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The first part of this online supplement contains the Mplus input files (Muthén & Muthén,
1998-2010) that we used to analyze the data of the Spanish standardization sample of the
WAIS-III (Colom, Abad, Garcia, & Juan-Espinosa, 2002, Table A3) by means of the one-
factor model, the first-order factor model, the higher-order factor model, and the nested-factor
model. The second part contains the Mplus input files and R code (R Development Core
Team, 2011) that we used to implement the multi-step procedure developed by Stoel and
colleagues (Stoel, Garre, Dolan, & van den Wittenboer, 2006) to test the first-order factor

model against the one-factor model.

Mplus Input Files Used to Analyze the CFA models
To analyze the various CFA models, we entered Table 1 into a text file (i.e., wais3_spain.txt)
in the order presented. Note that the model specification of all four CFA models takes into
account that we analyzed a correlation matrix rather than a covariance matrix (see Footnote 2
in the article). To this end, we introduced latent phantom variables that rescaled the variance

of each manifest subtest score to 1.

One-Factor Model
TITLE: ONE-FACTOR MODEL

DATA:

Ispecification of the input file that needs to be located in the same folder
las this input file

FILE IS wais3_spain.txt;

lindicates that the input file is a correlation matrix
TYPE=CORR;

lindicates that the correlations are based on data from 1,369 persons
NOBSERVATION ARE 1369;

VARIABLE:

Inames of the variables of the corresponding correlation table

Ithe variables must appear in the same order as they appear in the correlation matrix
NAMES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

Tnames of the variables that are used in the CFA models
USEVARIABLES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

ANALYSIS:
Twe require the standard structural equation framework as the latent variable environment
TYPE=GENERAL ;

MODEL :
1To facilitate convergence of the model estimation procedure, we provided
Istarting values for the factor loadings on g

IPhantom variables (starting with i) are needed to ensure that the variance
Tof the manifest variables is exactly 1

ivoc by voc*;
isim by sim*;
iari by ari™*;
idig by dig*;
iinf by inf*;
icom by com*;
ilet by let*;
ipic_c by pic_c*;
icod by cod*;



iblo by blo*;
imat by mat*;
ipic_a by pic_a*;
isym by sym*;
iobj by obj*;

Ithe residual variance of the manifest variables is fixed to zero.
1Thus, the total variance of the manifest variables is contained in the phantom variables

voc@0;
sim@o;
ari@o;
dig@0;
inf@o;
com@O0;
1et@O;
pic_c@0;
cod@0;
blo@0;
mat@o;
pic_a@o0;
sym@0;
obj@o0;

Ithe variances of the residual terms of the phantom variables will be
Iconstrained to equal “1 - squared loading on g” (see “MODEL CONSTRAINT” section).

ivoc (el)
isim (e2)
iari (e3)
idig (ed)
iinf (eb5)
icom (eb6)
ilet (e7)
ipic_c (e8)
icod (e9)
iblo (el0)

imat (ell)
ipic_a (el2)
isym (el3)
iobj (el4d);

1General Cognitive Ability

Istarting values (i.e., *.8) are provided to facilitate

1the convergence of the parameter estimation

Ithe factor loadings are given labels (lal to lal4)

Ithese labels are needed to compute score reliability as proposed by Cheung (2009)

g by ivoc*.8 (1al)
isim*.8 (1a2)
iari*.8 (1a3)
idig*.8 (lad)
iinf*.8  (la5)
icom*.8 (1a6)
ilet*.8 (la7)

ipic_c*.8 (1a8)

icod*.8 (1a9)

iblo*.8 (l1al0)
imat*.8 (lall)
ipic_a*.8 (l1al2)
isym*.8 (1a13)
iobj*.8 (1a14);

Ithe one-factor model is identified by fixing the latent variance of g OF to 1
g@1;

MODEL CONSTRAINT:

Iconstraining the error variances of the phantom variables to “1 — variance
Texplained by g”;

Ithe error terms are entered in the computation of score reliability

el =1 - lal"2;
e2 =1 - la2"2;
e3 = 1 - la3"2;
e4d =1 - lad"2;
e =1 - lab5"2;
e6 = 1 - la6"2;
e7 =1 - la7"2;
e8 = 1 - la8"2;



e9 = 1 - la9g"2;

eld = 1 - lal0™2;
ell = 1 - lal1l1n2;
el2 = 1 - lal2n2;
el3 =1 - lal1372;
eld = 1 - lal4n2;

Icomputation of omega (= o) of the General Cognitive Ability score (see Cheung, 2009)
ITo this end, a new variable (o_g) is introduced

new(o_g);

