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ABSTRACT

The analysis of recorded audio sources has become increasingly important in ethnomusicological research. Such
audio material may contain important cues on performance practice, information that is often lost in manually
generated symbolic music transcriptions. As an application scenario, we consider in this paper a musically relevant
audio collection that consists of three-voice polyphonic Georgian chants. As one main contribution, we introduce
an interactive graphical user interface that provides various visual and acoustic control mechanisms for estimating
fundamental frequency (FO) trajectories from complex sound mixtures. We then apply this interface for determining
FO trajectories of sung pitches from the Georgian chant recordings and indicate how such FO annotations can be
used as basis for addressing important questions in Georgian music research.

1 Introduction

Ethnomusicological research is typically conducted on
the basis of notated music material, which is obtained
by transcribing recorded tunes into symbolic, score-
based music representations. These transcriptions are
often idealized and tend to represent the presumed
intention of the singer rather than the actual perfor-
mance. As a result, performance aspects enclosed in
the recorded audio material may be lost in symbolic
music representations [1, 2]. Therefore, when research-
ing performance practice, the analysis of recorded mu-
sic material seems inevitable. However, opposed to
symbolic representations, musical parameters such as
pitches, note onsets, or note durations are not given
explicitly in an audio representation, which basically
encodes the acoustic waveform of a performance. The

manual extraction of musical parameters directly from
a music recording is cumbersome and time consum-
ing, thus asking for computer-based methods to assist
an ethnomusicologist in accessing and understanding
the audio material. In this paper, we investigate the
applicability of automated methods to analyze a music
collection that consists of audio recordings of tradi-
tional Georgian chants.

Georgia has a long and rich music history. In particular,
Georgian polyphonic singing has been acknowledged
as an intangible cultural heritage, which has “regained a
place of prominence in the hearts and minds of the pub-
lic and in the life of the Church” [3]. To preserve this
cultural treasure, the “Commission for Chant Preserva-
tion” began in the 1860s the process of notating Geor-
gian chants, which had been passed down orally for
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many generations. This has resulted in thousands of
transcriptions collected between 1880-1920. Due to
changing social and political conditions, however, the
tradition of how to perform these chants has largely
been lost, and ethnomusicologists have started to re-
search on traditional performance practice [3]. In this
context, a collection of music recordings performed by
Artem Erkomaishvili (1887-1967)—one of the last rep-
resentatives of the master chanters (“sruligalobelni’)
of Georgian music—has become of great importance.
Recorded at the Tbilisi State Conservatory in 1966, the
aging Erkomaishvili was asked to perform three-voice
chants by successively singing the individual voices.
After recording the lead voice, one tape recorder was
used to playback this first voice while a second tape
recorder was used to synchronously record the mid-
dle voice. Similarly, playing back the first and second
voice, the bass voice was recorded, see Figure la. In
this way, Erkomaishvil was able to accompany and em-
bellish his own recordings, yielding a genuine source of
original Georgian musical thinking [3]. The resulting
collection of ca. 100 audio recordings,1 which com-
prises various types of chants including hymns for
Easter, Christmas, or wedding ceremonies, is of great
importance for ethnomusicological research.

To make this audio collection better accessible for mu-
sicological research, one important task is to estimate
the fundamental frequency (FO) trajectories of the sung
pitches from the recordings using automated methods.
While this is feasible with standard procedures in the
case of monophonic music, the problem becomes much
harder in the case of polyphonic music. As one main
contribution of this paper, we introduce a graphical
user interface (GUI) for semi-automatic estimation of
FO trajectories. The GUI allows the user to specify
temporal-spectral constraint regions that guide the esti-
mation process. Furthermore, the GUI provides visual
and acoustic feedback mechanisms that can be used to
control and refine the estimated results in an interactive
fashion. As an example scenario of musical relevance,
we then apply this interface for extracting the FO trajec-
tories of the sung pitches from the three-voice Georgian
chants recordings. Finally, we indicate how these FO an-
notations may help to answer musicological questions
within Georgian music research. In the remainder of

hosted at the Folklore De-
partment, Tbilisi State Conservatory. It has been
made available at http://www.alazani.ge/
old-archives-Artem-Erkomaishvilis-Sagaloblebi-
folk-songs-ans59.html

IThe audio collection is
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: Recording of the Georgian chant “Da Sulisatsa”
sung by Artem Erkomaishvili. (a) Three-stage
recording process. (b) Waveform. (c) Fun-
damental frequency trajectories for the lead
voice, the middle voice, and the bass voice. The
pink rectangles indicate the recording’s struc-
ture based on the three-stage recording process.

this paper, we first review the FO-estimation procedure
used in this work (Section 2), then introduce the GUI
(Section 3), and finally consider as an application the
Georgian chant scenario (Section 4). Further related
work is discussed in the respective sections.

