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Lernziele
 Verstehen warum ein Voraussagenvon Copolymerizationen wichtig ist

* Herleitung der Majo-Lewis Gleichung verstehen, Zusammenhange mit
tatsachlichen Copolymerisationen herstellen kbnnen

* Anhand von Reaktivitatsparametern voraussagen konnen wie eine
Copolymerisation ablauft

 Wissen wie Reaktivitatsparameter bestimmt werden

* Das Konzept des Q-e-Schemas verstanden haben



Zusammensetzung von Copolymeren
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Betrachtung der Kinetik

* Annahmen:
 Reaktivitat ist Kettenlangenunabhangig
Wachstum nur am aktiven Kettenende
Polymerisation ist irreversibel
e  Start/Abbruch/Kettentransfer werden nicht betrachtet
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Verschiedene r-Werte im Uberblick

_ Homoadd. ki1 _kyy
T Kreuzadd.” ' ki, % kyy

i

A ri=r,=1 - random
*  Homo- und Kreuzadd. sind gleich
wahrscheinlich
« Keine Praferenz des Kettenendes
 |deal azeotrope Copolymerisation

e  Monomerverhaltnis im Polymer
entspricht immer dem Verhaltnis der
Monomermischung

Molenbruch im Polymer

- 0 | | |
o  Zufélliges/random Copolymer 0 0.25 0.5 0.75 1

*  Bsp.: Isopren/Butadien X,
Molenbruch in Monomermischung
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Verschiedene r-Werte im Uberblick

Homoadd. k4 k- 1
;= ; M= T, = —
Kreuzadd. ki, ko4
E  0.75—
A ri=r,=1 - random Z;
B) r=r;=r,<<1 - alternierend E 0
. S X, 0.57
*  Kaum Homoaddition =
*  Fast nur Kreuzaddition %
*  Monomere wechseln sich ab S 025
 Unabhangig vom Verhaltnis der
Monomere immer 50/50
*  Bsp.: Styrol/Maleinsdureanhydrid 0 | | |

0 0.25 0.5 0.75 1
0O

A _ ‘R o X
§ + yo=<010 - R ,T Molenbruch in Monomermischung
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Verschiedene r-Werte im Uberblick

. Homoadd. i ki1 . k- 1
" Kreuzadd.! ' ki, % kyy
c  0.75-
>
A rizr,=1 - random S
B) rr=r;=r,<<1 - alternierend E
_C —
5 X, 05 <1
S
* Tendenz zur Kreuzaddition I5
@)
* Aber nicht strikt alternierend > 0.25
e Am Wendepunkt ist die
Zusammensetzung unabhangig vom
Umsatz 0 | | |
- nicht ideale azeotrope Copol. 0 0.25 0-5 0.75 1
Xa

Bsp.: Styrol/MMA

Molenbruch in Monomermischung
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Verschiedene r-Werte im Uberblick

Homoadd. k4 k- 1
;= ; M= T, = —
Kreuzadd. ki, ko4
c  0.75-
A) r,=r,=1 - random Z; -
B) r=r;=r,<<1 - alternierend £
§ Xa O'S_F/ r<<1
S
c
@
* Monomer A neigt zu Homoaddition S 0.25-
*  Monomer B zur Kreuzaddition
 Beiniedrigem Umsatz hauptsachlich A
*  Erst bei hohem Umsatz wird B 0 I I I
eingebaut 0 0.25 0.5 0.75
e  Bsp.: Styrol/Vinylacetat X,

(r1 =55, = 0-01) Molenbruch in Monomermischung
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Verschiedene r-Werte im Uberblick

- Homoadd. i ki1 . k- 1
e | = — = ——
‘" Kreuzadd.’ kip’ ko4
E  0.75—
>
A rizr,=1 - random S r=r=1
B) r=r,=r,<<1 - alternierend E
5 X, 0.5
- r<<l1
S q
c
)]
S 025
E) rizoo - Homopol. '
*  Nur Homoaddition
 Keine Copolymerisation 0 | | |
0.25 0.5 0.75
Xa

Molenbruch in Monomermischung
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Was beeinflusst r-Werte?

* Reaktivitat des Monomers (wie bereitwillig interagiert es mit der aktiven Spezies)
e Reaktivitat der aktiven Spezies die aus dem Monomer gebildet wird (aktives Kettenende)

* Bsp.: Styrol Vinylacetat

) Aot F
. co
X ¥ y O>—O/= h 0\|//O

e Styrol: Monomer reaktiv aber Radikal trage (gut stabilisiert)

* Vinylacetat: Monomer trage aber Radikal reaktiv (schlecht stabilisiert)
» stabiles Styrolradikal reagiert nicht mit stabilem VA-Monomer

* (r,=55,r,=0.01)



Was beeinflusst r-Werte??

Der Reaktionsmechanismus

Bsp.: Styrol (S)/MMA (M)

Radikalisch: nahe der azeotropen
Copol.

Katonisch: Styren wird bevorzugt
eingebaut (stabilisiert Kation deutlich
besser als MMA)

Anionisch: MMA wird bevorzugt
eingebaut (MMA stabilisiert das Anion
deutlich besser)

Koordinativ: fast alternierend
(unterscheidliche Polaritaten am
Metallzentrum groRerene Einfluss)

Cowie, Chemie und Physik der synthetischen Polymere: Ein Lehrbuch
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Ein Beispiel: POI-co-PEtOx
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Ein Beispiel: POI-co-PEtOx

A 101 ® P(BocOl -co-EtOx ) 5
at ~30% BocOl conversion
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Q-e-Schema

e r-Werte gelten nur fur spezifische Bedingungen und Monomerpaare

* Allgemeinere Methode: Q-e- Schema

/\'Q* ¥ G - /\w* k12:P1'Q2'e(_el'eZ)

e P, = Reaktivitat des Radikals

e Q = Reaktivitat des Monomers
° e = Polaritat des Radikals

A - = Polaritat des Monomers

e Styren als Basis definiert (Q=1, e =-0.8)
* Qund e sind unabhangig vom Comonomer

* r-Werte konnen fur beliebige Monomerpaare berechnet werden.
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Q-e-Schema Il
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Take-Home-Messages

Monomere mussen nicht gleichmaRig copolymerisieren, das hat Einfluss auf
Zusammensetzung, Struktur und Eigenschaften der Copolymere

Man unterscheidet verschiedene Grenzfalle (zufallig, gradient, alternierend)

Anhand Betrachtung der Kinetik der einzelnen Reaktionen lasst dich die Majo-Lewis
Gleichung ableiten

Die darin enthaltenen Reaktivitatsparameter erlauben es den Verlauf einer
Copolymerisation vorauszusagen

Die Reaktivitatsparameter sind abhangig von den Reaktionsbedingungen, dem
Polymerisationsmechanismus und anderen Faktoren

Man kann sie experimentell fir ein Monomerpaar bestimmen, zB. Durch die Fineman-
Ross Methode

Das Q-e-Schema bietet eine allgemeingtltigere Betrachtung von Monomerreaktivitaten
und erlaubt Voraussagen uber neue Monomerpaare
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