1o_g is then computed as described in the manuscript

o_g = (lal+la2+la3+lad4+la5+la6+l1a7+1a8+1a9+1al0+lall+lal2+1al3+1al4)~2/
((1al+la2+1a3+lad+la5+1a6+1a7+1a8+1a9+1al0+lall+lal2+1al3+1al4)"2 +

el+e2+e3+e4+e5+eb6+e7+e8+e9+el0+ell+el2+el3+eld);

OUTPUT: STANDARDIZED; !this requests standardized model parameters



First-Order Factor Model
TITLE: First-Order Factor Model

DATA:

FILE 1S wais3_spain.txt;
TYPE=CORR;

NOBSERVATION ARE 1369;

VARIABLE:
NAMES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;
USEVARIABLES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

ANALYSIS:
TYPE=GENERAL ;

MODEL :
ITo facilitate convergence of the model estimation procedure, we provided starting values

IPhantom Variables
ivoc by voc*1;
isim by sim*1;
iari by ari*1;
idig by dig*1;
iinf by inf*1;
icom by com*1;
ilet by let*1;
ipic_c by pic_c*1;
icod by cod*1;
iblo by blo*1;
imat by mat*1;
ipic_a by pic_a*1;
isym by sym*1;
iobj by obj*1;

voc@0;
sim@o;
ari@o;
dig@0;
inf@o;
com@0;
let@O0;
pic_c@o0;
cod@0;
bl10o@0;
mat@0;
pic_a@o0;
sym@0;
obj@0;

1inf*_36 (el);
ivoc*.36 (e2);
isim*.36 (e3);
icom*._36 (ed);
iobj*.36 (e5);
iblo*.36 (e6);
ipic_c*.36 (e7);
imat*.36 (e8);
ipic_a*.36 (e9);
idig*.36 (el0);
ilet*.36 (ell);
iari*.36 (el2);
icod*.36 (el3);
isym*.36 (el4d);

1Verbal Comprehension

vc by 1inf*.8 (lal)
ivoc*.8 (la2)
isim*.8 (l1a3)
icom*.8 (lad);

vc@l;

IPerceptual Organization

po by iobj*.8 (1a5)
iblo*.8 (la6)
ipic_c*.8 (la7)
imat*.8 (1a8)



ipic_a*.8 (1a9);

po@1;

IWorking Memory

wm by idig*.8 (1a10)
ilet*.8 (lall)
iari*.8 (1a12) ;

wm@1;

1Processing Speed

ps by icod*.8 (l1al3)
isym*.8 (lal4);

ps@1;

MODEL CONSTRAINT:

el =1 - lal"2;
e2 =1 - la2"2;
e3 =1 - la3"2;
ed4d = 1 - lad"2;
e5 = 1 - la5"2;
e6 = 1 - la6"2;
e7 =1 - la7"2;
e8 = 1 - la8"2;
e9 = 1 - la9"2;
el0 = 1 - 1al0n2;
ell = 1 - lal1"2;
el2 = 1 - lal2n2;
el3 = 1 - lal3"2;
eld = 1 - l1alanz;

new(o_vc 0_po o_wm 0_ps);

o_vc = (lal+la2+la3+lad)"2/((lal+la2+1a3+1a4)"2 + el+e2+e3+e4d);

0_po (l1a5+la6+l1a7+1a8+1a9)"2/ ((1a5+1a6+1a7+1a8+1a9)"2 + e5+e6+e7+e8+e9);

o_wm (1al10+lali1+lal2)"~2/((1al0+lall+lal2)"2 + elO+ell+el2);
o_ps = (lal3+lal4)"~2/((1al3+1al4)”2 + el3+eld);

OUTPUT: STANDARDIZED;



Higher-Order Factor Model
TITLE: Higher-Order Factor Model

DATA:

FILE 1S wais3_spain.txt;
TYPE=CORR;

NOBSERVATION ARE 1369;

VARIABLE:
NAMES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;
USEVARIABLES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

ANALYSIS:
TYPE=GENERAL ;

MODEI :
1To facilitate convergence of the model estimation procedure, we provided starting values

IPhantom Variables
ivoc by voc*1;
isim by sim*1;
iari by ari*1;
idig by dig*1;
iinf by inf*1;
icom by com*1;
ilet by let*1;
ipic_c by pic_c*1;

iobj by obj*1;

voc@o;
sim@0;
ari@o;
dig@o;
inf@o0;
com@0;
let@O;
pic_c@O0;
cod@0;
blo@0;
mat@0;
pic_a@o0;
sym@0;
obj@0;

1inf*_.36 (el);
ivoc*.36 (e2);
isim*._.36 (e3);
icom*._36 (ed);
iobj*.36 (e5);
iblo*.36 (e6);
ipic_c*.36 (e7);
imat*.36 (e8);
ipic_a*.36 (e9);
idig*.36 (e10);
ilet*.36 (ell);
iari*.36 (el2);
icod*.36 (el3);
isym*._.36 (eld);