2 Fundamental Frequency Estimation

In this section, we give some background information
on melody extraction and FO estimation (Section 2.1)
and then summarize the FO-estimation procedure used
in this study (Section 2.2).

2.1 Background

As mentioned in the introduction, audio recordings
(given as waveforms) are complex in the sense that
musical parameters such as pitches, note onsets, or note
durations are not given explicitly. Furthermore, real-
world sounds are far from being simple pure tones with
well-defined frequencies. Playing a single note on an
instrument may result in a complex sound that contains
a mixture of different frequencies changing over time.
Intuitively, such a musical tone can be described as a
superposition of pure tones or sinusoids, each with its
own frequency of vibration, amplitude, and phase. A
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partial is any of the sinusoids by which a musical tone
is described. The frequency of the lowest partial present
is called the fundamental frequency (abbreviated as FO)
of the sound. The pitch of a musical tone is usually
determined by the fundamental frequency, which is the
one created by vibration over the full length of a string
or air column of an instrument. For further details, we
refer to [4, Chapter 1].

When given an audio recording, one central task in
music processing is referred to as melody extraction.
In general terms, a melody (or more general a melodic
voice) may be defined as a linear succession of musical
tones expressing a particular musical idea. Because
of the special arrangement of tones, a melody is per-
ceived as a coherent entity. When being performed
by a singer or played on an instrument, the melody
corresponds to a sequence of frequency values rather
than notes. Also, as opposed to a notated symbolic
representation, some of the notes may be smoothly con-
nected (e.g., when singing a glissando). Furthermore,
one may observe rather pronounced frequency modula-
tions due to vibrato. Given an audio recording, melody
extraction is often understood as the task of estimating
the sequence of frequency values that correspond to
the main melody [5, 6, 7]. In other words, rather than
estimating a sequence of notes, the objective is to deter-
mine a sequence of frequency values that correspond
to the notes’ pitches. Such a frequency path over time,
which may also capture continuous frequency glides
and modulations, is referred to as a frequency trajec-
tory. In particular, one is interested in the fundamental
frequency values of a melody’s notes. The resulting
trajectory is also called the melody’s FO-trajectory. For
further details, we refer to [4, Chapter 8]. Furthermore,
the article by Salamon et al. [7] gives a comprehensive
overview of melody extraction techniques and their
applications.

The estimation of the fundamental frequency of a
quasiperiodic signal, termed monopitch estimation, is a
long-studied problem with applications in speech pro-
cessing. For a review of early contributions we refer
to [8]. While monopitch estimation is now achievable
with a reasonably high accuracy, the problem of mul-
tipitch estimation with the objective of estimating the
fundamental frequencies of concurrent periodic sounds
remains very challenging. This particularly holds for
music signals, where concurrent notes stand in close
harmonic relation. For extreme cases such as com-
plex orchestral music where one has a high level of

polyphony, multipitch estimation becomes intractable
with today’s methods. Reviews of recent approaches
can be found in [9, 10].

2.2 FO0-Estimation Procedure

When extracting dominant fundamental frequency in-
formation from a complex, possibly polyphonic music
recording, most approaches typically proceed in two
steps. In the first step, the audio recording is converted
into some kind of time—frequency representation. Then,
in the second step, the dominant frequency values are
selected for each time position, where one typically
introduces temporal continuity conditions and exploits
additional knowledge on the expected frequency range.
Following this basic approach, we now summarize such
a procedure closely following the work by Salamon et
al. [11]. Our procedure is illustrated by Figure 2, where
the three-stage recording of the Georgian chant “Da
Sulisatsa” sung by Artem Erkomaishvili serves as our
running example (see also Figure 1).

