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In this paper we examine the tonal organization of a series of recordings of liturgical chants, 

sung in 1966 by the Georgian master singer Artem Erkomaishvili. The aim of the study is to 

understand the melodic and harmonic tuning systems used by this exceptional singer, a subject 

that has long been the topic of intense and highly controversial discussions. Starting point for the 

present analysis is the re-release of the original audio data together with estimated fundamental 

frequency (F0) trajectories for each of the three voices, beat annotations, and digital scores 

(Rosenzweig et al. 2020). We present synoptic models for the pitch and the harmonic interval 

distributions of the complete Erkomaishvili dataset. We show that all pitch distributions, which we 

define as the distributions of F0-values in those parts of the F0-trajectories which correspond to 

note events with perceived pitches, can be expressed as Gaussian mixture distributions, anchored 

on discrete sets of pitch values. We show in the course of this study that these pitch values, 

which we refer to as scale pitches, define the scale degrees of the melodic sound scales which build the 

skeleton of Artem Erkomaishvili’s intonation. The observation of consistent pitch bending of notes 

in melodic phrases, which appear in identical form in a group of chants, as well as the observation 

of harmonically driven intonation adjustments, which are clearly documented for all pure harmonic 

intervals, demonstrate that Artem Erkomaishvili intentionally deviates from the scale pitch 

skeleton quite freely. We show that this melodic freedom is always constrained by the attracting 

influence of the scale pitches. Deviations of the F0-values of individual note events from the scale 

pitches at one instance of time are compensated for in the subsequent melodic steps. This suggests a 

deviation-compensation mechanism at the core of Artem Erkomaishvili’s melody generation, which 

clearly honors the scales but still allows for a large degree of melodic flexibility. This model is 

consistent with the melodic scale models derived from the observed pitch distributions, as well 

as with the melodic and harmonic interval distributions. 
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1. Introduction 
The rich musical heritage of the country of Georgia has since long times attracted the attention 

of musicians, music lovers, and musicologists. After the recognition of its traditional polyphonic 

singing as an intangible cultural heritage by the UNESCO in 2001 and the establishment of the bi-

annual International Symposia on Traditional Polyphony in 2002 at the State conservatory in 

Tbilisi, the research on Georgian traditional music has taken on a new momentum. One of the 

most controversial issues of discussion in this context continues to be the (authentic) structure of 

the tonal organization of traditional Georgian vocal music. Some scholars, e.g. (Erkvanidze 2016), 

have argued that the key to the understanding of this issue lies in the analysis of old audio recordings 

from professional singers of the last century. Although the first recordings of traditional Georgian 

singing with phonographs date back in time as far as to the beginning of the last century, the poor 

audio quality, caused by an extremely high noise level and strong signal distortions due to the 

recording process, makes analysis with automated methods practically impossible. To our 

knowledge, the oldest set of recordings of reasonable quality and of sufficient size for drawing 

general conclusions are the recordings by Artem Erkomaishvili from the year 1966 (recorded at the 

Tbilisi State Conservatory). This dataset, which is the object of the present study, is believed to 

be an essential source for any theory on tuning principles of traditional Georgian vocal music, 

see (Graham 2015).  Artem Erkomaishvili (1887-1967) was one of the last professional master 

chanters in Georgia and a giant of traditional Georgian vocal music of the 20th century. Until 

today, his family name stands  for a long list of  famous singers and choir leaders from the region of 

Guria in Western Georgia, a list which reaches back far into the 19th century (Erkomaishvili 

2017). With the Tbilisi State Conservatory recordings of 1966, of which a remastered selection has 

recently been released under the name Pearls of  Georgian Chant (Jgharkava 2016), Artem 

Erkomaishvili has left a legacy which is invaluable in a number of ways. Since chanting was 

prohibited during the Soviet period, without these recordings the tradition of the Shemokmedi 

chanting school might actually not have survived the last century (Shugliashvili 2014).  

The objective of the present study is to investigate the tonal organization of the Erkomaishvili 

dataset from several different perspectives. First, we consider the statistical distributions of  F0-

values in those parts of the F0-trajectories which are assumed to be perceived as   with well-

defined pitches. We will refer to them as pitch distributions and to all F0-values from within note 

events as pitches or pitch samples. We are aware that pitch per definition is a psychoacoustic 

quantity which perceptionally is more closely related to an autocorrelation process than to the 

measurement of a physical frequency component (Heller 2012). Equating pitch and F0 in the 

present context  serves a linguistic simplification and is not meant as an endorsement of an outdated 

pitch perception model. Modeling the pitch distributions by so-called Gaussian mixture 

distributions, which will formally be introduced in Section 4.2, will for once lead to a very efficient 
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numerical representation as well as to melodic sound scale models. Subsequently, we investigate 

the tonal organization through what we refer to as melodic step size distributions, which are the 

distributions of F0-differences between consecutive note  events in a melody. The third perspective is 

via the distribution of harmonic intervals in those parts of F0-trajectories from different voices 

which belong to note events and for which concomitant F0-values are available. Finally, we analyze 

the microtonal structure of the Erkomaishvili dataset (at sub-semitone resolution) and investigate the 

phenomenon of dynamic intonation adjustments for individual note events and different interval 

types. The general goal of our study is to develop an evidence-based model for Artem 

Erkomaishvili’s melody generation process which incorporates all these aspects of tonal 

organization (pitches, scales, melodies, and harmonies) in a consistent manner. The paper is 

structured as follows. Following this introduction, we review in Section 2 the publicly available 

literature on tonal organization of traditional Georgian music, thus introducing the context of the 

current work. Section 3 presents the main aspects of the Erkomaishvili dataset as far as they are 

relevant for the present study. Section 4 explains our overall analysis strategy and introduces the 

methodologies used in the subsequent analysis. We then turn to the actual processing of the 

recordings. We first analyze the top voice recordings (which are not affected by the physical 

presence of other voices) in Section 5 and then, in Section 6, their combination with the middle 

and bass voices (which were sung against pre-recorded voices). Section 6 closes with the 

discussion of the harmonic interval distributions. The microtonal structure of the dataset and 

the phenomenon of    harmonic intonation adjustments are discussed in Section 7, followed by a 

discussion and conclusions in Section 8. 
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2. Discourse on the Tonal Organization of  Traditional 
Georgian Music 

In this section, we present an overview of previous related studies on the tonal 

organization of traditional Georgian music. For some of these studies, the lack of 

documentation makes it difficult to judge their informative value according to modern 

scientific standards. However, in order to achieve as complete a picture as possible, we 

include all accessible publications in the following review. A collection of works by 

Georgian authors has been translated and published for an international audience by 

(Tsurtsumia and Jordania 2010). These studies go well beyond tuning and scale issues,  also 

covering  geographical, historical and cultural aspects, which are beyond the focus of our 

present study. This notwithstanding, these publications to some degree also discuss 

aspects related to the tonal organization of the music. (Gogotishvili 2004a), for example, 

describes the structure of the typical scale systems in traditional Georgian polyphony as 

non-octave scales being either fourth-based, fifth-based or based on a mixture of both. One 

of the key features of the fifth-based system is the augmented octave and augmented fourth 

(tritone). In contrast,  fourth-based scales would be tritone free. Other authors such as 

(Aslanishvili 2010; Dimitri Araqishvili 2010; Chkhikvadze 2010; Jordania 2010) emphasize the 

strong role of the (parallel) fifth and the 1-4-5 chord as being a characteristic feature of 

Georgian traditional music. Another aspect, which by some musicologists has been 

considered characteristic for Georgian singing, is the influence of harmonic constraints on 

the fine-tuning of the voices, see (Nadel 1933; Chokhonelidze 2010). 

While it can be considered consensus amongst researchers that historically, traditional 

Georgian vocal music was not tuned to the 12-tone equal-temperament scale, the 

particular nature of the Georgian sound scale(s) is still an ongoing topic of intense 

discussion. (Erkvanidze 2002, 2016), for example, claims that the historical Georgian sound scale 

is related to the ancient Greek modal system. Based on this assumption and acoustic 

measurements, which in his first paper he describes as having being done “by ear” 

(Erkvanidze 2002), he proposed tuning models based on two different combinations of two 

tetrachords in which the interval sizes for the second can take on three different values,  

namely 172, 154, and 204 cents.  In contrast, based on the spectral analysis of selected 

melodic fragments from historical audio recordings, (Tsereteli and Veshapidze 2014) propose 

a sound scale model in which all the melodic intervals are assumed to be of equal size which 

is assumed to be 1200/7 = 171.4 cents. They emphasize, however, that this value should not 

be taken as a rigid quantity. Traditional Georgian singers, similar to the use of Blue Notes 

in Blues or Jazz, would commonly deviate from this value by some amount as part of their 

personal way of interpretation. This pitch bending, as it is commonly called for other 
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musical styles, is referred to as using shinpardis, see (Tsereteli and Veshapidze 2014) . 

