	representations.	These	are	shown	in	Fig.	5.		
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Figure 5 Different representation forms of the sequence of pitch group indices of the three voices shown in Fig. 

3b as used in the subsequent analysis.  a) as voice table (same as Fig. 3b). b) as harmonic state table. c) as 
harmonic state list. d) as harmonic state symbol list. e) as harmonic state token list. f) as harmonic state token 

sentence.  

In	the	representation	as	harmonic	state	shown	in	Fig.	5b),	the	two	top	elements	

in	each	column	contain	the	intervals	between	the	highest	and	the	intermediate	

(H-M)	 and	 the	 intermediate	 and	 the	 lowest	 voice	 (M-L),	 respectively.	 In	 this		

context	 voice	 crossings,	 which	 happen	 in	 particular	 in	 Gurian	 songs,	 were	

corrected	for.		The	H,	M,	and	L			labels	in	the	chord	assignments	always	refer	to	

the	highest,	the	intermediate,	and	the	lowest	voice,	independent	of	who	sings	

them.	In	case	of	voice	crossings,	 these	will	not	always	correspond	to	the	top,	

middle,	 and	 bass	 voices.	 The	 application	 of	 this	 correction	 is	 admittedly	 a	

subjective	choice.		From	the	structural	perspective,	one	could	argue	that	voice	

crossings	 contain	 information	 regarding	 the	 type	 of	 a	 song	 or	 the	 region	 of	

origin.	 From	 the	 acoustic	 perspective,	 however,	 it	 is	 only	 the	 interval	 that	

matters,	not	who	sings	a	particular	voice.	This	perspective	(which	is	what	we	

chose)	also	simplifies	 the	processing	because	one	does	not	have	to	deal	with	

signed	 intervals.	 	 The	 lowest	 entry	 in	 each	 column	 (L-Deg)	 shows	 the	 scale	

degree	of	the	lowest	voice	with	0	representing	the	reference	scale	degree	(in	our	

case	 the	 finalis).	The	harmonic	 state	 list	 representation	 in	Fig.	5c)	 is	simply	a	

representation	 of	 the	 harmonic	 state	 table	 as	 list	 (indicated	 by	 the	 curly	

brackets	{}).	This	 is	the	computer	readable	numerical	 input	form	used	for	all	

our	algorithms.	The	harmonic	state	symbol	list	in	Fig.	5d)	on	the	other	hand	is	
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used	to	facilitate		the	human	perception	of	the	harmonic	state	list	.	The	central	

value	of	each	symbol	contains	the	lowest	voice	scale	degree,	while	the	subscript	

and	superscript	contain	the	intervals	between	the	highest	and	the	intermediate	

(H-M)	and	the	intermediate	and	the	lowest	voice	(M-L),	respectively.		

In	our	analysis		we	make	heavy	use	of	the	conceptual	similarity	of	words	in	a	

sentence	and	chords	in	a	chord	sequence.		To	be	able	to	quantitatively	exploit	

this	similarity,	we	transform	each	numerical	element	in	a	harmonic	into	a	text	

string	 and	 connect	 these	 strings	 via	 underscores.	 This	 results	 in	 the	

transformation	 of	 the	 numerical	 representation	 of	 a	 harmonic	 state	 	 into	 a	

representation	 as	 a	 character	 string	which	 is	 called	harmonic	 state	 token	 as	

shown	in	Fig.	5e).		The	benefit	of	this	representation	is	that	it	allows	the	use	of	

algorithms	 from	 computer	 linguistics.	 Conceptually	 in	 this	 representation	 a	

chord	 becomes	 the	 equivalent	 of	 a	 word	 in	 an	 “unknown	 language”.	 The	

representation	as	harmonic	 state	 token	 sentence,	 shown	 in	Fig.	5f)	 completes	

this	transformation	conceptually.	It	allows	treating	a	whole	song	as	a	sentence	

of	 an	 unknown	 language.	 As	 a	 final	 remark	 on	 the	 different	 types	 of	

representation	we	want	to	point	out	that	in	addition	to	the	representation	of	a	

chord	as	a	complete	chord	in	form	of	a	numerical	triplet	{L-Deg,	M-L,	H-M}	we	

have	also	explored	the	effect	of	dropping	the	bass	voice	information	and	only	

considering	 the	 interval	 pair	 	 {M-L,	 H-M}.	 The	 potential	 advantage	 of	 this	

representation	is	that	it	does	not	depend	on	the	choice	of	the	reference	note.	

