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Computer-assisted Analysis of Field Recordings: A Case Study
of Georgian Funeral Songs
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Three-voiced funeral songs from Svaneti in North-West Georgia (also referred to as Zär) are believed to represent one of
Georgia’s oldest preserved forms of collective music-making. Throughout a Zär performance, the singers often jointly and
intentionally drift upwards in pitch. Furthermore, the singers tend to use pitch slides at the beginning and end of sung notes.
Musicological studies on tonal analysis or transcription have to account for such musical peculiarities, e.g., by compensating
for pitch drifts or identifying stable note events (located between pitch slides). These tasks typically require labor-intensive
annotation processes with manual corrections executed by experts with domain knowledge. For instance, in the context
of a previous musicological study on pitch inventories (or pitch-class histograms) of Zär performances, ethnomusicologists
tediously annotated fundamental frequency (F0) trajectories, stable note events, and pitch drifts for a set of 11 multitrack !eld
recordings. In this article, we study how musicological studies on !eld recordings can bene!t from interactive computational
tools that support such annotation processes. As one contribution of this article, we compile a dataset from the previously
annotated audio material, which we release under an open-source license for research purposes. As a second contribution, we
introduce two computational tools for removing pitch slides and compensating pitch drifts in performances. Our tools were
developed in close collaboration with ethnomusicologists and allow for incorporating domain knowledge (e.g., on singing
styles or musically relevant harmonic intervals) in the di"erent processing steps. In a case study using our Zär dataset, we
evaluate our tools by reproducing the pitch inventories from the original musicological study and subsequently discuss the
potential of computer-assisted approaches for interdisciplinary research.
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1 INTRODUCTION
Georgia is home to centuries-old music traditions. In particular, Georgian polyphonic singing is listed as “In-
tangible Cultural Heritage of Humanity” by the UNESCO.1 As part of an interdisciplinary and publicly funded
research project,2 computer scientists and ethnomusicologists collaborate with the goal to advance research on
Georgia’s musical treasure using computer-assisted approaches. In particular, one goal is to obtain a better un-
derstanding of the controversially discussed tonal organization of traditional Georgian vocal music (GVM)
[6, 35, 37, 46].

In this context, three-voiced funeral songs (or dirges, also referred to as Zär) from the region Svaneti in North-
West Georgia have gained special attention among ethnomusicologists since they represent one of the oldest
forms of collective music-making in Georgia [11]. Zär performances exhibit two musical peculiarities, which
can be observed when looking at the fundamental frequency (F0) trajectories of the singers’ voices as depicted
in Figure 1(a). First, the singers tend to use pitch slides at the beginning and end of sung notes (also referred to
as portamento). Second, throughout a Zär performance, the singers may jointly and intentionally drift upwards
in pitch by even more than 500 cents [39]. The presence of pitch slides and pitch drifts constitutes a challenge
for tonal analysis or transcription, as we will illustrate in the following. An important part of the tonal analysis
is the determination of pitch inventories (or pitch-class histograms) [8, 14, 16, 36, 48], which can be computed by
accumulating the F0-values over time. As one can see in Figure 1(b), pitch slides and drifts may result in noisy
and blurry pitch inventories, which are hard to interpret or even meaningless for tonal analysis.

To tackle this problem, one strategy is to remove pitch slides and compensate for pitch drifts prior to computing
pitch inventories. Such tasks typically need to be conducted by experts with domain knowledge. In the context of
four ethnomusicological studies on a set of 11 multitrack recordings of Zär performances [24, 25, 39, 40], domain
experts annotated stable note events (F0-values between pitch slides) for all voices, as depicted in Figure 1(c).
Subsequently, the ethnomusicologists selected note events that best re#ect the pitch drift of the performances
(see the black boxes in Figure 1(c)) and determined pitch drifts through polynomial curve !tting (see the black line
in Figure 1(c)). After drift-correction with the (suitably normalized) drift curve, one obtains the drift-corrected
stable note events as depicted in Figure 1(d) and the pitch inventory as depicted in Figure 1(e). As one can see,
in contrast to the uncorrected pitch inventory from Figure 1(b), the pitch inventory based on the annotated
material exhibits a sharper distribution. Through comparison of the pitch inventories for all 11 performances
(determined in the same way), ethnomusicologists could show that the melodic step sizes in Zär vary between
approximately 150 and 180 cents, which is an important cue for understanding the traditional Georgian tuning
system [39, 41]. However, conducting such annotation processes using existing semi-automatic annotation tools
is labor-intensive and requires manual corrections. This also makes it hard to conduct similar studies on larger
corpora.