1Verbal Comprehension

vc by 1inf*.8 (lal)
ivoc*.8 (la2)
isim*.8 (l1a3)
icom*.8 (lad);

vc (var_vc);

IPerceptual Organization

po by iobj*.8 (1a5)
iblo*.8 (la6)
ipic_c*.8 (la7)



imat*.8 (1a8)
ipic_a*.8 (1a9);

po (var_po);

IWorking Memory

wm by idig*.8 (1al0)
ilet*.8 (lall)
iari*.8 (l1al2) ;

wm (var_wm);
1Processing Speed
ps by icod*.8 (l1al3l)
isym*.8 (lal4d);
ps (var_ps);
1Geneneral Cognitive Ability
g by vc*.8 (lalb)
po*.8 (lal6)
wm*.8 (lal7)
ps*.8 (1al8);
ge1;

MODEL CONSTRAINT:

el =1 - lal"2;
e2 =1 - la2n2;
e3 =1 - la3"2;
e4 = 1 - lad"2;
e = 1 - lab5"2;
e6 = 1 - la6"2;
e7 =1 - la7"2;
e8 = 1 - la8"2;
e9 = 1 - 1a9"2;
eld0 = 1 - lal0"2;
ell = 1 - lal1™2;
el2 = 1 - lal2n2;
el3 = 1 - 1al13"2;
eld4 = 1 - lalan2;

Ithe variance of the residualized first-order factors is
Tequal to 1 - the variance that is explained by gHO
1(i.e., the square of the corresponding factor loading on gHO)

var_vc = 1 - lal5"2;
var_po = 1 - lal6"2;
var_wm = 1 - lal7"2;
var_ps = 1 - lalg8"2;

Tomega = o0; omega hierarcical = oH
new(o_vc o0_po o_wm o_ps o_g oH_vc oH_po oH_wm oH_ps oH_g);

1The multiplications represent the transformation of factor loadings

Taccording to the Schmid-Leiman transformation

o_vc = ((lal*lal5+1a2*lal5+1a3*lal5+la4*1al5)"2 +
(lal*sqgrt(var_vc)+la2*sqrt(var_vc)+la3*sqrt(var_vc)+lad*sqrt(var_vc))"2) /
((1lal*lal5+1a2*l1al5+1a3*lal5+1a4*1al5)"2 +
(lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqrt(var_vc)+lad*sqrt(var_vc))"2 +
el+e2+e3+e4);

0_po ((1a5*1al6+la6*lal6+1a7*lal6+1a8*1al6+1a9*1al6)"2 +
(1a5*sgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+
la8*sqrt(var_po)+la9*sqrt(var_po))"2) /

((1a5*1al6+la6*lal6+1a7*lal6+1a8*1al6+1a9*1al6)"2 +
(1a5*sqgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+
la8*sqgrt(var_po)+la9*sqrt(var_po))"2 +
eb+eb+e7+e8+e9);

((lalo*lal7+lall*lal7+lal2*lal7)”2 +
(1a10*sgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))"2) /
((1al10*l1al7+lall*lal7+lal2*1al7)"2 +
(lalo*sqgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))"2 +
el0+ell+el2);

o_wm

o_ps ((1al13*1al18+lal4*1al8)"2 +



(1a13*sgrt(var_ps)+lald*sqrt(var_ps))"2) /
((1a13*la18+lal4*1al8)"2 +
(1al3*sgrt(var_ps)+lald*sqrt(var_ps))”"2 +
el3+eld);

o g = ((lal*lal5+la2*lal5+1a3*lal5+1a4*lal5 +
la5*lal6+la6*lal6+la7*lal6+1a8*l1al6+1a9*1al6 +
lal0o*lal7+lall*lal7+1al2*lal7 +
lal3*1al8+l1al4*1al18)"2 +

(lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqgrt(var_vc)+lad*sqrt(var_vc))"2 +
(1a5*sgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+
la8*sqgrt(var_po)+la9*sqrt(var_po))"2 +
(lalo*sqgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))~2 +
(1a13*sgrt(var_ps)+lald*sqrt(var_ps))"2) /
((1al*lal5+la2*lal5+1a3*lal5+1a4*1al5 +
la5*lal6+la6*lal6+la7*lal6+1a8*lal6+l1a9*lal6 +
lal0*lal7+lall*lal7+lal2*1al7 +
lal3*l1al8+lal4*1a18)"2 +
(lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqgrt(var_vc)+lad*sqrt(var_vc))"2 +
(1a5*sqgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+
la8*sqgrt(var_po)+la9*sqrt(var_po))"2 +
(lalo*sgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))~2 +
(1al3*sqgrt(var_ps)+lald*sqrt(var_ps))"2 +
el+e2+e3+ed4+eb5+eb6+e7+e8+e9+el0+ell+el2+el3+eld);