The	 disadvantage,	 on	 the	 other	 hand	 is,	 that	 we	 ignore	 all	 the	 melodic	

information	contained	in	the	melody	of	the	lowest	voice.	

3 Dataset		

For	the	actual	analysis,	we	have	used	a	set	of	493	digital	scores,		obtained	from	

available	 song	 collections	 (Akhobadze	 1957;	 Chokhonelidze	 2003;	 Jordania	

2004;	Shugliashvili	2014)	and	from	(Center	of	Church	Chants	of	the	Patriarchate	

2006a,	 2006b,	 2008;	 Folklore	 state	 Centre	 of	 Georgia	 2018a,	 2018c,	 2018b,	

2020a,	2020b,	2020c,	2020d;	Patarava	2003;	Tarkhnishvili	2008;	Tbilisi	State	
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Conservatoire	2005;	Veshapidze	2006;	Veshapidze	and	Kotrikadze	2016).	The	

collections	by	(Shugliashvili	2014)	and	(Jordania	2004)	were	already	in		digital	

form,	while	the	rest	had	to	be	manually	converted.	The	original	corpus	contains	

liturgical	 chants	 from	 different	 monasteries	 	 and	 folk	 songs	 from	 different	

regions	of	Georgia,	some	of	which,	however,	were	only	represented	by	a	 few	

examples.		In	order	to	generate	a	more	balanced	dataset,	we	reduced	it	to	only	

those	regions	that	contributed	at	least	15	songs.		Fig.	6	shows	the	distributions	

of	songs	according	to	their	locations.	Fig.	6a	shows	the	breakup	of	the	complete	

corpus	in	terms	of	songs	while	Fig.	6b	shows	the	corresponding	distribution	of	

harmonic	states	(chords).	The	difference	in	the	two	pie	charts	in	Fig.	6a)	and	

6b)	 is	 due	 to	 the	 fact	 that	 the	 lengths	 of	 the	 songs	 are	 strongly	 region-

dependent.		Fig.	6	shows	for	example	that	Svan	songs	are	generally	shorter	than	

songs	from	Samegrelo.	The	imbalance	of	the	distributions	will	be	taken	care	of	

in	the	context	of	the	final	analysis	processing	as	will	be	described	in	more	detail	

in	that	context.		

	
Figure 6 Composition of the corpus by place of origin. a) With reference to the number of songs. b) With 

reference to the number of chords. The acronyms SAM, SVA, KAK, GUR, GEL, IME correspond to Samegrelo, 
Svaneti, Kartli-Kakheti, Guria, Gelati, and Imereti, respectively. 
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Fig.	7,	which	shows	the	distribution	of	the	most	frequently	occurring	chords	in	

the	different	song	classes,	illustrates	that	the	differences	in	the	composition	of		

the	individual	subsets	are	continued	at	the	level	of	the	chord	inventories.	

	
Figure 7 Distribution of most frequently occurring chords in the different song classes, representing 40% of the 

total likelihood. The numbers in the callouts represent likelihoods in %. 

Each	 of	 the	 pie	 charts	 covers	 40	 %	 of	 the	 cumulative	 likelihood	 (LH).	 For	

example,	for	all	the	songs	from	the	class	SVA	(Svaneti)	a	single,	randomly	drawn	

chord	has	a	likelihood	of	13.9%	to	be	{-1,	3,	5},	a	likelihood	of	9.7%	to	be	{-2,	3,	

5},		a	likelihood	of		8.4%	to	be	{0,	3,	5},	and	a	likelihood	of	4.8%	to	be	{0,	1	,	1}.	

In	mathematical	terms,	which	we	will	need	later,	this	would	be	written	as		P({1,	

3,	5}|	SVA)		=	.139.			