In this article, we show that computational tools can support the analysis of !eld recordings by automizing
some of the labor-intensive annotation tasks under the guidance of a domain expert. As one contribution, we
compiled a dataset including the multitrack recordings and the carefully crafted annotations from the musico-
logical studies, which we release under an open-source license for research purposes.3 As our main technical
contribution to this article, we present two computational tools with visual feedback mechanisms that allow for
incorporating musical expert knowledge into the di"erent processing steps. Our !rst tool, based on an existing
method for extracting stable regions from F0-trajectories [33], enables the user to remove pitch slides and other
undesired frequency #uctuations. The method’s parameters can be tuned according to musical characteristics
such as the singing style. Our second tool is based on a !ltering technique for musically relevant harmonic in-
tervals (such as the unison or the !fth in GVM [4, 35, 38]) to compensate for the pitch drift of a performance. In

1https://ich.unesco.org/en/RL/georgian-polyphonic-singing-00008.
2https://www.uni-potsdam.de/de/soundscapelab/computational-ethnomusicology/active-projects/the-gvm-project.
3https://www.audiolabs-erlangen.de/resources/MIR/2022-GeorgianMusic-Zaer.
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Fig. 1. Pitch inventory computation for a three-voiced Zär performance. (a) Original F0-trajectories. (b) Pitch Inventory
based on (a). (c) Annotated stable note events and pitch dri! curve (black line). (d) Dri!-corrected stable note events.
(e) Pitch inventory based on (d).

a case study based on our Zär dataset, we compare pitch inventories computed with our computational tools to
the ones obtained from the expert annotations [24, 25, 39].

The remainder of this article is structured as follows. We describe related work in Section 2 and introduce our
Zär dataset in Section 3. In Section 4, we formalize our computational tools. In Section 5, we describe our case
study and discuss the potential of interactive computational tools for ethnomusicological research. Finally, we
summarize our work and outline future research in Section 6.

2 RELATED WORK
Pitch slides and pitch drifts are a frequently observed phenomenon in a cappella singing, not least due to the great
versatility of the human voice [45]. However, the musicological perspective on these phenomena often depends
on the cultural context. For instance, pitch slides are often considered as a sign of insu$cient voice control
in Western amateur choral singing while being a frequently and consciously used stylistic element in other
music cultures such as traditional GVM [35] or Indian Raga music [7, 13]. Similarly, pitch drifts are typically
seen as unintended artifacts of tuning in “Western” ensemble singing [1, 10] while they are known to be a
part of the performance practice in several “non-Western” music traditions [2, 12, 20, 22], including Georgian
Zär [24, 25, 39, 40]. Thus, computational analysis of !eld recordings requires tools that can be adapted to the
musical scenario by including musical or culture-speci!c knowledge [9]. Additionally, such tools need to o"er
suitable feedback mechanisms, e.g., visualizations or soni!cations [49], which help to understand and guide
computational methods.

Over the last years, a variety of tools for annotating and analyzing music recordings with a focus on “West-
ern” music have been released [3, 17, 21, 23, 27, 30]. One of the most popular tools for transcribing monophonic
audio recordings is the open-source software Tony [18]. After loading an audio !le, the tool automatically com-
putes an F0-trajectory using the algorithm pYIN [19]. Via an interactive graphical user interface (GUI) with
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audiovisual feedback, the user can remove F0-values or choose alternative estimates. For transcription pur-
poses, Tony automatically detects sung notes by segmenting the estimated F0-values into note objects using
a hidden Markow model (HMM). Each note object is de!ned by a start time and end time in seconds, as
well as an assigned F0-value (corresponding to the note’s pitch). Using the interactive GUI, a user can split,
merge, create or delete note objects. Finally, annotated F0-trajectories and note objects can be exported in a va-
riety of text formats, including CSV and TXT. Tony does not o"er functionalities to account for pitch drifts in
performances.

