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1 Introduction

In the recent past, policy makers have aimed to reduce the negative external effects
of traffic by building new cycling roads. All over the world, city governments have
implemented such measures to improve the cycling infrastructure. Among the most
prominent examples are Bogotá, New York, Vancouver, Mexico city, London, Paris, and
Brussels. In Berlin, the bicycle traffic plan1 proclaims that new cycling infrastructure
offers benefits by reducing local air pollution, increasing the safety on the streets and
using public space more efficiently by incentivizing car users to divert to cycling. Despite
gaining ground in public perception, the role of cycling in cities including the change in
infrastructure towards more bike-friendly urban environments and its effects on urban
life is still on the fringes of academic research.

This paper investigates the effects of new bike lanes on traffic volume, congestion and
accidents. Specifically, I look at new cycle infrastructure which is the result of converting
street space for cars to new lanes for bicycles. The analysis uses pop-up bike lanes
(PUBLs) in Berlin, which were installed after the beginning of the COVID-19 induced
lock-down between March and June of 2020. My findings suggest a decrease in average
car speed by between 8 and 12 percentage points, which means that congestion on these
streets increased. In the main business hours of traffic the size of the effect even amounts
to about 16 percentage points. Moreover, the results point towards modest changes in
car volume. However, these can not be clearly attributed to PUBL installations. I also
test for substitution effects on streets close-by, since the measures might merely relocate
traffic in order for drivers to avoid affected routes. In close distance, the new cycling
lanes increased traffic without affecting congestion. This suggests a new equilibrium with
a more equal distribution of cars on the inner city road network. For accidents, I do not
find any significant changes caused by pop-up lanes, which might suggest an increase in
per-cyclist safety due to the rise of cyclists in the city (Kraus and Koch, 2021).

In order to identify the causal effects and the potential heterogeneity in the devel-
opment of the outcomes, I use an event study approach (Clarke and Schythe, 2020),
and standard two-way fixed effects models. The accidents analyses are moreover ex-
tended by a synthetic control group design (Abadie et al., 2010), which uses observable
characteristics of treated and potential control units in order to designate a comparison
group.

Congestion, pollution and accidents are increasing functions of traffic and among the
most severe diseconomies of cities (Ahlfeldt and Pietrostefani, 2019; Borck and Schrauth,
2021; Shefer and Rietveld, 1997). Congestion is costly in various ways, especially in the
form of time losses and a rise in fuel consumption (Vickrey, 1969; Treiber et al., 2008).

1https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrspolitik/radverkehrsplan/rvp.pdf.
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In Germany, congestion caused an average time loss of about 40 hours in 2021, which
was an increase of more than 50 percent compared to 2020. Berlin is among the most
severely affected cities with 65 hours lost. Four out of the ten most congested German
streets are situated in the capital city. As a consequence, the calculated costs amounted
to about 600e per driver or more than 800 million Euro for the city in 2021.2 There is
also evidence that congestion may hinder economic growth in terms of income and em-
ployment (Jin and Rafferty, 2017; Hymel, 2009). Additionally, congestion interacts with
pollution with its adverse health effects e.g. for infants (Currie and Walker, 2011; Knittel
et al., 2016). Accidents also cause substantial external costs (Edlin and Karaca-Mandic,
2006). Analyzing and understanding the factors, which may cause these disadvantages
of cities and inefficiencies in the public infrastructure, as well as potential solutions to
them, is thus pivotal.

In order to reduce congestion in cities, different measures have been implemented by
policy makers in the past. A congestion charge introduced in London, which levied a toll
during prime commuting hours, was found to increase traffic speed and reduce total miles
driven. A consequence of lower traffic levels was improved air quality3 and a decrease of
the amount as well as the rate of accidents (Green et al., 2016, 2020). Apart from such
policies, which directly aim to target congestion, there is robust evidence that public
transportation and the extension of its network may reduce congestion and lead to sig-
nificant social benefits, e.g. due to higher air quality and reduced travel times (Anderson,
2014; Bauernschuster et al., 2017). Another strand of research examines whether an in-
creased road supply could impact traffic. The extension of road infrastructure was found
to proportionately increase the amount traveled in the long run, thereby not affecting
congestion (Duranton and Turner, 2011).

Among the few exceptions aiming to identify causal effects of cycling on traffic related
outcomes, Hamilton and Wichman (2018) found that neighborhoods with bike-sharing
stations had significantly lower congestion levels compared to similar, but untreated
neighborhoods in the Washington D.C. area, which hints towards a supply-driven change
in commuting behavior towards more cycling if more bikes are provided. There is also
research that shows that a better and safer cycling infrastructure correlates with an
increase in the propensity of bicycle utilization (Buehler and Pucher, 2012; Goodman
et al., 2013). Furthermore, whether cycling routes, or “cycle superhighways” in this
specific case, are safer or not was found to depend on physical characteristics, e.g. whether
cyclists were separated from other forms of travel (Li et al., 2017). The same type of

2https://inrix.com/press-releases/2021-traffic-scorecard-de/. Economic costs are calculated based on
values of time as suggested in the same study.

3except for NO2, because Diesel cars, which are a main contributor to this pollutant, were exempt
from the charge.
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cycle lanes was found to reduce traffic volume without affecting average traffic speed
(Bhuyan et al., 2020).

This paper contributes to the existing literature in various ways. It is, to the best of
my knowledge, the first paper to analyze a reduction of road space available for cars in
order to make it available for bikes. Thereby, it connects to the much discussed “funda-
mental law of road congestion” (Duranton and Turner, 2011), which suggests a response
of congestion as a consequence of building new infrastructure with an elasticity of one.
To the best of my knowledge, there is no evidence on short to midterm effects though,
and the question of what happens to traffic-related outcomes after a reduction of lane
kilometers. Generally, the elasticity of traveling behavior with respect to infrastructure
should hold for an extension and a reduction of lane kilometers, thus overall congestion
should not be affected by a lane reduction in the long run. However, if there are sticky
preferences for car utilization, we might see different outcomes. Besides, the substitu-
tion of car lanes with bike lanes provides a direct alternative in traveling mode on the
respective street. By considering the effects of PUBLs on accidents, I contribute to the
strand of literature, which analyses road safety (Edlin and Karaca-Mandic, 2006; Green
et al., 2016; Shefer and Rietveld, 1997), and specifically in how far enhanced cycling
infrastructure affects the safety of different types of road users (Li et al., 2017). Further-
more, it is among the very few papers to look at causal effects of bike infrastructure on
traffic-related outcomes and to the best of my knowledge the first one to use a quasi-
experimental design. In general, it is difficult to identify the causal effects of new bike
lanes on city-related outcomes due to the fact that their creation4 often is meant to be
a response to outcomes like road safety or congestion. Thus, city authorities for exam-
ple want to reduce street accidents by creating safer cycling infrastructure. This paper
addresses this type of reverse causality by looking at (quasi) randomly built bike lanes
during COVID-19 lock-down times. The roll-out of such lanes is normally very slow.
This is why pop-up lanes are a chance to circumvent empirical problems like anticipation
effects, because of their very fast and sudden construction. The results of the paper
may serve as a valuable contribution to structural models, which consider infrastructure
within cities. For policy makers, the results may hint towards potential problems accom-
panied with the sudden rezoning of car lanes. This allows them to address and tackle
relevant problems prior to taking measures. The paper also helps to contribute to the
question of costs and benefits of making a city more friendly to bikes in terms of new
infrastructure.

In the remainder of the paper I first give an overview about the background and
theoretical considerations regarding the installation of pop-up bike lanes in Section 2

4Throughout the paper, I will interchangeably refer to the installment of PUBLs on a street with the
terms “treatment”, “event”, and “intervention”.
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before describing the data and providing some descriptive analysis in Section 3. In
Section 4, I describe the methodological approach, and in Section 5 I present the results.
Section 7 concludes.

2 Background and Theoretical Considerations

Political premises In Berlin, the coalition government of the three parties SPD, Die
Grüne, and Die Linke (social-democrats, the green party and the left party) has set
the goal of transforming city life by making it more friendly especially to pedestrians,
cyclists, and people using public transport. The goals are written out in the mobility
law, which was passed in July of 2018.5 The law predominately contains plans regarding
the city’s traffic infrastructure and how these are going to be implemented. This includes
aspects of organization and funding. For cycle lanes, the aim was to extend the existing
infrastructure in order to make cycling more attractive and to increase the share of cycling
in the modal split. More specifically, a major aim was to increase the safety of bicycle
users and to reduce, and possibly avoid, cycling accidents. The plan also includes the
construction of cycling highways, which predominantly are supposed to connect outer
parts of the city with the city center. More goals of the plan include to save space since
bikes require less street capacity compared to cars, to reduce local pollution, and to
enhance healthiness by incentivizing an increase in physical activity.6 Due to the fact
that the steps of construction are planned to be implemented until the year 2030, most
of the structural measures had not been realized by the end of the time frame considered
in this paper.

Pop-up bike lanes during the COVID-19 lock-down in Berlin In March of 2020,
political measures in form of a lock-down were taken in Germany as a consequence of the
COVID-19 pandemic. The lock-down included the closure of all businesses7, of schools
and day care centers for young children, and of the gastronomy among other measures.
Figure 1 shows the development of car volume and average speed in Berlin from 2019
to 2020 with its apparent negative correlation between total cars and speed. Just after
the lock-down started on March 17th 2020, there was a sudden decline of overall traffic
and congestion as suggested by an increase in average speed. This circumstance was
taken advantage of by public authorities in Berlin and foremost the local authorities of

5MobG BE - Abschnitt 3: Entwicklung des Radverkehrs (development of bicycle traffic)
https://gesetze.berlin.de/perma?d=jlr-MobGBEpG6 is the specific chapter in the law about bicycle
traffic.

6Compare also https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrspolitik/radverkehrsplan/rvp.pdf.
7Except for those necessary for daily life, like grocery stores.
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Figure 1: Traffic in Berlin 2019 - 2020

Notes: The graph shows the development of average vehicle volume and average vehicle speed in Berlin
from the beginning until the end of the sampling period. The beginning of the COVID-19 induced
lockdown on March 17th, 2020 is depicted by the vertical blue, dashed line.

Friedrichshain-Kreuzberg (FHKX)8, who began setting up pop-up bike lanes (PUBLs)
in their local district.9 PUBLs are, contrarily to regular bicycle lanes, created sponta-
neously, circumventing the otherwise relatively long-lasting decision process of where and
how to build a bicycle lane. While the implementation of regular bike lanes takes two
to ten years, PUBLs are implemented in three to 10 days.10 The reduced time necessary
for the implementation is also due to the very simple and cheap type of construction of
the lanes, which only consist of paint and temporary bollards. In the Berlin district of
FHKX, which is locally governed solely by the Green party, there additionally was the
political will of advancing this type of infrastructure renewal. This, according to state-
ments by the authorities, has lead to the actual implementation in this specific district.
Two days after the lock-down came into force, the first PUBL was installed on March

8Four out of eleven PUBLs were not set up in FHKX, but in the districts Charlottenburg-Wilmersdorf,
Neukölln, Pankow and Treptow-Köpenick.

9The following information about the setup of pop-up bike lanes were gathered through interviews
with the authorities of the Berlin Senate, conducted mainly in May 2021.

10Compare press release: https://www.berlin.de/ba-friedrichshain-kreuzberg/...
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25th in Kreuzberg.11 Others followed subsequently in different parts of FHKX and until
July 7th there had been eight more dates with new lanes being created or lanes being
extended. Overall, there is a total of 13 affected streets where PUBLs were installed or
later extended on nine different dates between March 25th and July 7th.12 Almost all
streets had bike lanes set up into both directions and mostly of similar length.13 Figure
2 shows a time-line of the exact dates of installment as well as the respective streets. By
mid 2021, most of the bike lanes had been made permanent by replacing the movable
bollards with fixed demarcations. Until the end of the observation period, there has been
no further change in treatment status.

17.3.

Beginning
of First

Lockdown

25.3.

Hallesches
Ufer /

Zossener Str.

10.4.

Gitschiner
Str. / Licht-
enberger Str.

/ Peters-
burger Str.

22.4.

Kottbusser
Damm

23.4.

Schöneberger
Ufer / Tem-
pelhofer Ufer

12.5.

Danziger Str.

27.5.

Frankfurter
Allee

19.6.

Kantstr.

30.6.

Adlergestell

7.7.

Blaschkoallee

Figure 2: Time line of PUBL installments

Notes: The figure shows all installations of pop up lanes after the beginning of the COVID-19 induced
lockdown. All street names in italic font have no observations in the traffic data set and are therefore
not considered in the respective analyses of the effect on volume and speed.