Even	without	performing	quantitative	analysis,	Fig.	7	already	visually	indicates	

significant	differences	between	the	individual	song	classes,	as	expressed	in	the	

occupancy	density	of	the	pie	charts,	namely	the	number	of	chords	within	the	top	

40%	 of	 the	 likelihood.	 In	 the	 next	 chapter,	 we	 will	 describe	 how	 this	

information,	together	with	the	information	contained	in	Fig.	6b),	can	be	used	

quantitatively	to	classify	the	entire	corpus.	
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4 Analysis	

4.1 Theoretical background 

The	question	which	we	want	to	address	in	this	chapter	is	the	following:	Given	a	

collection	of	songs	that	originate	from	different	song	classes,	how	can	we	teach	

a	computer	to	recognize	the	correct	class?	Since	one	cannot	expect	a	definite	

answer	to	this	question,	we	weaken	it	a	bit	and	ask	instead	about	the	class	that	

is	most	likely	to	be	the	origin	of	the	song	under	consideration.	This	question	has	

a	definite	answer	which	fortunately	can	be	obtained	by	making	use	of	Bayes’	

theorem,	which	follows	directly	from	the	basic	rules	of	probability	theory.	The	

idea	behind	what	is	now	called	Bayesian	inference	is	that	one	can	express	the	

probability	 for	a	model	M	 to	have	produced	a	set	of	observations	d,	which	 is	

posterior	probability,	written	as	Ppost(M|d),	by	a	very	simple	formula:	

Ppost(M|d)	=	P(d|M)	Pprior(M)/Factornorm.																			(1)	

In	this	context,	P(d|M)	 is	 the	so-called	 likelihood	which	states	the	conditional	

probability	 for	 a	 model	M	 to	 produce	 the	 data	 d.	 In	 our	 situation	 ,	 this	 is	

essentially	what	is	shown	in	Fig	7.	The	models	are	the	individual	song	classes,	

the	data	(observations)	are	the	individual	chords.	The		sizes	of	the	individual		

pieces	in	the	pie	charts	quantitatively	describe	the	conditional	probabilities	for	

a	 song	 from	 a	 particular	 song	 class	 to	 have	 produced	 a	 particular	 chord.	 As	

derived	above,	the	probability	for	a	chord	from	a	song	from	Svaneti		to	be	{1,	3,	

5}	is		P({1,	3,	5}|	SVA)		=	0.139.	Hence	its	likelihood	is	0.139.7			

The	 second	 term,	 the	 so-called	 prior	 probability	 of	 the	 model	 under	

consideration	Pprior(M)	is	the	probability	to	observe	any	of	the	chords	from	the	

model	(song	class)	M	if	we	randomly	draw	a	chord	from	the	complete	corpus.	

This,	however,	is	exactly	what	is	expressed	by	the	sizes	of	the	different	pieces	

(one	for	each	song	class)	in	Fig.	6b),	which	illustrates	one	of	the	large	benefits	

of	the	Bayesian	framework,	namely	that	-	via	the	prior	probability	term		it	can	

 
7 In a general situation, the determination of the likelihood term can become technically more challenging since it involves 
the learning of a probability distribution on categorical data which can contain missing values and/or outliers. This is 
intrinsically taken care of in the Classify algorithm of Mathematica (Wolfram Research 2020). 
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deal	with	imbalanced	data	sets	like	ours.	To	conclude	the	example,	for	Svaneti,	

the	prior	probability	for	Svaneti,	which	would	be	written	as		Pprior(SVA),	is	given	

by	4680	(the	number	of	chords	from	Svaneti),	divided	by	the	total	number	of	

chords	in	the	whole	corpus,	which	is	41070,	which	results	in	Pprior(SVA)=	0.114.		

Hence,	the	posterior	probability	for	Svaneti	to	have	generated			the	chord	{1,3,5),	

which	is	written	as		P(SVA|	{1,	3,	5}),	becomes	0.139		x	0.114	=	0.01584	divided	

by	Factornorm.	For	 the	solution	of	 the	classification	problem	 it	would	actually	

suffice	to	determine	the	maximum	value	of	the	product	of	prior	probability	and	

likelihood,	 	P(d|M)	Pprior(M).	However,	 the	determination	of	Factornorm	 is	also	

straightforward,	since	the	sum	of	the	probabilities	for	all	possible	models	(all	

seven	song	classes)	has	to	be	1.	Hence,		the	normalization	factor		Factornorm	is	

simply	obtained	by	the	sum	of	all	P(d|Mi)	Pprior(Mi)		for	i	=	1,…N,	with	N	being	

the	number	of	models	(in	our	case	song	classes)8.		