The increasing scienti!c interest in “non-Western” music traditions [7, 9, 15, 26, 28, 43, 47, 49, 50] has led to the
development of tools designed for processing and analyzing music in tuning systems other than 12-tone equal
temperament (12-TET). One prominent example is Tarsos [44], a platform for analyzing pitch inventories and
musical scales. Its GUI o"ers interactive soni!cations and visualizations as well as sliders to control the included
computational tools. After loading an audio !le, the tool automatically computes an F0-trajectory (using the YIN
algorithm [5] by default) and a pitch histogram. As opposed to Tony, Tarsos does not include functionalities to
correct F0-estimates. However, it includes a tuneable “steady state !lter” which allows a user to remove pitch
slides in F0-trajectories. F0-trajectories and pitch histograms can be exported to di"erent text formats and images.
As for Tony, Tarsos lacks the functionality to compensate for pitch drifts in performances which is essential for
our Zär scenario.

3 ZÄR DATASET
In the following, we describe our Zär dataset consisting of multitrack recordings (Section 3.1), as well as F0-
annotations (Section 3.2), stable note events (Section 3.3), and pitch drift annotations (Section 3.4). We also discuss
how we compute pitch inventories from the annotations (Section 3.5).

3.1 Multitrack Recordings
Our Zär dataset is based on a subset of recordings from the GVM collection [42], a collection of !eld recordings
obtained during a research expedition in Georgia in 2016. The GVM collection comprises videos and multitrack
recordings of 216 performances by di"erent vocal ensembles. Besides a portable audio recorder that captured the
whole performance, individual singers were recorded using close-up headsets and throat (larynx) microphones.
Throat microphones capture the singing voice directly at the singer’s throat, resulting in clean recordings with
little cross-talk of other voices or other environmental sounds. In previous studies, throat microphones have
shown to be bene!cial for the analysis of vocal music since they nicely capture the F0 of the singer’s voice [32, 37].
More information on the recording setup can be found in [42]. The 11 Zär performances (GVM-IDs 198–208)
constitute a small subset of the GVM-collection. We include the multitrack recordings of these performances as
mono WAV !les with a sampling frequency of 22 050 Hz and 16 bit encoding. For all performances, the dataset
contains at least three throat microphone signals of at least three singers (the recordings are named with su$xes
ALRX1M, ALRX2M, and ALRX3M). The number of headset and room microphone signals varies for each performance.
The 11 performances have a total duration of roughly 42 minutes.

3.2 F0-Annotations
In the context of previous studies [24, 25, 39], a Georgian ethnomusicologist semi-automatically annotated F0-
trajectories of the three voices for all of the performances using the open-source tool Tony [18]. Subsequently,
a domain expert double-checked the annotations. Figure 2(a) shows the F0-annotation for the top, middle, and
bass voice of the performance with GVM-ID 201, which serves as our running example in the remainder of this
article. The trajectories show that sung notes often start, end, or are continuously connected with pitch slides,
which is a frequently used stylistic element of traditional Georgian music [33]. The F0-annotations are included
as CSV !les in our Zär dataset with a frequency resolution of 10 cents and a time resolution of 10 msec.

ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 1, Article 13. Publication date: December 2022.
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Fig. 2. Annotation process for the Zär performance with GVM-ID 201. The right column shows zoomed regions. (a) F0-
trajectories of top, middle, and bass voice. (b) F0-trajectories corresponding to Tony note objects. (c) Stable note events.
(d) Selected stable note events (black rectangles) and fi"ed dri! curve (black line). The blue dashed arrows indicate parallel
fi!hs sung by the top and bass voice.

3.3 Stable Note Events
As mentioned in Section 2, Tony automatically segments the annotated F0-trajectories into note objects. The
F0-trajectories corresponding to the note objects are depicted in Figure 2(b). As one can see, Tony’s automatic
segmentation algorithm shortens most of the pitch slides. However, during tonal analysis or transcription of
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Zär performances, the remaining slides can still lead to a signi!cant amount of blurring and inaccuracies. One
way to remove the remaining pitch slides is to use the manual correction functionalities of Tony. However,
this is a time-consuming and tedious task, which is infeasible when considering larger collections. In [39], the
ethnomusicologists used a heuristic to remove pitch slides by cutting o" 0.15 sec at the beginning and the end
of each F0-trajectory within each note object. We refer to the shortened F0-trajectories as “stable note events.”
The stable note events for our running example are depicted in Figure 2(c). As one can see, most of the pitch
slides have been removed using this simple heuristic. In Section 4.2, we present a computational tool that helps
to automize the detection of stable regions in F0-trajectories using interactive !ltering techniques.