Another equal-interval-size model, though with an interval size of 700/4 = 175 cents, was 

suggested by (Gelzer 2002). His model was derived by iteratively minimizing the mismatch 

of computer-generated synthetic sound scales with the pitches he heard in recordings. 

Conceptually,  his model,  as well as the model  by (Gogotishvili 2004b),  are built on fifths, 

rather than on octaves, which leads to a scale in which notes separated by one or more 

octaves are musically not equivalent (missing octave equivalence). 

In contrast to the equal-interval-size models, (Kawai et al. 2010) analyze  a single Megrelian 

song from a teaching CD and vaguely describe the sound structure of this example as being 

based on “unequal but variable interval sizes”. (Westman 2002) takes a completely different 

perspective on the problem of tonality. He questions the usefulness of the scale concept to 

describe tonality (in particular to identify a tonic) in Georgian music altogether and 

suggests a tonality model in which interval, pitch, and timbre interact. He suggests that 

microtonal variations could be either the product of a scale,  or an interval for melodic 

purposes, or the product of pitch expression. However, he acknowledges that how these 

parameters might interact needs further study. 

One of the major challenges in the context of the Georgian sound scale discourse, at least as 

it is reflected in the internationally accessible literature discussed above, is the fact that 

previously only very small datasets have been considered as observational evidence for the 

suggested models. Furthermore, the technical details of the earlier studies are only sparsely 

documented. It often remains unclear if the reasons for the differences between these 

models are due to the usage of different methods and/or different datasets or by 

incompatibility of (undocumented) underlying assumptions. With the exception of the 

study of (Tsereteli and Veshapidze 2014), for which technical details of the analysis are 

provided in the video of a conference presentation (Tsereteli and Veshapidze 2015), none 

of the earlier studies seemed to have put a lot of emphasize on trying to make their study 

transparent or reproducible. 

3.  The Erkomaishvili Dataset 
In 1966, one year before his death, the aging ArtemErkomaishvili was recorded by 

ethnomusicologist Kakhi Rosebashvili performing three-voice chants at the Tbilisi State 

conservatory. Due to the lack of fellow singers, he had to sing all three voices by himself. 

This was made possible by sequentially recording the three voices using an overdubbing 

technique, leading to three temporal segments in the recordings, as illustrated in Figure 1 

(a). The top voice, which in Georgian chant is also the leading voice, was recorded first (as 

solo voice), then played back to him while he was singing the middle voice. Finally, he sang 
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the bass voice against the playback of the superposition of the top and middle voice.  

In  general,  the  determination of pitches from polyphonic audio recordings is currently 

still unsolved, in particular from old recordings with low dynamic range and bandwidth. 

In the case of the Erkomaishvili recordings, however, the sequential recording technique 

allowed the reconstruction of the F0-trajectories  for all three voices as well as some 

preliminary analyzes (Müller et al. 2017; Scherbaum, Müller, and Rosenzweig 2017a, 2017b; 

Rosenzweig, Scherbaum, and Müller 2019).   

As of today, the Erkomaishvili dataset is the oldest set of recordings of Georgian chants 

from which the time synchronous F0-trajectories (sequences of F0-values sampled every 

5.8 msec (Müller et al. 2017)) for all three voices have been reliably determined. Although 

originally caused by the absence of fellow singers, the sequential recording of the 

individual voices of Artem Erkomaishvili against the playback of his own voice(s) turns 

out to be a significant advantage for the analysis. First, it enables to analyze melodic 

aspects for the top voice using the monophonic audio signals from the first recording 

segment as well as from the corresponding F 0-trajectory.  
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Furthermore, the second segment with two superimposed voices and the third segment 

with three superimposed voices allow for studying harmonic intervals, and harmonic 

aspects such as the influence of harmonic interval perception, from the F0-trajectories. 

The dataset was recently re-released in a newly organized and manually annotated form, 

together with an interactive web-based interface.  Using score-following audio players that 

make use of the annotated data, the interface provides a direct and convenient access to the 

corpus (Rosenzweig et al. 2020). The recorded chants were transcribed in a manual 

process by (Shugliashvili 2014). Through the websites provided by (Rosenzweig et al. 2020) , 

the publicly available audio material along with all fundamental frequency annotations, 

recording structure annotations,  XML versions of the transcriptions, and note onset 

annotations were made available4. As a result, the source material for the analysis 

                                                        
4 https://www.audiolabs-erlangen.de/resources/MIR/2019-GeorgianMusic-Erkomaishvili 

 

Figure 1: The Erkomaishvili dataset. (a) Three-segment recordings with F0-
annotations. (b) Digital transcription of the song with GCH-ID 002. GCH-ID 002 refers 
to the chant ID system of (Rosenzweig et al. 2020) which is also used throughout this 
paper. The chants are temporally subdivided

note references. 
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discussed in the present paper is publicly accessible. 

In the present study, we make particular use of the manually generated onset annotations 

based on the quarter note reference (QNR) system introduced by (Rosenzweig et al. 2020), 

see Figure 1 (b). The QNR system aligns the audio recordings with the digitized score 

information. This makes it possible to computationally compare the transcribed musical 

scores with acoustical properties of  Erkomaishvili’s recorded performances. This, in turn, 

enables the quantitative investigation of the tonal organization of the whole corpus in an 

unprecedented form, e.g. the investigation of harmonic tuning adjustments for individual 

notes (cf. Section 7.2). 

For the analysis in the following sections, some peculiarities of the corpus need to be 

mentioned. First, the temporal structure of chants is non-metrical in the sense that the 

concept of measures does not apply. Instead, chants are usually subdivided in temporal 

units called mukhli in Georgian. We will refer to them by their Georgian name or as 

sections (to distinguish them from the segments of the recording process). An example is 

shown in Figure 1 (b). Second, some groups of chants are similar in their melodic and 

harmonic structures. For example, the group of chants with GCH-IDs 008, 009, 010, and 011, 

which we will refer to as CG 008-011, contains identical melodic phrases consisting of up to 10 

quarter notes. In order to understand which factors influence Artem Erkomaishvili’s voice 

production, we will study this group of chants in great detail. To this end, we will examine 

in Section 5.1.2 to what extent the individual realizations of these phrases differ from each 

other and to what extent Artem Erkomaishvili seems to intentionally deviate from an 

underlying fixed scale (pitch bending). In addition, the analysis of pitch fluctuations across 

section boundaries will be examined to quantitatively assess the amount of unintended pitch 

fluctuations in his vocal production (cf. Section 4.2). 

4.  Analysis Strategy 
Before we turn to the actual analysis of the recordings in Section 5, we first explain our 

overall analysis strategy and discuss some methodological aspects. In the context of music 

perception, it has been suggested to distinguish between the sequential (horizontal, 

melodic) and the concomitant (vertical, harmonic ) structure (Nikolsky 2015). For 

instruments with fixed pitches, the sequential intervals in a melody (melodic intervals) and the 

concomitant intervals in a chord (harmonic intervals) are elements of the same interval set. 

For a-capella vocal music, however, this is not necessarily the case and pitch distributions 

as well as melodic and harmonic interval distributions can become rather different. 

Therefore, in the subsequent analysis, we treat them as separate entities. 

In Section 4.1, we describe how we approach the determination of pitch distributions from 
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both audio tracks and F0-trajectories, and briefly touch upon their interpretation against 

the background of known phenomena of pitch perception. We  then discuss in Section 4.2 

the determination and interpretation of melodic sound scales from pitch distributions and  

how one can test if these have a normative or only a descriptive value for Artem 

Erkomaishvili’s voice production. Finally, in Section 4.3, we address the analysis of 

harmonic intervals and introduce a novel approach to estimate the effect of harmonic 

intonation adjustments for individual notes.  

4.1. Determination of Pitch Distributions 
As initial step of the melodic analysis, we determine what we refer to as pitch distributions. 

These were defined in Section 1 as the distributions of all F0-values from those parts of the 

F0-trajectories which can be associated with note events with well-defined pitches. 

Depending on the available material, the computation of pitch distributions can be done 

in different ways. For the top voices, for which we have the monophonic audio recordings, 

see Figure 1 (a), we can make use of highly sophisticated and well-tested software tools such 

as TONY (Mauch et al. 2015), which allows to visually and acoustically control precisely 

which parts of an audio signal are used for the determination of note events. This process is 

very time consuming and will therefore only be used for the analysis of the chant group CG 

008-011 in Section 5.1, where we want to achieve the highest possible control over which 

parts of a signal are used for pitch determination. As still reliable, but timewise less 

demanding alternatives, there exist two approaches for note event detection in F0-

trajectories that have recently been proposed (Rosenzweig, Scherbaum, and Müller 2019). 

These approaches aim at finding approximately stable horizontal parts in a F0-trajectory. 

The first algorithm uses morphological operations inspired by image processing (Vavra et al. 