Instead	of	being	individual	chords	as	above,	the	‘data’	could	of	course	also	be	

chord	 sequences,	 which	 leads	 directly	 to	 the	 n-gram	 method	 (aka	 Markov	

model)	in	which	one	is	interested	in	the	posterior	probabilities	for	a	model	to	

have	produced	a	chord	sequence	of	a	particular	length	(n)	(Bernard	2021).	For	

n=1	 (unigrams),	 one	 is	 interested	 in	 a	 list	 of	 single	 chords	 {chord1,	 chord2,	

chord3,…	 }.	 For	n=2	 (bigrams)	 	one	 considers	a	 list	of	 lists	of	 two	successive	

chords,	e.g.		{{chord1,	chord2}	,	{chord2	,	chord3},	{chord3,	chord4},	…	},	etc.		

For	 the	 determination	 of	 the	 posterior	 probability	 of	 a	 song	 class	 to	 have	

produced	a	whole	song	(instead	of	a	single	chord),	one	has	to	simply	multiply	

the	 posterior	 probabilities	 for	 all	 the	 chords	 of	 the	 song.	 In	 the	 context	 of	

classifying	text	this	is	known	as	the	bag-of-words	assumption	(Bernard	2021).	

In	this	context,	 it	 is	worth	emphasizing	that	text	classification	 is	conceptually	

identical	to	what	we	are	trying	to	do	in	the	present	study	if	we	make	use	of	the	

transformation	of	a	sequence	of	chords	into	a	sequence	of	words	as	illustrated	

in	Fig.	5.			

 
8 This can be seen, if one divides each P(d|Mi) Pprior(Mi) by  the sum of  P(d|Mi) Pprior(Mi)  for all i, the sum of all P(d|Mi) 
Pprior(Mi) will become 1.In other words the sum of the  posterior probabilities  Ppost(M|d) for all models becomes 1, as it 
should be. 
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4.2 Song class identification (classification) 

From	the	practical	perspective,	the	identification	of	the	most	likely	song	class	

for	a	given	song	(or	chord	sequence)	boils	down	to	 the	determination	of	 the	

song	class	with	the	highest	posterior	probability.		In	the	present	study,	we	have	

used	the	Classify	algorithm	of		Mathematica	(Wolfram	Research	2020)		for	this	

purpose.	Fig.	8	illustrates	the	quality	of	the	resulting	classification	in	form	of	the	

associated	confusion	matrices	for	n-grams	with	n	=	1	to	4.	The	accuracy	values	

on	top	of	each	panel	indicate	the	percentage	of	the	songs	which	are	correctly	

classified.	The	implicitly	encoded	song-class-specific	patterns	within	the	chord	

inventories	 and	 the	 chord-transition-inventories	 contain	 enough	 song-class-

specific	information	to	result	in	accuracies	more	than	three	times	better	than	

the	accuracy	baseline	(26.8%),	namely	80.3	%	and	98.9%.		

	
Figure 8 Confusion matrices, which illustrate which and how many actual song classes are mispredicted and 
how,  for n-grams with n=1-4. The accuracy baseline (accuracy if predicting the commonest class) is 26.8%.  

For	 n=3	 and	 beyond,	 the	 classification	 accuracy	 becomes	 100%.	 	 This	 also	

means	 that	 it	 does	 not	 need	 the	 reduced	 versions	 to	 achieve	 a	 very	 good	

classification	accuracy9.	In	other	words,	all	it	takes	to	uniquely	identify	the	song	

class	of	a	song	is	to	know	a	sufficient	number	of	sequences	of	three	subsequent	

chords	 (3-grams).	 In	 contrast,	 the	 information	 contained	 in	 the	 chord	

inventories	 (1-grams)	 and	 the	 chord	 transition	 inventories	 (2-grams)	 is	

obviously	not	specific	enough	to	allow	a	unique	identification	of	a	song	class.	

Different	 song	 classes	 can	 obviously	 share	 the	 same	 chords	 and	 chord	

 
9 For the determination of the chord syntax, the differences of the results between the original and the reduced version are  
expected to be much stronger. 
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transitions,	but	do	so	rarely	if	ever	with	n-grams	of	lengths	larger	than	three.	

This	is	 illustrated	in	 	Fig.	9	 	 for	the	chant	 ‘Holy	is	the	Lord	our	God’	from	the	

Gelati	(GEL)	subset	of	our	corpus.	

	
Figure 9 Visualization of the change in posterior probabilities in the course of a song for different n-gram 

lengths.  