3.4 Pitch Dri! Annotations
For determining the pitch drift in Zär performances, one can exploit the importance of speci!c harmonic intervals
in traditional GVM. For instance, parallel !fths, which are often avoided in Western composed music, frequently
occur in Georgian polyphonic singing [4, 35, 38]. Often, the top and bass voice sing a !fth apart (700 cents),
representing the “harmonic frame” of the performance. Additionally, the unison interval (0 cents) is of great rele-
vance in Zär performances. Essentially all songs from the region Svaneti (not only funeral dirges) end in unison.
In addition, throughout a performance, the three voices of a Svan song repeatedly meet in unison, which gives
the associated pitches a particular musical importance (ethnomusicologists also consider unisons as “reference
pitches” in traditional Georgian singing). As a consequence, ethnomusicologists hypothesize that the pitch drift
of a performance can be documented through such musically important harmonic intervals [24, 25, 39].

In [39], the ethnomusicologists followed a two-step process to determine the pitch drift in the performances.
First, using a visualization as depicted in Figure 2(c), the experts visually identi!ed a small number of stable note
events in one of the voices that, according to their musical expertise, best re#ect the pitch drift of the performance.
For our running example, the experts selected stable note events of the top voice, which are indicated with black
rectangles in Figure 2(d). As one can see, the note events were chosen to correspond to the same scale degree (a
group of note events that roughly correspond to the same pitch after removing the drift of the performance). For
instance, in Figure 2(d), the four scale degrees of the bass voice are marked using numbers in ascending order.
We see that not all scale degrees are equally suitable to determine the pitch drift of the performance since some
scale degrees (such as scale degree 1 of the bass voice) contain only a few stable note events. The identi!cation
of scale degrees and the selection of suitable note events require musical knowledge and need to be done with
care. On closer inspection of our example, we also see that the selected note events often go along with parallel
!fths of top and bass voice (see blue arrows), which shows the relevance of the !fth interval for recognizing the
pitch drift of the performance.

Second, to model the pitch drift of the performance, the ethnomusicologists !tted a polynomial curve through
the selected stable note events. The study in [39] revealed that polynomials of 3rd order are su$ciently suited
to describe the pitch drift of the performances. Figure 2(d) shows the !tted third order polynomial (black solid
line) for our example performance. Our Zär dataset includes computed drift curves with a time resolution of
10 msec as CSV !les. In Section 4.3, we present a computational tool based on interactive !ltering techniques for
harmonic intervals and scale degrees that supports the manual selection process of note events for determining
the pitch drift.

3.5 Pitch Inventories
One key towards understanding traditional Georgian tuning lies in analyzing the pitch inventories of the singers.
To compute pitch inventories, the ethnomusicologists in [39] !rst drift-corrected the annotated stable note events
with the pitch drift curve. Figure 3(a) shows the drift-corrected stable regions from Figure 2(c) using the drift
curve from Figure 2(d). As one can see, the scale degrees of the three voices follow a roughly horizontal line.
Subsequently, the experts computed histograms over the drift-corrected stable note events. The black line in
Figure 3(b) shows the obtained max-normalized pitch inventory with a binning resolution of 10 cents. In
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Fig. 3. Pitch inventory computation for performance with GVM-ID 201. (a) Dri!-corrected stable note events. (b) Max-
normalized pitch inventories.

contrast to the pitch inventory computed on the original F0-trajectories without drift correction (gray line), the
annotated pitch inventory exhibits a heptatonic peak structure (seven melodic intervals per octave). The spacing
between the peaks of a pitch inventory re#ects the average melodic step sizes used in the performance. The pitch
inventory of our running example reveals step sizes of 150–180 cents, which coincides with step sizes measured
in the other Zär performances, as well as in historic recordings of liturgical chants by the former master chanter
Artem Erkomaishvili [41]. Through such analysis, ethnomusicologists can obtain important cues on the tonal
organization of traditional GVM. For an in-depth musicological analysis of Zär, we refer to [24, 25, 39, 40].

4 INTERACTIVE COMPUTATIONAL TOOLS
In the following, we !rst !x some mathematical notions (Section 4.1) and subsequently introduce our interactive
computational tools for detecting stable regions (Section 4.2) and for determining pitch drift (Section 4.3).

