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ABSTRACT

While Georgia has a long history of orally transmitted
polyphonic singing, there is still an ongoing controversial
discussion among ethnomusicologists on the tuning sys-
tem underlying this type of music. First attempts have
been made to analyze tonal properties (e. g., harmonic and
melodic intervals) based on fundamental frequency (F0)
trajectories. One major challenge in F0-based tonal anal-
ysis is introduced by unstable regions in the trajectories
due to pitch slides and other frequency fluctuations. In
this paper, we describe two approaches for detecting sta-
ble regions in frequency trajectories: the first algorithm
uses morphological operations inspired by image process-
ing, and the second one is based on suitably defined bi-
nary time–frequency masks. To avoid undesired distor-
tions in subsequent analysis steps, both approaches keep
the original F0-values unmodified, while only removing
F0-values in unstable trajectory regions. We evaluate both
approaches against manually annotated stable regions and
discuss their potential in the context of interval analysis for
traditional three-part Georgian singing.

1. INTRODUCTION

Polyphonic singing plays a vital role in many musical cul-
tures. One of the oldest forms of polyphonic singing can
be found in Georgia, a country located in the Caucasus re-
gion of Eurasia. The traditional three-part songs, which
are typically passed down orally from one generation to the
next, are acknowledged as Intangible Cultural Heritage by
the UNESCO. Although being a long-studied subject, the
non-tempered nature of traditional Georgian vocal music is
still discussed controversially among musicologists [7,33].
So far, musicological studies on traditional Georgian music
have mostly been conducted on the basis of manually tran-
scribed field recordings. Such approaches are problematic,
since important tonal cues (as well as many other perfor-
mance aspects) are likely to get lost in the transcription
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Figure 1. Detection of stable regions in F0-trajectories for
a three-part singing recording. (a) Original F0-trajectories.
(b) F0-trajectories restricted to stable regions. (c) Har-
monic interval histogram based on (a). (d) Sharpened har-
monic interval histogram based on (b). The histograms
in (c) and (d) were computed considering the entire Erko-
maishvili dataset.

process. The importance of field recordings in research on
Georgian vocal music has raised the demand for computer-
based methods to assist ethnomusicologists in analyzing
the audio material.

One source of central importance for ethnomusicolog-
ical research is a collection of audio recordings of the
former master chanter Artem Erkomaishvili (1887–1967).
The collection, which was created at the Tbilisi State Con-
servatory in 1966, comprises 101 three-part songs. Each
chant was recorded in a three-stage “dubbing” process us-
ing tape recorders, where Erkomaishvili successively sung
the individual voices with previously recorded voices be-
ing played back. In the study [20], a semi-automatic
salience-based approach was applied to determine funda-
mental frequency (F0) trajectories of all three voices. The
extracted F0-annotations are publicly available. 1 In a
follow-up study [31], the authors determined from these
trajectories harmonic (vertical) as well as melodic (hori-
zontal) intervals, which give cues on the tonal organiza-
tion [21, 22] of Georgian vocal music.

1 https://www.audiolabs-erlangen.de/resources/MIR/2017-
GeorgianMusic-Erkomaishvili
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In general, studies on tonal analysis (see, e. g., [14,
15, 17, 31]) have shown that the usage of previously ex-
tracted F0-trajectories leads to various challenges. For ex-
ample, as a stylistic element of traditional Georgian mu-
sic, sung notes often start, end, or are continuously con-
nected using pitch slides, see Figure 1a. Furthermore, au-
tomated F0-estimation procedures typically introduce in-
accuracies such as extraction errors, outliers, or smooth-
ing artifacts. Consequently, tonal analysis of Georgian vo-
cal music based on highly fluctuating and error-prone F0-
trajectories is problematic. For example, when computing
harmonic interval statistics (as illustrated by Figure 1c),
such artifacts may lead to an increased noise level and
a less salient peak structure in the computed histograms.
When analyzing melodic intervals, the presence of fre-
quency variations (such as pitch slides) have a strong neg-
ative impact on subsequent analysis results. To alleviate
such issues, contributions such as [17, 31] apply (semi-
automatic) post-processing procedures to remove unstable
regions in the trajectories and derive note-like events with
a stable pitch. Note that for other scenarios (e. g. the tonal
analysis of Hindustani Raga [29]), non-stable regions may
contain musically important information.