The	 visualization	 type	 was	 inspired	 by	 (Bernard	 2021)	 who	 used	 it	 in	 the	

context	of	language	classification.		The	color	of	the	last	element	of	each	n-gram	

indicates	the	song	class	for	which	the	posterior	probability	for	the	n-gram		has	

the	maximum	 value	 of	 all	 the	 song	 classes.	 	 The	 sizes	 of	 the	 chord	 symbols	

correspond	to	the	actual	probability	values.	The	larger	the	size,	the	more	certain	

is	the	algorithm	about	the	n-gram’s	song	class.	The	assumed	song	class	for	the	

whole	song	is	the	product	of	all	n-gram	probabilities.	The	uppermost	panel	in	

Fig.	9	shows	that	from	the	1-gram	perspective	(the	chord	inventory),	the	song	

contains	characteristic	chords	from	a	variety	of	song	classes,	with	the	majority	

of	the	chords	color-coded	in	green	(KAK).		In	terms	of	the	chord	transitions	(2-

grams),	however,	the	situation	changes,	and	the	algorithm	gets	more	confident	

(indicated	by	the	 larger	symbol	sizes)	 that	 the	assigned	song	class	should	be		

GEL.	 	As	 to	 the	3-grams,	 the	choice	of	GEL	as	suggested	song	class	 is	 further	

emphasized	as	indicated	by	the	still	increasing	symbol	sizes	and	the	reduction	

in	the	number	of	n-grams	which	suggest	a	song	class	other	than	GEL.					
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It	must	be	emphasized	that	we	do	not	consider	the	solution	to	the	classification	

problem	 as	 an	 end	 in	 itself.	 Our	 main	 long	 term	 goal	 is	 to	 obtain	 a	 better	

understanding	of	the	harmonic	syntax	of	music.	However,	 in	this	context,	the	

components	of	the	classification	algorithm	described	above	provide	important	

information,	e.g.,	if	we	apply	equation	(1)	not	to	the	n-grams	in	a	song,	but	to	all	

n-grams	in	a	given	song	class.	To	make	this	more	precise,	in	Tables	1-3	we	show	

the	20	most	likely	1-grams,	2-grams,	and	3-grams,	respectively,		for	each	song	

class	together	with	the	corresponding	likelihood	values.		

If	one	would	extend	these	tables	to	all	n-grams	for	each	song	class,	one	could	

perform	 the	 classification	of	 a	 song	as	a	 simple	bookkeeping	exercise,	which	

simply	would	involve:	

For	each	song	class:	multiplying	the	posterior	probabilities	for	all	n-grams	

in	the	song	(which	can	be	derived	from	the	corresponding	likelihood	table	

and	the	prior	probability	value),	and	finally	choosing	the	song	class	with	the	

largest	resulting	value.		

	
Table 1 Twenty most likely 1-grams for each song class together with the  

corresponding likelihood values in %. 
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Table 2 Twenty most likely 2-grams for each song class together with the  

corresponding likelihood values in %. 

	
 

Table 3 Twenty most likely 3-grams for each song class together with the  
corresponding likelihood values in %. 

	

4.3 Model validation 

Statistically,	Tables	1-3	together	with	the	prior	probability	values	shown	in	Fig.	

7,	contain	all	that	the	corpus	can	tell	us	about	the	characteristic	features	of	each	

song	class	from	the	perspective	of	the	twenty	most	likely	n-grams.	However,	it	

remains	to	be	clarified	whether	the	chord	progression	patterns	shown	in	Tables	
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1-3	can	be	interpreted	as	general	characteristics	for	the	different	song	classes	or	

only	for	the	collected	data	sets.	Following	machine	learning	protocol,	this	needs	

to	be	tested	by	model	validation	experiments.		

In	the	first	validation	experiment,	we	randomly	divided	the	complete	dataset	

into	two	subsets.		For	each	song	class,		¾		of	the	songs	were	randomly	selected	

for	 the	 training	 of	 a	 classification	 algorithm,	which	was	 then	 applied	 	 to	 the	

remaining	 ¼	 of	 the	 songs.	 This	 approach	 is	 called	 cross-validation	 and	 is	

commonly	 applied	 (in	 a	 variety	 of	 different	 versions)	 to	 evaluate	 the	

performance	of	machine	learning	models.	In	our	case,	the	process	was	repeated	

one	hundred	 times.	 Since	 the	 test	 data	 subsets	 	were	not	 used	 in	 the	model	

training,	 this	process	actually	 tests	 the	predictive	power	of	 the	 classifiers,	 in	

other	words	their	generalizability	to	unseen	data.		The	way	we	applied	it	in	the	

present	context	was	that	in	each	of	the	100	cross-validation	runs	and	for	each	

song	class	we	kept	track	of	which	of	the	songs	were	always	properly	classified.		