In the first step, the waveform is converted into a time-
frequency representation by applying a suitable short-
time Fourier transform (STFT) [4, 12]. By consider-
ing the (squared) magnitude of the STFT, one obtains
a spectrogram representation (see Figure 2a). When
used for extracting fundamental frequency information,
the spectrogram representation is typically enhanced
to better account for acoustic characteristics that are
of perceptual and musical relevance. First, motivated
by the observation that spectral components can show
extremely small values while still being relevant for a
human listener, we apply a technique referred to as log-
arithmic compression [13] to balance out the difference
between large and small values. Second, accounting
for the fact that the human sensation of sound height
is logarithmic in frequency, we convert the linear fre-
quency axis of a given spectrogram into a logarithmi-
cally spaced frequency axis that reflects the logarithmic
nature of musical pitches. The resulting representation
is often referred to as log-frequency spectrogram. The
third enhancement strategy is based on the observation
that a sound event such as a musical tone is associated
to a fundamental frequency along with its harmonic par-
tials, which are (approximately) the integer multiples of
the fundamental frequency. The multiple appearances
of tonal time—frequency patterns can be exploited to
enhance a spectrogram representation by jointly consid-
ering a frequency and its harmonics forming suitably

AES Conference on Semantic Audio, Erlangen, Germany, 2017 June 22 — 24
Page 3 of 8



Muller, Rosenzweig, Driedger, and Scherbaum

Interactive FO Estimation

2000 ——¢ T T T 1 T |

1500 -

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Time (seconds)

Fig. 2: Illustration of the FO trajectory computation
for the three-stage recording of Figure 1. (a)
Spectrogram representation. The intensity is re-
flected by the shade of gray (the darker the more
intense). (b) Salience representation (enhanced
log-frequency spectrogram). (c¢) Frame-wise
FO-trajectory (red line). (d) FO-trajectory with
continuity constraints. (e) FO-trajectory with
constrained regions (blue boxes).

weighted sums—a technique also called harmonic sum-
mation, see [5, 14, 11]. The resulting time-frequency
representation is often referred to as salience spectro-
gram, since it makes the time-frequency coefficients
that are likely to be part of a melody’s FO-trajectory
more salient (see Figure 2b). For further details, we
refer to [4, Chapter 8] and [11].

In the second step, the goal is to determine relevant fre-
quency information. Based on the assumption that
the melody often correlates to the predominant FO-
trajectory, a first strategy is to simply consider the
frame-wise maximum of the computed salience rep-
resentation (see Figure 2¢). Such a simple frame-wise
approach may lead to a number of temporal discon-
tinuities and random jumps that occur due to confu-
sions between the fundamental frequency and higher
harmonics or lower ghost components introduced by
the harmonic summation. To balance out the two con-
flicting conditions of temporal flexibility (to account
for possible jumps between notes) and temporal con-
tinuity (to account for smoothness properties), one
can use a procedure for constructing a frequency tra-
jectory based on dynamic programming [15, 16] (see
Figure 2d). Even though this may be a desirable prop-
erty most of the time, discontinuities that are the result
of abrupt note changes tend to be smoothed out. Fur-
thermore, tracking errors still occur when there are
several melodic lines or when there is no melody at
all. Therefore, another strategy is to exploit additional
musical knowledge about the melodic progression to
support the FO-tracking process. For example, knowing
the vocal range of the melodic voice, one may narrow
down the search range of the expected FO-values. Or,
having information about when the melody is actually
present and when it is not, one can suppress the FO
estimation for non-melody frames. Additional knowl-
edge as described above can be used to define con-
straint regions within the time—frequency plane. The
FO-tracking is then performed only in these specified
regions. Figure 2e shows an example, where such con-
straint regions are specified by the rectangular blue
boxes. These boxes may be manually specified by a
user (see also Section 3) or may be derived from avail-
able synchronized score information that underlies the
given music recording [17].

3 Interactive FO Estimation

Due to acoustic and musical reasons, the automated ex-
traction of fundamental frequencies is prone to errors—
in particular for polyphonic music. Besides integrat-
ing strong musical assumptions and exploiting specific
recording conditions, it is often necessary to integrate a
user in the estimation process to validate and possibly
correct the extraction results. In this section, we first
discuss various software programs that can be used
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for the interactive computation of frequency trajecto-
ries (Section 3.1) and then present our GUI with its
feedback mechanisms (Section 3.2).

3.1 Related Work

In the following, we give a small overview of com-
mercial as well as academic software packages that
are related to the extraction of fundamental frequency
information. We start with a commercial audio process-
ing software called Melodyne, which is a product by
the company Celemony. This software allows the de-
composition of a music recording into note-like audio
events (referred to as blobs).> In the decomposition pro-
cess, the software computes a fundamental frequency
trajectory for each of these blobs. The decomposition
itself can be influenced by changing the parameters
that are used for the signal analysis or by providing
prior information about the musical piece such as its
key. Changing the settings also has an influence on the
derived frequency trajectories. These trajectories, how-
ever, only serve for visualization purposes and cannot
be exported.