Motivated by such tonal analysis applications, we
present in this paper two automatic approaches that aim at
identifying stable regions in frequency trajectories. Tech-
nically speaking, such regions correspond to horizontal
structures (up to some tolerance) of trajectories. In acous-
tical and musical terms, such regions relate to pitched
sounds where a singer has tuned into a harmonically sta-
ble pitch synchronized to other singers. In this context,
our goal is to remove all frequency values in unstable
regions, while keeping the original frequency values un-
modified in the stable ones (see Figure 1b). For accom-
plishing this task, we introduce two conceptually different
approaches—one based on morphological operations and
the other one based on binary masking. Furthermore, we
evaluate both approaches against manually annotated sta-
ble regions and indicate their potential for interval analysis
using the Erkomaishvili recordings as example.

The remainder of this paper is organized as follows. We
discuss related work in Section 2, then give a technical de-
scription of our approaches in Section 3, and summarize
our experiments in Section 4.

2. RELATED WORK

In the following, we give an overview on work that is re-
lated to detecting stable regions in F0-trajectories. First,
we want to note that stable region detection is not equiva-
lent to F0-based transcription. In general, automated mu-
sic transcription (AMT) aims at converting a music record-
ing into some form of music notation [1, 2, 13]. In this
process, many AMT systems apply temporal and spectral
quantization of previously extracted F0-trajectories to de-
rive pitches, onsets, and offsets of note events [3, 4, 6, 10,
15,16,18,23,30]. Rather than using quantized or modified
F0-trajectories for our analysis, we aim at using trajecto-
ries restricted to stable regions (that may or may not corre-

spond to note events) while leaving the original F0-values
unmodified.

Detecting stable, transitional, and fluctuating patterns
in F0-trajectories plays an important role for various tasks
such as vibrato detection [5, 26, 37], singing style classifi-
cation [24, 27], and motif detection [12, 25]. For example,
in [35–37], the authors address the problem of detecting
portamento (note transition) regions in Chinese string mu-
sic. In [15], the authors identify stable regions as an im-
portant step towards transcribing recordings of Flamenco
singing. In [19], the authors propose a vocal trajectory seg-
mentation algorithm based on hysteresis defined on pitch–
time curves. However, the underlying octave equivalence
assumption may not be fulfilled in traditional Georgian vo-
cal music. For a recent overview article of singing voice
analysis, we refer to [11].

Furthermore, there are various studies on Indian Raga
music, which are related to our work. In [9], a global pitch
histogram (“pitch inventory”) of the whole recording is
computed. Then, informed by the histogram’s peaks, sta-
ble regions are derived using empirically chosen thresholds
for duration and fluctuation tolerance. In [14], the authors
compute the local slope of the F0-trajectory and obtain sta-
ble regions by thresholding and quantization. However,
due to the underlying scale assumptions, such approaches
can not be directly applied to analyzing traditional Geor-
gian singing, where pitch drifts may occur over the course
of the song.

3. STABLE REGION DETECTION

In this section, we formalize the notion of a frequency
trajectory as used in this work (Section 3.1). Then, to
motivate the subsequent procedures, we introduce a sim-
ple median-based filtering approach (Section 3.2). As our
main technical contributions, we introduce two conceptu-
ally different approaches for determining stable regions in
frequency trajectories—one based on morphological op-
erations (Section 3.3) and the other one based on binary
masking (Section 3.4).

3.1 Frequency Trajectories

To account for the logarithmic nature of human pitch
perception, we convert frequency values into the log-
frequency domain. To this end, we fix a reference fre-
quency ωref given in Hertz (Hz). In the following, we set
ωref = 55 Hz. Then, an arbitrary frequency value ω is
converted into the logarithmic domain by defining

Fcents (ω) := 1200 · log2

(
ω

ωref

)
, (1)

which measures the distance between ω and ωref in cents.
In this paper, we model a frequency trajectory as a function