2004), while the second one is based on suitably generated binary time–frequency masks. To 

avoid undesired distortions in subsequent analysis steps, both approaches keep the original 

F0-values unmodified, while only removing F0-values in unstable trajectory regions. In our 

study, we use the morphological approach with a filter range of 10 points (corresponding to 58 

msec) and a dynamic threshold value which is calculated for each trajectory based on the 

assumption made after visual inspection of a number of chants, that 70 percent of the F0-

trajectories belong to note segments, see (Rosenzweig, Scherbaum, and Müller 2019) for details. 

4.1.1. Influence of Pitch Perception 
After computing pitch distributions in which all pitch samples belong to note objects with 

perceptionally well-defined pitches, we still face a whole collection of challenges regarding 

the interpretation of these pitches in terms of an underlying tuning system or a sound scale. 

The situation is complicated because singers and listeners are exposed to a whole series of 

psychological phenomena that influence both the perception and production of a vocal 
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sound. These include the phenomenon of categorical pitch perception (CP), which leads 

to the observation that listeners (especially musicians) seem to have a higher sensitivity in 

distinguishing pitches at the border of different pitch categories, but sometimes a lower 

sensitivity within a category (perceptual magnet effect). For an excellent discussion of the 

most important aspects of these phenomena related to vocal music we refer to (Ganguli 

and Rao 2019). 

4.1.2. Determination and Interpretation of Melodic Sound Scale 
Models 

In general, the pitches in the pitch distribution appear to be strongly clustered, with each of 

the pitch clusters, which we will also refer to as pitch groups, showing a roughly 

symmetrical shape (cf. histogram in Figure 2(b)). This justifies to model them as Gaussian 

Mixture Models (GMMs), which are simply weighted mixtures of individual Gaussian 

distributions 𝒩(𝜇, 𝜎&), each of which is defined by a mean value µ and a standard 

deviation σ. For the case of K pitch groups, this results in a representation as 

∑ 𝑤*+
*,- 𝒩(𝜇*, 𝜎*&). The mean values of the individual Gaussians (the µk) which 

correspond to the center values of the individual pitch groups, are assumed to define the 

pitches of the associated melodic sound scale degrees, while the standard deviations of the 

Gaussians (the σk) define the pitch variability within the associated scale degree. 

 The reason for this variability can be a combination of the effects of categorical pitch 

perception, the perceptual magnet effect, random fluctuations, but also of intended changes 

of individual pitches as a matter of the singer’s personal style of expression. How can these 

phenomena be distinguished? How can one tell from the recordings when a singer uses 

shinpardis (in terms of (Tsereteli and Veshapidze 2014)) and when a singer is tired or reaches 

the precision limits of his voice control? And how can one distinguish the effects of pitch 

fluctuations from the effects of categorical pitch perception and perceptual magnet 

effects? Fortunately, for this purpose, we can benefit from peculiarities of the Erkomaishvili 

dataset described in Section 3, at least to determine the order of magnitude of these effects.  

Specifically, we can make use of the fact that the chants are structured in sections (mukhli) and 

second, of the existence of groups of similar chants which contain identical melodic 

phrases. The melodic progression in chants usually occurs in small melodic steps (usually 

second intervals) except at the boundaries of sections. Here,  sometimes larger melodic 

intervals, such as fifths or even octaves occur. These melodic jumps are usually associated 

with small differences of the pitch distributions before and after the section boundary. We 

interpret these shifts, which are usually very small and which we assume to be 

unintended, as a random (noise) contribution to the pitch distribution of a chant and as a 

measure of the maximum achievable pitch resolution, see Section 5.1.1. Second, the effect of 
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intended pitch bending will be studied through the detailed investigation of the chant 

group CG 008-011 in Section 5.1.2. The analysis of the identical phrases in the different chants 

allows us to determine to which degree pitches deviate from the underlying melodic scale 

model for individual notes and for all chants of the group. 

4.1.3. Descriptive or Normative? 
Finally, the question remains to what degrees the determined melodic sound scale models 

can be interpreted beyond their descriptive value? In other words, is there any evidence that 

the scales constructed from the center pitches of the Gaussian mixture models (the µk) have 

any normative meaning in Artem Erkomaishvili’s singing? If (Westman 2002) was right in his 

scepticism regarding the principal usefulness of the scale concept, pitch intervals might 

simply be learned as elements of melodies without requiring an underlying normative 

scale model. In this case, the determined sound scale models would be purely descriptive. A 

similar view seems to be expressed in the famous quotation of C. Hubert H. Parry: “It is 

advisable to guard at the outset against the familiar misconception that scales are made 

first and music afterwards” (taken from (Hornbostel 1913)). 

Our approach to address this question is the following: During melodic progression, 

Erkomaishvili’s pitches will fluctuate around the center pitches of the assumed scale model, 

possibly for all the reasons discussed above. We can quantify these deviations by the 

relative position of the pitch of a particular note with respect to the center pitch of the 

associated pitch group. If Artem Erkomaishvili wanted to correct for this deviation in the 

subsequent melodic step, the melodic step size of the next step would have to deviate from 

expected step size, which we define as the difference of the center pitch values for the 

current and the target pitch group, respectively. If and only if the central pitches of the 

pitch categories acted as adaptive constraints for the choice of his melodic progression, we 

should observe a dependency of the melodic step size of the next melodic step on the 

relative position of the note pitch within the actual pitch category. If there was no such 

dependency, then the interpretation of the center pitch values of the individual Gaussian 

mixture elements would remain at the descriptive level. 

4.2. Harmonic Analysis and Intonation Adjustments 
In the second part of the analysis, we will concentrate on the harmonic aspects of the tonal 

organization. This adds another level of complexity to the interpretation of pitch shifts since 

harmonic interval perception is known to influence the fine-tuning of voices, which in turn 

can lead to unintended pitch shifts of a whole ensemble, see e.g. (Howard 2007; Mauch, 

Frieler, and Dixon 2014). In addition, intentional intonation adjustments have been 

suggested to be characteristic for traditional Georgian singing (Nadel 1933; Chokhonelidze 
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2010) and an expression of what sometimes is referred to as “vertical musical thinking”. 

Our strategy to estimate the effect of harmonic intonation adjustments is as follows: From the 

onset times and the durations of the note events estimated from the F 0-trajectories of the 

individual voices, we first calculate those time windows where we have concomitant pitch 

information on the combination of voices of interest. In other words, the onset times and 

durations of either harmonic intervals or, more general, chord objects. Subsequently, we 

determine the pitch trajectories for each voice of interest in these time windows. The 

average values of the differences of these short pitch trajectories (in cents) define the values 

of the harmonic intervals for the voice combination under consideration. By collecting all 

harmonic intervals present in a chant, we obtain what we refer to as harmonic interval 

inventory or harmonic interval distribution. Similar to the melodic pitch histograms, the 

harmonic interval histograms appear to be strongly grouped and can also be modelled by 

Gaussian Mixture Models (GMMs) (see Section 6.4),  which will reflect the harmonic aspects 

of the tonal organization. Finally, the amount of correlation of the pitch fluctuations 

between the individual voices within the time windows of an interval or a chord object 

can be used to derive a quantitative measure for the degree of harmonic intonation 

adjustment. Simply speaking, intonation adjustment will force the pitch trajectories of two 

voices to become dependent on each other, which can be mathematically quantified. The 

theoretical derivation of this measure is given in Section 7.2. 

Since beat annotations have become available for all the chants (Rosenzweig et al. 2020), 

harmonic intonation adjustments can now be studied on a note level time scale. This makes 

it possible to investigate this phenomenon for any phrase of interest in the whole corpus. In 

Figure 2: Determination of a pitch distribution and melodic sound scale for the top 
voice of chant GCH-ID 008. (a) Note objects (short black horizontal lines) and 
corresponding pitch track (yellow). (b) Pitch histogram. (c) Corresponding Gaussian 
mixture distribution. 
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this article, however, we will limit ourselves to investigate if the average amount of 

harmonic adjustment differs for different intervals and leave the more detailed time 

dependent analysis to future studies. 

5.  Top Voice Analysis 
In this section, we turn to the actual pitch analysis of the recordings of the Erkomaishvili 

dataset and discuss the results of our data processing. For the first part, we restrict 

ourselves  to  the processing of the top voice recordings. The reason for the separate analysis of 

the top voices from the middle and bass voices, which will be discussed in Section 6.1, is that 

first, the top voice is the reference voice in liturgical chants and musically the most 

important one. Second, unaccompanied singing and singing in the presence of pre-recorded 

voices are different. Therefore, by analysing the top voice recordings separately, we want to 

separate melodic and harmonic aspects of the tonal organization as much as possible. 

Third, the top voice recordings are also special for a technical reason. In this case, we have 

both the audio and the F 0-trajectories at our disposal. As already discussed in Section 4.1, 

this gives us more options to perform the pitch analysis for the top voice than for the middle 

and bass voices, where we only have the F0-trajectories to work with. 

5.1 Analysis of Chant Group CG 008-011 
In the following, we study the four chants belonging to the chant group CG 008-011 in detail. 

