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Supplemental Material

Volcanic tremor signals are usually observed before or during volcanic eruptions andmust
be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of
volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic
tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-
ute to improving upon our understanding of the underlying physical processes.
Exploiting the idea of harmonic–percussive separation in musical signal processing,
we develop a method to extract the harmonic volcanic tremor signals and to detect tran-
sient events from seismic recordings. Based on the similarity properties of spectrogram
frames in the time–frequency domain, we decompose the signal into two separate spec-
trograms representing repeating (harmonic) and nonrepeating (transient) patterns,
which correspond to volcanic tremor signals and earthquake signals, respectively.

We reconstruct the harmonic tremor signal in the time domain from the complex
spectrogram of the repeating pattern by only considering the phase components for
the frequency range in which the tremor amplitude spectrum is significantly contribut-
ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor
signal without transient events.

Furthermore, we derive a characteristic function suitable for the detection of tran-
sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-
gram over frequency at each time frame. Considering transient events like earthquakes,
78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests.
In addition, we compared the number of detected earthquakes using our method for
one month of continuous data recorded during the Holuhraun 2014–2015 eruption in
Icelandwith the bulletin presented in Ágústsdóttir et al. (2019). Our single station event
detection algorithm identified 84% of the bulletin events. Moreover, we detected a
total of 12,619 events, which is more than twice the number of the bulletin events.

Introduction
Volcanic tremors are long-lasting low-frequency seismic sig-
nals that frequently precede or accompany volcanic eruptions
(McNutt, 1992). They can reveal information about eruptive
activities (Alparone et al., 2003; Eibl, Bean, Jónsdóttir, et al.,
2017; Eibl, Bean, Vogfjörd, et al., 2017) and are one of the most
commonly studied signals in volcano seismology (Falsaperla
et al., 2005) for use in eruption forecasting as well as investi-
gating the physics of the underlying volcanic processes
(Chouet, 1996; Yukutake et al., 2017).

Despite different hypothesis about the generation mecha-
nisms of volcanic tremors, the details are not yet well under-
stood (Davi et al., 2012; Eibl, Bean, Jónsdóttir, et al., 2017), and
a variety of physical processes may explain the seismological
evidence observed so far (Hellweg, 2000). Volcanic tremor
signals are usually seen in the seismic records alongside many

tectonic earthquakes or other transient signals occurring
during a period of volcanic unrest (Dmitrieva et al., 2013;
Hotovec et al., 2013; Eibl, Bean, Vogfjörd, et al., 2017), affect-
ing the observability of the tremor signal. Both volcanic
tremors and earthquakes may help better understand the
underlying physical processes of volcanic eruptions; however,
the superposition of signals makes it challenging to study the
details of each signal separately. A reliable signal processing
operation is, thus, required to separate earthquakes as well as
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other transient signals from the volcanic tremor signals in
the recorded seismic waveforms during periods of volcanic
unrest. There have been attempts in terms of the detection
and discrimination of volcanic tremor and tectonic earthquake
signals in previous studies. For example, an automatic P- and
S-wave detection was used in Rouland et al. (2009) to identify
volcanic tremors as events containing only P-type wave, and
tectonic earthquakes containing both P and S waves.
However, this study introduces for the first time the topic
of extracting tremor signals from seismic waveforms and
reconstructing the volcanic tremor signal with related phase
information.

Inspired by similarities of seismic and acoustic signals, we
take advantage of the expertise developed in the field of music
information retrieval (MIR) and audio signal processing. A
seismic waveform is the record of the Earth vibrations, which,
in terms of signal properties and generation mechanism, can be
seen to be similar to sound signals generated by musical instru-
ments (including the human voice) (Schlindwein et al., 1995;
Johnson and Watson, 2019). Exploiting the extensive research
results in MIR (e.g., Müller, 2015), we have developed a seis-
mological data processing scheme for the purpose of separating
volcanic tremor signals from transient signals generated during
a volcanic crisis.

The separation of harmonic and percussive components of
sound is of great interest in musical signal processing (e.g.,
Rafii and Pardo, 2011). Pop music, for example, often consists
of a repetitive percussive background and a vocal foreground,
which is locally nonrepetitive (FitzGerald, 2012). In this type of
music, the different characteristics of harmonic and percussive
sounds in the spectrogram domain (see Müller, 2015) allow a
separation of foreground vocals from the more percussive
background sound (FitzGerald and Gainza, 2010). Similarly,
a seismic waveform during an eruption may consist of (har-
monic) volcanic tremor signals over which transient seismic
signals are superimposed. The long-duration volcanic tremor
signal that lasts minutes to days with a restricted frequency
range (1–9 Hz according to McNutt, 1992) contrasts with tran-
sient seismic signals such as earthquakes with a wider range of
frequencies (0.1–30 Hz in this study). In particular, harmonic
volcanic tremor signals with distinct spectral lines are readily
distinguishable from transient, short-duration (seconds) seis-
mic events in the time–frequency domain. In musical signal
processing, the goal of harmonic–percussive source separation
is to decompose an input signal into the sum of two signals—
one consisting of all harmonic components and the other of all
percussive components (Müller, 2015). The same algorithms
could be implemented in the seismology domain to decompose
a seismic signal into its harmonic components (harmonic
volcanic tremors) and percussive components (transient events
such as earthquakes). In musical signal processing, several
methods for harmonic–percussive separation (HPS) have been
suggested (Müller, 2015).