Criteria of installation Following Kraus and Koch (2021) and personal interviews
with local authorities, the placement and timing of pop-up bike lanes in Berlin was, con-
ditional on certain characteristics regarding the affected streets, as good as random. The

11The segment on Hallesches Ufer into one direction.
12Three of the roads cannot be taken into account in parts of the analysis, as they happened on

roads, which do not have any traffic volume/speed measuring station nearby. One of those roads is
“Blaschkoallee” in Neukölln. This was the last PUBL to be established. Thus, the last date with
a change in treatment status in my sample is June 30th, when the street “Adlergestell” in Treptow-
Köpenick received a pop-up lane.

13Compare Mobycon (2020) for more information about the implementation process in Berlin.
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decision on where to locate such a lane was primarily driven by the amount of available
street space. Only streets with at least two car lanes were taken into consideration, such
that car traffic was not blocked completely on those roads. This characteristic of a min-
imum lane number was the only real requirement for installing a PUBL.14 Effectively,
treated streets are a subset of roads, which are supposed to be equipped with cycling
infrastructure in the future as planned in the aforementioned mobility law (compare the
Political premises paragraph). In order to account for that restriction regarding ran-
domness of placement, the main estimation samples will only contain streets with two
or more lanes. Only in some robustness checks this sample requirement will be altered.
Station fixed effects additionally control for the number of lanes implicitly. The timing of
construction was influenced by factors like the availability of construction firms. Due to
the fact that those were not instantaneously available for setting up all of the bollards at
once, it took some time until all pop-up lanes had been placed. The quasi-experimental
setup with random timing and placement addresses standard drawbacks when measur-
ing the effects of such policy measures like reverse causality (e.g. when bike lanes are a
reaction to lower demand for cars and increased demand for cycling) or omitted variable
bias, which are hard to measure (e.g. local preferences for more cycling lanes in the city).
In the methodology section 4, I will go into more detail and address potential threats
regarding the identification strategy.

Theoretical considerations Generally, the COVID-19 era led to a change in habits
due to people diverting from different forms of public transportation, like buses or
metropolitan railways, to private means of transport, like cars or bicycles (Tirachini
and Cats, 2020). Some European cities experienced declines in public transport rider-
ship of over 90% following lock-downs (Vitrano, 2021). Such disruptive shocks to public
transport have been found to increase car utilization and thereby congestion (Bauern-
schuster et al., 2017; Anderson, 2014). However, since concerns about getting infected
with COVID-19 should be evenly distributed among the population within the city, these
effects should be felt on all streets throughout a city simultaneously. Had PUBL streets
not experienced a structural change, then the lock-down effects should have been the
same compared to similar untreated streets. The question remains which explicit effects
are then to be expected by the new cycling infrastructure.

The replacement of car lanes with cycle lanes means a loss of space for cars and
a gain of space for bikes. Following Duranton and Turner (2011), car traffic increases
with the extent of the availability of streets. This means that congestion is unit-elastic
with respect to street space. The authors identified the creation of traffic as a main

14One characteristic of treated streets, which is observed in the data, is that most of them had no
prior bicycle infrastructure. However, this is not true for all PUBL streets. This specific type of sample
selection will be tackled in a robustness check in the results section.
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channel and the diversion from other streets as a less important one. In general, this
elasticity should apply for both, the creation of new lane kilometers as well as when lane
kilometers for cars are reduced. However, apart from the change of car space provision,
an alternative way of commuting was created at the same time, which may affect the
elasticity. Furthermore, Duranton and Turner (2011) consider long-term developments
between cities and regions, while I look at a shorter time horizon within one city.

In terms of volume, there are two potential effects I would expect in the short run.
On the one hand, PUBL streets experience a decline in car volume compared to non-
PUBL streets. In order to avoid traffic jams and congestion, there is the incentive to use
alternative roads in the surrounding area, which did not experience the installation of a
PUBL. This would mean a reduction of volume on the respective street. On the other
hand, there may be no will to divert from the accustomed old route, which would be
in line with time-inconsistent preferences or a status quo bias (Mattauch et al., 2016).
As a consequence, volume would not be affected. In the long run, there also may be
behavioral adjustments, e.g. people adapting their preferred route over time and thereby
reducing volume on treated streets further. Volume also directly affects average speed.
Theoretically, if there is an increase in volume without street space being changed, then
this should lead to a decrease in average speed, which means more congestion. The
reduction of a car lane without a change of car volume should also lead to an increase
in congestion as the same number of cars now shares a lower number of lanes. Another
possibility is that people just change behavior in terms of commuting time. Thus, average
speed might not change even though daily/weekly volume changes because people just
travel at other times of the day.

Based on these considerations, I would expect automotive volume on PUBL streets to
slightly decrease or remain unchanged compared to non-treated streets, while I assume
average speed to decrease and thereby congestion to increase, especially if volume is only
slightly affected.

Additionally, I want to find out in how far the restructuring of road space towards
a more bike-friendly environment affects road safety by looking at the development of
accidents. As mentioned before, this was one of the major reasons to create such bike
lanes in the first place. If car and bike travel happen on separate lanes, which was not
given prior to the policy change, collisions between these two modes of travel should
decrease. This would mean an overall decrease in the incidence of accidents. On the
contrary, the separation of lanes could also lead to more accidents if car drivers now
pay less attention to cyclists and thus oversee them when taking a turn at a crossway.
Furthermore, pop-up lanes may nudge new cyclists towards using the newly created ways.
This could lead to an increase in accidents, especially between cyclists. If there are more
cyclists on the respective roads, while the total number of accidents is not affected due
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to sufficient space for cyclists, this would mean a decline in the rate of cycling accidents.
Overall, the direction of the effect on accidents cannot be predicted clearly.

3 Data and Descriptive Statistics

Traffic measuring stations The outcome measures for traffic volume and average
speed stem from 772 measuring stations throughout the city of Berlin. The recordings
show hourly values of speed and volume of vehicles passing by one station per hour for
the years 2019-2020.15 This allows to detect within day variances as well as short-term
developments of traffic within Berlin. At the same time, it is possible to differentiate
between personal cars and lorries. Due to the fact that all PUBLs in my sample were
set up between end of March and end of June of 202016, I have a post-treatment period
of about 40 weeks. The pre-treatment period contains about 70 weeks. Most measuring
stations cover the traffic on multiple lanes of which I build the mean over all lanes for
speed and for volume.17 The information about the number of lanes is furthermore used
for specifying the control group in most analyses. It allows to compare streets of the
same pre-treatment capacity with each other. Figure 3 shows a map of Berlin, depicting
the net of measuring stations and the PUBLs.

Of the eleven streets, which had a PUBL installment, some lack a traffic measuring
station capturing volume and speed on the respective street. Thus, I am only able
to analyze a subset of affected streets regarding this outcome, ignoring the effects on
five out of eleven treated streets.18 Since all of the non-considered streets have similar
characteristics to the ones in the sample and there is no correlation of the placement
of measuring stations and the creation of PUBLs, I do not consider this to be a major
drawback. Overall, I observe 23 measuring stations located at treated streets with two
or three lanes.

For the analyses, I exclude all stations, which are situated at highways19. The reason
is that I assume that inner-city traffic might have developed differently from traffic on the
highway, which circles the city. This is because highway traffic may not be substituted
as easily by cycling or different forms of public transportation. Furthermore, I exclude
Saturdays and Sundays as well as legal holidays from the analyses and the daily time

15The Senate of Berlin also provided me with (incomplete) data for May-July in 2021. However, due
to the fact that many measuring stations drop out and due to gaps in the data between 2020 and 2021,
I only consider the mid-term outcomes in a subsection.

16As described in Section 2, the last PUBL was installed on July 7th, 2020. However, for this last
treated street, there exists no measuring station nearby, such that it cannot be taken into account.

17Missing values are ignored in the mean calculation.
18Most of these affected streets are dropped due to non-existing measuring stations. One street has

missing observations in the post-treatment period (the station in Danziger Str.) and therefore is also
deleted from the sample.

19In Berlin, these are named: A100, A111, A113, A114, A115.
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Reinickendorf

Charlottenburg-Wilmersdorf

Treptow-Köpenick

Pankow

Neukölln

Lichtenberg

Marzahn-Hellersdorf

Spandau

Steglitz-Zehlendorf

Mitte

Friedrichshain-Kreuzberg

Tempelhof-Schöneberg

Geoportal Berlin, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, METI/NASA

Traffic measuring stations

Pop-up bike lanes

Districts

Figure 3: pop-up bike lanes and measuring stations in Berlin

Notes: The figure shows a map of Berlin. Pop-up bike lanes are marked as fat red lines and traffic
measuring stations are depicted by green dots. The city is subdivided into 12 districts, which are
outlined by fat black lines.

frame is limited from 5 a.m. to 8 p.m. since I want to concentrate on workday traffic.
Some stations are lacking data e.g. for some hours a day or even for entire days.20 As a
consequence, in the event study analyses, which uses data aggregated to weekly values,
I restrict the sample to stations, which have observations for at least five hours a day
(which results in dropping about 0.04% of all observations) and then have at least 2 days
of observations a week.21 However, whenever I base the analysis on hourly data, which
allows for hour and date fixed effects, I use the entire sample. Considering all these
restrictions, the main sample remains with 192 measuring stations in the control group.

Figure 4 shows the natural logarithms of total weekly volume and average weekly
speed by treatment status. The vertical blue lines mark the first and the last installation
of a PUBL in the city. The figures already show to some extent the effect of the pop up

20Additionally, I had to delete partly erroneous data. Regarding traffic speed for example, there were
observations with speed being over 1000. While this is a very extreme case, I cut out observations with
speed of either trucks or cars being larger than 100, which is a speed level very unlikely to be reached
within city boundaries. As a result, I deleted ≈ 0.0038 percent of the car speed sample and 0.00015 of
the truck speed sample.

21All of the stations in the sample contain weeks, which only have 2 days of observations. About 1/3
of the stations have weeks with only 1 day of observations.
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lanes and provide an impression regarding parallel trends between treated and untreated
streets prior to the installment of pop-up lanes. As of volume, we can see that the overall
development was very stable from 2019 to the beginning of 2020. The lock-down led to
a sharp decline of vehicles on the streets of Berlin22 and had returned to pre-pandemic
heights by September of 2020 on untreated streets. Treated streets, however, did not
return to pre-pandemic levels with respect to vehicle volume, but remained on a lower
level.23 The large spikes in the graph are the dates around new year’s eve and to a lower
extent during summer holidays, when traffic is significantly lower all over the city.

While between January of 2019 and March of 2020 overall speed has remained fairly
constant with some minor variation on both treated and untreated streets, the lock-
down led to two different developments. Treated streets experienced a decrease in speed
whereas on untreated streets there initially was a small increase and then a return to
normal levels. This is a first indication that treated streets experienced some sort of
congestion despite the decline of vehicles traveling on them.

Overall, the figures show that spikes in traffic, either downward or upward, affected
all streets across the city, even though in parts to different extents. Thus, changes in
traffic in general seem to be caused by city-wide events affecting the overall traffic flow.

Accidents Data on accidents stems from the atlas of accidents (“Unfallatlas”)24, which
locates every accident in Germany with exact point coordinates. For Berlin, this data ex-
ists for the years 2018 to 2020. It is available on a monthly basis and includes information
such as the hour of the accident, day of week, whether people were killed or injured, and
also which means of transport were involved (bike, pedestrian, car, etc.). It also includes
lighting conditions (daylight, dawn, darkness) and road condition (wet, dry, slippery).
Due to the fact that I only have monthly recordings, the post-treatment period starts the
month after the implementation of the PUBL. In the accidents analyses, I use two differ-
ent methodological approaches, which require two different levels of spatial aggregation.
First, I run an event study design on street level within Berlin. Therefore, I match the
accidents to Open Street Maps (OSM) information of Berlin such that every accident is
assigned to - if possible - a single street of which I also know whether it contains a PUBL
or not. The aim is to have a data set with single streets as units of observations, each
of which contains the number of accidents, which occurred there each month.25 Second,

22However, the decline is not as sharp as on new years eve.
23The absolute difference in log values stems from the fact that there are much more untreated streets

compared to treated ones.
24The Unfallatlas is freely downloadable at https://unfallatlas.statistikportal.de/ (last access: July

20201).
25In order to do so, I lay buffers of different magnitudes around the OSM-lanes and successively match

those buffers to the accident data. This is necessary since the OSM data contains streets as lines and
the accident data contains single coordinates, which hardly ever match exactly. Some accidents cannot
be assigned unambiguously to one street, e.g. when the accident happened on a crossing. In these cases,
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(a) Volume

(b) Speed

Figure 4: Development of speed and volume (pooled over cars and trucks) between
Treatment and Control group

Notes: Figure 4a shows the development of vehicles (in logs) from January 2019 until December 2020
by treatment status. Figure 4b shows the development of average speed (in logs) by treatment status.
In both cases, the gray dashed line represents the development of all treated streets, while the solid line
shows the development of untreated streets. The two dashed blue vertical lines in each graph represent
the installation of the first and the last pop-up bike lane in the sample. Streets that were treated, but
do not contain a traffic measuring station, are not considered here.