γ : Z→ R ∪ {∗}, (2)

which assigns to a given time index n ∈ Z either a real-
valued frequency value γ(n) ∈ R (given in cents) or the
symbol γ(n) = ∗ (when the frequency value is left to be
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Figure 2. Effect of median filtering. (a) Original trajectory
γ. (b) Median-filtered trajectory γMedian. (c) Activation
regions of γ (black) and γMedian (red).

unspecified). In our implementation, we use a time reso-
lution of 5.8 ms per time index and a frequency resolution
of 10 cents. Figure 2a shows a frequency trajectory, which
will serve as our running example in the remainder of this
section. In the first two seconds, two notes are played on a
piano without interruption. Subsequently, in the next two
seconds, there are two sung notes smoothly connected by
a pitch slide. Finally, the recording contains a note sung
with vibrato.

3.2 Median Filtering

For tonal analysis based on frequency trajectories, one of-
ten applies some kind of filtering to remove outliers and
other undesired pitch fluctuations [17, 32]. For example,
by applying a median filter of odd length L ∈ N, one ob-
tains a smoothed trajectory γMedian defined by

γMedian(n) := median
{
γ(n− L−1

2 : n+ L−1
2 )
}

(3)

for n ∈ Z. In this definition, the symbol ∗ is handled as
−∞. Figure 2b shows γMedian of our running example
using L = 69 (corresponding to 0.4 sec). This example
shows how median filtering introduces smoothing while
removing outliers (such as the peak around the third sec-
ond). However, the non-stable transition between the two
sung notes remains after filtering. This is not what we aim
at. First, we do not want to change frequency values in sta-
ble regions (with the goal not to introduce smoothing ef-
fects in subsequent tonal analysis steps). Second, we aim
at explicitly detecting unstable regions, which can then be
removed from the frequency trajectory. In the following,
we present two conceptually different approaches that ful-
fill these requirements.

3.3 Morphological Approach

The first approach, which is inspired by work of Vávra et
al. [34], uses morphological operations as known in image
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Figure 3. Morphological approach for detecting stable re-
gions. (a) Frequency trajectories γ (black), γLmax (green),
and γLmin (orange). (b) Morphological gradient ∆L with
threshold τ = 90. (c) Trajectory γMorph restricted to stable
regions. (d) Activation regions for γ (black) and γMorph

(red).

processing. Applying these operators to frequency trajec-
tories, dilation corresponds to max filtering, and erosion to
min filtering. Given a trajectory γ, this results in a dilated
trajectory γLmax and an eroded trajectory γLmin defined by

γLmax(n) := max
{
γ(n− L−1

2 : n+ L−1
2 )
}
, (4a)

γLmin(n) := min
{
γ(n− L−1

2 : n+ L−1
2 )
}
, (4b)

for n ∈ Z, where L ∈ N is assumed to be an odd in-
teger. In max filtering, the symbol ∗ is handled as −∞,
whereas in min filtering it is handled as +∞. Figure 3a
shows the resulting trajectories γLmax and γLmin for our run-
ning example using L = 43 (corresponding to 0.25 sec).
In a next step, we define the difference ∆L between the
dilated and eroded trajectories, also termed morphological
gradient [28]:

∆L(n) := γLmax(n)− γLmin(n) (5)

for n ∈ Z, where we set ∆L(n) = ∗ whenever γLmax(n) or
γLmin(n) are not defined. As shown in Figure 3b, the differ-
ence ∆L is large in non-stable parts (e. g., around the third
second), whereas it is small in stable parts (e. g., within
each of the piano notes). Fixing a suitable threshold τ > 0
(given in cents), we define the trajectory γMorph by setting

γMorph(n) :=

{
γ(n), for |∆L(n)| ≤ τ ,
∗, otherwise.