Here, in the first step of our method, we adopted the
repetition/similarity (REPET-SIM) method (Rafii and
Pardo, 2012; Rafii et al., 2014) to separate volcanic tremors
from transient earthquakes. The advantage of this method is
its ability to process music pieces with quickly varying repeat-
ing structures without the need to identify periods of the
repeating structure beforehand. The approach evaluates
the underlying repeating structure by looking for the similar-
ities in the spectrogram time frames. This repeating part of
the signal is then subtracted from the original spectrogram.
The remaining time frames contain the percussive events. We
use this approach and apply it to seismic data collected from a
volcano. In this setting, repeating structures, which result in a
harmonic spectrum, correspond to volcanic tremors and per-
cussive (nonrepeating and impulsive) elements correspond-
ing to transient events such as earthquakes. Another method
similar to REPET-SIM for HPS was proposed by FitzGerald
(2010), which we use in the second step of our method to
remove remaining percussive components in the repeating
spectrogram and vice versa.

The remainder of this paper is organized as follows. In the
Method section, we describe existing methods in MIR for our
problem (see the HPS Algorithms section) and explain how we
developed our method based on these algorithms. Modifications
to and the application of the REPET-SIM method (Rafii and
Pardo, 2012; Rafii et al., 2014) and the HPS usingmedian filtering
(FitzGerald, 2010) for extracting seismic tremor signals are out-
lined in the Volcanic Tremor Extraction Approach section,
whereas the Transient Signal Detection and Timing Estimation
section describes the detection and timing of the remaining tran-
sient events (e.g., earthquakes). The Parameters Selection section
outlines the selection of the method’s parameters. The Datasets
and Testing section presents the generation of semisynthetic data
(see the Generation of Semisynthetic Data section)—an evalu-
ation of the proposed method based on a semisynthetic test
on tremor extraction (see the Testing the Tremor Extraction
Algorithm Using Semisynthetic Data section) and earthquake
detection (see the Testing the Earthquake Detection Algorithm
Using Semisynthetic Data section), as well as real data tests
(see the Real Data Tests section). The feasibility of the method
with respect to processing speed is discussed in the Feasibility of
the Method with Respect to Processing Speed section. In the
Conclusions and Outlook section, we discussed the results and
provided our conclusions about the applicability of the
method.

Method
HPS algorithms
HPS as an application of musical source separation (Cano et al.,
2018) has attracted significant attention in MIR research in
recent years (Rafii et al., 2018). HPS algorithms are based
on the different characteristics of harmonic and percussive
components in a music signal.
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Harmonicity expresses the situation in which the complete
signal can be seen as the superposition of spectral components
(partials) for which frequencies are all integer multiples of a fun-
damental frequency. Harmonics form stable horizontal ridges in
a short-time Fourier transform (STFT) spectrogram, which
means constant frequencies exist along the time axis. A percus-
sive (impulsive) sound is short and similar to the sound of
hitting a drum. Percussive signals form vertical ridges in an
STFT spectrogram, corresponding to the existence of different
frequencies in an instant, that is, a broadband characteristic of
short duration.

To separate harmonic and percussive elements, one simple
approach is to apply a median filter to the STFT spectrogram of
the signal (FitzGerald, 2010). Median filters are usually used to
remove noisy parts of a signal by replacing each sample by the
median value determined from the neighboring samples within
a specific window. Within the HPS, a median filter applied
along the horizontal axis of the spectrogram (time) suppresses
“short-lived” broadband percussive components interrupting
the long-lasting horizontal narrowband ridges. This results
in a “denoised” harmonic spectrogram. Similarly, applying a
median filter along the vertical axis of a spectrogram (fre-
quency) emphasizes short-lived broadband features, while sup-
pressing long-lasting narrowband horizontal frequency lines
(harmonic components) and results in a “denoised” percussive
spectrogram. These two median filters are used separately to
generate the related spectrograms with dominant harmonic
or percussive content, respectively.

Another promising approach for our purpose is REPET-SIM,
which treats repetition as a basic property in generating and per-
ceiving structure in music (Rafii and Pardo, 2012; Rafii et al.,
2014). The main step in this method is to identify similar patterns
using a calculated similarity matrix. Given a music signal, first its
complex STFT is calculated, which is namedX here. Considering
V as the amplitude spectrogram V � jXj, the similarity matrix S
is calculated to measure the cosine similarity (the similarity
between two vectors of an inner product space) between time
frames of the spectrogram V. As shown in equation (1), the
cosine similarity is calculated through the multiplication of the
transposed V by V with normalization of the V time frames:

EQ-TARGET;temp:intralink-;df1;53;223S�ja; jb� �
P

n
i�1 V�i; ja�V�i; jb������������������������������P

n
i�1 V�i; ja�2

p �����������������������������P
n
i�1 V�i; jb�2

p ; �1�

in which ∀ja; jb ∈ �1;m�, in whichm is the number of time frames
and n is the number of frequency channels for each time frame.
S�ja; jb� is then the cosine similarity between the time frames ja
and jb of the spectrogram V.

For all the frames j in V, similar frames are identified using a
threshold in the similarity matrix and stored in an array J. A
repeating spectrogram model W is then derived using the
similar frames. For all the frames j, the corresponding frame
in W is derived by taking the median of J for each frequency.

Repeating time–frequency bins are captured by the median
and build the repeating spectrogram modelW. A refined repeat-
ing spectrogram model W′ is created by taking the minimum
betweenW andV. The rationale is that the nonnegative spectro-
gram V is the sum of two nonnegative spectrograms of repeating
and nonrepeating patterns, and, hence,W is less than or at most
equal to V.

In the following, a time–frequency mask M is derived by
normalizing W′ by V. Time–frequency bins with repeating
patterns will have values close to 1 in M, and time–frequency
bins without repeating patterns will have values close to 0. The
mask M is applied to STFT X, and the repeating spectrogram
will be created. Finally, the harmonic signal in music is
obtained by inverting the repeating spectrogram into the time
domain. The percussive signal is obtained by subtracting the
harmonic signal from the input signal (Rafii and Pardo, 2012).