oH_vc = ((lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqgrt(var_vc)+lad*sqrt(var_vc))"2) /
((lal*lal5+1a2*l1al5+1a3*lal5+1a4*1al5)"2 +
(lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqrt(var_vc)+lad*sqrt(var_vc))"2 +
el+e2+e3+e4);

oH_po = ((la5*sqgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+
la8*sqgrt(var_po)+la9*sqrt(var_po))"2) /
((1a5*l1al6+la6*l1al6+1a7*lal6+1a8*1al6+1a9*1al6)"2 +
(la5*sqrt(var_po)+la6*sqrt(var_po)+la7*sqrt(var_po)+
la8*sqgrt(var_po)+la9*sqrt(var_po))"2 +
eb+eb+e7+e8+e9);

oH_wm = ((lal0*sqrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))"2) /
((1a10*lal7+lal1*lal7+lal2*1al17)"2 +
(1a10*sgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))”2 +
elO+ell+el2);

oH_ps = ((1al3*sgrt(var_ps)+lald*sqrt(var_ps))"2) /
((lal3*l1al8+lal4*l1al8)”2 +
(1al3*sgrt(var_ps)+lald*sqrt(var_ps))"2 +
el3+eld);

oH_g = ((lal*lal5+la2*lal5+1a3*lal5+1a4*lal5 +
la5*lal6+la6*lal6+la7*lal6+1a8*l1al6+1a9*1al6 +
lalOo*lal7+lall*lal7+lal2*lal7 +
lal3*1al8+l1al4*1a18)"2) /

((lal*lal5+1a2*lal5+1a3*lal5+1a4*1al5 +
la5*lal6+la6*lal6+la7*lal6+1a8*1al6+1a9*1al6 +
lal0*lal7+lall*lal7+lal2*1al7 +
lal3*1al8+l1al4*1al8)"2 +

(lal*sgrt(var_vc)+la2*sqrt(var_vc)+la3*sqgrt(var_vc)+lad*sqrt(var_vc))"2 +

(1a5*sgrt(var_po)+la6*sqrt(var_po)+la7*sqgrt(var_po)+

la8*sqrt(var_po)+la9*sqrt(var_po))"2 +

(lalo*sqgrt(var_wm)+lall*sqrt(var_wm)+lal2*sqrt(var_wm))~2 +

(1al3*sqgrt(var_ps)+lald*sqrt(var_ps))”"2 +

el+e2+e3+ed4+eb5+eb6+e7+e8+e9+el0+ell+el2+el3+eld);

IThe Tech4 output requests the correlations among the first-order factors
Ithat are implied by the higher-order factor

Ithese model-implied correlations are subtracted from the corresponding
Icorrelations obtained for the first-order factor model to compute the
Tresidual correlations among the first-order factors

OUTPUT: STANDARDIZED TECH4;



Nested-Factor Model
TITLE: Nested-Factor Model

DATA:

FILE 1S wais3_spain.txt;
TYPE=CORR;

NOBSERVATION ARE 1369;

VARIABLE:
NAMES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;
USEVARIABLES ARE voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

ANALYSIS:
TYPE=GENERAL ;

MODEI :
1To facilitate convergence of the model estimation procedure, we provided starting values

IPhantom Variables
ivoc by voc*1;
isim by sim*1;
iari by ari*1;
idig by dig*1;
iinf by inf*1;
icom by com*1;
ilet by let*1;
ipic_c by pic_c*1;

iobj by obj*1;

voc@o;
sim@0;
ari@o;
dig@o;
inf@o0;
com@0;
let@O;
pic_c@O0;
cod@0;
blo@0;
mat@0;
pic_a@o0;
sym@0;
obj@0;

1inf*_.36 (el);
ivoc*.36 (e2);
isim*._.36 (e3);
icom*._36 (ed);
iobj*.36 (e5);
iblo*.36 (e6);
ipic_c*.36 (e7);
imat*.36 (e8);
ipic_a*.36 (e9);
idig*.36 (e10);
ilet*.36 (ell);
iari*.36 (el2);
icod*.36 (el3);
isym*._.36 (eld);

Ispecific Verbal Comprehension
vc by iinf*.3 (1a1)

ivoc*.3 (1a2)
isim*.3 (1a3)
icom*.3 (1a4);

vc@l;

Ispecific Perceptual Organization
po by iobj*.3 (la5)
iblo*.3  (la6)

10



ipic_c*.3 (la7)
mat*.3 (1a8)
p

ic_a*.3 (1a9);

i
po@1;
Ispecific Working Memory
wm by idig*.3 (1al0)

ilet*.3 (lall)

iari*.3 (1a12) ;
wm@1l;

Ispecific Processing Speed

IPreliminary analyses indicated empirical underidentification when both
Ifactor loadings on specific processing speed were freely identified.