4.1 Mathematical Notion
To account for the logarithmic nature of human pitch perception, we convert frequency values into the log-
frequency domain. To this end, we !x a reference frequencyωref given in Hertz (Hz). In our experiments, we use
ωref = 110 Hz. Then, an arbitrary frequency value ω is converted by de!ning

Fcents (ω) := 1200 · log2

(
ω

ωref

)
, (1)

which measures the distance between ω and ωref in cents. We model an F0-trajectory as a function

γ : Z→ R ∪ {∗}, (2)

which assigns to a given time index n ∈ Z either a real-valued frequency value γ (n) ∈ R (given in cents) or
the symbol γ (n) = ∗ (when the frequency value is left unspeci!ed). In our experiments, we consider trajectories
with a frequency resolution of 10 cents and a time resolution of 10 msec.

4.2 Stable Region Detection
In the following, we describe a computer-assisted approach for detecting stable regions in F0-trajectories. The
method is based on an existing approach using morphological (min- and max-) !lters [33]. To better discuss the
properties of our tool, we will recapitulate the basic steps of the approach. We explain our method using an
excerpt of the top voice in the performance with GVM-ID 201. Figure 4(a) shows the given trajectory γ (black

ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 1, Article 13. Publication date: December 2022.
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Fig. 4. Interactive detection of stable regions for the example of the top voice in performance with GVM-ID 201. The right
column shows zoomed regions. (a) Original trajectory. (b) Min-filtered trajectory γ L

min (orange) and max-filtered trajectory
γ L

max (green) for given filter length L = 15 (150 msec). (c) Morphological gradient ∆L (d) Activation function µL,τ a!er
thresholding with τ = 50 cents. (e) Trajectory γ Stable restricted to stable regions (red). (f) Activation function µL,τ ,S a!er
smoothing with S = 9 (90 msec).
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line), which contains several pitch slides. For brevity, we use the notion
γ (a : b) :=

{
γ (a),γ (a + 1), . . . ,γ (b)

}
, (3)

for integers a,b ∈ N. In a !rst step, we compute a dilated (max-!ltered) trajectory γ L
max and an eroded (min-

!ltered) trajectory γ L
min de!ned by

γ L
max (n) := max

{
γ (n − L−1

2 : n + L−1
2 )

}
, (4a)

γ L
min (n) := min

{
γ (n − L−1

2 : n + L−1
2 )

}
, (4b)

for n ∈ Z, where L ∈ N is assumed to be an odd integer. In max-!ltering, the symbol ∗ is handled as −∞, whereas
in min-!ltering it is handled as +∞. Figure 4(b) shows the resulting trajectories γ L

min (orange) andγ L
max (green) for

our running example using L = 15 (150 msec). In a next step, we compute the di"erence ∆L between the dilated
and eroded trajectories, also termed morphological gradient [31]:

∆L (n) := ###γ L
max (n) − γ L

min (n)###, (5)

for n ∈ Z, where we set ∆L (n) = ∗ whenever γ L
max (n) or γ L

min (n) are not de!ned. Figure 4(c) shows ∆L for our
running example. As one can see, ∆L is large in non-stable parts (e.g., during pitch slides), whereas it is small
in stable parts. After thresholding ∆L with a chosen threshold τ > 0 (given in cents), we obtain an activation
function µL,τ de!ned by

µL,τ (n) :=


1, for ∆L (n) ≤ τ ,

0, otherwise,
(6)

with µL,τ (n) = 1 indicating stable regions and µL,τ (n) = 0 indicating unstable (or unde!ned) regions. Figure 4(d)
shows the activations µL,τ for our running example after thresholding with τ = 50 cents. As one can see, most
of the stable regions of the trajectory have been correctly identi!ed. However, there are some short passages
that have been wrongly identi!ed as stable regions (false positives). These passages result from !ltering artifacts
and can often be found at the beginning and end of pitch slides (e.g., at around 65.5 sec) or in between two
fastly succeeding notes (e.g., at around 79 sec). Also, there are some short interruptions in stable regions (false
negatives), e.g., at 66 sec.

In practice, one may want to remove these outliers and obtain coherent entities of F0-values, similar to the
stable note events from Section 3.3. Therefore, as an extension to the original approach in [33], we propose an
optional smoothing step of the trajectory activations µL,τ by applying a median !lter:

µL,τ ,S (n) := median
{
µL,τ (n − S−1

2 : n + S−1
2 )

}
, (7)

where S ∈ N is assumed to be an odd integer and the symbol ∗ is handled as −∞. Note that by setting S = 1, no
smoothing is applied. In a !nal step, we compute the trajectory restricted to stable regions γ Stable by

γ Stable (n) :=

γ (n), for µL,τ ,S (n) = 1,
∗, otherwise.