In particular, we will examine the relationship between the pitch distribution of the chant 

GCH-ID 008 and the corresponding distribution of melodic intervals. This will lead to a 

model which explains how the top voice melody is formed in relation to the sound scale 

derived from the pitch distribution. In addition, we will exploit the fact that the chant 

group CG 008-011 contains identical melodic phrases in order to investigate the effect of 

intentional pitch bending. Finally, we will make use of the musical subdivision of the chant 

into sections (mukhli) to examine the stability of the pitch distributions for different 

sections. 

Figure 2(a) shows the pitch track of the top voice of chant GCH-ID 008 and Figure 2(b) the 

corresponding pitch histogram. In this case, the note events, shown by the horizontal black 

lines, are determined from the raw audio trace by using the TONY software (Mauch et al. 

2015). The reason for using TONY for the analysis of chant group CG 008-011 is that we 

wanted to have the maximum degree of confidence that the pitch tracks have been reduced 

to those parts of the F 0-trajectories which a listener would perceive as note objects with a 

perceptionally well-defined pitch. This was achieved by visually and acoustically checking 

and manually editing individual note events. This interactive post-processing capability of 

TONY is currently not available with the approach proposed by (Rosenzweig, Scherbaum, 
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and Müller 2019). 

The pitch histogram in Figure 2(b) shows that the pitches are not evenly distributed along the 

vertical pitch axis but are strongly clustered and appear as individual pitch groups. A model 

which accommodates such a grouping is a Gaussian mixture model in which the pitch 

histogram is fit by a weighted mixture of K Gaussian distributions, see Figure 2(c).    

The mean values µk and standard deviations σk for each of the Gaussians are displayed to 

the right of each pitch group, following the so-called pitch group indices PGI, which 

represent the distance to the most salient pitch group (which is defined to have a PGI of 0). 

For example, in Figure 2, we  have K = 10 pitch groups, with the most salient one (the pitch 

group with the largest area under its Gaussian) being the 6th one (k = 6), if counted from 

lowest to highest pitch. Hence, PGI = 0 in this example corresponds to µ6 = 2433 and σ6 = 27. 

The most salient pitch group corresponds to the pitch group which is most often heard in 

the complete chant. This in turn makes it perceptionally salient because its representation in 

short-term memory is enhanced in comparison to the other pitch groups present, as shown 

in a number of studies by (Deutsch 1970, 1972, 1975). Therefore, PGIs reference the pitch 

groups in a perceptionally meaningful way without having to make assumptions about 

functional relations (e.g. the relation to a tonic). Finally, in Figure 2(c), the tilted blue 

numbers between the pitch groups specify the differences (given in cents) between the center 

pitches of neighboring pitch groups. Loosely speaking,  we refer  to  these  differences  as  expected 

step sizes of melodic seconds. It is interesting to note that the expected step sizes between the 

most salient pitch group and its immediate neighbors  are close to 200 cents (210 cents and 

188 cents, respectively), while most of the others are smaller. In addition, the differences 

between the most salient pitch group and pitch groups -4 and 4 are both close to a pure fifth. 

As a consequence, pitch group -4, -1, 0 with its constituting intervals 499, and 709 cents 

builds a nearly pure 1 -4 - 5 chord, as does the combination of pitch groups 0, 3, 4 with 507 

and 704 cents, respectively. 
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Figure 3(a) shows the actual melodic seconds in the top voice of chant GCH-ID 008 as they 

were sung by Artem Erkomaishvili. The color code roughly separates them into small (blue), 

intermediate (green) and large (red) ones. Figure 3(b) shows where in the chant the 

individual types occur. From this plot, it can be seen that there is no simple relation 

between the expected step sizes for melodic seconds (defined above as the pitch difference 

between the center pitch value of the pitch group from where the melodic step starts and 

the one where it ends) and the actual ones. The transition between a particular pair of 

pitch groups is sometimes realized by a small, sometimes by an intermediate, and 

sometimes by a large melodic step. A very similar observation was made by (Arom, 

Fernando, and Marandola 2007) for the musical scales of the four-part a-capella vocal 

music of the Bedzan Pygmies in Cameroon. They also observed relatively wide margins of 

realization for the scale-defining intervals as well as for the scale pitches. Their 

investigation, in contrast to our study, had the advantage that they could verbally interact 

Figure 3: (a) Actual melodic step sizes between neighboring pitch groups in the top 
voice of chant GCH-ID 008 as they were sung by Artem Erkomaishvili. (b) Occurrence 
of the differently sized steps with respect to the pitch and note track. The grayscale in 
the left panel shows the probability density values of   the Gaussian mixture distribution 
displayed in the right panel. The magenta horizontal dashed lines mark pitch group 
boundaries. 
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with the musicians in the field. They could suggest a working hypothesis which could 

then be tested by the musicians and either verbally accepted or rejected. In this way, 

(Arom, Fernando, and Marandola 2007) could identify the Bedzan’s scale model as being 

dynamic based on a small set of rules, which act as constraints during the singing. In the 

present study, unfortunately, we can only evaluate the acoustic data of the recordings. The 

structure of the chants and the fact that the corpus contains a number of redundant melodic 

phrases, however, can partially compensate for this. 

 

 

5.1.1 Section-Based Analysis 
One structural property of the chants is that they are musically subdivided into individual 

sections, cf. Figure 1(b). These sections  are usually separated by a rest and a melodic jump. The 

sizes of the melodic jumps are often considerably larger than the melodic step sizes within a 

section. It can be seen in Figure 4 that, for chant GCH-ID 008, the interval structure of the 

pitch distribution is visually similar  for the individual sections. However, the relative 

heights of the individual peaks change across the section-based distributions. These heights 

correspond to the salience of the corresponding pitch group within a section. Although it is 

not visually apparent, the pitch distributions for the individual sections exhibit a slight 

pitch offset with respect to each other which can be determined by the position of the 

maximum values of their cross-correlation functions. For the chant group CG 008-011, the 

standard deviation (σ) of this pitch shift was calculated to be approximately 8 cents. This 

value is interpreted as a rough estimate for the unintended random pitch fluctuations in 

Figure 4: Section-based pitch distributions for chant GCH-ID 008.  The sections are 
indicated by color code. 
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Artem Erkomaishvili’s voice production. In Figure 3, it can be seen that on the level of the 

complete chant, there is no simple relation between the pitch differences between the center 

pitch values of neighboring pitch groups and the actual melodic intervals in a melody. Would 

this change if the analysis of the pitch distributions was performed on a section level? 

Figure 5, which displays the section-based pitch distributions as density plots 

superimposed with the pitch and note track and the differently sized melodic seconds for 

chant GCH-ID 008, shows that this is obviously not the case. Between two neighboring 

pitch groups, e.g. the one with a center pitch close to 2400 cents and the one with a center 

pitch close to 2600 cents in the third section (for QNR 40-60) of Figure 5, one can observe 

melodic intervals from the small (green), the intermediate (blue), and the large (red) category. 

Hence, the differences between the center pitch values of neighboring pitch groups do not 

predict the actual melodic step sizes realized between them, at least not with any practically 

useful precision. This appears puzzling, since sound scales are often constructed simply by 

concatenating melodic intervals determined from a melodic sequence, see (Tsereteli and 

Veshapidze 2014). This raises the question what constrains the melodic step sizes between 

two pitch groups if not the difference between their center pitch values (the µk)? In other 

words, where is the scale? 

 



 18 

 

A hypothesis which we tested was if it actually matters from where in a pitch group 

relative to the center pitch value µk a melodic steps starts. Does it matter if the starting 

pitch of a melodic step is below, equal to, or above the center pitch value of the 

corresponding pitch group? In other words, if the pitch of the starting note in a melodic step 

under consideration deviated from the center pitch of the corresponding pitch group, would 

Artem Erkomaishvili unconsciously or consciously change the melodic step size of the next 

step to compensate for this deviation? The result of this test is shown in Figure 6. Each 

point in the diagram corresponds to one melodic step in the top voice of chant GCH-ID 

008. The pitch group corresponding to the starting note under consideration is indicated 

by the color code explained in the legend to the right. The horizontal position of a dot 

displays the deviation of the pitch of the starting note (of a melodic step) from the center 

pitch value of its corresponding pitch group (µk). The vertical position of a dot corresponds 

to the extra step size (in addition to the difference between the center pitch value of target 

pitch group of the next melodic step and the center pitch value of the pitch group of the 

starting note).  

Figure 6  clearly shows that there is a strong correlation between the extra step size of a 

Figure 5: Differently sized melodic seconds with respect to the pitch and note track 
superimposed on the section-based pitch distributions for chant GCH-ID 008. The grayscale 
background shows the probability density values of the Gaussian mixture distributions for 
each of the sections. The magenta horizontal  dashed lines mark  the pitch  group  boundaries in 
each section. 
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melodic step and the pitch deviation of the starting note from the center pitch value of its 

corresponding pitch group. We interpret this as a clear proof that the melodic sound scale 

defined as the ordered set of pitch group center values of the whole pitch distribution indeed 

constrained Artem Erkomaishvili’s melodic singing, although not in a rigid but a flexible 

way. The melodic sound scale for Artem Erkomaishvili does not define fixed melodic step 

sizes. It rather seems to act like a set of attractors around which the melody can more or less 

freely move, but to which it is always “pulled” back. One does not immediately see the 

presence of the melodic sound scale when looking only at a sequence of melodic steps, but it 

always acts as constraint during the melodic development. 