ITo overcome this problem, we constrained the factor loadings of cod and sym
1to be equal (i.e., both factor loadings take on the parameter value of 1al3)

ps by icod*.3 (l1al3)
isym*.3 (l1al3);

ps@1;

1Geneneral Cognitive Ability

g by 1inf*.8 (1a14)
ivoc*.8 (1a15)
isim*.8 (1a16)
icom*.8 (1al7)
iobj*.8 (l1ai18)
iblo*.8 (l1a19)

ipic_c*.8 (1a20)
imat*.8 (1a21)
ipic_a*.8 (la22)

idig*.8 (l1a23)
ilet*.8 (1a24)
iari*.8 (l1a25)
icod*.8 (1a26)
isym*.8 (1a27);

g@1;

g with vc@0 po@0 wm@0 ps@0;
vc with po@0 wm@0 ps@0;

po with wm@0 ps@O0;

wm  with ps@O;

MODEL CONSTRAINT:
Iconstraining the error terms of the phantom variables to 1 - variance explained by g;

el =1 - lal™2 - lal4n2;
e2 =1 - la2”2 - lal5"2;
e3 =1 - la3™2 - lal6”"2;
e4 =1 - lad™2 - 1al772;
e5 =1 - la5™2 - 1al8"2;
e6 = 1 - la6”™2 - 1al9"2;
e7 =1 - la7"2 - 1a20"2;
e8 = 1 - la8"2 - l1a2172;
e9 = 1 - la9™2 - laz22"2;
eld0 = 1 - 1al10”"2 - la2372;
ell = 1 - 1al1”2 - la2472;
el2 = 1 - lal2n2 - l1a2572;
el3 = 1 - 1a13”2 - la26"2;
eld = 1 - 1a13"2 - la2772;
1o = omega, oH = omega hierarchical

new(o_vc o_po o_wm o_ps o_gBF oH_vc oH_po oH_wm oH_ps oH_gBF);

o_vc = ((lal+la2+l1a3+1a4)”"2 + (lald+lals5+lal6+1al17)"2)/
((lal+la2+la3+lad)”2 + (lal4+lal5+lal6+lal7)”2 + el+e2+e3+ed);

0_po ((1a5+1a6+la7+1a8+1a9)"2 + (l1al8+l1al9+la20+la21+1a22)"2)/

((1a5+1a6+1a7+1a8+1a9)"2 + (l1al8+1al9+la20+1a21+1a22)"2 + eb5+e6+e7+e8+e9);

o_wm = ((lalo+lall+lal2)”2 + (1a23+la24+1a25)"2)/
((1al0+lali+lal2)”~2 + (la23+1a24+1a25)”2 + elO+ell+el2);



o_ps = ((lal3+lal3)"2 + (la26+1a27)"2)/
((1a13+1a13)”2 + (la26+1a27)"2 + el3+eld);

o_gBF = ((lal+la2+la3+la4)"2 +
(la5+la6+l1a7+1a8+1a9)"2 +
(lal0+lall+lal2)"2 +
(1a13+1a13)"2 +
(lal4+lal5+lal6+lal7+1al8+1al9+1a20+1a21+1a22+1a23+1a24+1a25+1a26+1a27)"2)/
((lal+la2+1a3+1a4)"2 +
(la5+la6+l1a7+1a8+1a9)"2 +
(1al0+lall1+lal2)"2 +
(lal3+lal3)”2 +
(lal4+lal5+1al6+lal7+1al18+1al9+1a20+1a21+1a22+1a23+1a24+1a25+1a26+1a27)"2 +

el+e2+e3+ed4+e5+eb6+e7+e8+e9+el0+ell+el2+el3+eld);

oH_vc = (lal+la2+la3+l1a4)"2/
((lal+la2+1a3+1a4)”2 + (lal4+lal5+1al6+1al7)”2 + el+e2+e3+ed);

oH_po (1a5+la6+l1a7+1a8+1a9)"2/

((1a5+1a6+1a7+1a8+1a9)"2 + (l1al8+l1al9+la20+1a21+1a22)"2 + e5+e6+e7+e8+e9);

oH_wm = (lalO+lall+lal2)"2/
((lal0+lal1i+lal2)”~2 + (la23+1a24+1a25)”2 + elO+ell+el?);