(8)

Figure 4(e) shows the resulting trajectory and its activation function after smoothing with a median !lter of
length S = 9 (90 msec). As one can see, most of the outliers have been removed (only the outlier at around 79 sec
remains). One may further tackle such outliers by applying additional heuristics such as removing detected stable
regions that fall below a certain minimal length or that exceed a certain variance. Note that the algorithm leaves
the frequency values of the original F0-trajectory unaltered (e.g., no quantization or smoothing of frequency
values), which is important for subsequent tonal analysis steps.

In practice, an ethnomusicologist (without explicit knowledge of signal processing) can use interactive visu-
alizations similar to Figure 4 for tuning the three parameters L, τ , and S of our algorithm. The min-/max- !lter

ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 1, Article 13. Publication date: December 2022.
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length L controls the sensitivity of the method to (sudden) #uctuations in the F0-trajectory. Small L may lead to
an increased number of false positives, while large L lead to an increased number of false negatives (in particu-
lar at the beginning and end of stable regions) [33]. The threshold τ can be seen as a tolerance parameter that
speci!es the maximally allowed #uctuation under which a trajectory is still considered to be stable. Therefore, τ
may be tuned according to the singing style (e.g., the amount of vibrato) used in the performance or the singing
pro!ciency. After determining L and τ , the smoothing !lter of length S can be tuned to re!ne the detection by
removing outliers observed in the activation function µL,τ , which results in stable, note-like events. In summary,
the three parameters of our tool have an explicit and easy-to-understand meaning, which is important for use
in interdisciplinary research.

4.3 Dri! Estimation
In the following, we describe a computer-assisted approach for estimating the pitch drift of a Zär performance
using interactive !ltering techniques for harmonic intervals and scale degrees. Our approach is based on the hy-
pothesis that certain (musically important) harmonic intervals capture the pitch drift of a performance (see Sec-
tion 3.4). We explain our method along with Figure 5, using again the performance with GVM-ID 201 as an
example. In the following, we assume a set of M trajectories

Γ := {γ1, . . . ,γM }, (9)
whereγm is the F0-trajectory of the mth voice,m ∈ [1 : M]. In our example, we consider F0-trajectories restricted
to stable regions for the top, middle, and bass voice (M = 3) as depicted in Figure 5(a). As one can see, the three
singers continuously drift upwards over the course of the performance.

As discussed in Section 3.4, the pitch drift of a Zär performance is captured by certain musically important
harmonic intervals (e.g., the unison or the !fth). Therefore, in the !rst step, we !lter the given F0-trajectories
with respect to a user-speci!ed harmonic interval. For a given m ∈ [1 : M] and an interval I in cents, let H I

m
denote the set that contains all time indices n for which there is at least one other trajectory γk , k ∈ [1 : M] \ {m}
that is I cents apart up to a tolerance ε in cents. In other words:

H I
m :=

{
n ∈ Z|∃k ∈ [1 : M] \ {m} : I − ε ≤ |γm (n) − γk (n) | ≤ I + ε

}
. (10)

We then de!ne the interval-!ltered F0-trajectory γ I
m for voicem by

γ I
m (n) :=


γm (n), for n ∈ H I

m ,

∗, otherwise.
(11)

Figure 5(b) illustrates our interval-!ltering for the !fth interval (I = 700 cents) with ε = 20 cents for the top
and bass voice (M = 2). It can be seen that the remaining F0-values of the top and bass voice are spaced roughly
700 cents apart (as indicated by the blue dotted arrows).

Similar to Section 3.4, in the next step, the user selects a scale degree that best re#ects the pitch drift of the
performance. In our example, the user chooses the third scale degree of the bass voice (counting the remaining
scale degrees after interval !ltering from low to high). The F0-values corresponding to the chosen scale can be
obtained using a suitable clustering algorithm.