Other examples for non-commercial tools that allow for
an interactive derivation of frequency trajectories are
Tony by Mauch et al. [18] or the interface introduced
by Pant et al. [19]. After having analyzed a given
music recording, these programs offer a choice of dif-
ferent frequency trajectories. A user can then select the
trajectory that matches best the recording or intended
application. One benefit of this approach is that the user
only has to verify the correctness of a small number
of computed trajectories, which makes this approach
time efficient. However, especially when dealing with
complex music recordings that are highly polyphonic,
it may happen that none of the offered melody trajecto-
ries appropriately reflects the recording’s actual melody
or desired melodic voice.

Another software program that is very popular in
academia is Praat [20]. This tool was particularly de-
veloped for the phonetic analysis of speech and also
offers the possibility to estimate FO-trajectories. A user
can influence the estimation process, for example by
specifying the trajectory’s expected frequency range.
However, Praat does not seem to be suitable for the
analysis of complex music recordings as the underly-
ing FO-estimation procedure is particularly designed
for monophonic recordings.

2http://www.celemony.com/de/melodyne/
what-is-melodyne
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Fig. 3: Graphical user interface for an interactive esti-
mation of FO-trajectories.

3.2 Proposed GUI

To overcome some of the above mentioned issues, we
now describe a graphical user interface (GUI) that al-
lows a user to interactively correct frequency trajecto-
ries in a more local fashion. Figure 3 shows a screen-
shot of this GUI, which integrates the salience repre-
sentation from Section 2.2 as its central visual element.
On top of this representation, a previously specified
frequency trajectory can be plotted. The GUI integrates
the features of a standard audio player (see the buttons
for starting, pausing, and stopping the playback of the
loaded music recording at the bottom of the interface).
When playing back the music recording, the respective
time position is indicated by a vertical dashed playback
bar running across the salience representation. This
way, salient structures in the visual representation can
be directly compared to the auditory cues in the record-
ing. Additionally, the interface allows for playing back
a sinusoidal sonification of the specified frequency tra-
jectory (acoustically superimposed with the original
audio recording). This way, simply by listening, the
user can easily understand the accuracy of the current
trajectory.

As another important feature, the GUI allows a user to
correct a given frequency trajectory. To this end, the
rough location of a frequency trajectory can be spec-
ified by means of a rectangular box (as indicated by
the blue boxes). These boxes are used as constraint re-
gions to recompute frequency trajectories within these
regions, where previously specified trajectories within
the corresponding time windows are replaced. To ac-
count for extremely fine-grained corrections, the user
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may even use an editing option for drawing the trajec-
tory free hand. To further simplify the tracking process,
the user can also visually enhance interesting structures
in the salience representation by applying a logarith-
mic compression. Of course, it is possible to save the
current state of the frequency estimation and correc-
tion process at any time and to resume the interactive
process at a later stage.

Compared to other software packages, the proposed
GUI may be more time-consuming, in particular when a
user needs to estimate a melody trajectory from scratch
by manually defining constraint regions. Especially
for complex music recordings it is very likely that the
number of constraint regions that are necessary to yield
an appropriate frequency trajectory is high. On the
other hand, our approach allows a user to generate
melody trajectories of high quality, even for polyphonic
recordings.

4 Application: Georgian Music
Research

Despite its small size, Georgia is the home region of a
large number of stylistically very diverse singing tradi-
tions which form an essential part of the cultural iden-
tity of this country and which are increasingly receiving
attention of international music lovers, musicians, and
scholars alike [21]. The distinctiveness of Georgian
vocal polyphonic music in comparison to Western mu-
sic is based on the abundant use of “dissonances” and
on the fact that the music is not tuned to the 12-tone
equal-tempered scale. While the non-tempered nature
of traditional Georgian vocal music can be considered
consensus among musicologists, the particular nature
of the traditional Georgian tuning is an ongoing topic
of intense and controversial discussions [22, 23, 24].
Based on the analysis of field recordings in Svaneti in
2015, for which larynx microphones with a nearly per-
fect voice separation during recording of the individual
voices were used, Scherbaum [24] suggested that at
least part of this “Georgian sound-scale controversy”
might be due to differences between interval sizes in a
melody (horizontal perspective) and interval sizes in a
chord (vertical perspective).