I use the synthetic control group design on municipality level as a more macro-economic

the accident is assigned to both streets. However, more than 90 percent of the accidents (the exact
number depends on the year) can be assigned to a single street. In order to combine street segments
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approach. For this data set, I take the sum of accidents within a municipality per month
for all of Germany between 2018 and 2020.26 Treated units are then the different Berlin
districts in which PUBLs were installed while potential control units are recruited from
municipalities in Germany outside of Berlin and for which there is data on the matching
variables. These matching variables as well as additional control variables are presented
in the following paragraph.27

Matching and control variables Since traffic speed and volume are measured lo-
cally within a time frame of about two years, most characteristics specific to streets and
measuring stations are controlled for by respective fixed effects. Measuring station fixed
effects capture e.g. the influence of nearby alternative modes of transport like subways,
and date fixed effects account for city-wide shocks on the respective day. However, I am
as well able to take into account two time-varying variables on very granular time and
spatial scale. Firstly, I include geo-referenced construction works.28 The data contains
exact dates when construction works took place (mostly a time range of several days
or weeks) and is differentiated by status (e.g. approved, finished, in coordination etc.)
and limitations to the public caused by them (for example the closure of a traffic lane or
even the entire street). I only consider construction works, which are finished, approved
or ongoing. In most specifications, I will use a simple dummy variable, which indicates
whether some type of construction took place or not. In additional analyses I will also
account for non-binary limitations to traffic and the public. Secondly, I know about
changes in the speed limit regime. Few streets, all of which in the control group, experi-
enced a change in speed limit from a maximum speed of 50km/h to 30km/h29 during the
observation period. These changes are mandated by the Berlin Senate and realized by
local authorities. Reasons for such measures are noise control, air pollution prevention,
or road safety. I account for those changes using a dummy variable switching to one on
the date of implementation. There are also temporary changes in the speed limit during
a day, e.g. from 6 a.m. until 5 p.m., which mostly happen on streets close to a school
or a kindergarten. Controlling for the latter variation in speed limit is necessary when
using the entire hourly data-set in the two-way fixed effects estimations. In the case of

into entire streets, I combine the OSM data to street segment data as provided by the city of Berlin
(Geoportal Berlin, 2021). Otherwise, single streets would be split into several observations.

26Observations for three out of 16 states drop out of the data set. The respective states are North
Rhine-Westphalia, Mecklenburg-West Pomerania, and Thuringia. The reason is a lack of data for the
year 2018.

27In order to lower the computational burden, I limit the control sample to municipalities with less
than 25.000 inhabitants and thereby ignore very small and rural regions. However, I assume those not
to be comparable to the treated units of interest. Changing the threshold value to 10.000 has no effects
on the results.

28The data was provided by the Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz (Sen-
ate Office for Environment, Traffic and Climate protection).

29This corresponds to a change of about 31mph to approximately 19mph.
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daily temporary speed limits, a binary variable switching to one in the respective time
frame is included in the estimations. Overall, about 12 percent of the sample is affected
by speed limit changes over time or throughout the day.

I additionally gather information about traffic measuring stations and their surround-
ings by OSM and other sources with city-specific data. OSM allows to match the in-
formation whether a traffic measuring station lies within a certain radius (I choose a
radius of 50 meter) to a tram or rail line. Thereby, it is possible to see whether a street
directly “competes” with the rail line. Furthermore, for every measuring station, I match
information whether it lies at a bike lane, which existed prior to the installation of the
pop up bike lanes.30 While this type of information is already captured by station fixed
effects, the data still makes it possible to split outcomes by street characteristics. For ex-
ample, pop-up bike lanes were predominantly installed at streets without major cycling
infrastructure. I will therefore test whether outcomes are sensitive to varying control
units with respect to their bike-friendliness.

In the analyses of accidents, I furthermore make use of administrative annual data of
all out of the more than 10.000 municipalities in Germany, which accommodate more than
25,000 inhabitants. This data is used foremost in order to match treatment and control
group in the synthetic control group design. The population restriction is made in order
not to include too rural areas in the matching procedures. I use information about land
use patterns (space available for traffic and for settlements), voting behavior (percentage
of Green Party voters, voter turnout), and population. I also retrieve economic data
(unemployment rate), as well as data regarding road safety. All this data is publicly
available on a website for regional data by the Statistical Office.31

Sample adjustments In order to make the control group in my analyses more plausi-
ble, I apply some adjustments to the data set for my main estimations. The installation
of pop-up lanes aimed at streets with more than one car lane and was realized on streets
with either two or three lanes. This is why in the majority of estimations I exclude one-
lane as well as four-lane streets.32 Furthermore, most treated streets had no prior cycling
infrastructure. Thus, in some estimations I will restrict the sample to streets without
any sort of cycle lanes prior to the PUBL installation.33 For the control group, I exclude
all measuring stations, which lie within a 1km radius of a treated unit. This is done in

30The bicycle infrastructure data comes from a collection of shapefiles covering different topics in
Berlin (https://www.geodaten.tu-berlin.de/menue/downloads/berlin/). I define a station to lie at a
cycle lane if it is within a 15 meter reach.

31https://www.regionalstatistik.de/genesis/online.
32Four-lane streets only make up less than 0.3 percent of the overall sample, while about 25 percent

of the sample are streets with one lane.
33Unfortunately, there was no list of streets (or the senate was not willing to provide me with such

a list), which indicates streets eligible for PUBLs. Then, I could have chosen potential but not chosen
streets as control group (compare e.g. Greenstone et al. (2010) for a similar setup).
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order to account for potential deviation effects of traffic. Thus, if a street is treated, then
surrounding streets might be affected as a consequence, because the drivers search for
different, now potentially faster routes. In this case, the potential control group would be
affected by the treatment itself. In further estimations, I explicitly test for these spillover
effects to nearby roads.

4 Methodology

I aim to identify the causal effect of bike lanes on several outcomes like traffic volume,
average traffic speed, and accidents. In my analyses, I exploit the (conditional) random
timing and placement of pop-up bike lanes in Berlin during the COVID-19 pandemic in
2020. Thus, traffic measuring stations and streets, where pop-up bike lanes were set up,
are handled as treatment groups, while a large number of other streets of similar size
and characteristics are taken into consideration as potential control group. Firstly, I use
an event study design to analyze the data aggregated to weekly levels. I primarily use
it to test the common trend assumption as well as to identify the development of the
outcomes over time in the post-treatment period. Secondly, I use two-way fixed effects
estimations in order to receive effects in terms of single coefficients. Most importantly
however, they allow me to use the entire hourly data set. Lastly, I conduct synthetic
control group analyses in my accident analyses as a robustness check.

Event study design In a first step, in order to justify the common trends assumption
between untreated and treated units, I estimate a flexible event study model, which takes
into account the different timing of implementation and the different streets affected
(Clarke and Schythe, 2020). In order to make this assumption more plausible, I impose
a range of sample restrictions as described before. For estimation I use the following
equation:

Yit = α +
L∑
l

βl(Lead l)it +
K∑
k

γk(Lag k)it + µi + δt + Xitϕ + ζi(Station × LD) + ϵit. (1)

The outcome variable Y is observed for individual monitoring station or street i at
time t (which is either a running week or a running month variable). Station fixed effects
are given by µi. They control for observable (e.g. public transport stops, topography
or the number of lanes) and unobservable factors (e.g. local or political preferences in
the area), which are specific to a monitoring station and its surroundings and that do
not change over the time frame observed. Time fixed effects, measured by δt, account
for shocks, which simultaneously affect the whole city, and could potentially influence
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travel mode and prevalence, e.g. holidays. The impact of time-varying characteristics
X, like construction works, is measured by ϕ, while ζi captures the effect of a station-
specific lock-down dummy that I control for in the majority of two-way fixed effects
specifications. Finally, ϵit represents an unobserved error term. Leads and Lags in
equation 1 are dummy variables, which represent the number of periods l and k the unit
is away from the event.34 Thus, the time of opening a pop-up lane is normalized such
that for each case the opening is at l = 0. One lead or lag variable is omitted as the
baseline difference between treated and untreated units. The maximum number of Leads
L (Lags K) included in the regression are then the total number of weeks before (after)
the treatment. Streets without the implementation of pop-up lanes serve as pure control
group, such that leads and lags are always zero. These binary variables thus capture
the difference between treated and untreated streets in comparison to their difference in
the base period, which by definition is zero. Without a significant difference between
treatment and control group prior to the base period, the common trend assumption
in the respective time frame most likely holds. The implicit assumption here is that
without treatment, treated and untreated streets would have maintained differences just
like in the base line period. The main advantage compared to a standard two way fixed
effects model is that rather than relying on a single coefficient for post-treatment, this
model captures the development of treatment effects over time via the lag coefficients
and allows to inspect the common trend assumption.

Two-way fixed effects The main analyses are then conducted with a standard two-
way fixed effects (TWFE) model35 in which the lags and leads of Equation 136 are replaced
by βPostTreatmentit, where PostTreatmentit = 1 [t ≥ Treatmenti]. In the estimation, all
never treated measuring stations have this treatment indicator always set to zero, while
it switches to one for PUBL units after the beginning of treatment. This estimation
provides me with a single treatment effect pooled over all treated streets. The advantage
of using the standard two-way fixed effects model is that it allows me to use the entire
data-set and therefore to control for date and hour fixed effects. It is now furthermore
possible to specifically control for temporary speed limit zones, which are in place e.g.
between 6 a.m. and 5 p.m. on certain streets. Using the hourly data is not possible
in the event study design since it requires no time gaps in the observations. This is
why I aggregate observations to weekly levels in event study estimates, which solves the
problem of gaps.37

34Thus, (Lead l)it = 1 [t = Eventi − l] for l ∈ {1, ..., L − 1}, and (Lag k)it = 1 [t = Eventi + k] for
k ∈ {1, ..., K − 1}.

35I will interchangeably refer to two-way FE estimations as difference in differences (DD) model.
36∑L

l βl(Lead l)it +
∑K

k γk(Lag k)it.
37In the robustness section I will address potential problems regarding standard two-way fixed effects.
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Synthetic control group design When analyzing the effects of PUBLs on accidents,
I will furthermore apply the synthetic control group design (Abadie et al., 2010). Due
to the fact that I have geo-located accidents for all of Germany, this allows me to use a
macro-perspective, comparing treated districts of Berlin with similar districts all over the
country.38 Apart from pre-treatment developments of the outcome variable of interest, I
use a variety of district-specific observables like population, unemployment rate, or the
share of the space designated for traffic infrastructure, as matching variables to find a
data-driven control group.

Main threat to identification Some aspects might influence the assumption of ran-
dom assignment, which I want to specifically tackle in my analyses. In the following, I
describe the potential problems and how I finally aim to solve them.

First, there is the concern of non-random selection of streets by the responsible au-
thorities for installing a pop-up bike lane in the first place. If bike lanes were randomly
assigned to any street in the city, then selection bias would not pose a problem. However,
if streets are chosen based on their characteristics, e.g. that only streets with minor car
traffic are chosen, then the estimated treatment effect will be biased. The choice where
to locate pop-up lanes was based on Berlin-wide plans for extending the cycling infras-
tructure prior to the pandemic. Even though the plans existed for the whole city, all
of the pop-up lanes were created in only a subset of districts39. In Section 2, I already
argue in how far the allocation of pop-up lanes was random. However, some local district
governments were more supportive in establishing PUBLs than others. This may raise
the concern that there exist systematic differences between these and other districts in
the city.

Second, in general the district-specific differences should be captured in the estima-
tions by the measuring station fixed effects. Nonetheless, shocks like the lock-down after
the beginning of the COVID-pandemic may lead to different behavioral adaptations in
districts with PUBLS compared to districts without, e.g. with respect to commuting
choices. A potential reason are political preferences and attitudes in certain areas, which
may translate to differential behavioral adaptations regarding home-office or the utiliza-
tion of public transportation. For example, if a district is populated with more blue-collar
than white-collar workers, then home-office might be less of an option there compared to
other areas of the city with a differently composed workforce. This may systematically
bias the results.