In our work, we use a simple two-step clustering method inspired by the Radon Transform [29]: !rst, we rotate
the interval-!ltered trajectories around the coordinate origin such that the entropy of a computed pitch inventory
is minimized. The entropy indicates the peakedness of a distribution while being low for peaked distributions and
high for #at distributions. Thus, the rotation angle that minimizes entropy constitutes an approximation of the
linear drift slope of the performance. This entropy-minimizing rotation angle can be determined automatically
through an exhaustive search over a musically meaningful range of angles. In our experiments, we assume that
the singers do not drift more than ±1, 200 cents (or an octave) over the course of a performance, which is a
reasonable choice for Zär performances [24, 39]. Second, we perform k-means clustering on the interval-!ltered
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Fig. 5. Interactive dri! estimation illustrated by the performance with GVM-ID 201. (a) Stable note events. (b) Interval-
filtered F0-trajectories with interval I = 700 cents using the top and bass voice (M = 2). (c) Polynomial fi"ing using the
F0-values of a manually specified scale degree.

and rotated trajectories, withk corresponding to the number of scale degrees of each voice (k = 3 in our example).
As in Section 3.4, we !t a polynomial of third order using the F0-values that correspond to the chosen scale degree.
The resulting drift curve for our example is indicated by the blue line in Figure 5(c). Note that polynomial !tting
through a certain scale degree of the bass voice should result in a similar drift curve than polynomial !tting
through the same scale degree of the top voice.

In practice, using our tool and visualizations similar to Figure 5, an ethnomusicologist can interactively explore
and analyze how di"erent harmonic intervals I and scale degrees re#ect the pitch drift of the performance.
An additional indicator for the correctness of a determined pitch drift are pitch inventories. The blue line in
Figure 3(b) shows the pitch inventory of our running example obtained through drift-correcting the detected
stable regions from Figure 5(a) with the normalized drift curve from Figure 5(c). As one can see, the computed
pitch inventory has a similar peak structure to the annotated pitch inventory, which indicates that the pitch
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drift has correctly been determined. The peaks at around 1,000, 1,200, and 1,400 cents are less prominent in the
computed pitch inventory compared to the annotated pitch inventory. This observation indicates that for our
example and chosen parameter settings, there remain fewer F0-values after stable region detection than in the
stable region annotation (compare Figure 2(c) with Figure 3(a)).

5 COMPUTER-ASSISTED ANALYSIS OF ZÄR PERFORMANCES
In this section, we discuss how our interactive computational tools can be applied to support ethnomusicological
research. First, in a case study of Georgian Zär, we use our tools to reproduce pitch inventories of a previous
study (Section 5.1). Second, in the light of our experimental results, we discuss the potential of computational
tools for ethnomusicological research (Section 5.2).

5.1 A Case Study of Pitch Inventories
We now show how a domain expert can use our computational tools to reproduce the pitch inventories from
the previous study on Georgian Zär [39]. Since the musical meaning of pitch inventories is hard to quantify
and evaluate, we discuss di"erent qualitative aspects of our work along with the visualizations in Figure 6.
Figure 6(a) shows the annotated stable note events and pitch drifts (black lines) from our Zär dataset (Section 3.4)
as reference.

In our case study, we start with the F0-annotations of the three voices described in Section 3.2. Note that
in case no F0-annotations are at hand, one can use automatic approaches such as the one proposed in [34] to
obtain reliable F0-estimates. In a !rst step, we use the tool introduced in Section 4.2 to determine stable regions
in the F0-trajectories. Using interactive visualizations such as Figure 4, a domain expert can tune parameters L,
τ , and S such that the pitch slides are removed. In our study, we set L = 15 bins (150 msec), which corresponds
to the value that the domain experts chose for determining stable note events from Section 3.3. Furthermore,
we set τ = 50 cents, which is a reasonable value for Georgian singing. To re!ne the detection, we empirically
determined S = 9 bins (90 msec), which removes short outliers. Finally, we remove stable regions that are shorter
than 100 msec to further re!ne the detection. The resulting trajectories restricted to stable regions are depicted in
Figure 6(b). Overall, the !ltered trajectories resemble the manually annotated stable note events from Figure 6(a).