Volcanic tremor extraction approach
Among the different tremor observations in volcanic seismol-
ogy, the so-called harmonic tremor is a special signal showing a
band-limited harmonic spectrum. It has been observed at
many volcanoes and has been reported often during times
of increased volcanic activity, and is thought to be connected
to fluid flow or (de-)pressurization of the volcanic system (e.g.,
Montegrossi et al., 2019). This is the motivation for using HPS
algorithms to separate harmonic volcanic tremor signals from
earthquake signals representing the percussive event type.
Being able to extract this special kind of tremor signal from
seismic waveforms provides the opportunity to improve the
observations and analyses of harmonic tremors. In particular,
extracting low-amplitude harmonic tremor signals that are
hidden in the background seismic noise or overprinted by
earthquake sequences accompanying volcanic activity may
allow new insights into the generation processes and their
relationships to volcanic eruptive activity.

In this study, we analyze the seismic waveforms of the
Holuhraun 2014–2015 eruption in Iceland (FLUR station from
network 7Z; White, 2010) to separate the harmonic and percus-
sive components. Figure 1 shows the eruption site and the sta-
tion location in Iceland with an example of one day of seismic
waveforms (Fig. 1a,b), the power spectral density (PSD), and the
spectrogram (Fig. 1c,d). The PSD and spectrogram of the
extracted harmonic components are shown in Figure 1e,f.

Our method is derived from a combination of the REPET-
SIM method (Rafii and Pardo, 2012; Rafii et al., 2014) and the
HPS algorithm given by FitzGerald (2010), after tuning
parameters to adapt it to seismic data. For building our
method, we used Librosa—a Python package for audio and
music signal processing (McFee et al., 2020). Furthermore,
we implement a phase reconstruction procedure for the vol-
canic tremor signal. A detection algorithm for earthquakes as
transient signals has been derived as a by-product of the
applied processing.
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The REPET-SIM, as described in the HPS Algorithms
section, is used to create a similarity matrix and to derive a
time–frequency model of repeating patterns. We derive the
nonrepeating spectrogram model by subtracting W′ from V.
Once the model spectrograms are calculated, they are used
to derive two time–frequency masks for repeating and nonrep-
eating patterns.

We modified the REPET-SIM algorithm using a soft mask
via Wiener filtering (Vaseghi, 1996) instead of a binary mask.
The calculation of the soft mask M1 and M2 are shown as fol-
lowing equations:

EQ-TARGET;temp:intralink-;df2;41;223M1 � W′P

W′P � �V −W′�P ; �2�

EQ-TARGET;temp:intralink-;df3;41;170M2 � �V −W′�P
�V −W′�P �W′P ; �3�

in which M1 is a repeating mask, and M2 is a nonrepeating
mask. A power factor P is applied to the model spectrograms
to further enhance the signal-to-noise ratio (SNR). We use a
power factor of 2 in our calculations.

Once we have constructed the masks, we multiply them with
the input amplitude spectrograms to separate the components.

Equation (4) shows the element-wise multiplication of the
repeating mask M1 and the input amplitude spectrogram V:

EQ-TARGET;temp:intralink-;df4;308;170R � M1 ⊗ V; �4�
in which R denotes the repeating amplitude spectrogram. The
same element-wise multiplication operation is applied for the
nonrepeating mask and the input amplitude spectrogram as it
is shown in the following equation:

EQ-TARGET;temp:intralink-;df5;308;94NR � M2 ⊗ V; �5�
in which NR denotes the nonrepeating amplitude spectrogram.

Figure 1. Aspects of the Holuhraun 2014–2015 eruption data and
the application of the proposed method. (a) The eruption site and
the station location. Glacier, the 2014 formed dyke segments as
described in Sigmundsson et al. (2015), FLUR station, the erupted
lava flow field in Holuhraun, Bárdarbunga volcano, and the seismic
array (Eible, Bean, Jónsdóttir, et al., 2017) are marked. The inset
map in the bottom right shows the location in Iceland. (b) An
example of real data from 3 September 2014 (HHZ component of
FLUR station from network 7Z; White, 2010). (c) The power
spectral density (PSD) and the (d) spectrogram of this day for the
raw seismic data. (e) The PSD and the (f) spectrogram for the
extracted tremor signal using the proposed method. The color
version of this figure is available only in the electronic edition.
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From this, we obtain two spectrograms—one for repeating
patterns and one for nonrepeating patterns. The harmonic and
percussive components of the signals are separated into their
respective masked spectrograms, although small traces of
percussive components are still visible in the repeating spectro-
gram, and remnants of the harmonic components can be rec-
ognized in the nonrepeating spectrogram. Therefore, a second
HPS approach is subsequently applied to the resulting spectro-
grams from the first processing step using the median filtering
method of FitzGerald (2010). In particular, we use median
filtering along the time axis, enhancing the harmonic compo-
nents within the spectrogram. Applying another median filter-
ing along the frequency axis results in a denoised spectrogram
of the percussive components. Following the previous nota-
tion, each spectrogram of R and NR will be decomposed into
two spectrograms of their harmonic and percussive compo-
nents. Equations (6) and (7) show this separation:

EQ-TARGET;temp:intralink-;df6;53;522R � H1� P1; �6�

EQ-TARGET;temp:intralink-;df7;53;475NR � H2� P2; �7�

in which H1 and P1 are harmonic and percussive components
of the repeating spectrograms, and H2 and P2 are harmonic
and percussive components of the nonrepeating spectrograms.
We create a soft mask using H1 and multiply it by the R
spectrogram, which results in the final harmonic spectrogram,
which we nameHARM. Another soft mask is created using P2
and is multiplied by the NR spectrogram to derive the final
transient spectrogram that we have named TRAN (see Fig. 2).