38The measures for car volume and speed are only available for Berlin. Using the synthetic control
group design on such a local scale is rather problematic due to the lack of observable control variables
on street level, which are required for the matching procedure of treatment and synthetic control group.
This is why the use of this method is restricted to the accident analyses.

39Charlottenburg, Friedrichshain-Kreuzberg, Neukölln, Treptow-Köpenick, and Pankow.
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Third, some of the streets lie close to a subway line, while others are further away. As
utilization of public transport has significantly changed during the Corona-crisis, those
streets might have been affected differently to streets further away from public transport.

In order to control for potential differential developments after the start of the lock-
down and address the aforementioned concerns, I add an interaction term to the estima-
tion, which accounts for lockdown × measuring station effects.40 This interaction term
captures effects, which are present on a very local scale (station/street-level) after the
beginning of the lockdown. Thus, it e.g. captures differential developments on streets
close to public transport compared to streets further away from it. At the same time, it
also subsumes district-specific changes due to local commuting preferences. Due to the
fact that some pop-up lanes were installed right after the beginning of the lock-down, the
interaction term may capture away parts of the actual pop-up lane effect. This is why I
consider estimates, which control for the interaction term, as lower-bound outcomes.

In all estimations, I use standard errors clustered on a time and a spatial dimen-
sion. The former is a running week variable, while the latter consists of 1km × 1km
grid cells spanning the entire city.41 Thus, I tackle concerns that treatment may be spa-
tially or temporally correlated, and therefore account for spillover effects. In alternative
specifications in the robustness section, I will also test for different clusters.

5 Results

5.1 Volume and speed

Figure 5 shows the effects of the introduction of a pop-up bike lane on traffic volume
and on average speed by a graphical representation of an event study design. Blue dots
show the main estimation coefficients of leads and lags, while confidence intervals (CI)
are depicted as area shades in light (95% CI) and dark gray (90% CI) respectively. No
additional control variables apart from station and week fixed effects are added in these
first estimations in order to show the “pure” common trend. Adding construction and
30-kmh-zones does not change the picture though.42 Both graphs generally show that the
common trend assumption is satisfied, however with some minor drawbacks. Considering

40Lockdown then is a dummy variable and it is defined as the time after March 22nd, 2020. The
reason being is that measures were lifted from time to time and partly reinstated again. Thus, there
was no clear-cut end of the lockdown. In autumn/winter of 2020, measures became increasingly strict
again, resulting in another so-called “hard lockdown” in December of 2020.

41I use the INSPIRE grid for Germany, which is publicly available
(https://gdz.bkg.bund.de/index.php/default/inspire/sonstige-inspire-themen/geographische-gitter-
fur-deutschland-in-lambert-projektion-geogitter-inspire.html).

42The base period here is chosen to be at five weeks prior to treatment, which is the average number
of weeks between the start of the lockdown and the installation of a PUBL. Whenever the station ×
post-lockdown interaction effect is included in the estimation, the base period is at lead = 1.
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Figure 5: Effects on traffic volume and speed

Note: The two graphs show the results of two separate event study estimations as described in Equation
1. Outcome variable Y in Figure 5a is the absolute number of vehicles while it is average vehicle speed
in Figure 5b. Blue dots represent the main estimation coefficients of leads and lags. Confidence intervals
are depicted as area shades in light (95% CI) and dark gray (90% CI). The vertical solid black line
shows the time of treatment, which is anchored at 0. Leads and lags are the time before and after
treatment in weeks. The estimations include station and week fixed effects. The sample is restricted to
streets with two or three lanes and all streets within a radius of 1km to a treated street is excluded from
the estimations. Standard errors are clustered at 1km × 1km grid cell level spanning the city times a
running week variable.
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average vehicle speed as outcome variable (Panel (b)) suggests a very stable parallel trend
between treated and untreated streets prior to the PUBL installations. Only a very small
number of observations about one year or more prior to treatment show marginally
significant deviations in this case. For the number of vehicles as outcome, more but still
very few occurrences show significant positive as well as negative differences in the pre-
event time frame. However, they do not change the overall picture suggesting common
trends between treated and untreated units prior to the lock-down. Additionally, one
has to bear in mind that the regressions run here are based on weekly averages of speed
and volume, and thereby do not take into account date or hour fixed effects, which
may further adjust for unobserved differences between treated and untreated streets.43

The main outcomes presented in this paper moreover include an interaction term, which
takes into account station specific developments after the implementation of a lockdown.
Figure A.1 shows the event study results considering the interaction effect. It again
exhibits the validity of the parallel trend assumption.

Traffic volume The PUBL introduction exhibits a relatively small, but significant
effect on the number of vehicles compared to the development on control streets when
ignoring the station × post-lockdown interaction. The effect is rather modest with a few
gaps to the downside and is relatively stable in size. In terms of absolute effect size,
about 50-100 vehicles per week less are observed on average on treated streets compared
to untreated ones. A negative effect would mean that some drivers do not want to
keep using the old way and rather circumvent these high-traffic areas. The pre-trend
assumption holds for the vast majority of the pre-treatment weeks, even though the few
significant differences may be considered a potential backdrop in the causal interpretation
of results. Including the interaction term, as was done in Figure A.1a, causes the PUBL
effect on volume to become insignificant. This means that it is not possible to attribute
the volume effect directly to the installation of a PUBL, but that the COVID-19 lockdown
lead to a slightly differential development on treated streets compared to untreated ones.

Traffic speed Average speed of vehicles significantly decreased directly after the PUBLs
were installed, which implies an increase in congestion. In absolute terms, average speed
decreased by about 4-5 kilometers per hour (kmh)44, which is about 10% of the maxi-
mum speed allowed on these streets.45 This result is not surprising due to the fact that
car-utilization behavior hardly changed in the beginning, while the number of lanes was
reduced (partly from two lanes to one). The reduction of average speed compared to un-

43In order to run the event study design, the data requires to be balanced, which is why all event
study estimates stem from data aggregated to a weekly level.

44This corresponds to about 2.5-3.1 miles per hour.
45In Germany, the standard speed within cities is 50 kmh (or 31 mph) with some exceptions.
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treated streets is very stable over time, which is certified after including the interaction
term as presented in Figure A.1b. This suggests that in the post-treatment time frame
observed, there were no major behavioral adaptions.

Single-coefficient model While the graphical analysis provides an insight into the
development of the effect over time and allows to track and reaffirm the parallel trend
assumption, I also want to translate these effects into one overall estimate. The advan-
tage of one single coefficient is that it pins down the results to an overall outcome. As
discussed before, the effect on the outcome is relatively stable over time, which disbur-
dens the concern that two-way fixed effects regressions may conceal important hetero-
geneities.46 Moreover, I am now able to use the entire data set and therefore to control
for date and hour fixed effects in all estimations. This means that these estimations
additionally control for intra-day commuting patterns and city-wide shocks, which may
have occurred on single days. The few downward spikes as observed in Figure A.1a could
e.g. be attributable to such daily shocks that to some extent differently affect treated and
untreated streets. While the event study design as presented in Figure 5 only includes
a subset of control variables in order to show the “raw” common trend, I now control
in most specifications for the interaction term between a post-lockdown dummy variable
and a measuring station indicator. As discussed in Section 4, it is supposed to account
for differential behavior adaptations on a local scale after the COVID-19 lock-down went
into effect. Point estimates of these single-coefficient models are shown in Table 1, which
presents results for outcomes in absolute values (Panel A) as well as for logged values
(Panel B). All even columns include the station × post-lockdown interaction term, while
uneven columns do not. As before in the event study with heterogeneous timing, I find a
significantly negative effect on speed, and thus more congestion for cars. PUBLs led to
an overall decrease of car speed of about 11 to 12 percentage points as Panel B shows.
This result holds after controlling for the interaction term. In terms of volume, there is
a significant decline of vehicles without the interaction term, which turns insignificant
as soon as the interaction term is included in the regression. This hints towards a small
decline of vehicles on treated streets compared to untreated ones, which cannot clearly
be attributed to the installation of PUBLs. However, since the cycle lanes were installed
only shortly after the lock-down went into effect, it is in general hard to completely
disentangle these two.

Table A.1 shows outcomes of TWFE estimations using the weekly data set, which was
used in the event study model. It shows that coefficients are very similar or even slightly
higher compared to the regressions based on hourly data, and that inference is hardly

46In the robustness section I will account for more concerns about heterogeneous effects in terms of
time and treatment unit.
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Volume Speed
(1) (2) (3) (4)

Panel A: Outcome in absolute values
1(PU lane) -53.57∗∗∗ -7.476 -4.512∗∗∗ -4.123∗∗∗

(4.876) (7.218) (0.306) (0.536)
N 1546526 1546526 1543453 1543453
R2 0.743 0.755 0.757 0.772
Stations 215 215 215 215
Interaction No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0228∗∗∗ -0.00540 -0.113∗∗∗ -0.122∗∗∗

(0.00724) (0.0126) (0.00878) (0.0144)
N 1543493 1543493 1543453 1543453
R2 0.628 0.650 0.585 0.607
Stations 215 215 215 215
Interaction No Yes No Yes

Table 1: TWFE Effect on Volume and Speed

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with vehicle volume and vehicle speed as dependent variables. Panel A shows the coefficients
of interest with outcomes in absolute terms. Panel B shows the same for logged outcome variables. Even
columns include an interaction term between a unique measuring station identifier and a post-lockdown
dummy variable while uneven columns do not. All estimations include station fixed effects (FE), date
FE, hour FE, a dummy whether construction takes place, and an indicator for a change in speed limits.
Stations within a one kilometer radius of a treated street are excluded and the sample is restricted to
streets with two or three lanes. Standard errors are clustered at 1km × 1km grid cell level spanning the
city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

different. In the following, I will mainly show outcomes of single-coefficient models using
hourly data in order to be able to control for the full set of controls.

5.1.1 Heterogeneity

Next, I will analyze in how far outcomes differ by treated unit, by time of the day,
between type of vehicles (cars and lorries), and whether there are differences between
different street sizes.

Treated unit Table A.2 presents leave-one-out analyses, which means that I conduct
the main analysis several times, always leaving out one treated measuring station. This
type of analyses may reveal whether results are driven by single streets or stations in
the sample. All estimations include the entire set of control variables as well as the
station × post-lockdown interaction term. With respect to average speed, the table shows
that the overall picture holds. This means a significant increase in congestion over all
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specifications. However, one treated measuring seems to stand out in effect size. While
the majority of coefficients lie between .12 and .13, leaving out station 15 in the table
results in a coefficient of about .09. Thus, this specific station has a significant larger
effect on the size of the overall result than others. The street on which this measuring
station is situated is Kantstrasse in the western district of Berlin Charlottenburg. Be-
said station lies very close to a nearby highway circling the city. A possible explanation
for the difference in effect size is that this specific segment was reduced to a one-lane
street. Narrowing down the space for cars to a single lane may therefore have a larger
effect on speed than reducing a three-lane street to a two-lane one.47 Looking at volume,
there is no single station that drives the results. All estimates thus remain negative and
insignificant. In the following, I will present results with and without this outlier station
if required.

Time of day Due to the disaggregated nature of the data, I am able to differentiate
traffic volume and speed by hour of the day. I am thus able to analyze whether the
reduction of a street lane mostly affects commuters in traffic peak hours or also other
types of trips.48 In order to do so, I run two types of estimations: i) I clear the sample
from all hourly observations except for the peak hours and ii) I run estimations for each
hour of the day separately. In both cases, the estimations include the full set of control
variables49. Results for the first approach are presented in Table A.3. Point estimates
correspond to the ones in the main outcomes. This means that in the main traffic peak
hours speed and volume on average do not seem to be differently affected compared to
other times of the day. The second approach enables an even closer look into intra-
day variations. To illustrate those, coefficients of single-coefficient two-way fixed effects
regressions for each hour of the day are depicted in Figures A.2 and A.3 and additionally
presented in Table A.4. Unlike the main analyses, which are restricted to daytime, I
now estimate the difference-in-differences model for all 24 hours of the day. Figure A.2
reveals that the difference between treated and untreated units is significant throughout
the day. The size of the effect, however, varies. In the night hours (midnight until 5
a.m.), speed is significantly slower by about five to seven percentage points. From 6 a.m.
onward, when traffic usually starts to pick up, the effect size gradually increases. The
maximum difference is reached in the afternoon with a point estimate of about −.16.
Thus, average car speed is about 16 percentage points lower to similar streets compared

47Another possibility would have been a change in speed regulation, e.g. from 50 to 30. Even though
this specific street was affected by such a regulation change in 2018, there was no such change on any
treated street in my sample period.

