

Flexible Perowski-Solarfolien

Beschreibung

Ultraleichte flexible und Solarfolien, hohe die eine Energieumwandlungseffizienz bei erschwinglichen Preis aufweisen, könnten eine bahnbrechende Technologie zur Bekämpfung der übermäßigen CO2-Emissionen aus nicht erneuerbaren Energiequellen sein, die für die globale Erwärmung verantwortlich sind. Im Gegensatz zu herkömmlichen starren Solarzellen auf Glas bieten flexible Solarfolien eine bessere CO₂-Bilanz und könnten aufgrund ihres potenziell

niedrigeren Preises eine noch breitere Anwendung finden. Ihr geringes Gewicht ermöglicht darüber hinaus den Einsatz in zukünftigen Elektroflugzeugen und anderen Luft- und Raumfahrtanwendungen. Ultraleichte Solarfolien würden auch eine einfachere Integration in die Architektur ermöglichen, da Gewächshäuser, Lagerhallen oder Fabrikgebäude oft keine schweren Photovoltaik-Anlagen tragen können.

Details

In der ROSI Freigeist Junior-Gruppe Strahlungstolerante Elektronik mit weichen Halbleitern unter der Leitung von Dr. Felix Lang werden solche Solarfolien mit hohem Wirkungsgrad und geringem Gewicht unter Verwendung von Halogenid-Perowskiten entwickelt. Diese kristallinen Halbleiter besitzen hohe Absorptionskoeffizienten und ermöglichen die einfache Herstellung ultradünner Solarzellen über die Aufbringung der Perowskite in Lösung (mittels Spin-Coating, Blade-Coating oder Druckverfahren), die schließlich bei Temperaturen von 100 °C kristallisieren. Die erreichten Wirkungsgrade liegen bei über 23 %. Der Schwerpunkt zukünftiger Forschung richtet sich auf die Entwicklung neuartiger Additive und aktiver Zwischenschichten sowie auf die Identifizierung von Engpässen hinsichtlich Zuverlässigkeit und Wirkungsgrad.

Methoden

Über die leistungsstarke Kombination aus elektrooptischen Charakterisierungen und Drift-Diffusions-Modellierungen werden Leistungs- und Zuverlässigkeitsprobleme identifiziert.

- Elektrooptische Diagnostik und Bildgebung
- Quantifizierung und Kontrolle von Verlusten durch mobile Ionen
- In-situ-Deagrationstests

Zusätzlich zu den Standardwerkzeugen für die Charakterisierung werden maßgeschneiderte In-Operando-Biegestabilitätstests, Temperaturzyklus- und Umgebungsstabilitätstests zur Bestimmung von Stabilität, Degradation und Selbstheilung von Perowskit-Solarfolien verwendet. Dies ermöglicht sowohl ein tieferes Verständnis als auch weitere Verbesserungen in Bezug auf Effizienz und Stabilität.

Anwendungsfelder

- Luft- und Raumfahrt
- Architektur
- Gewächshäuser

Keywords

- Energie
- Solarzellen
- Perowski
- CO₂-Emissionen

Interesse an Kooperation

- Forschungskooperation
- Auftragsforschung
- Industrieunterstützte Forschung

Kontakt

Transferservice
Tel: 0331 / 977 61 71

Fax: 0331 / 977 38 70 tech@potsdam-transfer.de

Potsdam Transfer

Zentrum für Gründung, Innovation, Wissens- und Technologietransfer

Karl-Liebknecht-Straße 24–25, Haus 29 14476 Potsdam

www.potsdam-transfer.de

Datum Nov. 2025