Figure 2 shows the flowchart of the method with an example
of a seismic waveform from 3 September 2014 during the
Holuhraun 2014–2015 eruption in Iceland (FLUR station from
network 7Z; White, 2010). On this day, we were four days into
a six-month-long fissure eruption accompanied by tremors
and long-period (LP) and volcano-tectonic earthquakes
(Eibl, Bean, Vogfjörd, et al., 2017). For further details on
the background of the Holuhraun eruption event, the reader
is referred to Sigmundsson et al. (2015) and Gudmundsson
et al. (2016). For details on the events on 3 September
2014, the reader is referred to Eibl, Bean, Vogfjörd, et al.
(2017) and Woods et al. (2018).

Besides describing the processing steps (Fig. 2a), we show
an input waveform and its spectrogram, which is decomposed
in two steps (Fig. 2b). In the first step using the modified
REPET-SIM algorithm, we decompose the X spectrogram into
a “repeating” spectrogram (R spectrogram) and a “nonrepeat-
ing” spectrogram (NR spectrogram). Each of these two spec-
trograms are then decomposed into their harmonic and
percussive components in the subsequent step, following the
algorithm of FitzGerald (2010). The harmonic component of
the repeating spectrogram shows the final result for the

harmonic spectrogram (HARM spectrogram), and the percus-
sive component of the nonrepeating spectrogram shows the
final result for the transient or percussive spectrogram
(TRAN spectrogram). The HARM spectrogram corresponds
to the tremor spectrogram according to our assumptions of
the generating process. From the tremor spectrogram in the
frequency domain, the tremor signal can be reconstructed
in the time domain. The problem of reconstructing a signal
from its modified STFT has varieties of applications in audio
signal processing, in which modifications are applied to the
amplitude STFT and the phase information is lost (Sturmel
and Daudet, 2011). The standard phase reconstruction
Griffin–Lim algorithm (Griffin and Lim, 1984), which is based
on random phase initialization followed by the minimization
of the squared error between the STFT of the estimated signal
and the modified STFT, shows poor performance for our seis-
mological test signals. The random initialization of phase is an
inadequate starting model for the inversion procedure and
results in an unreliable signal estimate. The problem of this
inadequate signal reconstruction is illustrated by an example
(Fig. 3d) and is described at the end of this section.

We must use phase information of the original STFT X to
reconstruct the signal in the time domain. Considering the
notation in the HPS Algorithms section, we calculate the
similarity matrix based on V as the amplitude spectrogram.
Therefore, we need to separate the complex-valued spectro-
gram X into its amplitude V and phase components using
the following equation:

EQ-TARGET;temp:intralink-;df8;320;379X � V × exp�1j × φ�; �8�

in which φ denotes the phase of X, and j is the imaginary unit.
The procedure of using the initial phase matrix is more prob-
lematic than it might seem at first glance. Simply using the
phase information of X can lead to a noisy reconstructed signal
due to the noise contributions in the phase matrix of the seis-
mic waveform. Therefore, we use the values of the phase matrix
only in the dominant frequency band of the HARM spectro-
gram. We do so by integrating theHARM spectrum amplitude
squared for all time frames and determine the starting fre-
quency as the 5% quantile of the total energy in the spectrum
and the stop frequency as the 95% quantile, respectively. The
dominant frequency band is between the start and stop
frequencies. Then, we add this modified phase information
(weighted phase information) named φt to theHARM spectro-
gram using the following equation:

EQ-TARGET;temp:intralink-;df9;320;145T � HARM × exp�1j × φt�; �9�

in which T is the complex tremor spectrogram, and HARM is
the harmonic amplitude spectrogram.

Finally, we reconstruct the tremor signal time series from
the complex spectrogram T, using the inverse STFT. The
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inversion process is done using the Griffin–Lim algorithm
(Griffin and Lim, 1984) for converting a complex-valued
spectrogram to a time series by minimizing the mean squared
error between the complex STFT of the estimated signal and
the modified STFT T. Using a part of the phase information
sees the Griffin–Lim algorithm converging to a reasonable
time-domain signal, whereas it will not if starting with ran-
domly selected phases.

Figure 3 shows the seismic signal (Fig. 3a, blue) and a com-
parison of the reconstructed volcanic tremor signal for 1 min of
seismic waveform from 3 September 2014 using our approach
(Fig. 3a, green, and 3b) and two other methods (Fig. 3c,d)
described later. As shown in Figure 3b, the reconstructed
tremor signal using our method is not noisy and shows almost
no trace of transient signals. Figure 3c shows the reconstructed
signal using the inverse STFT, after applying horizontal
median filtering (FitzGerald, 2010) on the STFT spectrogram
with the goal of separating and extracting the harmonic tremor
signal. In this case, the tremor signal is reconstructed by adding
the phase of the original seismic waveform to the modified
STFT. Transient signal energy still exists in the reconstructed
harmonic signal, which demonstrates that horizontal median
filtering is not sufficient for extracting a clean tremor signal
without signs of transient events.

In Figure 3d, we show the estimated tremor signal using
the original Griffin–Lim algorithm for phase reconstruction.
The effect of earthquake signals is almost eliminated, as in

Figure 3b, which is reasonable as both Figure 3b,d are extracted
from the HARM spectrogram. However, a significant differ-
ence compared with the seismic signal is visible in
Figure 3d in terms of the shape of the signal. Also, the phase
is not reconstructed correctly. Therefore, this signal (Fig. 3d) is
not applicable for seismological purposes. This shows the
importance of using appropriate phase information for recon-
structing a seismic signal in the time domain.