The well-defined slope in Figure 6 (even for very small pitch deviations from the associated 

pitch group means) indicates that Artem Erkomaishvili seems to have been well aware  of even 

small pitch deviations of a sung note from the central pitch value of the corresponding pitch 

group because he compensates for these deviations in subsequent melodic steps. His 

sensitivity for pitch deviations within a pitch group does not seem to have been lowered 

significantly, which could be interpreted as evidence against a strong perceptual magnet 

effect on his voice perception/production. Since we have no means to investigate this 

further, we can only state this here as an observation. The vertical scatter of the extra step 

sizes in Figure 6, which has a standard deviation of 16.5 cents, can be seen as a measure of 

precision with which the melody is following the scale pitches, for reasons which are 

addressed in the following. 
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5.1.2 Intentional Pitch Bending 
The gray shaded area in Figure 6 marks the region which, in case the scatter around the 

dotted regression line is Gaussian distributed, will contain roughly 95 percent of all extra 

step sizes. This scatter will include the scatter caused by perceptional effects touched upon 

in Section 4.1.1, random effects as well as the effect of intentional pitch bending (using 

shinpardi ). In the following, we estimate the order of magnitude of this effect by making use 

of the occurrence of a number of identical melodic phrases in the chant group CG 008-011. 

Figure 7 shows the pitch trajectories of the melodic phrases which appear in identical form in 

all chants of CG 008-011. The one in the lower left panel appears only in chants with GCH-

IDs 008, 009, and 011. The F0-trajectories have been realigned in time to the quarter note 

reference (QNR) grid of chant GCH-ID 008. For a detailed definition of this concept see 

(Rosenzweig et al. 2020).  In addition, the trajectories have been shifted in pitch such that the 

position of the maxima of the cross-correlation functions of each pitch distribution pair 

appears at position zero. The dotted horizontal lines in Figure 7 show the center values of 

the joint pitch distribution after pitch shifting. In other words, the dotted lines in Figure 7 

represent the scale pitches of a joint scale model for all four chants. 

Figure 6: Distribution of extra step sizes of melodic seconds against the relative position of the 
previous note with respect to its corresponding pitch group center. The gray shaded area 
shows the linear regression line (dotted) y = -1.5 - 1.1x ± 33 (2σ). 
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In this plot it can be seen that –  with very few exceptions – the trajectories show 

significant overlaps in average pitch although they correspond to independently made 

recordings and despite the fact that they can consistently deviate from the pitches of the 

average scale model. In order to obtain an estimate of the magnitude of this effect, we 

analyzed the first of the phrases in more detail. Figure 8 shows the corresponding score 

representation (a), the pitch trajectories superimposed by the note tracks (b), and the 

melodic steps between the notes as stem plot (c). As already indicated by Figure 7, the note 

events in the phrase are highly correlated for the four different chants. The gray horizontal 

lines in Figure 8(c) indicate the step sizes expected from the pitch distances of the scale 

pitches for the joint melodic scale model. In those cases, where the actual melodic steps do 

not closely cluster around the expected step sizes, the plot shows a systematic and 

consistent offset. This means that actual melodic steps tend to be either consistently 

smaller or larger than the expected value from the pitch group mean value differences and 

suggests that the deviation of the melodic step sizes from these expected values is a conscious 

choice of the singer. 

Finally, we calculated the differences between the note pitches as predicted from the joint 

Figure 7: Pitch trajectories of the melodic phrases which appear in identical form in all 
chants of chant group CG 008-011. 
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melodic scale model and the actual phrase notes. These values vary between 5 and 30 

cents for the ten notes in the phrase. Although these values only represent a small number of 

notes, their magnitude demonstrates that the effect of intentional pitch bending is non-

negligible and needs to be considered when trying to determine melodic scale models. The 

effect of intentional pitch bending (using shinpardi ) could therefore also contribute 

significantly to the shape of the melodic step size distribution shown in Figure 3 as well as to 

the spread of the individual pitch groups in Figure 2. 

It seems worth emphasizing that Figure 8 and Figure 6 illustrate two different mechanisms 

which jointly influence how Artem Erkomaishvili developed a melodic sequence. On the one 

hand, Figure 8 demonstrates that he did not rigidly adhere to fixed melodic steps as defined 

by the pitch differences between the scale pitches of the whole pitch distribution, but that he 

uses intentional pitch bending. On the other hand, Figure 6 clearly demonstrates that he is 

always aware of the position of a note which he sings with respect to the pitch of the 

corresponding pitch group center, which then influences his next melodic steps. As a 

consequence of this, individual melodic step sizes do not directly represent the intervals of the 

underlying melodic scale because melodic step sizes can be intentionally stretched or 

compressed as a matter of Artem Erkomaishvili’s personal interpretation or they can be 

shortened or elongated by the mechanism documented in Figure 6. 

If our assumption is correct, it is indeed the ordered set of pitch group center values of the 

whole pitch distribution (the µk values of the Gaussian mixture model) which defines the 

melodic sound scale. Melodies in this model are the result of a deviation-compensation 

mechanism, which clearly honors scales but still allows for a large degree of melodic 

flexibility.  
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5.2 Corpus-Level Analysis 
In the following, we describe the results of the analysis of the top voice recordings for the 

complete Erkomaishvili dataset (see Section 3). The goal in this context is to derive a scale 

model which jointly represents the melodic sound scales of the complete dataset in a synoptic 

way. Towards this end, we first investigate to what degree the melodic top-voice scale models 

for the individual chants vary within the corpus. In this context, visually and acoustically 

processing of all audio tracks with the TONY software (Mauch et al. 2015), as we did for the 

Figure 8: (a) Score representation. (b) Note and pitch trajectories. (c) Stem plots of the 
melodic steps of the first of the melodic phrases in Figure 7. 
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chant group CG 008-011, turned out to be too labor-intensive. Therefore, for the corpus-level 

analysis, we determine the stable regions in each of the F0-trajectories using the  

morphological filtering approach described in (Rosenzweig, Scherbaum, and Müller 2019). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using spot checks, we validated that the differences between pitch distributions obtained 

from morphological filtering and those obtained using the TONY software are marginal for 

the present purpose. We are confident that for the corpus-level analysis, the gain in 

processing speed by orders of magnitude by far outweighs the lack of user-guided manual 

corrections. 

The purpose of the analysis described in the present section is not to perform a detailed 

Figure 9: Illustration of the whitening and alignment process of the Gaussian mixture 
distributions for the chants of chant group CG 008-011. (a) Pitch distribution in raw form. 
(b) Pitch distribution after whitening. (c) Pitch distribution after whitening and 
alignment. 
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study of the properties of the individual pitch distributions of all chants, but to test if they 

share some common features (in a statistical sense) which can be detected computationally. 

Since Artem Erkomaishvili started each chant at a different pitch (depending on how the 

pitches of the chant would fit into his vocal range), the individual pitch distributions might 

be shifted in pitch by an unknown amount, even if the same melodic scale might be 

employed. Similar as in Section 5.1.1, we correct these differences by aligning the pitch 

distribution using cross-correlation analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More specifically, we align all pitch distributions with respect to a reference chant (GCH-

ID 010). However, the weights of the different Gaussian mixture elements, which reflect the 

amount of pitches belonging to a specific pitch group, are quite different. Since the cross-

correlation function is quite sensitive to amplitudes and we are at this point only interested 

in the interval structure of the pitch distribution, we whiten the individual Gaussians such 

that after whitening they all have the same amplitude in their probability density 

Figure 10: The top panel shows the whitened Gaussian mixture distributions for the top 
voices of all chants, while the bottom panel shows the distributions after whitening and 
alignment. 
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functions (when having an equal number of mixture elements). In this way, we make sure 

that the alignment is only dependent on the interval structure of the distributions. The 

process  of alignment and whitening of the Gaussian mixture distributions is illustrated in 

Figure 9 for the four chants of chant group CG 008-011, which were discussed in Section 5.1. 

The results of whitening and subsequent alignment of the pitch distributions of all chants is 

shown in the top and bottom panel of Figure 10. One can see that a common structure 

becomes visible in the superposition of all whitened and aligned distributions. This nicely 

illustrates that the shapes of the individual pitch distributions, which represent the 

melodic tuning models of the individual chants, are not completely different but can 

possibly – cum grano salis – be interpreted as variants of a common underlying structure. 

To determine the parameters of this underlying sound scale model, we take the collection of all 

the mean values of all Gaussian mixture model elements of the individual distributions 

from Figure 10 (bottom) (after alignment) as input data to calculate a histogram and the 

corresponding Gaussian mixture model.  The resulting distribution is shown in Figure 11. 