(6)

The threshold τ can be seen as a tolerance parameter that
specifies the maximally allowed fluctuation under which a
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Figure 4. Masking approach for detecting stable regions.
(a) Binary representation ΓR. (b) Max-filtered representa-
tion ΓβR. (c) Median-filtered binary mask Γβ,LR . (d) Tra-
jectory γMask restricted to stable regions. (e) Activation
regions for γ (black) and γMask (red).

trajectory is still considered to be stable. The resulting tra-
jectory γMorph for our running example is depicted in Fig-
ure 3c using a threshold of τ = 90 cents. As shown in
Figure 3d, the morphological approach succeeds in iden-
tifying stable regions. However, it also introduces a trun-
cation at both sides of sudden jumps (e. g., around the first
and fourth second) by half the filter length (L−1)/2. In the
next section, we show how this truncation effect can be re-
duced by applying a 2D-masking approach involving some
median filtering. Finally, we want to note that considering
the morphological gradient is conceptionally similar to the
approach based on Gaussian derivate filtering as described
in [15]. In our approach, the threshold parameter τ can be
adjusted dynamically to account for characteristics of in-
dividual trajectories, e. g. by considering the p-quantile of
the morphological gradient ∆L.

3.4 Masking Approach

We now introduce an alternative approach for detecting
stable trajectory regions, which works in the 2D-domain.

In a first step, we encode a trajectory γ as a binary 2D-
representation ΓR : Z × Z → {0, 1}. Given a frequency
resolution of R ∈ R (given in cents), ΓR is defined by

ΓR(n, b) :=

{
1, for

⌊
γ(n)
R + 0.5

⌋
= b,

0, otherwise,
(7)

with time index n ∈ Z and frequency bin index b ∈ Z
(corresponding to a logarithmic frequency axis). Figure 4a
shows the binary representation ΓR using R = 10 cents
for our running example. In the second step, we introduce
some tolerance in frequency direction by vertically apply-
ing a max-filtering using a filter length parameter β ∈ N0

(specified in bins). This results in the representation ΓβR
defined by

ΓβR(n, b) := max{ΓR(n, b− β : b+ β)}. (8)

This operation is illustrated by Figure 4b using β = 5
(leading to a frequency width of 2β + 1 = 11 bins cor-
responding to 110 cents). In a third step, inspired by an
algorithm for Harmonic–Percussive Source Separation [8],
a median filter of odd length L ∈ N is applied in horizontal
direction yielding a representation Γβ,LR :

Γβ,LR (n, b) := median
{

ΓβR(n− L−1
2 : n+ L−1

2 , b)
}
. (9)

Applying horizontal median filtering suppresses vertical
structures (e. g., pitch slides), while enhancing horizontal
structures (corresponding to stable regions), see Figure 4c
for an illustration when using L = 43 (corresponding to
0.25 sec). In the fourth step, the output trajectory γMask is
obtained by setting

γMask(n) :=

{
γ(n), if Γβ,LR (n, b) = 1,
∗, otherwise,

(10)

with b =
⌊
γ(n)
R + 0.5

⌋
. This last step can be thought of

as “masking” the input trajectory γ using the binary mask
Γβ,LR . Figure 4d shows the resulting trajectory γMask for
our running example. Note that, even though the mask-
ing procedure involves some quantization parameter R,
the final trajectory γMask coincides with the original tra-
jectory γ in stable regions. Similar to the parameter τ
for computing γMorph, the parameter β controls the fre-
quency tolerance within stable regions for γMask. As also
indicated by our running example, the truncation effects at
sudden jumps introduced by the morphological approach
have been eliminated by our masking approach (compare
γMorph and γMask around the first and fourth second).
While the 2D-masking approach is computationally more
expensive than the 1D-morphological approach, it allows
for processing multiple (non-overlapping) trajectories at
the same time. Furthermore, one may account for weighted
trajectories (e. g., trajectories with assigned amplitude or
confidence values) by using real-valued instead of binary
masks. Note that both algorithms do not enforce conti-
nuity of output trajectories. In particular, strict parameter
settings (e. g. small τ and small β) may result in fluctu-
ating sound events (e. g. a note sung with strong vibrato)
being split up into several disconnected regions.
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Figure 5. Precision, recall, F-Measure, and survival rate ρ of parameter sweeps averaged over five recordings (see Table 1).
The parameter settings chosen for subsequent experiments are marked with red stars. (a) Morphological approach. (b)
Masking approach.

ID
γAnno γMorph γMask

ρ P R F ρ P R F ρ

001 61% 0.82 0.94 0.88 70% 0.82 0.94 0.88 71%
002 79% 0.94 0.85 0.89 72% 0.93 0.87 0.90 74%
010 68% 0.87 0.92 0.89 72% 0.84 0.95 0.89 77%
087 78% 0.88 0.98 0.93 87% 0.87 0.98 0.92 88%
110 74% 0.90 0.96 0.93 79% 0.88 0.97 0.92 80%

Table 1. Precision (P), recall (R), F-Measure (F), and sur-
vival rate (ρ) evaluated on the basis of manually annotated
F0-trajectories for five Erkomaishvili recordings.