48Traffic peak hours are defined as the time frame between 6 a.m. and 9 a.m. in the morning as well
as 4 p.m. and 7 p.m. in the evening.

49This includes date fixed effects, measuring station fixed effects, a constructions dummy, and the
station times lockdown-dummy interaction.
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to times before treatment at the main traffic peak time of the day. Until the evening,
the effect size gradually decreases. Regarding vehicle volume, there is significantly more
traffic on PUBL streets compared to non-PUBL streets in the night hours, but not during
the day when we consider outcomes in log terms. Absolute values as presented in Figure
A.3, however, suggest that this difference is driven by a very small absolute effect of
about 20 vehicles. Since at night hours there is a significantly lower number of cars on
the streets, effects at that time of the day should not be over-interpreted. With respect
to speed, traffic is relatively free-flowing at night, which explains the smaller effect size.
The size of the volume effect is also very small in absolute terms at night times with an
absolute effect of about 20 vehicles.

Cars and Trucks In the data it is possible to differentiate traffic volume and speed
by type of vehicles. I thus analyze whether there are differences in the outcome when
differentiating between cars and trucks.50 Table A.5 shows that the entire result is driven
by cars. A look into the data reveals that only about six percent of vehicles observed on
the streets in the unrestricted sample are trucks. As a consequence, also the variation of
observed trucks is much lower compared to cars. This reduced variation may therefore
lack power to detect significant results.

Street size Apart from differences analyzed so far, there may exist heterogeneities
regarding different street sizes. For example, streets with two lanes prior to the install-
ment of a PUBL may show different results compared to those with three lanes ahead of
treatment because they may be harder or easier to substitute for commuters. Table A.6
shows results for two- and three-lane streets separately, restricting also the control group
to streets with the respective number of lanes. Apparently, volume is not differently
affected on the different types of streets. The effect size for average speed indeed shows
slightly different results. Smaller streets are affected more severely compared to larger
ones. From a policy perspective, this speaks for the installment of new cycle lanes on
larger streets, while it may be advisable to spare streets with less space. However, one
has to take into account the much smaller sample size, which is about five times bigger
for two lane streets. Furthermore, the difference of the effect size is only marginally sig-
nificant. Taking all aspects into account, heterogeneities of results are, if existent, rather
small.

50Trucks are defined as vehicles longer than 7.5 meters. This subsumes buses and the majority of
delivery trucks.

24



5.1.2 Spillover effects to surrounding streets

Results so far suggest that traffic on treated streets decreased slightly - even though
the decrease cannot be unambiguously attributed to the installation of a PUBL - and
congestion increased. Thus, even though there are in total less vehicles on the streets,
the remaining ones are slower due to the reduction in space for motorized traffic. Since
the utilization of public transport significantly declined during the lockdown, this might
have put additional pressure on the streets by people changing their preferred mode of
transport from train to car or bike. These people might want to avoid congested streets
by choosing alternative roads close-by. Thus, commuters leaving their old accustomed
routes as well as new car users might divert to roads in the vicinity of PUBL streets. In
order to test this hypothesis, I repeat the main analysis with measuring stations, which
lie within different distance ranges of a PUBL. Thereby, I assign the respective starting
date of the treatment to each nearby station and delete the actually treated streets from
the sample.51 Table A.7 shows the corresponding estimates. While speed and therefore
congestion seems not to be affected on the surroundings of treated streets, there is a
significant increase of car volume on streets within a 750 meter and a 1 kilometer radius
of PUBL streets. One would expect the effect size to decrease, the larger the radius drawn
from the PUBL street. The table suggests otherwise with the 1km-coefficient being larger
than the 750 meter one. However, the difference in effect size is not significant, which
means that streets up to 1km away from a PUBL street are equally affected. Moving
further away then shows the expected development with the coefficient size tending to
zero and being insignificant.52 This result suggests that drivers are actually nudged away
to some extent from their accustomed routes, which however does not negatively affect
the surrounding streets in terms of congestion. Rather, a new equilibrium with a more
equal distribution of traffic seems to be established.

5.1.3 Medium run effects

Additionally to the data set running until the end of 2020, the Berlin Senate also provided
me with additional traffic data for the time period between March and May of 2021.
The reason not to include the entire time frame into the main estimations is that many
measuring stations drop out of the observation network in 2021, and therefore the sample
becomes less balanced. Additionally, there are more than three months missing between
my observation period and the data from 2021, which does not allow to track potential
developments in between. Results for the entire sample as well as for the sample without

51Since I want to know about the effect on all types of lanes, I abstain from the restriction of limiting
the sample to streets with a specific number of lanes. This explains the larger overall sample size.

52Note that treated stations between the distances are not mutually exclusive. This means that all
stations that are handled as treated in the 750m regressions are also treated in the 1km regressions.
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the outlier from the leave-one-out analysis are presented in Table A.8. All coefficients
slightly increase in size. The volume effect now becomes significant and larger, while the
speed effect is only marginally larger, and does not significantly change. Thus, about
one year after the installation of the PUBLs, drivers are apparently nudged away to a
larger extent from treated streets, which are still more congested than control streets.
The combination of less volume combined with similar congestion may be explained
by an overall city-wide increase in motorized traffic, which more evenly distributed on
the street network compared to pre-treatment times. One reason for the overall traffic
increase potentially is a larger share of workers returning to offices rather than working
at home. Those now re-entering the streets have an incentive to use streets without a
new cycle lane that replaced a car lane.

5.1.4 Robustness

I run a variety of tests in order to assess the robustness of the results with respect to
aspects like sample composition, clustering, placebo treatments and variations of control
variables.

Standard Errors In my main results I cluster standard errors on level of 1km ×
1km grids spanning the city and weeks in order to account for errors to be spatially
and temporally correlated. In alternative specifications, I alter this cluster specification
by using 1) the twelve local districts of Berlin and weeks, 2) a station/week cluster,
3) standard errors only clustered on grid level, and 4) standard errors only clustered on
weekly level. These different types of clustering thus take into account different variations
of spatial clusters and of the time component. This means that the data then is treated
as independent across the respective cluster (Cameron et al., 2011). Results in Table A.9
show that inference is not affected. The effect on speed is still significant on at least a
5-percent, and mostly on a 1-percent level. The exclusion of the station with a larger
impact on the results (station 15 in Table A.2) in Panel B, also does not alter the results,
independent from the cluster specification.

Sample adjustments In my main estimations, I make some restrictions to the sample,
e.g. regarding the number of lanes.53 I vary the sample composition to check if and to
what extent different sampling structures may play a role. In the case of significantly
different outcomes, estimates are likely biased due to sample selection. Results with
different sample restrictions are shown in Table A.10. Firstly, columns 1 and 2 show
the results using the full sample (including one-lane-streets and four-lane-streets) and
the full set of 24 hours. While the volume coefficient is still not significant, the average

53I exclude all one- and four-lane streets.
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speed estimate becomes a little smaller in size. The most likely reason is that part of
the effect is offset in night hours, where there is not much traffic on the roads in general.
Secondly, I look at the full sample again, but now only for non-night times, i.e. from
5 a.m. until 8 p.m. as shown in columns 3 and 4. The formerly made presumption
regarding speed and its effect being slightly offset during night hours is confirmed, since
the coefficient in column 4 jumps back to the result found before. Taking into account
one-lane-streets and four-lane-streets, however, renders the volume coefficient significant
with a slightly larger coefficient size. Thus, comparing volume to the entirety of the
road system within Berlin shows that volume actually declined. The effect is driven by
one-lane-streets, which account for about 25 percent of the sample size.54 Thirdly, I only
consider streets without any type of prior cycling infrastructure. Then, treated streets
are such with a PUBL as the first type of cycling infrastructure and control streets are
such without any type of cycling infrastructure throughout the sampling period. The
reason to look at this sample restriction is twofold. Firstly, almost all treated stations had
no prior cycling infrastructure. Therefore, the control group is even more harmonized
in terms of characteristics. Secondly, while treated streets receive a direct alternative as
mode of transport, bikes do not have an own lane to use in the comparison group. If
the volume effect was e.g. larger, this might indicate that car drivers were nudged away
from using their car and potentially switched to using the bike. Alternatively, the lack
of a change in the effect might be interpreted as such that the new bike lane diverted
cyclists from other cycling routes or incentivized commuters to use the bicycle rather
than public transport. The sample size is considerably smaller in these specifications.
While the volume effect remains insignificant indicating that it is not former car drivers
now using the new cycle lanes, the coefficient for average speed becomes slightly larger.
This means that restricting the sample to streets with very similar characteristics shows
a slightly stronger effect than allowing for a more generalized set of streets in Berlin to
be part of the control group. Lastly, in my main estimations I exclude all stations, which
lie on a highway, thereby only comparing inner-city streets with each other. The last two
columns check whether results hold in the case of including highways into the control
group. Results are very close to the full-sample outcomes in the first two columns. The
size of the sample is now about twice as large compared to the standard sample and
coefficient sizes are similar. Though economically small, the effect on volume is now
positive and significant. One potential reason is that home office regulations in times of
the COVID-19 lockdown had a larger effect on the highways circling the city and this
effect is not entirely subsumed by the post-lockdown × stations interaction. That would
mean that highway travel was significantly reduced compared to inner-city commuting.

54The differentiation between results including streets with one, two, and three lanes compared to
results including streets with two, three, and four lanes are not shown here, but are available upon
request. Four-lane-streets themselves do not influence coefficients.
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However, since I would not consider highways to be part of an adequate control group,
this difference should not be over-interpreted. Overall, different sample specifications
suggest that results are not prone to selection bias.

Placebo tests A common approach in difference-in-differences models to assess the
robustness of results is the performance of placebo tests. Table A.11 presents the results
of such tests with respect to treatment timing. Therefore, I deleted all observations in
the actual treatment period starting in mid March, 2021. Then, treatment status was
assigned to all treated measuring stations for three different placebo-treatment dates.
The dates were chosen at intervals of about four months, starting in January of 2020.
The table shows that all placebo treatment effects are insignificant except for volume in
the case of treatment starting in April of 2019, which was about one year prior to actual
treatment. In this case, the coefficient is marginally significant with an economically
very small effect. Due to the large time interval between actual and placebo treatment
as well as the fact that the pre-trend assumption was more fuzzy in the case of volume,
I conclude that placebo tests generally support the main results.

Construction control In my main estimations I have so far used a construction
dummy as time-varying control variable, which switched to one, whenever there was
any type of construction during the observation period. This means that the dummy
does not take into account which kind of restriction was imposed on traffic participants.
However, there exist many different types of construction and accompanying restrictions.
It is likely that imposing a temporary stopping restriction on a street differently affects
the average speed of vehicles compared to blocking an entire lane. The reason why I use
a dummy variable is that it is not straight-forward to interpret a categorical construction
variable, since there does not exist a natural order, which tells about the severeness of
restriction. Table A.12 compares the results between using a construction dummy and
allowing the type of restriction to vary. The effect on volume remains insignificant and
very small in absolute size. Car speed is still significantly affected with about the same
coefficient size. The table also reveals that it is important to control for construction,
which significantly affects both, volume and speed. Thus, construction works with the
implication of increased congestion actually may nudge drivers away from their accus-
tomed routes.

Concerns about Standard TWFE Standard two-way FE estimations assume a con-
stant treatment effect, which causes potential biases, when it varies over affected unit and
time. This bias is caused by potentially negative weights assigned to the treatment effect
of single treated units, which then compose a weighted sum over all DID estimations.
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This becomes a problem if the average treatment effects are heterogeneous across groups
or periods (De Chaisemartin and d’Haultfoeuille, 2020). With respect to treated units,
I show in the leave-one-out analyses, as presented in Table A.2, that the results are ho-
mogeneous except for one station. Moreover, the initial event study design exhibits not
much variation of the effect over time after treatment. Therefore, when accounting for
the outlier, the respective bias does not seem to weigh heavy. However, I still compute
the weights as suggested by De Chaisemartin and d’Haultfoeuille (2020). All weights in
my regressions are positive, which suggests that this bias is of no relevance in this setting.
Apart from checking the weights, I also repeat my main analyses without heterogeneous
timing, which again addresses the potential problem when streets are treated at different
points in time. Now, all treated roads are assigned the same pre-treatment and post-
treatment period. As a consequence, all observations between March, 25th and June,
30th are deleted and the treatment indicator switches to one after that period for all
treated measuring stations. Table A.13 shows results for which I delete all observations
between the first and the last treatment date. The effect on volume and speed are very
similar to my main outcomes, which suggests that the staggered timing of treatment in
the main analyses does not pose a major problem.