We note that a prefiltering of the original seismic data is
necessary to remove microseismic signals before applying our
algorithm. Indeed, microseisms are harmonic signals, which
may have a dominant energy in the tremor spectrogram.
Therefore, the amplitude and the phase of the reconstructed
tremor signal could be significantly affected by such micro-
seism signals if they are not filtered out beforehand. We
applied a high-pass filter with a cutoff frequency of 0.5 Hz on
our real dataset.

Transient signal detection and timing estimation
In a second step, we use the transient spectrogram to locate the
occurrence of transient signals in time. We do so by integrating

Figure 2. Method flowchart. (a) Processing steps of the method
and (b) illustration of the processing steps with a real data
example. STFT, short-time Fourier transform. The color version of
this figure is available only in the electronic edition.
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the spectral amplitudes over the full frequency band at each
time frame, thus deriving a characteristic function suitable
for detecting transient events. At the time of transient events,
this function has large values compared with zero or very small
values in other parts of the function.

Most observed transient signals in the seismic recordings
can be interpreted as seismic-wave arrivals of earthquakes.
A standard task in observational seismology is then to estimate
arrival times of wave groups from timing the onset of transient
signals. Proposing the detection of transient signals with the
characteristic function described earlier, we further aim to
extract an accurate onset time of the transient signals. For
detection, we use a local maximum (peak) search on the tran-
sient characteristic function. Two thresholds are applied to the
characteristic function—the upper threshold and the lower
threshold. The upper threshold is used for transient signal
detection, and the lower threshold is used for accurate onset
timing. The upper threshold prevents picking up minor local
maxima representing coda waves or other fluctuations in the
earthquake records. This threshold is determined by visually
analyzing the peak value distribution on some smaller test set
in the data. The local maxima, which are larger than the
threshold, are then considered to represent detected earth-
quakes. The maximum peak of the characteristic function cor-
responds mostly to S-wave arrivals, whereas the P-wave onset
can be associated with the earliest break in the characteristic
function. We have, therefore, developed a straightforward
procedure to find the first-arrival onset of the transient events
by considering amplitude and amplitude derivatives of the

characteristic function for the prepeak interval time window
from the largest local maximum found in the characteristic
function (Fig. 4).

We used a 5 s prepeak interval time window, because most
of the earthquakes in this study are local, and tS − tP differ-
ence times are less than 5 s. This time window is shown in
Figure 4. It is recommended to use a larger prepeak interval
time window for regional earthquakes. We shorten this pre-
peak interval time window preceding each peak using the fol-
lowing criterion. First, we adjust the lower threshold visually
to the level of residual signal energy from the harmonic signal
component remaining after the separation process. The lower
threshold is the smallest nonzero number in the characteristic
function, which does not correspond to the transient signals.
This allows the removal of minimal amount of residual
energy due to the separation process. Using the lower

Figure 3. Comparison of the extracted tremor signal using the
proposed method and two other methods visualized for a short
time window of data from 3 September 2014 (HHZ component
of FLUR station from network 7Z; White, 2010). (a) The raw
seismic signal (blue) and the reconstructed tremor signal using
our method (green). (b) Same as the green trace in (a). (c) The
reconstructed tremor signal using horizontal median filtering.
The traces of transient events still exist in this signal. (d) The
estimated tremor signal using the Griffin–Lim algorithm for phase
reconstruction. The vertical red line is drawn to illustrate the
phase alignment of the signals. The color version of this figure is
available only in the electronic edition.
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threshold improves the accuracy of onset time picking. We set
all values of the characteristic function below the lower
threshold to zero. Second, we check if there are some neigh-
boring zero samples in the time window and change the start-
ing point of the window to one sample after the last zero
sample to prevent mixing with a very close preceding event.
Indeed, neighboring zero samples means that there is no tran-
sient signal, and shortening the window avoids confusion
with a close preceding event. We skip the samples following
a local maximum within the window, if there are any. Then,
we calculate the slope between each two neighboring samples,
and, we skip the samples following a slope reduction, if there
are any. Finally, the starting point of the transient signal
(P-wave arrival) is the point showing the maximum slope
increase (see Fig. 4).

Parameters selection
Although the separation process creates a harmonic and per-
cussive spectrogram, the process must be repeated twice with
different fast Fourier transform (FFT) window lengths, if both
tremor signals and the timing of the transient events are to be
determined. Because of the uncertainty principle in Fourier
analysis, it is impossible to increase both the temporal

resolution and the frequency resolution. A better frequency
resolution requires a longer time window for the spectral
analysis (longer FFT length), which implies a reduced temporal
resolution. Similarly, using a shorter FFT window increases the
temporal resolution, whereas the frequency resolution will be
reduced. For extracting the tremor signal, we need a high res-
olution in the frequency domain, and, therefore, a large num-
ber of FFT points is chosen. We use an FFT window length of
81.92 s with an overlap of 75%, corresponding to an FFT size of
8192 at a sampling frequency of 100 Hz. To detect transient
events, a high resolution in the time domain is needed, and

Figure 4. Flowchart for backtracking the peaks to the arrival time.
The example shows an earthquake time history and its charac-
teristic function. The vertical green line in the top left figure
shows the first selected peak, which is sent back in time to the P-
arrival time step by step. In the top left, the prepeak interval time
window is demonstrated as [start, end). The bracket means
including the start point in the time window, and the parentheses
means excluding the end point from the time window. The
uncertainty of the P-arrival time in this example is 0.1 s through
visual inspection. The color version of this figure is available only
in the electronic edition.
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a small number of FFT points and short hop size (number of
samples between each successive FFT window) are chosen. We
use an FFT size and FFT window length of 1.28 s, with an over-
lap of 75%. Considering the data’s 100 Hz sampling frequency,
neighboring FFT windows are spaced in time by an interval of
0.32 s (3.125 samples per second). Fourier transforms with a
narrower FFT size are not recommended for our algorithm
due to the resulting limited frequency resolution.