Since	a	song	might	also	contain	patterns	(n-grams)	characteristic	of	different	

song	classes,	keeping	only	 the	 intersection	of	 those	songs	which	were	always	

classified	properly	(which	we	refer	to	as	‘winner	songs’	or	‘winner	n-grams’),	

has	two	interesting	effects.	

First,	it	reduces	the	data	subsets	to	those	songs	which	can	be	considered	most	

characteristic	for	the	assigned	song	classes.	Because	of	the	random	selection	of	

the	subsets	of	songs	used	for	the	training,	each	of	the	trained	classifiers	for	a	

song	 class	 will	 capture	 slightly	 different	 aspects.	 Taking	 the	 intersections	 of	

those	 songs	which	 are	 always	 classified	 correctly	will	 therefore	 capture	 the	

most	representative	(pure)	features	of	each	song	class	while		those	songs	which	

contain	a	lot	of	mixed	features	(from	different	song	classes)	will	be	thrown	out.	

In	other	words,	this	process	can	help	to	focus	on		the	observed	patterns	of	those	

songs	for	which	we	can	be	most	confident	that	they	represent	actual	features	of	

the	 assigned	 song	 classes	 and	 are	 not	 the	 results	 of	 non-specific	 features	 of	

individual	songs	or	the	results	of		mixing	features	from	different	song	classes.		
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Second,	the	sizes	of	the	intersections	of	the	successfully	classified	songs	in	all	

cross-validations,	i.e.	the	sizes	of	the	‘winner	subsets’,		are	direct	measures	of	

the	numbers	of	songs	which	can	be	considered	representative	of	each	song	class.	

Fig.	10,	which	shows	the	confusion	matrices	 for	 those	 	 ‘winner	songs’	 	 for	n-

grams	with	n=1-3,	illustrates	for	example	that	for	the	song	classes	GEL,	GUR,	and	

IME,	the	sizes	of	the	datasets	are	clearly	too	small	to	warrant	an	interpretation.		

In	 terms	 of	 1-grams,	 there	 is	 not	 a	 single	 song	 which	 is	 always	 classified	

correctly	 in	any	of	 these	 three	song	classes	and	only	a	 few	remain	 for	 the	2-

grams	 and	 3-grams	 for	 GEL	 and	 GUR.	 Therefore,	 we	 refrain	 from	 further	

interpretation	of	these	song	classes	at	this	time.	

	
Figure 10 Confusion matrices for those songs, which are always classified correctly in all 100 cross-validation 

runs (‘winner songs’),  for n-grams with n=1-3.  

The	song	class	with	the	largest	number	of	representative	songs	in	Fig.	10	is		SHE.	

In	terms	of	2-grams	its	size	(108)	is	only	slightly	reduced	with	respect	to	the	

original	dataset	(121).		Fig.	11a)	shows	the	corresponding	twenty	most	likely	2-

grams	together	with	their	likelihoods	in	%.		
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Figure 11 Twenty most likely 2-grams for the song class SHE and the dataset built from the ‘winner songs’ of 
the cross-validation experiment described above,  for the 2-grams split up into different equally sized subsets.  
Fig. 11a-c show the results for the original dataset, the original dataset split up into two equally subsets, and 4 

equally sized subsets, respectively. 
 

Finally,	 to	 test	 the	 extent	 to	which	 the	 likelihoods	 shown	 in	 Fig.	 11a	 can	 be	

trusted	 as	 expressing	 the	 harmonic	 structure	 of	 the	 song	 class	 SHE,	 we	

conducted	another	validation	experiment.	For	this	purpose,	we	split	the	original	

data	set	 into	two	and	four	equally	sized	sub-data	sets,	respectively,	 	 to	check	

whether	the	essential	properties	of	the	n-gram	distributions	are	preserved	in	

this	process.	If	so,	we	see	this	as	an	indication	that	they	are	indeed	properties	of	

the	song	class	because	they	are	present	in	each	of	the	subdivisions.	To	visualize	