4. EVALUATION

In this section, we report on experiments that indicate the
role of the parameters and the behavior of the morpholog-
ical and the masking approach. In Section 4.1, we numer-
ically compare both approaches using a set of manually
annotated stable regions in F0-trajectories from the pub-
licly available Erkomaishvili dataset [20]. Using suitable
parameter settings, we then apply both algorithms to the
trajectories of all 101 recordings in the dataset (see Sec-
tion 4.2). It turns out that a consistent detection of stable
regions using the two conceptually different approaches is
a good indicator that the results are musically meaningful.
Finally, in Section 4.3, we demonstrate the potential of our
approaches for enhancing harmonic interval distributions.

4.1 Evaluation Measures and Parameters

In order to compare the algorithms’ performance, we anno-
tated stable regions of F0-trajectories extracted from five
representative Erkomaishvili recordings. To this end, we
used an interactive interface described in [20] to manually
remove all unstable trajectory regions that correspond to
note transitions and other artifacts. As evaluation metrics,
we use standard precision (P), recall (R) and F-measure
(F) computed frame-wise on the basis of the trajectories’
activations. First, all frames with no specified frequency
value in the original trajectory (γ(n) = ∗) are left uncon-
sidered. Frames classified as stable by our approaches are
counted as true positives (TP) if they agree with frames an-
notated as stable, otherwise they are counted as false pos-

itives (FP). Furthermore, frames annotated as unstable are
counted as false negatives (FN), if they are classified as
unstable. Then,

P :=
TP

TP + FP
, R :=

TP

TP + FN
, F :=

2 · P · R
P+ R

. (11)

Note that P := 0 for TP + FP = 0, R := 0 for
TP + FN = 0, and F := 0 for P + R = 0. Furthermore,
we introduce an evaluation measure referred to as survival
rate and denoted as ρ. This measure, which indicates the
percentage of remaining trajectory values after filtering, is
defined as follows:

ρ :=
|{n : γStable(n) 6= ∗}|
|{n : γ(n) 6= ∗}|

· 100, (12)

with γStable = γMorph for the morphological approach,
γStable = γMask for the masking approach and γStable =
γAnno for an annotated trajectory γAnno.

In order to analyze the algorithms’ behavior for differ-
ent parameter settings, we conduct parameter sweeps over
L, τ , and β, using a fixed frequency resolution of R = 10
cents. For each evaluation metric, we construct a matrix
with each entry corresponding to a metric’s value for a
specific parameter setting averaged over the five annotated
recordings. The resulting matrices for precision, recall, F-
measure, and survival rate are depicted in Figure 5a for the
morphological approach and in Figure 5b for the masking
approach. The visualizations show that τ and β play a sim-
ilar role: high values of τ and β make the approaches more
tolerant to local frequency fluctuations in the trajectories,
thus increasing the survival rates. In contrast, when de-
creasing τ and β, less values remain in the filtered trajec-
tories, leading to lower survival rates. Furthermore, note
that increasing the filter length L leads to an increase in
precision and a decrease in recall for both approaches. In
the case of the morphological approach, very large filter
lengths lead to a survival rate of ρ = 0 (nothing is remain-
ing), which also leads to a precision of zero.

For our further experiments, we use fixed parameter set-
tings for both approaches that correspond to maxima in
the F-measure matrices (see red stars in Figure 5). The
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P R F ρ (γMorph) ρ (γMask)

µ 0.89 0.94 0.92 73% 77%
σ 0.02 0.01 0.02 5% 5%

Table 2. Evaluation of the masking approach against the
morphological approach considering the trajectories of all
101 recordings of the Erkomaishvili dataset (with fixed pa-
rameter settings from Section 4.1). The mean µ and stan-
dard deviation σ refer to statistics taken over the dataset.