There are two sets of median filter procedures used in
our method. The first one, which is described in the HPS
Algorithms section, is part of the REPET-SIM algorithm and
is depicted in the flowchart of Figure 2a. After identifying the
similar frames and storing them in the array J, the median of J
is taken for each frequency to construct W.

The second median filter procedure is described in the
Volcanic Tremor Extraction Approach section in which a
second HPS approach is applied using the median filtering
method of FitzGerald (2010). Both a horizontal median filter
and a vertical median filter are applied separately to the spec-
trograms of R and NR (see the flowchart in Fig. 2a). We use a
standard kernel size of 31 for both the horizontal and vertical
median filters, as it has been shown by Driedger et al. (2014)
that the choice of this parameter is not critical if not choosing
extreme values. Both R andNR are decomposed into two spec-
trograms, that is, containing harmonic and percussive signal
components. The harmonic component of the R spectrogram
is the final harmonic spectrogram (HARM, see Fig. 2b). The
percussive component of the NR spectrogram is the final
spectrogram of the transient components (TRAN, see Fig. 2b).

Datasets and Testing
Generation of semisynthetic data
We created a synthetic harmonic signal, convolving equally
spaced spikes with a real-valued Morlet wavelet (Fig. S1a,
available in the supplemental material to this article). In this
way, we can model the basic features of a harmonic spectra
(Schlindwein et al., 1995). Instead of using exact constant
repetition intervals and a fixed amplitude, which produces a
perfect harmonic tremor signal, we varied the interval times
as well as the amplitude of the spikes according to a normally
distributed random variable around some mean value with
about 10% variance. This results in slightly broadened peaks of
the harmonic spectrum and reproduces the variation that we
observe in seismic records of volcanic tremors (Eibl, Bean,
Vogfjörd, et al., 2017; Fig. S1b). After creating the harmonic
signal, colored noise resembling Peterson’s low-noise model
(LNM, Peterson, 1993) is added to the signal. The colored
noise is synthesized by computing coefficients of a zero-phase
finite-impulse-response (FIR) filter via inverse FFT from the
spectral representation of the LNM. Then, we apply the FIR
filter to a random time series of arbitrary length and multiply
it with an amplitude factor to adjust the SNR of the tremor
versus colored noise (Fig. S2). Finally, we add real earthquake

recordings randomly in time to the resulting time series of
synthetic tremor and noise (Fig. S3). Each earthquake signal,
which is used for semisynthetic data creation, is cut from the
beginning of the P wave until the signal amplitudes return to
the pre-event noise level after the S- or surface-wave coda part.
We used different types of the earthquakes’ signals, that is, both
LP and volcano-tectonic events within the time period from 15
September to 20 September 2014 show significantly different
signal durations. In total, we created 24 hr of semisynthetic
data by combining 500 real earthquake recordings with syn-
thetic harmonic waveform and a seismic noise series. More
details about the semisynthetic data generation can be found
in Figures S1–S3. Figure 5a–c shows the components of the
semisynthetic signal, and Figure 5d shows the created semisyn-
thetic signal.

We applied our method to this semisynthetic dataset. The
synthetic harmonic signals were extracted, and the earthquakes
were detected via the characteristic function. Figure 5e shows the
semisynthetic signal after subtracting the extracted tremor signal
from it, and we name it the detremored signal. As shown in
Figure 5e, this signal has a larger earthquake SNR, and an
improvement in the first-motion piking is seen. This is useful
when we need to remove a harmonic noise from the seismic
waveform. Figure 5f,g shows the extracted harmonic signal and
the earthquake characteristic function as outputs of the method.

Testing the tremor extraction algorithm using
semisynthetic data
To evaluate the ability of the method for tremor signal extrac-
tion, we use the created semisynthetic data with different SNR
of the harmonic signal. To set different SNRs, we normalize
each component of the semisynthetic data by dividing it by
its standard deviation, and then we weight them based on
the desired SNR. Our harmonic signal extraction process is
performed on the semisynthetic data, and the harmonic signal
is then reconstructed. The cross correlation of the synthetic
harmonic signal and the reconstructed harmonic signal using
our method is measured (Fig. 6). Cross correlations measure
the similarity of two time series, so we calculate them to evalu-
ate how similar the reconstructed harmonic signal is to the
synthetic harmonic signal. If the two time series are identical,
the cross-correlation coefficient will be 1, and, if they are com-
pletely different, the cross-correlation coefficient will be 0. We
can reconstruct the tremor signal for an SNR of at least 0.4 with
a cross correlation of more than 0.8. The synthetic harmonic
signal and the reconstructed signal match well in both phase
and shape (see Fig. 5b,f). The differences between these two
signals are usually related to small fluctuations in the input
harmonic signal, which shows a random pattern instead of
a repetitive pattern. The similarity matrix is not able to identify
random patterns, and, therefore, they are not reconstructed in
the output signal. Figure 6 shows the SNR and related cross
correlation of input and output harmonic signal.
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Testing the earthquake detection algorithm using
semisynthetic data
To evaluate the capacity of our method for earthquake detection,
we use the created semisynthetic data with different earthquake
SNR. We report the local SNR here, which refers to the ratio
between the variance of the earthquake signal and the variance
of the local related segment of the semisynthetic data. The local
related segment is the time window that contains the earthquake
signal as well as synthetic tremor signals and seismic noise in the
background. The segment has a variable length that corresponds
to the earthquake signal duration. The advantage of the semisyn-
thetic signals is that we can measure and control the individual
components. The results show that for SNR = 0.1, we can detect
more than 78% of the events; however, below SNR = 0.3, there is
a significant number of false picks (up to 30% of all events),
whereas the average percentage of false picks is 6% for SNR
between 0.3 and 1. For SNR higher than 0.1, 42% of the missed
events are LP events. The SNR and related detection rates are
reported in Figure 7a. Some examples of semisynthetic data with
different earthquake SNR and different SNR of harmonic signal
component are presented in Figures S4–S7.