 

Figure 11: Histogram (gray shaded) and corresponding Gaussian mixture distribution (solid red 
line) representing the average pitch distribution for all top voices in the complete corpus. The 
black numbers before the colons show the pitch group indices (PGIs) with respect to the most 
salient pitch group (indexed as 0). The blue tilted numbers between the pitch groups show the 
intervals between neighboring pitch groups in cents. 
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Figure 11 can be interpreted to represent the properties of the interval structure of melodic 

sound scales of all the top voice tracks in an average sense, a kind of executive summary. 

The interval structures of chant-level pitch distributions can deviate from this corpus-level 

distribution in details which are averaged out by the processing above. The investigation of 

these details for all chants is beyond the scope of the present study. It can be noted that 

even at this coarse level, the interval structure of the average pitch distribution model for 

the top voice, which is numerically displayed in Table 1, shows   musically very interesting 

features. For example, if we define a pure fourth as 498 ± 5 cents and a pure fifth as 702 ± 5 

cents, then there are two pure fifths and one pure fourth visible in the corpus-level pitch 

distribution. As a side note, we point out that a feature, which we also observed quite 

prominently in individual pitch distributions, is the existence of rather large intervals 

(approx. 200 cents) between neighboring pitch groups close to the most salient one. 

Musicologically, this is a key finding, since it is the existence of this larger interval which is 

necessary to build the 1-4-5 structure, which has been described by many scholars 

(Aslanishvili 2010; Dimitri Araqishvili 2010; Chkhikvadze 2010; Jordania 2010) as being 

characteristic for traditional Georgian music. We find it extremely interesting to see that the 

1-4-5 structure,  which  is  typical for the harmonic structure of traditional Georgian music, is 

clearly visible as a melodic summary feature of the pitch distribution of all top voices. 

 

Table 1: Pitch differences between all possible pitch group combinations in Figure 11. The 

individual table elements correspond to the combination of pitch groups for which the pitch 

group indices PGIs are given in the first column and the first row, respectively. 

 
 -6 -5 -4 -3 -2 -1 0 1 2 3 4 

-6 0 190 364 530 692 891 1077 1245 1415 1597 1773 
-5 0 0 174 340 503 701 887 1055 1225 1406 1583 
-4 0 0 0 166 328 527 713 881 1051 1233 1409 
-3 0 0 0 0 162 361 547 715 885 1067 1243 
-2 0 0 0 0 0 199 385 553 723 904 1080 
-1 0 0 0 0 0 0 186 354 524 706 882 
0 0 0 0 0 0 0 0 168 338 520 696 
1 0 0 0 0 0 0 0 0 170 352 528 
2 0 0 0 0 0 0 0 0 0 181 358 
3 0 0 0 0 0 0 0 0 0 0 176 

 

6.  Multi-Voice Results 
The most characteristic musical feature of traditional Georgian vocal music is its 

polyphonic or multi-voice character. In the following, we determine the pitch and harmonic 
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interval distributions. Instead of considering only the top voice (as in Section 5), we now 

consider all three voices (top, middle, bass). We extend our analysis in three ways. First, in 

Section 6.1, we consider pitch distributions for all three voices. Second, in Section 6.2, we 

consider harmonic intervals by comparing the voices in a pairwise fashion. In Section 6.3, as 

extension of the discussion in Section 5.1.1 , we analyze the relationship between the melodic 

progression and the multi-voice pitch distributions. Subsequently, we derive synoptic 

pitch and interval distributions for all voices and all chants and discuss their properties. 

6.1 Pitch Distributions 
For the determination of the pitch distributions in the multi-voice case, we reduce the 

stable regions of the raw F0-trajectories of the individual voices to those regions which 

appear concomitantly in all three voices. This ensures that  the F0-values for the analysis of 

the melodic and the harmonic properties are identical. 

The corresponding F0-trajectories superimposed by the corresponding note objects for chant 

GCH-ID 008 are shown in Figure 12. Figure 13 displays the corresponding Gaussian 

mixture models of the pitch distributions for the individual voices as well as for all the F0-

values in all voices jointly. The pitch group mean values are given in cents with reference to 

55 Hz.  

 

Figure 12: F0-trajectories for all F0-values in stable segments which appear 
concomitantly in all three voices of chant GCH-ID 008. 
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The center pitch values for the comparable pitch groups vary between the individual voices 

in the order of 10–20 cents. We can also observe that the pitch groups’ standard deviations 

of the bass voice are larger than for the top and middle voices. 

6.2 Harmonic Interval Distributions 
Figure 14 shows the GMMs for the harmonic interval distributions for the different voice 

combinations of chant GCH-ID 008, as well as for all voice combinations jointly. For the 

explanation of the labeling of the individual Gaussian mixture elements, see the caption of 

Figure 2. It can be noted that the fifth is the most frequent harmonic interval in all voice 

combinations. Its tuning, however, is not always the same. 

It appears as justly tuned (close to 702 cents) in the middle-top voice combinations and 

more than 20 cents sharper in  combinations where the bass voice is involved (734  32 cents 

in bass-top and 727  33 cents in bass-middle). The octaves appear stretched by 40 to 50 cents 

for all voice combinations where they appear in chant GCH-ID 0085 (1243  43 cents in bass-

top and 1257  42 cents in bass-middle). 

                                                        
5 The Gaussian mixture models for the pitch distributions for all voices and for the intervals for all 
voice combinations have been calculated for all chants. Their in-depth discussion, however, is beyond 
the scope of the present paper, but they are made available on request from the first author. 

Figure 13: Gaussian mixture models of the pitch distributions for the three voices (top, 
middle, bass) as well as for all voices jointly, using chant GCH-ID 008 as example. 
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6.3 Melodic Progression and Pitch Distributions 
In the following, we investigate whether the melodic progression for the middle and bass 

voices is equally well described by its relation to the multi-voice scale model as it is for the 

top voice case shown in Figure 6. To this end, similar to Section 5.1.1, we again calculate the 

distribution of extra step sizes of melodic  seconds against the relative position of the previous 

note with respect to its corresponding pitch group center for the bass voice (Figure 16, 

bottom panel), but this time for the section-level pitch distribution calculated from the 

pitches of all voices shown in Figure 15.  

 

 

 

 

 

 

 

 

Figure 14: Gaussian mixture models of the harmonic interval distributions for the 
different voice combinations of the individual voices of chant GCH-ID 008, as well as 
for all voice combinations jointly. For the explanation of the labeling of the individual 
Gaussian mixture elements see the figure caption of Figure 2. 
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In Figure 15, the pitch distributions are determined for each section in chant GCH-ID 008 

and the corresponding mixture models are displayed as grayscale image in the 

background. Figure 15 illustrates – in an overall sense – the tuning of this chant jointly for 

all the individual voices. From the grayscale distributions, we see that the changes of the 

pitch group boundaries for different sections in the case of chant GCH-ID 008 are rather small 

and restricted to a few cases (for example in the 2nd section). Visually more obvious is the 

change of the center values for identical pitch groups across section boundaries. This 

corresponds to changes in the perceptional strength of a pitch group for different sections. 

The darker the grayscale value for a pitch group, the more frequently are pitches from this 

pitch group in a section.  

Figure 15:  F0-trajectories and note objects from Figure 12 superimposed on the segment 
GMMs for all voices of chant GCH-ID 008. The grayscale background shows the 
probability density values of the Gaussian mixture distributions for each of the segments. 
The magenta horizontal dashed lines mark the pitch group boundaries in each segment. 
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For comparison, the top panel in Figure 16 shows the case of the top voice again (with the 

scale model calculated from the top voice), displayed in the same plot range as the bass 

voice. The gray shaded areas show the linear regression lines (dotted) y = -1.5 - 1.1x ± 33 (2σ) 

and y = -3.0 - 1.2x ± 64 (2σ) for the top and the bass voice, respectively. 

The slopes of the regression lines are essentially identical and the offsets for x close to zero as 

well (1.5 and 3 cents, respectively), but the σ value describing the presumably random 

fluctuation around the regression line in the case of the multi-voice scale model is twice as 

large as for the top voice model. This means that, although the correlation between the size 

of the extra step sizes of the melodic seconds and the relative position of the previous note with 

respect to its corresponding pitch group center is as clear for the bass voice as it is for the top 

Figure 16: Distribution of extra step sizes of melodic seconds against the relative position 
of the previous note with respect to its corresponding pitch group center for the top and 
the bass voice. The data for the top voice are identical to the ones in Figure 6. 



 33 

voice. The absolute step sizes of melodic step sizes between neighboring pitch groups can 

only be predicted at a much lower precision. One possible explanation for this behavior could 

be that it is an effect of Artem Erkomaishvili adjusting his middle- and/or bass voice pitches 

in order to achieve stable harmonic intervals at certain positions in a chant. This phenomenon 

has already been mentioned as qualitative observation in one of the first non-Georgian 

treatises on traditional Georgian vocal music (Nadel 1933). In Section 7, we are addressing 

this question quantitatively. 