5.2 Accidents

To get a first visual impression of the accidents data within Berlin, I plot the monthly
mean development of total accidents by treatment status in Figure A.4. Since about 40
percent of overall observations are zeroes and the maximum number of total accidents
per street and month is 20, the monthly mean is relatively low and ranges between .5
and 2. This means that the time variation of accidents is not very high. However, the
development of accidents between treated and non-treated streets in Berlin is similar
before and after treatment. Panels (b) and (c) show that the result is independent from
the means of transport involved. Apparently, the occurrence of accidents is cyclical with
a higher incidence in summer months.

Event study design I repeat the event study analysis with accidents, where the out-
come variable is the total number of accidents, the number of bike accidents or the
number of car accidents respectively. Accidents are aggregated on street level and are
only available on a monthly basis. Thus, the point estimates depict the differentials
between PUBL streets and non-PUBL streets per month. Figure 6 shows that the varia-
tion between treated and untreated streets is relatively small in absolute terms and that
there is no clear change in accidents after treatment. For the time before and after the
installation of a PUBL, the average difference between treated and untreated units is
never larger than three accidents. For bike accidents, the variation is even smaller. I also
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fail to detect differences if I take into account the severeness of injuries, which means
that for neither accidents with death or heavily injured persons nor for those without
such casualties, there is a change in cases (results not shown here). Thus, at least in
the short term of observations available, PUBLs did not lead to a significant decline of
accidents on those streets, but they also did not significantly contribute to other types of
accidents. However, this development does not take into account the number of cyclists
on these streets due to a lack of data available. If there was a significant increase in
cyclists, then the possibility of a decline in per-cyclist accidents could not be eliminated.
Repeating the analysis separately for each treated streets or the leave-one-out analysis
(not shown here) do not alter these results.
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(c) Car accidents

Figure 6: Effects on Accidents

Note: The graphs show the results of separate event study estimations as described in Equation 1.
Outcomes are overall accidents (Figure 6a), accidents with bicycles involved (Figure 6b), and accidents
with cars involved (Figure 6c). Blue dots represent the main estimation coefficients of leads and lags.
Confidence intervals are depicted as area shades in light (95% CI) and dark gray (90% CI). The vertical
solid black line shows the time of treatment, which is anchored at 0. Leads and lags are the time before
and after treatment in months. The estimations include street and month fixed effects as well as controls
for road condition at the time of the accident and the type of street (primary, secondary etc.). Standard
errors are clustered at 1km × 1km grid cell level spanning the city times a running month variable.



Synthetic control group design Green et al. (2016) analyzed the effects of a conges-
tion charge in London on traffic accidents and used the synthetic control group method
(Abadie et al., 2010) to identify the effects of interest. Their unit of treatment was the
city of London while other cities in the country served as synthetic control units. In
order to make my results more robust, I follow their approach using municipality level
data for Germany as a whole. Now, the outcome variable is the number of accidents
(and subgroups of such) per month and municipality.55 Berlin is subdivided into its 12
districts and treatment status is assigned in the month when the first street within the
district receives a PUBL. Since I exploit the variation of accidents between municipalities
over time, the outcome of this approach also subsumes potential spillover effects on other
streets rather than only actually treated ones. Due to the fact that treatment months
differ between Berlin’s districts, I run the synthetic control group method separately
for each district that was treated. The respective treatment unit and synthetic control
units are matched on various economic and socio-demographic indicators, which might
influence the decision to use certain modes of traffic and could influence the amount of
accidents in a region. Among those are the population of the municipality, the share of
Green Party voters, the share of space used for settlements and for traffic respectively, and
the number of unemployed in the region. Furthermore, the matching procedure uses the
annual number of accidents from 2018 to 2020.56 Tables A.14 to A.17 show the predictor
balances between each treated and the corresponding synthetic control group. For all
five municipalities the predictor matches are very close. Thus, in terms of predictors the
synthetic control group resembles the treated municipalities. Actual results by means of
a graph are shown in Figure 7. All sub-graphs support the conjecture that the synthetic
control groups are good matches for the treated units since the pre-treatment outcomes
of both follow parallel paths. Just like in the event study design, I fail to find signifi-
cant differences between treated units and controls after the installation of PUBLs. This
means that taking a more macro-economic view by considering entire treated districts
leads to the same outcome as the within city street-level evaluation. This strengthens
the finding of PUBLs not having an effect on total accidents. However, as noted earlier,
this ignores the number of cyclists on the streets and potentially implied decreases (in
case of an increase of bicycle users) of per-cyclist accidents.

55The reason not to run a synthetic control group design with traffic data is because I do not have
available traffic data for the whole of Germany, but only for Berlin.

56In Germany, there are more than 10.500 municipalities in about 400 districts. While most variables,
like population, voting behavior, and land use designation, are available on municipality level, some
information like the unemployment rate, is only publicly available on district level. Since municipali-
ties are administrative sub-divisions of districts, I assign the numbers of the district to the respective
municipality.
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Figure 7: Effects on Accidents using synthetic control method
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Figure 7: Effects on Accidents using synthetic control method

Note: The graphs show the results of separate synthetic control group estimations following Abadie
et al. (2010). Outcome variable is the total number of accidents. Treated units are the respective Berlin
districts as mentioned in each sub-caption in which a PUBL was installed. The time of treatment is
the month of the first placement of a PUBL within the respective district. The synthetic control unit
consists of potentially all municipalities in Germany outside of Berlin that did not receive a PUBL. The
matching between treatment and control units is based on the respective monthly outcome variable prior
to treatment, traffic space, space used for settlements, population, election participation, the share of
green party voters, the unemployment rate, and the absolute number of accidents from 2018 until 2020.
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6 Interpretation and discussion

Accidents The results indicate that accidents in absolute terms did not change as a
consequence of installing PUBLs. The only comparable paper to identify the effect of
bike lanes on accidents by Li et al. (2017) found a contradictory result with a total
increase of collisions of about 40% in the aftermath of new cycling ways in London. Due
to the fact that Li et al. (2017) have data about the number of cyclists on the treated
routes, they are also able to directly estimate an effect on the accident rate, which is
not possible in my case. As a consequence of an increase of cyclists, the authors do not
find a significant impact for this measure. With respect to PUBLs in general, Kraus
and Koch (2021) found an increase of cycling in European cities after the installment of
PUBLs of about 40% on average. The authors only looked at cycling in entire cities,
not taking into account the type of streets specifically affected. If the increase of cyclists
transfers to streets with PUBLs, that would mean that accident rates on PUBL streets
in Berlin actually have decreased by about 40%. One potential reason for the difference
between the London and the Berlin case may lie in the nature of the cycling lanes. While
the lanes I consider are separated from car traffic by physical barriers, many bike lanes
in London are merely indicated by blue paint on the streets. Taking all aspects into
account, my results suggest that cycling actually has become safer for users of PUBLs.
However, additional research on the matter is required due to the rather small sample
size and thereby limited variation of the accidents data.

Traffic I find a significant reduction of average speed on PUBL streets, which means
higher congestion levels. This increase in congestion seems to be primarily driven by the
reduction of space available for cars rather than a significant change of total traffic on
these streets. If anything, traffic on PUBL streets has slightly declined. In the economic
literature, in many cases there is no differentiation between congestion and traffic volume
since higher congestion levels in most instances are caused by an increase in traffic rather
than a change in infrastructure. In theory, both, the increase in car volume as well as an
increase in congestion, may lead to higher levels of local pollution. More cars mean more
combustion engines to pollute the air, while higher congestion may increase pollution as a
consequence of stop-and-go driving, which leads to higher fuel consumption or increased
tire wear (Tu et al., 2022; Sommer et al., 2018). Since the results found in this paper hint
toward increased congestion with slightly reduced traffic, conclusions about the effects
on air pollution cannot be drawn, and the link found e.g. between congestion, traffic
pollution, and infant mortality (Knittel et al., 2016; Currie and Walker, 2011) cannot be
applied without further ado.
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One unambiguous external cost factor of PUBLs, which is borne by car drivers, is
the price paid in terms of increased travel times. Based on my estimation coefficients,
a driver with an hypothetical one hour commute to work would need about one hour
and five to six minutes after the installation of cycle lanes on the routes she uses. Given
economic time costs, which are based on estimated values of travel time savings, of 9.37e
per hour in Germany (INRIX, 2021), this would lead to an increase of time costs up to
approximately 10.3e per one-way commute. This corresponds to a loss of about 2e per
day given that travel times from and to work do not differ. Assuming about 250 days of
work a year, this would add up to costs of about 500e for that specific driver. However,
these back-on-the-envelope calculations are very hypothetical, since this would require
all streets within the city to be equipped with new cycle lanes, which replace an existing
car lane. The longest PUBL, which was installed in Berlin, had a length of about 3.5
kilometers (Kantstr.). If you needed five minutes to pass this specific street before the
establishment of the cycle lane, then a 10-percent decrease in average car speed would
lose you about 30 seconds, and then take 5.5 minutes. The economic costs in this specific
case are therefore limited.

7 Conclusion

This paper is among the first to analyze causal effects of bike lanes on various outcomes,
which determine some of the most important aspects of life-quality in cities. My source
of exogenous variation are pop-up bike lanes in Berlin and I analyze their effect on con-
gestion, traffic volume, and accidents. While the number of cars experienced modest but
mostly insignificant declines, I find a significant reduction of average speed by between
8 and 12 percentage points. This effect reaches its maximum in peak travel hours with
average speed being slower by 16 percentage points. Accidents were not affected by the
installation of pop-up bike lanes. Due to the fact that I do not have street-specific data
on the number of cyclists, I cannot eliminate the possibility of a decline of accidents
per cyclist, which remains an open question for future research. Determining the effects
of the newly installed cycle lanes on local air quality is also beyond the scope of this
paper and remains an open question for future research. Overall, since economic costs
of increased travel times are rather modest, the benefits are likely to outweigh them in
the long run.

My findings have to be considered in the light of other consequences of the COVID-19
pandemic. Public transport has experienced a significant decline in trust and a decrease
in ridership numbers (Vitrano, 2021). While some commuters might have replaced the
tram or subway with their bikes, there also may exist the tendency to use the car instead.
Street-specific data on bicycle as well as public transport utilization would allow for a
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thorough analysis of the change in the modal split. Moreover, the development of the
modal shift in the long run, after the end of the COVID-19 pandemic and its limitations,
is unclear. Further research should therefore tackle the question of long-term effects of
replacing a car with a bike lane. On the basis of my research I furthermore conclude that
the fundamental law of road congestion, which suggests a unitary elastic relationship
between lane kilometers available and miles driven, does not necessarily apply in the
short run. In the original paper by Duranton and Turner (2011), a reduction of vehicle
lane kilometers does not relieve the streets sufficiently and as a consequence there is
an elevated level of congestion over the course of several decades. My findings suggest
that infrastructural changes do not directly lead to such changes but rather require a
relatively long time span.
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A Appendices

A.1 Appendix Figures
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Figure A.1: Main results including an interaction between Station ID and Lock-down
dummy

Note: The graphs show the results of separate event study estimations. The outcome variable in Figure
A.1a is the absolute number of vehicles while it is average vehicle speed in Figure A.1b. Blue dots
represent the main estimation coefficients of leads and lags. Confidence intervals are depicted as area
shades in light (95% CI) and dark gray (90% CI). The vertical solid black line shows the time of
treatment, which is anchored at 0. Leads and lags are the time before and after treatment in weeks.
The estimations include station and week fixed effects as well as an interaction variable between each
station and a post-lockdown dummy. The sample is restricted to streets with two or three lanes and all
streets within a radius of 1km to a treated street are excluded from the estimations. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable.
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Figure A.2: Effects separated by hour of the day - logged outcomes

Note: The graphs show the results of separate two-way fixed effects estimations for each hour of the
day. The outcome variable in Figure A.2a is the number of vehicles (in logs) while it is logged average
vehicle speed in Figure A.2b. Blue dots represent the treatment effect of each estimation. Confidence
intervals are depicted as area shades in light (95% CI) and dark gray (90% CI). The estimations include
station fixed effects (FE), date FE, a construction dummy, a control for changes in speed regulations,
and a station × post-lockdown interaction. The sample is restricted to streets with two or three lanes
and all streets within a radius of 1km to a treated street are excluded from the estimations. Standard
errors are clustered at 1km × 1km grid cell level spanning the city times a running week variable.
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Figure A.3: Effects separated by hour of the day - absolute outcomes