oH_ps = (lal3+lal3)"2/
((1a13+1a13)”2 + (la26+1a27)"2 + el3+eld);

oH_gBF = (lal4+lal5+lal6+lal7+1al18+1al9+1a20+1a2l1+1a22+1a23+1a24+1a25+1a26+1a27)"2/
((lal+la2+la3+la4)”2 +
(la5+la6+l1a7+1a8+1a9)"2 +
(lalo+lall+lal2)”2 +
(1a13+1a13)"2 +
(lal4+lal5+lal6+lal7+1al8+1al9+1a20+1a2l+1a22+1a23+1a24+1a25+1a26+1a27)"2 +
el+e2+e3+ed4+e5+eb6+e7+e8+e9+el0+ell+el2+el3+eld);

OUTPUT: STANDARDIZED;

12
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Mplus Input Files and R-Code to Implement the Stoel et al. (2006) procedure
The multistep procedure by Stoel et al. (2006) has two components: (a) a simulation study by
means of Mplus and (b) an analysis of some results of this simulation study by means of R.
We first consider the simulation study. To evaluate the statistical significance of the

difference between 2 goodness-of-fit statistics (when boundary parameters are involved), we
used a 2 distribution that reflects a mixture of several 52 distributions with varying degrees

of freedom. The number of degrees of freedom of these distributions depends on the number
of parameters that were fixed to their boundary values. In the present example, the numbers of
degrees of freedom of the various 2 distributions were df = 0, df = 1, df = 2, df = 3, df = 4, df
=5, and df = 6, corresponding to six factor correlations among four first-order factors. To

compute the 2 distribution, we combined these 2 distributions by weighting each individual

xZ distribution. The weights were determined by a simulation study in which the first-order
factor model (Figure 1b) was fitted to 10,000 samples (with the actual sample size, i.e., N =
1,369). These samples were drawn from a population in which the true model was a first-
order factor model containing four first-order factors, where factor loadings and error terms
were identical to those obtained for the first-order factor model (Figure 1b), but all factor
correlations were fixed to r = 1 (this model is equivalent to a one-factor model). The next

section contains the input file for the simulation study.

Mplus Input File for the Simulation Study

TITLE: Monte Carlo study to compute the weights for the

chi-bar-square distribution to test the one-factor model against

the first-order factor model for the WAIS-111 data (Colom et al., 2002).
The input syntax was adapted from Stoel et al., 2006,

as retrieved on March 10, 2011 from
http://dx.doi.org/10.1037/1082-989X.11.4.439_supp

MONTECARLO:
Idefinition of the variable names
names are voc sim ari dig inf com let pic_c cod blo mat pic_a sym obj;

Inumber of observations in each sample (this is the sample size of Colom et al., 2002)
nobservations = 1369;

Inumber of replications (set to 10,000 as recommended by Stoel et al., 2006)
nreps = 10000;



Iset the seed for random data generation
seed = 12345;

Ifile containing parameter estimates and likelihood values of each sample
Ithis file needs to be further processed to compute the weights
results = stoel_test.res;

1The following lines contain the specification of the population model
I1The population values of the factor loadings and residual terms are fixed
1to the standardized values as obtained for the first-order factor model (Figure 1b).

MODEL POPULATION:

VC BY
INF@0.821
VOC@0.880
SIM@0.854
COM@0.810;

PO BY
0BJ@0.796
BLO@O. 854
PIC_C@0.8
MAT@O . 894
PIC_A@0.839;

WM BY
DIG@0.811
LET@0.896
ARI@0.78;

PS BY
COD@0.889
SYM@0.886;

IResidual Variances
VOC@0.225;
SIM@0.270;
ARI@0.391;
DIG@0.343;
INF@0.327;
COM@0.344;
LET@0.198;
PIC_C@0.360;
COD@0.210;
BLO@0.271;
MAT@0.200;
PIC_A@0.296;
SYM@0.216;
OBJ@0.366;

TFactor variances are set to 1 to identify the model. Doing so also facilitates

Ithe specification of all four factors to collapse into one single factor

VC@1l;

PO@1;

wM@1;

PS@1;

1A1l factor correlations are set to 1 (i.e., this is equivalent to a one-factor model)
PO WITH VC@1.000;

WM WITHVC@1.000 PO@1.000;

PS WITHVC@1.000 PO@1.000 WM@1.000;

ANALYSIS:
type=general
MODEI :

Icreating phantom latent variables that represent manifest variables
Iwith total variances rescaled to 1



Treasonable starting values are provided to allow convergence of the model
Istarting values are 1.0 (this is the expected scaling factor)

c by voc*1;
m by sim*1;
i by ari*1;
g by dig*1l;
T by inf*1;
m by com*1;
et by let*1;

iobj by obj*1;

voc@o;
sim@o;
ari@o;
dig@0;
inf@o;
com@0;
let@O0;
pic_c@o0;
cod@0;
bl10o@0;
mat@0;
pic_a@o0;
sym@0;
obj@0;

Ithe variances of the residual terms of the phantom variables will be constrained to equal
11 - squared loading on the respective first-order factor (see model constraint section).