the	n-grams	that	remain	as	the	most	frequently	occurring	ones	during	splitting,	

we	have	chosen	a	simple	color	code.		The	fields	coded	green	in	Fig.	11b	mark	n-

grams	contained	in	both	halves	of	the	original	dataset.	The	fields	coded	red	and	

yellow	in	Fig.	11c)	are	the	n-grams	that	are	retained	in	all	4	or	3	of	the	four	1/4	

subsets,	respectively.	What	we	can	see	in	Fig.	11	is	that	the	majority	of	the	chord	

progressions	in	Fig.	11a	appear	also	in	both	halves	of	Fig.	11b,	each	containing	

54	songs.	However,	when	split	into	four	sub-datasets,	each	still	containing	27	

songs,	 the	 representational	 power	 of	 the	 individual	 sub-datasets	 decreases	

significantly.	Only	 the	3-4	most	 frequent	 chord	 sequences	 still	 represent	 the	

entire	data	set,	as	can	be	seen	from	the	red	color	coding.		
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The	 conclusion	 we	 draw	 from	 this	 experiment	 is	 that	 for	 a	 corpus	 size	 of	

approximately	50	songs,	which	would	correspond	to	the	two	subsets	shown	in	

Fig.	 11b,	 we	 can	 expect	 the	 10	 to	 15	 most	 frequently	 observed	 chord	

progression	 patterns	 (n-grams)	 to	 reflect	 the	 syntactic	 structure	 of	 their	

corresponding	song	class		while	this	is	not	guaranteed	for	smaller	corpus	sizes.	

In	our	case,	 this	 leaves	only	the	song	classes	SHE	and	SVA	for	 interpretation.	

Their	twenty	most	likely	n-grams	for	n	=1-3	is	shown	in	Fig.	12.	

	
Figure 12 Twenty most likely n-grams for n =1-3 for the ‘winner songs’  of song classes SHE (a) and SVA (b), 
together with the corresponding likelihood values in %. 

Even	 at	 first	 glance,	 Fig	 12a	 and	 b	 show	 strong	 differences	 in	 the	 chord	

inventories	but	also	the	chord	progression	structures	between	the	two	subsets	

for	 SHE	 and	 SVA.	 However,	 we	 refrain	 from	 a	 more	 detailed	 musicological	

interpretation	of	the	observed	patterns	in	the	probability	distributions	for	the	

individual	n-grams	and	leave	this	to	our	follow-up	study.			

5 Discussion	

The	 present	 study	 demonstrates	 how	 the	 components	 of	 a	 Markov-model-

based	classification	algorithm	can	be	used	as	key	component	of	a	workflow	to	

analyze	the	syntactical	harmonic	structure	of	traditional	Georgian	music	from	
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digital	scores.	Our	analysis	represents	a	delayed	follow-up	study	to	the	work	of	

(Arom	 and	Vallejo	 2008,	 2010).	 Their	 key	 questions	 are	 still	 open	 and	 their	

specific	 answer	 is	 yet	 beyond	 the	 scope	 of	 the	 present	 work.	 However,	 	 by	

showing	that	–	for	the	extraction	of	chord	sequences	-	the	differences	between	

the	 notation	 of	 a	 traditional	 Georgian	 song	 in	Western	 notation	 and	 a	more	

appropriate	heptatonic	tuning	system	can	be	accounted	for,	we	believe	that	we	

have	 demonstrated	 that	 in	 principle	 all	 the	 required	 information	 can	 be	

extracted	 from	 transcribed	 traditional	 Georgian	 music	 by	 computational	

analysis.	We	are	aware	that	the	size	of	the	data	set	used	in	our	study,	which	is	

already	 hugely	 enlarged	 in	 comparison	 to	 the	 original	 dataset	 of	 (Arom	 and	

Vallejo	2008,	2010),	needs	to	be	further	increased	in	order	to	establish	stronger	

confidence	 in	 the	 generalizability	 of	 the	 observed	 features	 and	 we	 are	 also	

aware	that	trying	to	understand	the	syntax	of	the	songs	needs	more	than	n-gram	

frequencies.	 However,	 since	 the	 entire	 procedure	 used	 in	 this	 paper	 was	

implemented	as	a	scalable	workflow	in	Mathematica	(Wolfram	Research	2020),	

it	will	be	straightforward	 to	extend	 the	analysis	 to	arbitrarily	 large	data	sets	

once	these	become	available	in	digital	form.			
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