morphological approach reaches a maximum F-measure of
0.90 for τ = 150 cents and L = 29 bins, whereas the
masking approach reaches a maximum F-measure of 0.90
for β = 2 bins and L = 41 bins. Using these parameter
settings, the evaluation results for our five annotated ex-
amples (IDs correspond to songs on the publicly available
website 2 ) are given in Table 1. From the table, we can see
that both approaches are able to detect stable regions in all
five examples. We want to note that the optimal parame-
ter settings vary from song to song, depending on the oc-
curring note durations, characteristics of pitch slides, and
other performance aspects. As an alternative to a fixed set-
ting, one may chose the parameters in a song-dependent
way, e. g., by fixing the survival rate. In summary, our
experiments on the Erkomashvili dataset showed that the
specific choice of parameters is not crucial within a certain
range (see also the F-measure matrices of Figure 5).

4.2 Consistency

The two approaches for detecting stable regions in trajec-
tories are conceptually different. Nevertheless, in the case
of the five annotated recordings, both approaches worked
successfully and performed in a similar fashion. Based
on the hypothesis that a consistent performance of both
approaches is a necessary condition for obtaining mean-
ingful results, we applied both approaches independently
to all 101 recordings of the Erkomaishvili dataset. We
then compared the results by evaluating the trajectories ob-
tained by the masking approach against the trajectories ob-
tained by the morphological approach using the evaluation
metrics defined in Section 4.1. The mean µ and standard
deviation σ (taken over the dataset) of the evaluation re-
sults are shown in Table 2. The numbers indicate that
both approaches deliver similar results on average with a
small standard deviation. Furthermore, both approaches
roughly exhibit the same average survival rate for the cho-
sen parameter settings. Beyond these overall measures, we
also looked at recordings where the two approaches deliv-
ered less consistent results. A manual inspection revealed
that these recordings often contain speech-like passages
(rather than singing) and extremely short notes such as in
the songs with ID 022 and ID 074. Results for all 101
recordings are publicly available through audio–visual in-
terfaces. 3

2 https://www.audiolabs-erlangen.de/resources/
MIR/2017-GeorgianMusic-Erkomaishvili

3 https://www.audiolabs-erlangen.de/resources/
MIR/2019-ISMIR-StableF0
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Figure 6. Harmonic interval distributions obtained from
the entire Erkomaishvili dataset.

4.3 Harmonic Interval Analysis

In the following, we want to demonstrate the potential of
the presented approaches for interval analysis of Georgian
vocal music by computing harmonic interval size distri-
butions from the filtered trajectories. To this end, similar
to [20,31], we superimpose the filtered trajectories of lead,
middle and bass voice and determine the frame-wise inter-
vals for each voice pair (as indicated in Figure 1). Then,
by accumulating the occurrences of the different intervals
over time, we obtain interval histograms. These histograms
are normalized (using the `1-norm) to obtain distributions.
Figure 6 shows three such distributions obtained by consid-
ering all 101 recordings of the Erkomaishvili dataset. The
first distribution (black solid line) is based on the original
F0-trajectories. The second distribution (solid red line) is
obtained by considering only stable regions after morpho-
logical filtering. (Here, we use the parameter setting dis-
cussed in Section 4.1. Filtering with the masking approach
leads to similar distributions.) Note that the filtering leads
to a sharper interval distribution emphasizing the peaks at
the harmonically relevant intervals while not changing the
respective peak locations. Using stricter parameter settings
leads to a further sharpening (see red doted line in Fig-
ure 6). However, overdoing the filtering may drastically
reduce the survival rate. This, in turn, may lead to a dis-
tortion or even a loss of peak structures corresponding to
relevant harmonic intervals.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented two conceptually different ap-
proaches for detecting stable regions in frequency trajec-
tories, which perform equally well with respect to a set
of manually annotated trajectories. Rather than advocat-
ing a specific parameter setting, our goal was to introduce
these concepts in a mathematical rigorous way, while high-
lighting their potential using the Erkomaishvili dataset as
example scenario. Going beyond harmonic interval anal-
ysis, future work will be concerned with applying these
filtering techniques for the analysis of melodic intervals,
singer interaction, and intonation drifts—aspects of fore-
most importance in ethnomusicological research on tradi-
tional Georgian vocal music.
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