1inf*_36 (el);
ivoc*.36 (e2);
isim*.36 (e3);
icom*._36 (ed);
iobj*.36 (e5);
iblo*.36 (e6);
ipic_c*.36 (e7);
imat*.36 (e8);
ipic_a*.36 (e9);
idig*.36 (el0);
ilet*.36 (ell);
iari*.36 (el2);
icod*.36 (el3);
isym*._.36 (el4d);

1Verbal Comprehension
vc by 1inf*.8 (lal)

ivoc*.8 (la2)
isim*.8 (l1a3)
icom*.8 (lad);

vc@l;

1Perceptual Organization

po by iobj*.8 (1a5)
iblo*.8 (1a6)
ipic_c*.8 (la7)
imat*.8 (1a8)
ipic_a*.8 (1a9);

po@1;

IWorking Memory

wm by idig*.8 (1al0)
ilet*.8 (lall)
iari*.8 (1a12) ;
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wm@1;

1Processing Speed
ps by icod*.8 (lal3)
isym*.8 (lald);
ps@1;
TAll factor correlations are freely estimated
I(i.e., as proposed by the alternative hypothesis to be tested)
PO WITH VC*;
WM WITHVC* PO*;

PS WITHVC* PO* WM*;

MODEL CONSTRAINT:

el =1 - lal"2;
e2 =1 - la2"2;
e3 =1 - la3"2;
e4 = 1 - lad"2;
eb = 1 - lab"2;
e6 = 1 - la6"2;
e7 =1 - la7"2;
e8 = 1 - la8"2;
e9 = 1 - 1a9"2;
eld = 1 - lal0"2;
ell = 1 - lal1™2;
el2 = 1 - lal2n2;
el3 = 1 - 1al13"2;
eld = 1 - lal4n2;

R Code to Compute the Weights for the %2 Distribution

The weights for the %> distribution were computed as the proportion of the number of

correlations with r > 1 in each sample (i.e., the number of correlations that were larger than
the boundary value in each sample) to the total number of simulated samples. To this end, the
R code first read in the file “stoel_test.res,” which contained the results from the Mplus
simulation study. The number of correlations with r > 1 in each sample was then determined.
In the present example, of the 10,000 samples, there were 703, 1322, 1960, 2152, 1807, 1383,
and 673 cases with 0, 1, 2, 3, 4, 5, and 6 correlations, respectively, with r > 1. To compute the

%2 distribution, we drew on the R code by Stoel et al. (2006). We therefore entered the
weights .0703 : .1322 : .1960 : .2152 : .1807 : .1383 : .0673 in the “pmix” vector. These

weights were used to combine the individual x? distributions with df = 0, df = 1, df = 2, df = 3,

df = 4, df = 5, and df = 6 to compute the % distribution.

# This part of the syntax reads in the results file produced by Mplus as a data.frame
# specify the folder where the results file is located

# Note that R uses slashes "/" rather than back slashes "\" to separate folders

# Further, R is case sensitive
setwd(*'D:/PUBLIKATIONEN/2009_Reliability/analysen/WAIS-111_Spain/stoel_test/")

#enter the file name between the quotes
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Ffile_name<-"stoel_test.res"

#This part of the syntax was written by Ulrich Keller (University of Luxembourg)

## Read text TFile

txt <- readLines(file.name)

## Remove leading spaces

txt <- sub("™ +", ", txt)

## Determine which lines contain iteration numbers

itnum.idx <- grep(""[0-9]+$", txt)

## Add imaginary last iteration number to end (needed later)
ithum.idx <- c(itnum.idx, length(txt) + 1)

## lterate over iteration numbers (except imaginary last one)
num <- lapply(1:(length(itnum.idx) - 1), function(i) {
## Extract corresponding text lines
txt.i <- txt[(itnum.idx[i] + 1):(itnum.idx[i + 1] - 1)]
## Convert to numeric and put together
as.numeric(unlist(strsplit(txt.i, " +")))
»

## "num"™ is a list right now, so make a matrix
results <- data.frame(do.call(rbind, num))

# To facilitate the analyses of the results file, reasonable variable names are provided
# according to the results saving information provided by Mplus