In a second step, we use the tool introduced in Section 4.3 to determine the pitch drifts of the performances.
Using musical domain knowledge and interactive visualizations such as Figure 5, an expert can choose an interval
I and a scale degree that best capture the pitch drift of a performance. As explained in Section 3.5, the unison and
the !fth interval are of special musical importance in Georgian Zär. For the performances with GVM-ID 199–206,
which exhibit very prominent parallel !fths, we !ltered for the !fth interval (I = 700± 20 cents) of top and bass
voice. For the performances with GVM-ID 198, 207, and 208, which exhibit less prominent parallel !fths, we chose
to !lter for the unison interval (I = 0 ± 20 cents) considering all voices. The interval !ltered trajectories of all
performances are depicted in Figure 6(c). Subsequently, we use the clustering algorithm described in Section 4.3
to automatically determine the scale degrees of the interval !ltered trajectories. For the performances 199–206,
we determined k = 6 clusters (3 for each voice), and for the performances 198, 207, and 208, we determined
k = 3 clusters. In our case study, we selected similar scale degrees as the domain expert in the manual study.
The !tted polynomial drift curves through the selected scale degrees are shown as blue lines in Figure 6(c). As
one can see, the drift curves have a similar progression compared to the annotated pitch drifts in Figure 6(a).
Note that instead of advocating a speci!c interval or scale degree, this case study shows only one way how the
pitch drift in Zär performances can be determined. For instance, our computational tools enable domain experts
to explore interval !ltering for di"erent harmonic intervals as well as suitable combinations, which may lead to
more accurate drift estimates. We leave an investigation of these aspects for future work.

In a !nal step, we compensate for the pitch drift of the trajectories restricted to stable regions from Figure 6(b)
with the normalized drift curves from Figure 6(c) before computing pitch inventories. In our experiments, we
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Fig. 6. Pitch inventory computation for all 11 Zär performances. (a) Manually annotated stable note events and reference
pitch dri!. (b) Trajectories are restricted to stable regions using the interactive tool from Section 4.2. (c) Interval-filtered
trajectories and estimated pitch dri! using the interactive tool from Section 4.3. (d) Pitch inventories (for legend, see
Figure 3(b)).
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use a binning resolution of 10 cents and max-normalize all pitch inventories. Note that for tonal analysis, one
is mainly interested in the relative peak positions of pitch inventories (see Section 3.5). In order to facilitate the
visual comparison of pitch inventories across performances, we shift all F0-values by a constant amount (which
di"ers for each Zär) in such a way that the !nal long note (with a duration of at least 1 sec) in the middle voice has
a pitch of 1,500 cents. Figure 6(d) shows the pitch inventories obtained from the original F0-trajectories without
drift correction (gray), the pitch inventories based on the reference annotations (black), and the pitch inventories
obtained using our computer-assisted tools (blue). We can see that the pitch inventories computed with the help
of our interactive tools are very similar to the reference pitch inventories.

5.2 Applications to Computational Ethnomusicology
The study described in Section 3 exempli!es many of the challenges that ethnomusicological studies on !eld
recordings face. Even relatively basic analysis tasks, such as the computation of pitch inventories, typically
require multiple annotation steps conducted by domain experts. State-of-the-art annotation tools such as Tony or
Praat face several limitations since they are either designed for “Western” music or lack necessary functionalities.
This often leads to labor-intensive annotation processes with tedious manual correction steps. While these e"orts
were made for the 11 performances of our Zär dataset, similar studies on larger corpora, such as the whole GVM
collection [42], would be very time-consuming to perform. Also, such highly manual annotation and analysis
processes can su"er from subjective decisions, thus making it hard to reproduce the results.

As our case study showed, computational tools can support ethnomusicological studies on !eld recordings
by taking over speci!c, well-de!ned tasks of the annotation process under the guidance of a domain expert.
Through tuning a few musically motivated parameters and suitable interactive visualizations, a domain expert
could reproduce the pitch inventories that were obtained by tedious manual annotations in signi!cantly less
time. In this way, our computer-assisted procedure can accelerate and simplify musicological analyses as well as
enable the exploration of large music corpora to gain new musicological insights.

6 CONCLUSIONS
In this article, we presented a publicly available dataset based on 11 performances of three-voice Georgian Zär,
which includes expert annotations of F0-trajectories, stable note events, and pitch drifts. The dataset is of high
value for ethnomusicological research and the preservation of the Georgian musical heritage. Furthermore, we
introduced two computational tools based on interactive !ltering techniques for detecting stable regions in F0-
trajectories and determining the pitch drift of the performances. In a case study of pitch inventories of Zär per-
formances, we showed that our computational tools can help to make ethnomusicological research on Georgian
Zär and possibly other non-Western singing traditions more e$cient. Furthermore, our tools open up new ways
to explore data collections. In future work, we plan to use our computer-assisted approaches in an exploratory
study on the entire GVM collection.
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