6.4 Synoptical Models 
One of the central questions of the current study is whether Artem Erkomaishvili’s 

recordings preserve a characteristic tuning structure which can be extracted from the audio 

data. Motivated by the results shown in Figure 11 for the top voice, a similar approach was 

chosen for the polyphonic analysis. The resulting distributions (now for all voices) are shown 

in Figure 13 and Figure 14 in the far right-hand tracks. The resulting synoptic distributions 

for pitch and harmonic intervals based on all voices in the corpus are displayed in Figure 17 

and Figure 18, respectively. 

While individual chants differ in details, the structures, which are visible in the 

distributions computed on the whole corpus, reflect Artem Erkomaishvili’s tuning in a 

condensed way. 

Figure 17: Corpus-level pitch distribution (for all voices and all chants). 
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The pitch differences between all possible pitch group combinations in Figure 17 are listed in 

Table 2. The individual table elements correspond to the combination of pitch groups for 

which the PGIs are given in the first column and the first row, respectively. What can be 

noted in Table 2 is that a number of pitch group combinations exhibit center pitch 

differences (of their µk values) which are close to a pure fifth (702 cents). In addition, the 

center  pitch differences between a pitch group and its next but one is always roughly a neutral 

third (between 300 and 400 cents). 

 

 

 

 

 

 

 

 

 

Figure 18: Corpus-level harmonic interval distribution (for all voices and all 
chants). 
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Table 2: Center pitch differences between all possible pitch group combinations in Figure 17. 

The individual table elements correspond to combinations of pitch groups as defined by 

the PGIs given in the first column and the first row, respectively. 

 
 -9 -8 -7 -6 -5 -4 -3 -2 1 0 1 2 3 4 5 

-9 0 197 378 551 714 897 1073 1239 1406 1602 1784 1949 2129 2308 2498 
-8 0 0 181 353 517 700 876 1042 1209 1405 1587 1752 1932 2111 2301 
-7 0 0 0 173 336 520 695 862 1028 1225 1406 1571 1751 1931 2121 
-6 0 0 0 0 163 347 522 689 856 1052 1233 1398 1578 1758 1948 
-5 0 0 0 0 0 184 359 525 692 888 1070 1235 1415 1595 1784 
-4 0 0 0 0 0 0 176 342 509 705 886 1052 1231 1411 1601 
-3 0 0 0 0 0 0 0 166 333 529 711 876 1056 1235 1425 
-2 0 0 0 0 0 0 0 0 167 363 544 710 889 1069 1259 
1 0 0 0 0 0 0 0 0 0 196 378 543 722 902 1092 
0 0 0 0 0 0 0 0 0 0 0 181 347 526 706 896 
1 0 0 0 0 0 0 0 0 0 0 0 165 345 525 715 
2 0 0 0 0 0 0 0 0 0 0 0 0 180 359 549 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 180 370 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 

 

The synoptic harmonic interval distribution in Figure 18 shows that the most common 

intervals are more or less justly tuned fifths (708 cents), followed by unisons (1 cent), 

neutral thirds (341 cents) , sharp fourths (516 cents), stretched octaves (1218) and ninth (1420). 

It can also be noted that the standard deviation for the harmonic seventh, which peaks at 

1044 cents is much wider than for the other intervals, indicating that sevenths are realized 

in a variety of ways in the chants. 

7.  Microtonality 
In this section, we discuss some observations regarding microtonal aspects of the 

Erkomaishvili dataset. We start with the discussion of the melodic step size distribution for 

the complete corpus in Section 7.1. This will illustrate, yet from a different perspective than in 

the previous sections, that Artem Erkomaishvili varied his melodic step sizes on a 

microtonal level by freely deviating from the expected melodic intervals defined by the scale 

pitches. In Section 7.2, we discuss the mechanism of harmonic intonation adjustment, which 

could explain one of the reasons for these microtonal melodic step size variations. 

7.1 Corpus-Level Melodic Step Size Distribution 
One of the most striking characteristics of the pitch distributions presented is that the 

smallest inter-cluster distances, or next neighbor intervals, in Figure 2 and Figure 17 are in 

the order of 150 cents. Semitone-sized differences (e.g., 100 cents) between neighboring pitch 

groups in the pitch distributions are essentially absent, which might at first glance suggest 

that this would also be reflected somehow in the melodic step size distribution. This, however, 

is not the case, as it can be seen in the synoptic melodic step size histogram which is shown 

for all chants and all voices in Figure 19.  
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The figure shows that, although the most frequent melodic step size lies between 170 and 

180 cents (cf. the red circles in Figure 19.), essentially all values between zero and ±700 cents 

have been realized with different frequencies of occurrence somewhere in the dataset. 

A particularly impressive example of microtonal pitch changes is chant GCH-ID 026, which 

contains a total of 24 different sections between which the whole tuning system varies on a 

microtonal level. Figure 20 shows the probability density values of the Gaussian mixture 

distributions for each of the sections superimposed with the pitch group boundaries in each 

section shown by the dashed magenta lines. The orange shaded thick lines of Figure 20 for 

example mark a pitch group for which the center pitch stays more or less constant for the 

first 14 segments, whereas it is shifted upwards by 30-40 cents from segment 15 on (see 

zoomed-in area, shift at QNR 280). This level is kept until the next to last segment, were the 

center pitch is going back to essentially the value of the first section. This example 

illustrates not only the variability of the tuning systems which Artem Erkomaishvili 

sometimes employs, but also that he still had an excellent pitch control. 

Figure 19: All melodic step sizes in all voices and all chants. The two red circles 
mark the bins with the most frequently occurring positive and negative step sizes, 
respectively. 
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Another aspect of microtonal pitch shifts is related to how the harmonic structure of a 

song affects how notes in a melodic sequence are sung. On the one hand, harmonic interval 

perception is known to influence the fine-tuning of voices, which can lead to unintended 

pitch shifts of a whole ensemble, see (Howard 2007; Mauch, Frieler, and Dixon 2014). On the 

other hand, harmonically driven intonation adjustments can also be intended in order to 

achieve certain harmonic intervals with particular precision. This phenomenon is frequently 

occurring in traditional Georgian vocal music and is often referred to as as “vertical musical 

thinking”, cf. (Nadel 1933; Chokhonelidze 2010). 

7.2 Dynamic Adjustments 
In the following, we discuss to what degree intonation adjustments are measurable in the 

Erkomaishvili dataset. In particular, we focus on a phenomenon that we refer to as 

dynamic intonation adjustment, which expresses that two voices move in a correlated fashion to 

achieve a particular harmonic interval. When singing the middle voice, for example, Artem 

Figure 20: Probability density values of the Gaussian mixture distributions for each 
of the 24 sections of chant GCH-ID 026 (grayscale background), superimposed with 
the pitch group boundaries in each section shown by the dashed magenta lines. The 
orange line indicates the progression of center pitch of a pitch group. 
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Erkomaishvili was hearing the pre-recorded top voice. Therefore, his top voice pitch 

trajectory was already fixed. Hence, all we need to measure is if the pitch trajectory of the 

top voice influenced his intonation of the middle voice and similarly his bass voice. 

Evidence that these effects might be observable in the Erkomaishvili dataset was reported by 

(Scherbaum, Müller, and Rosenzweig 2017a), who observed an overall correlation between 

concomitant pitch pair values for different voice combinations. 

Our approach to measure dynamic intonation adjustment is based on the analysis of pitch 

fluctuations of short pitch trajectories. Our hypothesis is that dynamic intonation adjustment 

introduces statistical dependencies between pitch trajectories of two voices, which can be 

mathematically quantified through the analysis of the variances of the individual pitch 

trajectories and their differences. The theoretical basis is given by the fact that the 

difference of two uncorrelated Gaussian random variables (RV) is again a Gaussian RV 

with the mean being the difference of the means and the variance being the sum of the 

variances (Stirzaker 1999). In case of a correlation between the two RVs (as it is expected in 

the case of pitch tracks where both singers try to maintain a particular interval despite 

fluctuations of the individual voices), the variance of the interval trajectory will be less than 

the sum of the individual variances. Figure 21 shows an example for such a case, where the 

variance of the fluctuations of the interval trajectory for a single note of 2.5 sec duration 

shown in Figure 21(b) is 0.36 of the sum of the variances of the two individual trajectories, 

shown in Figure 21(a). Figure 21(c) shows the correlation between the pitch values for the 

two trajectories. 
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It needs to be emphasized that the approach described above only captures intonation 

adjustments in which two voices fluctuate and continuously move in a correlated way. Trying 

to correlate the fluctuations of the pitches of one voice with another one can also be seen as 

an indirect indicator of which harmonic intervals singers are trying to intonate as pure as 

possible, in other words, which intervals they “care about” harmonically. Figure 22 shows 

the number of occurrences for all those dynamically adjusted harmonic intervals in the 

complete dataset which consist of notes longer than 0.5 seconds and for which the variance 

reduction of the interval variance was at least 50 percent. 