#RESULTS SAVING INFORMATION

Order of data
Parameter estimates
(saved in order shown in Technical 1 output)
Standard errors
(saved in order shown in Technical 1 output)
Chi-square : Value
Chi-square : Degrees of Freedom
Chi-square : P-Value
HO Loglikelihood
H1 Loglikelihood
Number of Free Parameters
Akaike (AIC)
Bayesian (BIC)
Sample-Size Adjusted BIC
RMSEA : Estimate
SRMR

HHHFEHFFHFHEHFEFHEHRFEHRHSRE

# the model that we investigated contains 62 parameters (p) and 62 corresponding standard
# errors (se; see Technical 1 output of the simulation study in Mplus)
parameters<-paste("'p",1:62,sep=""")

standard_errors<-paste(*'se',1:62,sep=""")

# This section assigns variable names to the results file according to the

# results saving information provided by Mplus

names(results)<-
c(parameters,standard_errors, ' chi2","chi2_df",""chi2_p","HO0",""H1","free_par","AIC","BIC","adjBI
C","RMSEA",""SRMR'™)

#### Determining the Weights for the Mixture Distribution

# parameters 57 to 62 contain the intercorrelations among

# the latent variables VC, PO, WM, and PS

# (see Technical 1 output of the simulation study in Mplus)

# To identify the number of boundary parameters, this part of the syntax analyzes whether
# a certain correlation is smaller or larger than 1.

for (i in 57:62) {
checkvar<-paste('p",i, sep=""")
newvar<-paste(''b",i, sep=""")
results[,newvar] <- ifelse(results[,checkvar] < 1, c(0), c(1))

}
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# compute the number of boundary parameters
# within each sample (i.e., for each row in the results file)

results$boundary<-rowSums(with(results,cbind(b57,b58,b59,b60,b61,b62)))

# Determining the weights. The results of this table are then to be entered
# as weights to compute the chi2-bar distribution
prop.table(table(results$boundary))

#The following syntax is adapted from Stoel et al., 2006

#retrieved on March 9, 2011, from http://dx.doi.org/10.1037/1082-989X.11.4.439._supp
#R-script for computing critical values of the distribution and nominal p-values of the
critical values of the standard distribution

#First run the following lines with the setup of the program:

gmchisg=function(thresh,nc=nc,df=df,pmix=pmix,pcrit=pcrit) {
prob=0
if (df[1]==0) {prob=pmix[1]
for (ic in 2:nc) {prob=prob+pmix[ic]*(pchisq(thresh,df[ic]))} 3}
if (df[1]>0) {
for (ic in 1:nc) {prob=prob+pmix[ic]*(pchisq(thresh,df[ic]))} 3}
f=(prob-(1-pcrit))"2
3

pmchisg=function(thresh,nc=nc,df=df,pmix=pmix) {

prob=0

if (df[1]==0) {

prob=pmix[1]

for (ic in 2:nc) {prob=prob+pmix[ic]*(pchisq(thresh,df[ic]))}

if (df[1]>0) {

for (ic in 1:nc) {prob=prob+pmix[ic]*(pchisq(thresh,df[ic]))} 3}

prob }
B e

# the chi2_bar distribution is composed of seven chi2 distributions with df = 0 to df = 6
# this constitutes 7 components

# number of components = 7;
# these components enter the computation of the chi2_bar distribution

nc=7

# df=0, df=1, df=2, df=3, df=4, df=5, and df=6;
df=c(0,1,2,3,4,5,6)

# the weights used to combine the various chi2-distributions are:
# 0.0703 : 0.1322 : 0.1960 : 0.2152 : 0.1807 : 0.1383 : 0.0673

pmix=c(0.0703, 0.1322, 0.1960, 0.2152 ,0.1807, 0.1383, 0.0673)

pcrit=.05 # the significance level=.05
#
stheta=0

for (i in 1:nc) {stheta=stheta+pmix[i]*df[i]}
resth=optim(stheta,gmchisq,method="BFGS" ,nc=nc,df=df,pmix=pmix,pcrit=pcrit)

thresh=resth$par[1] # provides critical value given alpha=.05

cat(" threshold given ",pcrit,” = ",thresh, '"\n")

thresh=qchisq(.95,6) # nominal p-value of the critical value for a
chi2 distribution with df = 6

thresh # nominal p-value of the critical value for a chi2

distribution with df = 6

prob=1-pmchisq(thresh,nc=nc,df=df,pmix=pmix) # value of standard chi2(6) distribution at
alpha=.05

cat(® pcrit given ",thresh,” = *,prob, "\n")

prob=1-pmchisq(1408,nc=nc,df=df,pmix=pmix) # p value of the chi2-differences with respect to
the chi-bar-square distribution

cat(® pcrit given delta chi2 = 1408 = *,prob, "\n")

#
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