Note: The graphs show the results of separate two-way fixed effects estimations for each hour of the
day. The outcome variable in Figure A.3a is the number of absolute vehicles while it is average vehicle
speed in Figure A.3b. Blue dots represent the treatment effect of each estimation. Confidence intervals
are depicted as area shades in light (95% CI) and dark gray (90% CI). The estimations include station
fixed effects (FE), date FE, a construction dummy, a control for changes in speed regulations, and a
station × post-lockdown interaction. The sample is restricted to streets with two or three lanes and all
streets within a radius of 1km to a treated street are excluded from the estimations. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable.
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Figure A.4: Development of mean accidents by treatment status
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(c) Car accidents

Figure A.4: Development of mean accidents by treatment status

Note: The graphs show the development of average street-level accidents separated by treatment status.
They are presented by types of vehicles involved in the accidents, more precisely by overall accidents
(A.4a), bike accidents (A.4b), and accidents with cars involved (A.4c). The vertical dashed line represents
the timing of the installation of the first PUBL in the city.
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Figure A.5: Effects on Bike and Car Accidents using synthetic control method
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Figure A.5: Effects on Bike and Car Accidents using synthetic control method

Note: The graphs show the results of separate synthetic control group estimations following Abadie et al. (2010).
Outcome variables are accidents with bicycles involved in the left panel and those with cars involved in the
right panel (those are not mutually exclusive and may partly contain the same accidents). Treated units are
the respective Berlin districts as mentioned in each sub-caption in which a PUBL was installed. The time of
treatment is the month of the first placement of a PUBL within the respective district. The synthetic control
unit consists of potentially all municipalities in Germany outside of Berlin that did not receive a PUBL. The
matching between treatment and control units is based on the respective monthly outcome variable prior to
treatment, traffic space, space used for settlements, population, election participation, the share of green party
voters, the unemployment rate, and the absolute number of accidents from 2018 until 2020.
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A.2 Appendix Tables

Volume Speed
(1) (2) (3) (4)

Panel A: Outcome in absolute values
1(PU lane) -53.82∗∗∗ 0.550 -5.122∗∗∗ -4.148∗∗∗

(5.354) (7.547) (0.311) (0.538)
N 20196 20196 20194 20194
R2 0.901 0.920 0.816 0.844
Stations 216 216 216 216
Interaction No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0292∗∗∗ 0.00788 -0.131∗∗∗ -0.123∗∗∗

(0.00890) (0.0135) (0.00831) (0.0139)
N 20194 20194 20194 20194
R2 0.607 0.664 0.750 0.783
Stations 216 216 216 216
Interaction No Yes No Yes

Table A.1: TWFE: Effect on Volume and Speed in absolute and logged terms - Values
aggregated to weekly levels

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with vehicle volume and vehicle speed as dependent variables and data aggregated to weekly
levels. Panel A shows the coefficients of interest with outcomes in absolute terms. Panel B shows the same
for logged outcome variables. Even columns include an interaction term between a unique measuring
station identifier and a post-lockdown dummy variable while uneven columns do not. All estimations
include station fixed effects (FE), date FE, hour FE, a dummy whether construction takes place, and
an indicator for a change in speed limits. Stations within a one kilometer radius of a treated street are
excluded and the sample is restricted to streets with two or three lanes. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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(1) (2)
Volume Speed

Station 1 -0.00500 -0.125∗∗∗

(-0.39) (-8.93)
Station 2 -0.00510 -0.129∗∗∗

(-0.39) (-8.69)
Station 3 -0.00874 -0.124∗∗∗

(-0.67) (-8.15)
Station 4 -0.000635 -0.121∗∗∗

(-0.05) (-8.10)
Station 5 -0.0183 -0.147∗∗∗

(-1.60) (-10.52)
Station 6 -0.00569 -0.120∗∗∗

(-0.45) (-8.23)
Station 7 -0.0114 -0.120∗∗∗

(-0.90) (-8.02)
Station 8 -0.00390 -0.115∗∗∗

(-0.30) (-7.45)
Station 9 -0.00203 -0.123∗∗∗

(-0.15) (-7.86)
Station 10 -0.00577 -0.117∗∗∗

(-0.45) (-7.86)
Station 11 0.00779 -0.133∗∗∗

(0.61) (-8.72)
Station 12 -0.00140 -0.128∗∗∗

(-0.11) (-9.05)
Station 13 -0.00574 -0.124∗∗∗

(-0.45) (-8.34)
Station 14 -0.00648 -0.120∗∗∗

(-0.49) (-7.85)
Station 15 -0.00590 -0.0863∗∗∗

(-0.45) (-6.48)
Station 16 -0.00579 -0.123∗∗∗

(-0.46) (-8.43)
Station 17 -0.00564 -0.122∗∗∗

(-0.45) (-8.36)
Station 18 -0.00556 -0.123∗∗∗

(-0.44) (-8.47)
Station 19 -0.00619 -0.123∗∗∗

(-0.49) (-8.40)
Station 20 -0.00567 -0.119∗∗∗

(-0.45) (-8.40)
Station 21 -0.00506 -0.118∗∗∗

(-0.40) (-8.34)
Station 22 -0.00567 -0.123∗∗∗

(-0.45) (-8.30)
Station 23 -0.00520 -0.123∗∗∗

(-0.41) (-8.33)
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.2: Results of Leave-one-out analyses by station



All Stations No outlier stations
Volume Speed Volume Speed

(1) (2) (3) (4) (5) (6) (7) (8)
ln abs ln abs ln abs ln abs

1(PU lane) -0.00907 -7.060 -0.121∗∗∗ -4.109∗∗∗ -0.0117 -6.540 -0.0851∗∗∗ -2.711∗∗∗

(0.0119) (7.999) (0.0145) (0.540) (0.0124) (8.644) (0.0134) (0.463)
N 771418 772950 771404 771404 767695 769227 767681 767681
R2 0.617 0.740 0.602 0.766 0.618 0.741 0.602 0.767
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 215 215 215 215 214 214 214 214
Interaction Yes Yes Yes Yes Yes Yes Yes Yes

Table A.3: TWFE results at peak hours

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with vehicle volume and vehicle speed as dependent variables. Only peak traffic hours
between 6 a.m. and 9 a.m. as well as between 4 p.m. and 7 p.m. are considered. All estimations include
station fixed effects (FE), date FE, hour FE, a dummy whether construction takes place, an indicator
for a change in speed limits, and an interaction term between a station identifier and a post-lockdown
dummy. Columns 1-4 include all stations of the main sample, columns 5-8 exclude outlier stations
as identified by leave-on-out analyses. Stations within a one kilometer radius of a treated street are
excluded and the sample is restricted to streets with two or three lanes. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Log outcomes Abs. outcomes

(1) (2) (3) (4)
Volume Speed Volume Speed

hour 0 0.170∗∗∗ -0.0786∗∗∗ 18.50∗∗∗ -3.001∗∗∗

(8.00) (-6.93) (4.71) (-6.44)
hour 1 0.158∗∗∗ -0.0765∗∗∗ 11.61∗∗∗ -2.915∗∗∗

(7.11) (-6.94) (4.35) (-6.30)
hour 2 0.172∗∗∗ -0.0677∗∗∗ 7.347∗∗∗ -2.610∗∗∗

(6.88) (-5.96) (3.45) (-5.55)
hour 3 0.106∗∗∗ -0.0495∗∗∗ 3.510 -1.835∗∗∗

(5.39) (-4.86) (1.62) (-4.38)
hour 4 0.0707∗∗∗ -0.0612∗∗∗ -1.335 -2.336∗∗∗

(4.68) (-5.98) (-0.60) (-5.45)
hour 5 0.00323 -0.0612∗∗∗ -22.52∗∗∗ -2.324∗∗∗

(0.30) (-5.80) (-4.38) (-5.11)
hour 6 -0.00452 -0.0992∗∗∗ -21.15∗∗ -3.507∗∗∗

(-0.38) (-7.86) (-2.94) (-7.07)
hour 7 0.00145 -0.0970∗∗∗ -17.59∗ -3.315∗∗∗

(0.10) (-6.51) (-2.03) (-5.75)
hour 8 -0.00224 -0.119∗∗∗ -15.32 -3.979∗∗∗

(-0.13) (-6.95) (-1.54) (-6.39)
hour 9 -0.00199 -0.121∗∗∗ -6.457 -4.084∗∗∗

(-0.13) (-8.04) (-0.71) (-7.33)
hour 10 -0.00640 -0.121∗∗∗ -9.718 -4.031∗∗∗

(-0.44) (-7.69) (-1.32) (-7.04)
hour 11 -0.0103 -0.131∗∗∗ -11.20 -4.378∗∗∗

(-0.67) (-8.05) (-1.51) (-7.43)
hour 12 0.000502 -0.127∗∗∗ -8.404 -4.232∗∗∗

(0.03) (-8.31) (-1.04) (-7.58)
hour 13 0.00918 -0.139∗∗∗ -13.91 -4.537∗∗∗

(0.32) (-8.58) (-1.65) (-7.72)
hour 14 -0.0203 -0.145∗∗∗ -9.566 -4.795∗∗∗

(-1.42) (-8.08) (-1.04) (-7.60)
hour 15 -0.0201 -0.155∗∗∗ -14.65 -5.054∗∗∗

(-1.14) (-7.94) (-1.35) (-7.38)
hour 16 -0.0257 -0.158∗∗∗ -12.44 -5.179∗∗∗

(-1.73) (-8.88) (-1.13) (-8.39)
hour 17 -0.0278∗ -0.137∗∗∗ -7.773 -4.561∗∗∗

(-2.14) (-7.97) (-0.77) (-7.54)
hour 18 -0.0151 -0.125∗∗∗ 4.003 -4.282∗∗∗

(-1.20) (-7.32) (0.43) (-7.14)
hour 19 0.0150 -0.113∗∗∗ 25.17∗∗ -4.008∗∗∗

(1.21) (-7.82) (3.05) (-7.23)
hour 20 0.0415∗∗ -0.104∗∗∗ 26.37∗∗∗ -3.752∗∗∗

(3.15) (-7.59) (3.62) (-7.07)
hour 21 0.0659∗∗∗ -0.0921∗∗∗ 20.90∗∗ -3.406∗∗∗

(3.36) (-7.15) (3.16) (-6.57)
hour 22 0.111∗∗∗ -0.107∗∗∗ 29.11∗∗∗ -3.908∗∗∗

(4.89) (-6.98) (4.15) (-7.09)
hour 23 0.127∗∗∗ -0.0929∗∗∗ 29.04∗∗∗ -3.555∗∗∗

(5.97) (-7.45) (4.35) (-6.99)
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.4: Results of hourly estimates



Cars Trucks
Volume Speed Volume Speed

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Outcome in absolute values
1(PU lane) -52.26∗∗∗ -10.70 -4.715∗∗∗ -4.290∗∗∗ -1.818 3.497 0.337 0.262

(5.131) (7.457) (0.313) (0.545) (1.785) (2.723) (0.233) (0.350)
N 1546526 1546526 1543307 1543307 1546526 1546526 1536225 1536225
R2 0.735 0.748 0.752 0.767 0.546 0.559 0.558 0.570
Stations 215 215 215 215 215 215 215 215
Interaction No Yes No Yes No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0219∗∗∗ -0.0112 -0.116∗∗∗ -0.124∗∗∗ -0.0499∗∗ 0.0249 0.0154∗ 0.00170

(0.00827) (0.0144) (0.00880) (0.0144) (0.0214) (0.0320) (0.00858) (0.0119)
N 1543329 1543329 1543307 1543307 1536335 1536335 1532624 1532624
R2 0.622 0.643 0.579 0.601 0.601 0.618 0.489 0.500
Stations 215 215 215 215 215 215 215 215
Interaction No Yes No Yes No Yes No Yes

Table A.5: TWFE effects for cars and trucks

Note: The table presents the coefficients of the treatment effects of two-way fixed effects estimations
for cars and trucks separately. Panel A shows the coefficients of interest with outcomes in absolute
terms. Panel B shows the same for logged outcome variables. Even columns include an interaction
term between a unique measuring station identifier and a post-lockdown dummy variable while uneven
columns do not. All estimations include station fixed effects (FE), date FE, hour FE, a dummy whether
construction takes place, and an indicator for a change in speed limits. Stations within a one kilometer
radius of a treated street are excluded and the sample is restricted to streets with two or three lanes.
Standard errors are clustered at 1km × 1km grid cell level spanning the city times a running week
variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Only 2 lanes Only 3 lanes
(1) (2) (3) (4)