Most missed events are similar to that shown in Figure 7b,
which are classified as LP events (Woods et al., 2018). Figure 7c

shows a typical volcano-tectonic event for comparison. That LP
events that are often not detected can be explained by the proper-
ties of the detection characteristic function. This function is
derived from summing all frequencies in the transient spectro-
gram for each time frame. Thus, the characteristic function is
sensitive to broadband signals. However, LP events are narrow-
band, which results in a poor performance, although the signals
are contained in the transient spectrogram. Also, if LPs persist
longer, it becomes more difficult to detect them because of the
basic structure of the method. Indeed, to create the repeating

Figure 5. Testing the method with semisynthetic data.
(a) Earthquake signals, (b) synthetic tremor signal, and (c) seismic
noise signal are the elements for creating semisynthetic data.
Each of these three signals is normalized by dividing by their
standard deviation. (d) Weighted sum of the data in (a–c), which
is used as an input for our method. The signal-to-noise ratio (SNR)
of the earthquakes is 0.2, and the harmonic SNR is equal to 2.
(e) The detremored signal derived by subtracting the extracted
tremor signal from the semisynthetic signal. (f) Extracted tremor
signal and (g) transient characteristic function as outputs of our
method. The color version of this figure is available only in the
electronic edition.
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spectrogram, for all time frames, we derive the corresponding
frame (in the repeating spectrogram) by taking the median of
the similar frames (which are identified using the similarity
matrix) for each frequency bin. For a transient (short duration
in time) event, there are a few numbers of similar frames in the
spectrogram, so it is identified as a nonrepeating pattern.
Therefore, it will show a short-lasting sharp peak in the transient
characteristic function. In contrast, for a long-lasting event,
there are some adjacent similar frames, which will be replaced
in the repeating spectrogram by the median of them.
Therefore, it shows some long-lasting, less sharp, adjacent peaks
in the transient characteristic function, which is less likely to be
detected by the local maximum finder compared with sharper
peaks.

Real data tests
In a final step, we applied the method to a dataset of the
Holuhraun 2014–2015 eruption and extracted volcanic tremor
signals from the seismological records. As discussed in the
Volcanic Tremor Extraction Approach section and showed
in Figure 3a,b, the reconstructed tremor signal matches well
with the original seismological records and has no trace of
transient, earthquakes-related signals. This dataset consisted
of one month (September 2014) of recordings by the FLUR
station, and we use a single vertical component to detect earth-
quakes. We compared our detected earthquakes with the bul-
letin presented in Ágústsdóttir et al. (2019). For the station
location with respect to the eruption fissures, please see
Figure 1 and Woods et al. (2018). About 84% of the total of
5071 events listed by Ágústsdóttir et al. (2019) were detected by
our proposed approach.

We detected a total of 12,619 events, which is more than twice
the number of listed events in the bulletin. The bulletin is made

based on an automatic detection method using Coalescence
Microseismic Mapping (Drew et al., 2013) with the velocity
model used in Ágústsdóttir et al. (2016, their fig. S2c). The bul-
letin earthquakes were relocated (Ágústsdóttir et al., 2019) using
cross-correlated, subsample relative travel times following the
method of Woods et al. (2019). A dense local seismic network
comprising 72 three-component broadband instruments was
used to create the 1 yr bulletin. Our detection process currently
uses only one component of seismic recording from a single sta-
tion. In the future, the result could be improved using three-com-
ponent signals and additional stations, because some of the
smaller events may have larger amplitudes on the other compo-
nents or stations. An event with a larger amplitude shows a larger
peak in the characteristic function, and hence the probability of
its detection using our algorithm will increase.

Our method can detect two adjacent earthquakes with a
minimum interval of around 10 s. This interval is defined
by the number of samples, which must be waited after picking
a peak in the local maximum finder. The interval value
depends on the number of FFT points, the hop size, and the
type of earthquake. In our dataset, earthquakes are mostly
local, where shorter waiting time values will result in the detec-
tion of more than one peak for one event.

Using the algorithm described in the Transient Signal
Detection and Timing Estimation section, we are able to find
P-wave arrival times using the detected peaks via the local
maximum finder. The uncertainty in the example shown in
Figure 4 is 0.1 s through visual inspection. The pattern of the
characteristic function for different types of events is, however,
not always similar to the simple shape we have assumed, which
mostly corresponds to the energy shape of a local event and
could have more fluctuations; thus, the uncertainty in detecting
the P arrivals could be higher. We compared the P-arrival-time
residuals of our method and those given by the bulletin of
Ágústsdóttir et al. (2019) for one month. For 52% of the events,
the time difference is less than 1 s, whereas 48% of the events
show a time difference of between 1 and 6 s. A significant part
of large time differences is related to LP events, in which the
duration of the event is long compared with volcano-tectonic
events in the characteristic function, in which the first arrival is
outside of the prepeak interval time window. In this case, the
algorithm is able to send the first selected peak back in time to
the starting point of the window and shorten the time differ-
ence; however, the emergent onset of the LP event is still earlier
in the time axis. This algorithm (finding P-wave arrival times
using the detected peaks) could be improved upon by assigning
different parameters for different event types.