Since Georgian vocal polyphony is primarily oral tra-
dition music, historical recordings play a crucial role
in trying to understand and possibly preserve the tun-
ing systems of the past. In this context, the collection
of ca. 100 audio recordings by Artem Erkomaishvili,

which we described in Section 1, is of extraordinary
importance since it provides a glimpse into the har-
monic and melodic thinking of one of the last Georgian
master chanters of modern Georgia.

To make this dataset accessible for musicological
research, we applied our GUI to extract the FO-
trajectories for these recordings. This task was done
by a user, who had some musical background (an am-
ateur musician), but had no specific training in signal
processing or computer science. In a first step, the
user determined the recordings’ structures based on the
three-stage recording process (see Figure 1). Subse-
quently, the user determined the FO-trajectories for the
lead, middle, and bass voices from the first, second,
and third section, respectively. To this end, the salience
visualization and sonification functionality helped the
user to determine suitable constraint regions to guide
the estimation process. Note that the time-frequency
constraints helped to roughly locate the relevant infor-
mation, while the detailed frequency estimation within
the constraint regions was done automatically by the FO-
extraction procedure as described in Section 2.2. All
results, including the original recordings, figures of the
salience representations, the estimated FO-trajectories,
and the sonifications of these trajectories, have been
made publicly available?.

Because of the historical importance of Erkomaishvili’s
recordings, the results of our FO estimation may serve
as a starting point for a whole set of subsequent anal-
ysis steps to address a number of ethnomusicological
issues including the analysis of the historical tuning
system, transcription-free documentation, harmonic
analysis, and quantitative comparison of chants just
to name a few. As an example, we compute the
chord-based interval size distribution for the three-
voice chants (vertical perspective) similar to the ap-
proach suggested by Scherbaum [24]. Using our run-
ning example from Figure 1, the procedure is illus-
trated by Figure 4. First, the estimated FO-trajectories
of the lead, middle, and bass voice (see Figure 4a) are
superimposed (see Figure 4b). Then, for each time
position, the intervals (given in cents) between the FO-
trajectories of the lead and middle voice, the lead and
bass voice, as well as the middle and bass voice are
computed (see Figure 4c). Finally, integrating the oc-
currences of the different intervals over time, we obtain

3https://www.audiolabs—erlangen.de/
resources/MIR/2017-GeorgianMusic—-Erkomaishvili
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for each of the three cases an interval distribution (see
Figure 4d).

In our experiments, we computed and averaged such
distributions over the recordings by Erkomaishvili. The
three resulting average distributions along with an accu-
mulated distribution (considering all three cases jointly)
are shown in Figure 5. Looking at these distributions,
one can make some interesting observations. Disre-

garding the peaks close to the unison interval (0 cents)
and octave interval (1200 cents), the most prominent
peak occurs close to the fifth interval (702 cents in just
intonation, 700 cents in the 12-tone equal-tempered
scale). This reflects the fact that the fifth interval plays
an important in Georgian chants and that this inter-
val is sung with high intonation accuracy. Interest-
ingly, there is another noticeable peak located at about
350 cents. From a Western music perspective, this is
an usual interval since it lies between the minor third
(315.6 cents in just intonation, 300 cents in the 12-tone
equal-tempered scale) and the major third (400 cents
in the 12-tone equal-tempered scale). The peak may
be the result of the non-tempered nature of traditional
Georgian vocal music [24]. From a Western music
perspective, the role of the third interval in Georgian
music seems ambiguous and, in combination with a
fifth, evokes in the listener a sound that somehow lies
between a minor and major chord. These observations
agree with the results of the much more detailed study
by Scherbaum [24], which was conducted on recent
larynx-microphone field recordings. Our FO annota-
tions may facilitate similar studies on the “Georgian
sound-scale controversy” based on Erkomaishvili’s his-
torical recordings, thus adding a historical perspective
on this important ethnomusicological issue.

5 Conclusions

In this paper, we introduced a GUI that allows a user
to estimate FO-trajectories for complex, possibly poly-
phonic music recordings. As an illustrating application
scenario, we estimated FO-trajectories for a data collec-
tion of historical importance consisting of roughly 100
three-voice Goergian chant recordings. All generated
annotations along with visualizations and sonifications
have been made publicly available. Finally, we indi-
cated the potential of the annotations for musicological
research. We hope that our contributions yield a start-
ing point for further ethnomusicological studies within
Georgian music research and beyond.
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