 

 

Figure 21:  Example for dynamic intonation adjustment from chant GCH-ID 010. (a) Pitch 
trajectories for two notes building a harmonic interval of a fifth. (b) Corresponding 
harmonic interval trajectory. (c) Correlation between the pitch values of the two 
trajectories. 
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 Table 3 shows the corresponding mean values (µ) and standard deviations (σ) per musical 

interval in cents. 

 

 

 

 

 

 

Table 3: Mean values (µ) and standard deviations (σ) per musical interval based on 
histogram in Figure  22 in cents. 

 

The intervals which are most frequently dynamically adjusted in intonation are the fifth, 

octave, and unison, followed by the ninth and the fourth. These are also the intervals which in 

Table 3 are most precisely defined (smallest standard deviation). Examples for adjusted 3rds, 

6ths, and 7ths are also visible in Figure 22 but their interval values (column 2 in Table 3) are 

much less well defined as can be seen from their increased standard deviations (column 3). 

Since the adjusted intervals in Table 3 result from an intentional process, and not just from 

averaging, their numerical values (column 2) might represent the harmonic tuning system 

which Artem Erkomaishvili was aiming at as closely as possible. 

 (µ) (σ) 
Unison -2 18 
2nd 190 22 
3rd 382 34 
4th 504 21 
5th 707 18 
6th 866 29 
7th 1042 57 
8ve 1211 16 
9th 1420 14 

 

Figure 22: Histogram of the number of occurrences for those dynamically adjusted 
harmonic intervals in the complete dataset which consist of notes longer than 0.5 
seconds and for which the variance reduction of the interval variance was at least 50 
percent. 
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8. Discussion and Conclusions 
With his performances of more than one hundred liturgical chants recorded at the Tbilisi 

State Conservatory in 1966, Artem Erkomaishvili has left a unique documentation of past 

performance practices. The fact that he sang the three voices of each chant in succession 

– the second and third voice against his own pre-recorded voice(s) – makes this corpus, in 

particular in its curated version by Rosenzweig et al. 2020, an extremely valuable resource for 

the analysis of traditional Georgian music. In the present study, we made heavy use of the 

metadata of the curated Erkomaishvili dataset. Without the beat annotations and the 

possibility to easily align recordings computationally to positions in the scores, it would have 

hardly been possible to investigate the effect of intended pitch bending by comparing 

identical melodic phrases in different chants and to study the effects of dynamic intonation 

adjustments at a note level. 

With the present study, we demonstrate that a lot can be learned about the tuning 

system(s) and the intonation practice of Artem Erkomaishvili from the Tbilisi State 

Conservatory recordings of 1966. As one of our major contributions, we have derived three 

synoptic scale models for the complete dataset, two melodic ones (one for the solo top voices 

and one for all voices jointly), and one harmonic model for all concomitant intervals in the 

dataset, see Figure 23(a).  Despite the fact that no data were excluded from the analysis, the 

synoptic models, which represent the complete dataset in a comprehensive way, show 

remarkable clear and stable features. The most persistent observation in essentially all 

chants is that their pitch group distributions contain two rather large intervals (approx. 200 

cents) close to the most salient pitch group. Musically, this large interval seems to serve a very 

important purpose because it is an indispensable condition to have concomitant fourths and 

fifths (separated by 200 cents), which are the core of the 1-4-5 chord so common in 

traditional Georgian music. Therefore, in Figure 23(a) we have aligned the melodic scales 

to the scale pitches of the pitch group four degrees below the most salient one. This 

corresponds to the assumption that the most salient pitch group corresponds to scale 

degree five. As a consequence, in both the melodic and the harmonic models, the fourth 

and the fifth are close to just tuning. 
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Overall, melodic and harmonic scales are fairly similar, except for the first two scale 

degrees. In contrast to earlier, preliminary work (Scherbaum, Müller, and Rosenzweig 2017a), 

in the present study, we see clear evidence for enlarged octaves. It is known that exact 

octaves with a frequency ratio of 2:1 are generally perceived as too small (Burns 1999). This 

phenomenon, known as octave stretching, has been discussed in several papers, for references 

see (Burns 1999), without a consensus being reached on the cause. Since octave stretching is 

a perceptional phenomenon and not a scale design characteristic, in the following 

comparison with other scale models, which partially have been derived from purely 

theoretical considerations or from instruments, we are not including the numerical value for 

scale degree eight. 

As an add-on to the Scala software package, (Op de Coul 2007) developed a large library of 

scales (more than 5000) which he has made freely available (http://www.huygens-

fokker.org/docs/scales.zip). Out of these, we have extracted all the heptatonic ones (more than 

700) and compared them quantitatively with the melodic sound scale derived from the top 

voice pitches. As distance metric, we used the Euclidean distance between the vectors 

constructed from the first seven scale degrees (ignoring the octave for reasons explained 

Figure 23: Synoptic scale models for the Erkomaishvili dataset. (a) Our three 
developed models. (b) Comparison of the synoptic top voice model (AE) with 
five selected scale models. The scales color-coded in dark gray correspond to 
scale models from the literature, the one in light gray to a scale model from the 
Scala library. 
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above). In this comparison, the results of which are displayed in Figure 23(b), we also 

included the scale models which have been proposed by (Erkvanidze 2016), (Tsereteli and 

Veshapidze 2014), and (Gelzer 2002). Note that for better visual comparability of the 

interval structure of the individual scales, every second interval is color-coded. The scales 

are arranged from left to right according to their closeness to the top voice scale of Artem 

Erkomaishvili (color-coded in blue), which is labeled AE. The best fitting scale which 

nearly perfectly matches Artem Erkomaishvili’s top voice scale (except for the octave, which 

was excluded from the comparison for reasons explained above) is what is referred to in the 

scale database as inverse  of  Ptolemy’s Equable Diatonic,  11-limit superparticular. It belongs to the 

class of Ptolemy’s mixed scales which according to Chalmers 1993 (page 109) were in 

common use by players of the lyra and kithara in Alexandria in the second century AD. 

Following in closeness is the scale labeled EQ5 which is derived by dividing a fifth into 4 

equally sized intervals and which was suggested by (Gelzer 2002). This scale, however, does 

not reproduce the pure fourth and fifth which seem to be a very clear characteristic 

feature of Artem Erkomaishvili’s top voice scale. The next best fit is achieved by Malkhaz 

Erkvanidze’s split mode (SM) model (Erkvanidze 2016), which fairly well reproduces the first 

six scale degrees, but not the seventh. It is followed in fit by the equidistance model of 

(Tsereteli and Veshapidze 2014), labeled EQ8, and the joined mode model labeled JM of 

Erkvanidze (Erkvanidze 2016). None of these, however, reproduces the pure fourth and 

fifth of Artem Erkomaishvili’s top voice sound scale. In terms of reproducing the pure 

fourth and fifth and providing a good overall fit to Artem Erkomaishvili’s top voices’ sound 

scale model, only Ptolemy’s model and Erkvanidze’s split mode model are matching well. 

Both are disjunct tetrachordal scale models. 

Although Erkvanidze’s split mode scale model comes fairly close to matching the first six 

degrees of Artem Erkomaishvili’s top voice sound scale, the results of our analysis do not 

support Erkvanidze’s assumption that the melodic steps of the old masters accurately 

follow the systemic scale with precision of a few cents, cf. (Erkvanidze 2016). Instead, the 

tuning system used by Artem Erkomaishvili in his recordings from the year 1966 is clearly not 

a fixed and rigid one in which every single melodic step would have to correspond to an 

interval between one of the scale-degree-defining pitches. For example, Figure 5 

unambiguously demonstrates that melodic step sizes vary freely even between the same 

pitch group pairs. What we see in our study is that Artem Erkomaishvili is well aware of 

his position with respect to the scale pitches at a very high precision, but exercises 

considerable freedom in stretching or compressing the melodic step sizes. We see the decoding 

of this deviation-compensation mechanism as another important contribution of our work. 

As a side effect of our analysis, we learned that the analysis of melodic step sizes can be 
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very misleading if one wants to derive a scale model from audio recordings. The 

information about the scale-degree-defining pitches rests in the central values of the pitch 

groups, or (in mathematical terms) in the µk values of the GMMs. The fact that the most 

frequently used melodic step size in all chants is between 170 and 180 cents (cf. Figure 20) may 

offer an explanation why the results of the analysis of (Tsereteli and Veshapidze 2014) let 

them suggest an equidistant scale model. If one randomly drew a small number of note 

samples from the dataset, one would very likely draw samples for which the distance 

between neighboring pitch groups is close to 170 to 180 cents because they are simply more 

likely to be drawn. The characteristic interval size around 200 cents, which we obtain 

because we use all the samples would very likely go undetected. 

Our results regarding the microtonal characteristics of the dataset and the dynamic 

intonation adjustments are not really unexpected. They underline again that Artem 

Erkomaishvili was an exceptional singer who, when singing the middle and bass voice, was 

able to instantaneously adjust his intonation to achieve desired harmonic intervals at a 

fairly high precision, judging by the amount of variance reduction in the interval traces 

which he was able to achieve. 
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