The algorithm that is proposed here is a simple way to
attribute the peaks to the starting point of changes in the char-
acteristic function. This could be applied in different fields
when a function has not only rather stable values but also expe-
riences sudden changes, and finding the first point of the start-
ing changes is important. One could develop the algorithm by

Figure 6. Cross correlation of the semisynthetic harmonic signal
and the reconstructed harmonic signal versus the SNR of har-
monic signal. The color version of this figure is available only in
the electronic edition.
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adding more criteria based on the information about the
phenomena that are attributed to the changes to decrease the
uncertainty in finding the starting point of change.

Feasibility of the method with respect to
processing speed
The average computation time for the tremor extraction of a
one-day-long record with an FFT window length of 81.9 s, over-
lap of 75%, and a sampling frequency of 100 Hz, is about 70 s,
when implemented in Python using Librosa on a PC with an
Intel core i7 (six-core) processor of 2.2 GHz and 16 GB of RAM.
For transient signal detection with an accuracy of 0.32 s, the
computation time is about 34 min with an FFT window length
of 1.28 s and an overlap of 75%. The significant difference in the
computation time between the tremor extraction and transient
signal detection is due to the different FFT window lengths of the
two processes. Reducing the FFT length and using the same over-
lap of 75% increases the number of FFT windows for the overall
data time range and the associated computation time.

Conclusions and Outlook
In this work, we have developed a method to extract and recon-
struct volcanic tremor signals, as well as to detect transient
signals from seismic waveforms. We used a combination of
two HPS algorithms from the field of MIR to separate har-
monic and percussive elements of the seismic waveform in
the time–frequency domain. This combination leads to a better
separation of the components and results in clean tremor and
transient spectrograms. The tremor signals are reconstructed
in the time domain using weighted phase information of
the initial seismic complex spectrogram at each time frame
through the energy contribution of the tremor spectrogram.
We showed that it is important to use phase information to
reconstruct a signal in the time domain for seismological pur-
poses to provide an accurate phase reconstruction. We also dis-
cussed how to use a weighted phase matrix based on the
dominant frequency band of the tremor spectrogram that can
almost eliminate the noise contributions in the phase matrix of
the seismic waveform. The reliability of the reconstructed sig-
nal was shown using semisynthetic tests. The cross correlation
between the synthetic harmonic signal and the reconstructed
harmonic signal using our method was higher than 0.8 for

SNRs of the synthetic harmonic signal above 0.4. In addition,
more than 78% of earthquake signals in the semisynthetic data
with SNR = 0.1 can be detected using our method.

The capability of the method for earthquake detection was
also evaluated in comparison to a real earthquake catalog. The
detection of more than twice the number of the Ágústsdóttir
et al. (2019) bulletin events demonstrates the ability of the pro-
posed method for detecting smaller seismic events, even when
only a single station and component is available.

The developed method is able to extract harmonic tremor
signals and is applicable to other volcanoes that exhibit such
phenomena. A possible application of the proposed method
is to extract volcanic tremor signals using a network or an array
during a period of heightened volcanic activity. In particular,
the clean tremor signal can be used for tremor source location
using array analysis, given that the tremor signal reconstruction
provides the true phase of the signal. This may provide an
improved analysis of the spatial and temporal evolution of
volcanic tremors during active volcanic periods.

Another application of this method is in the field of earth-
quake analysis research. Here, we suggest using the seismic wave-
form after subtracting the tremor signals (if tremors are
present). We named this signal as the “detremored” signal in the
Generation of Semisynthetic Data section (see Fig. 5e). The
advantage of using the detremored signal is the resulting increase
in the earthquake SNR and improvements in the first-motion
picking.

In our opinion, the transient signal detection algorithm
introduced in this study is a useful tool for detecting seismic
events and is especially applicable for detecting small events
during an earthquake swarm. Although we used one compo-
nent of one station for earthquake detection in this study, the
results could be improved using three components and

Figure 7. Detection rate of earthquakes in the semisynthetic data as
well as two earthquakes as samples of detected and not-detected
events by our method. (a) Detection rates for semisynthetic data as
a function of the SNR. (b) Seismic waveform and spectrogram of a
not-detected long-period (LP) event on 16 September 2014.
(c) Seismic waveform and spectrogram of a detected volcano-
tectonic event on 16 September 2014. The color version of this
figure is available only in the electronic edition.
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additional station, because some events with low amplitude on
the current component and station may show larger amplitude
on the other components or stations.

In conclusion, the presented method could provide a basis
for tremor source investigations as well as research into erup-
tive activity, because it provides simultaneous information
about tremors and earthquakes and allows the extraction of
a clean signal of the tremor for detailed investigations.

Data and Resources
All data used in this article are openly available at Incorporated
Research Institutions for Seismology (IRIS; network code 7Z,
White, 2010). The Python code related to the proposed method is
freely available from https://gitup.uni-potsdam.de/zali/harmonic-
tremor-extraction-and-transient-signal-detection (last accessed
March 2021). A Jupyter notebook with all the Python codes and
parameters related to the proposed method is available as a supple-
mental material to this article. The supplemental material related to
this article also contains illustrations of the semisynthetic data gen-
eration. The application of the method using some examples of semi-
synthetic data with different earthquake signal-to-noise ratios (SNRs)
and different SNRs of the harmonic signal component are also pre-
sented in the supplemental material.
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