Volume Speed Volume Speed
1(PU lane) 0.00195 -0.132∗∗∗ -0.0253 -0.0951∗∗∗

(0.0156) (0.0200) (0.0176) (0.0156)
N 1282105 1282065 261388 261388
R2 0.623 0.614 0.699 0.537
Stations treated 16 16 7 7
Stations Overall 180 180 35 35
Interaction Yes Yes Yes Yes

Table A.6: TWFE results with different lane samples

Note: The table presents the coefficients of the treatment effects of two-way fixed effects estimations on
vehicle volume and speed. Columns 1 and 2 only include two-lane streets in the sample. Columns 3 and
4 only include three-lane streets. All estimations include station fixed effects (FE), date FE, hour FE, a
dummy whether construction takes place, an indicator for a change in speed limits, and an interaction
term between a station identifier and a post-lockdown dummy. Stations within a one kilometer radius
of a treated street are excluded. Standard errors are clustered at 1km × 1km grid cell level spanning
the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

50



750m 1km 1.5km
(1) (2) (3) (4) (5) (6)

Volume Speed Volume Speed Volume Speed
1(PU lane) 0.0809∗∗∗ 0.00526 0.0946∗∗∗ -0.00740 0.0177 -0.00779

(0.0249) (0.0109) (0.0202) (0.00809) (0.0161) (0.00759)
N 2416577 2416351 2416577 2416351 2416577 2416351
R2 0.798 0.621 0.798 0.621 0.798 0.621
Stations treated 54 54 84 84 129 129
Stations Overall 343 343 343 343 343 343
Interaction Yes Yes Yes Yes Yes Yes

Table A.7: TWFE results for surrounding stations

Note: The table presents the coefficients of the treatment effects of two-way fixed effects estimations on
vehicle volume and speed for streets surrounding the actually treated ones. Streets within a radius of
750m, 1km, and 1.5km respectively are now considered as treated units. Streets that actually received
a PUBL are excluded from the estimations. All estimations include station fixed effects (FE), date FE,
hour FE, a dummy whether construction takes place, an indicator for a change in speed limits, and an
interaction term between a station identifier and a post-lockdown dummy. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

All Stations No outlier stations
(1) (2) (3) (4)

Volume Speed Volume Speed
1(PU lane) -0.0268∗ -0.130∗∗∗ -0.0363∗∗ -0.0932∗∗∗

(0.0140) (0.0142) (0.0158) (0.0145)
N 1690820 1690780 1673979 1673939
R2 0.647 0.578 0.647 0.577
Stations 215 215 213 213
Interaction Yes Yes Yes Yes

Table A.8: TWFE long-term results

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations on vehicle volume and speed for a sample including the months from March until May
of 2021. Columns 1 and 2 include all stations of the main sample, columns 3 and 4 exclude outlier
stations as identified by leave-on-out analyses. All estimations include station fixed effects (FE), date
FE, hour FE, a dummy whether construction takes place, an indicator for a change in speed limits, and
an interaction term between a station identifier and a post-lockdown dummy. Stations within a one
kilometer radius of a treated street are excluded and the sample is restricted to streets with two or three
lanes. Standard errors are clustered at 1km × 1km grid cell level spanning the city times a running
week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Station*week Districts*week Grids Week
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Outcomes with all stations
1(PU lane) -0.00540 -0.122∗∗∗ -0.00540 -0.122∗∗∗ -0.00540 -0.122∗∗ -0.00540 -0.122∗∗∗

(0.0115) (0.0131) (0.0138) (0.0142) (0.0301) (0.0469) (0.0103) (0.00791)
N 1543493 1543453 1543493 1543453 1543493 1543453 1543493 1543453
R2 0.650 0.607 0.650 0.607 0.650 0.607 0.650 0.607
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 215 215 215 215 215 215 215 215
Interaction Yes Yes Yes Yes Yes Yes Yes Yes
Outcome Volume Speed Volume Speed Volume Speed Volume Speed
Panel B: Outcomes w/o outliers
1(PU lane) -0.00590 -0.0863∗∗∗ -0.00590 -0.0863∗∗∗ -0.00590 -0.0863∗∗ -0.00590 -0.0863∗∗∗

(0.0122) (0.0117) (0.0141) (0.0108) (0.0314) (0.0346) (0.0107) (0.00713)
N 1536042 1536002 1536042 1536002 1536042 1536002 1536042 1536002
R2 0.650 0.607 0.650 0.607 0.650 0.607 0.650 0.607
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 214 214 214 214 214 214 214 214
Interaction Yes Yes Yes Yes Yes Yes Yes Yes
Outcome Volume Speed Volume Speed Volume Speed Volume Speed

Table A.9: TWFE results with different standard error clusters

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with varying clusters of standard errors as described in the column headers. Panel A shows
the coefficients of interest with all stations from the main sample. Panel B shows outcomes with outlier
stations as identified by leave-on-out analyses being excluded from the sample. All estimations include
station fixed effects (FE), date FE, hour FE, a dummy whether construction takes place, an indicator
for a change in speed limits, and an interaction term between a station identifier and a post-lockdown
dummy. Stations within a one kilometer radius of a treated street are excluded and the sample is
restricted to streets with two or three lanes.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Full sample & hours Full sample Cycling Infr. Highways
(1) (2) (3) (4) (5) (6) (7) (8)

Volume Speed Volume Speed Volume Speed Volume Speed
1(PU lane) 0.0206 -0.102∗∗∗ -0.0303∗∗ -0.116∗∗∗ -0.0107 -0.145∗∗∗ 0.0251∗∗ -0.0935∗∗∗

(0.0139) (0.0126) (0.0143) (0.0144) (0.0135) (0.0151) (0.0123) (0.0141)
N 2980500 2980207 2002402 2002210 718615 718609 2962999 2962168
R2 0.849 0.621 0.786 0.630 0.678 0.720 0.847 0.715
Stations treated 24 24 24 24 19 19 23 23
Stations Overall 283 283 283 283 102 102 450 450
Interaction Yes Yes Yes Yes Yes Yes Yes Yes

Table A.10: TWFE results with different samples

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with varying sample compositions. Columns 1 & 2 show results with all 24 hours of the day
and the full sample including one and four-lane streets except for stations within a 1km radius of treated
streets. Columns 3 & 4 make the same restrictions, but now only with times between 5 a.m. and 8 p.m.
In columns 5 & 6 the sample is restricted to streets without bike lanes prior to treatment. Outcomes in
columns 7 & 8 include observations from highways. All estimations include station fixed effects (FE),
date FE, hour FE, a dummy whether construction takes place, an indicator for a change in speed limits,
and an interaction term between a station identifier and a post-lockdown dummy. Standard errors are
clustered at 1km × 1km grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Jan2020 Aug2019 Apr2019
(1) (2) (3) (4) (5) (6)

Volume Speed Volume Speed Volume Speed
1(PU lane) -0.00917 -0.0106 -0.00963 -0.00731 -0.0180∗∗ 0.00867

(0.00817) (0.00654) (0.00708) (0.00525) (0.00724) (0.00640)
N 948552 948543 948552 948543 948552 948543
R2 0.650 0.606 0.650 0.606 0.650 0.606
Stations treated 23 23 23 23 23 23
Stations Overall 215 215 215 215 215 215

Table A.11: TWFE Placebo tests (treatment starts in respective month)

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with treatment being simulated at different points in time. All estimations include station
fixed effects (FE), date FE, hour FE, a dummy whether construction takes place, and an indicator for a
change in speed limits. Stations within a one kilometer radius of a treated street are excluded and the
sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km × 1km grid
cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Volume Speed
(1) (2) (3) (4)

1(PU lane) -0.00540 -0.00592 -0.122∗∗∗ -0.122∗∗∗

(0.0126) (0.0128) (0.0144) (0.0144)
Construction dummy -0.0445∗∗∗ -0.0487∗∗∗

(0.00652) (0.00480)
Construction -0.00722∗∗∗ -0.00810∗∗∗

(0.00152) (0.000942)
N 1543493 1543493 1543453 1543453
R2 0.650 0.650 0.607 0.604
Stations 215 215 215 215
Interaction Yes Yes Yes Yes

Table A.12: TWFE results construction control

Note: The table compares the coefficients of the treatment effects of separate two-way fixed effects
estimations with variations of the construction control. Uneven columns include a construction dummy
independent from type of construction. Even columns show results with a construction variable, which
explicitly controls for type of construction. All estimations include station fixed effects (FE), date FE,
hour FE, an indicator for a change in speed limits, and an interaction term between a station identifier
and a post-lockdown dummy. Stations within a one kilometer radius of a treated street are excluded
and the sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km ×
1km grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Volume Speed
(1) (2) (3) (4)

1(PU lane) -0.0378∗∗∗ -0.00818 -0.127∗∗∗ -0.117∗∗∗

(0.00808) (0.0274) (0.00991) (0.0400)
N 1328753 1328753 1328739 1328739
R2 0.626 0.652 0.588 0.613
Stations treated 23 23 23 23
Stations Overall 215 215 215 215
Interaction No Yes No Yes

Table A.13: TWFE results without heterogeneous timing

Note: The table presents the coefficients of the treatment effects of separate two-way fixed effects
estimations with homogeneous treatment timing. Therefore, all observations between the first and the
last installation date of a PUBL are deleted from the sample. Even columns include an interaction
term between a unique measuring station identifier and a post-lockdown dummy variable while uneven
columns do not. All estimations include station fixed effects (FE), date FE, hour FE, and an indicator
for a change in speed limits. Stations within a one kilometer radius of a treated street are excluded and
the sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km × 1km
grid cell level spanning the city times a running week variable.
t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Treated Synthetic
Traffic space .2637255 .1923878
Space settlements .6705883 .6443015
Population 290083 290159.5
Election participation .773 .743195
Green Party Voters 21.28861 16.09941
Unemp. rate 9.7 9.403
Accidents 2018 1666 1693.033
Accidents 2019 1675 1709.326
Accidents 2020 1408 1405.261

Table A.14: Friedrichshain-Kreuzberg

Note: The table shows the predictor balance between treated unit and synthetic control group of the
synthetic control group method with Friedrichshain-Kreuzberg as treated district.

Treated Synthetic
Traffic space .1331137 .1409323
Space settlements .5376865 .5178513
Population 409454 409117
Election participation .793 .80261
Green Party Voters 14.6013 13.7961
Unemp. rate 9.7 8.8952
Accidents 2018 1578 1591.279
Accidents 2019 1552 1518.664
Accidents 2020 1350 1409.146

Table A.15: Pankow

Note: The table shows the predictor balance between treated unit and synthetic control group of the
synthetic control group method with Pankow as treated district.
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Treated Synthetic
Traffic space .1941568 .1835291
Space settlements .5084248 .5557473
Population 342950 342976.5
Election participation .786 .750991
Green Party Voters 15.35358 14.92943
Unemp. rate 9.7 9.3712
Accidents 2018 2013 2018.721
Accidents 2019 2048 2027.964
Accidents 2020 1644 1660.739

Table A.16: Charlottenburg-Wilmersdorf

Note: The table shows the predictor balance between treated unit and synthetic control group of the
synthetic control group method with Charlottenburg-Wilmersdorf as treated district.

Treated Synthetic
Traffic space .0966434 .1098114
Space settlements .3503845 .3659922
Population 273817 273322
Election participation .766 .727015
Green Party Voters 7.744833 8.189585
Unemp. rate 9.7 9.2366
Accidents 2018 1115 1155.677
Accidents 2019 1119 1140.264
Accidents 2020 1128 1092.36

Table A.17: Treptow-Köpenick

Note: The table shows the predictor balance between treated unit and synthetic control group of the
synthetic control group method with Treptow-Köpenick as treated district.

Treated Synthetic
Traffic space .1684843 .1846853
Space settlements .8032495 .7053794
Population 328666 327763.5
Election participation .708 .757145
Green Party Voters 12.85852 11.76067
Unemp. rate 9.7 9.6853
Accidents 2018 1230 1266.639
Accidents 2019 1289 1287.227
Accidents 2020 1116 1121.362

Table A.18: Neukölln

Note: The table shows the predictor balance between treated unit and synthetic control group of the
synthetic control group method with Neukölln as treated district.
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