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Abstract

The shape of trait distributions may inform about the selective forces that structure ecological communi-

ties. Here, we present a new moment-based approach to classify the shape of observed biomass-weighted trait

distributions into normal, peaked, skewed, or bimodal that facilitates spatio-temporal and cross-system com-

parisons. Our observed phytoplankton trait distributions exhibited substantial variance and were mostly

skewed or bimodal rather than normal. Additionally, mean, variance, skewness und kurtosis were strongly

correlated. This is in conflict with trait-based aggregate models that often assume normally distributed trait

values and small variances. Given these discrepancies between our data and general model assumptions we

used the observed trait distributions to test how well different aggregate models with first- or second-order

approximations and different types of moment closure predict the biomass, mean trait, and trait variance

dynamics using weakly or moderately nonlinear fitness functions. For weakly non-linear fitness functions

aggregate models with a second-order approximation and a data-based moment closure that relied on the

observed correlations between skewness and mean, and kurtosis and variance predicted biomass and often

also mean trait changes fairly well and better than models with first-order approximations or a normal-based

moment closure. In contrast, none of the models reflected the changes of the trait variances reliably. Aggre-

gate model performance was often also poor for moderately nonlinear fitness functions. This questions a gen-

eral applicability of the normal-based approach, in particular for predicting variance dynamics determining

the speed of trait changes and maintenance of biodiversity. We evaluate in detail how and why better

approximations can be obtained.

Trait-based ecology greatly contributes to a detailed

understanding of population and community dynamics

(Norberg 2004). Functional traits are used to link species to

their functions in the ecosystem (McGill et al. 2006; Hille-

brand and Matthiessen 2009; Enquist et al. 2015). They are

well-defined, measureable properties of species (e.g., body

size, edibility, or diet selectivity) affecting their performance,

trophic interactions and responses to environmental changes

and hence community dynamics. The standing variation of

an individual trait, i.e., the presence and abundance of dif-

ferent trait values within a community at a given moment

in time, can be represented by a single continuous trait dis-

tribution. The latter can be described by its central moments:

The mean indicates the trait value of the most abundant spe-

cies when the trait distribution is unimodal and fairly

symmetric. The variance denotes the functional diversity

present within a community. The symmetry and peakedness

of a trait distribution can be further estimated from its skew-

ness and kurtosis.

The mean, variance and shape of a trait distribution may

change in response to selection and inform in a concise and

comparable way about the dominant trait values, the actual trait

range (functional diversity) and the type of prevailing selection

pressure (e.g., stabilizing or disruptive). This implies a demand

to describe systematically the shape of trait distributions

enabling spatio-temporal and cross-system comparisons. Using

standard statistical tests for this purpose often fails because the

number of observations is typically unknown for plankton sam-

ples or changes pronouncedly along the trait axis. Therefore, we

developed a method that enables the classification of the shape

of trait distributions into normal, peaked, skewed, or bimodal

solely based on the first four central moments (mean, variance,

skewness, and kurtosis) of the trait distribution. These measures

are obtained easily and reliably from plankton observations and

it is not required to define a priori a distribution to which the

data are fitted or tested against.
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Knowledge on the shape of trait distributions is also essential

when using trait-based aggregate models. Full trait distribution

models that account for all possible trait values can describe the

dynamics of the mean, variance and shape of trait distributions

most accurately (Coutinho et al. 2016). However, their rather

high complexity may require long simulation times and may

prevent a general understanding of the model behavior. Thus,

ecologists recently advocated trait-based aggregate models (also

called dynamic trait or gradient dynamics models) to keep

model complexity low and facilitate insights into the mecha-

nisms underlying changes in the community composition.

Their equations inform directly about the properties of the fit-

ness landscape and trait distribution that drive the temporal

dynamics of the summed biomasses, mean trait values, and trait

variances (Wirtz and Eckhardt 1996; Merico et al. 2009). Thus,

the strong reduction in the system’s dimensionality promotes

rigorous analytic considerations and computational efficiency.

Such models have been used successfully to better understand

principal patterns in idealized or natural communities, includ-

ing eco-evolutionary dynamics and biomass-trait feedbacks. For

example, they were used to study the mutual adjustments of

traits in predator and prey communities and their conse-

quences for community dynamics (Tirok et al. 2011) and bio-

geographical differences in the size composition of

phytoplankton communities (Acevedo-Trejos et al. 2015) (for

other applications see below). When tailored to specific systems

either entire communities were considered (Merico et al. 2009;

Wirtz and Sommer 2013; Smith et al. 2016) or functional

groups covering more restricted trait ranges (Norberg et al.

2001; Terseleer et al. 2014).

The appealingly low number of state variables and thus

reduction in model complexity is achieved at the cost of mak-

ing simplifying assumptions about the shape of the trait distri-

bution and the curvature of the relationship between trait

values and per capita net growth rates, i.e., the fitness func-

tion. Inevitably, this reduces the accuracy of the model results.

Here, we evaluate under which conditions major inaccuracies

are to be expected and how they can be reduced. In line with

the approach of quantitative genetics (Lande 1976, 1982)

community ecologists often assumed the trait distributions to

be normal and to exhibit small variances and a constant

shape. This facilitates to approximate the trait distributions by

up to their first four central moments and to resolve the fitness

functions only locally around the mean trait value. However,

in contrast to the distribution of quantitative traits at the pop-

ulation level where some inherent justification for the

assumption of normality exists and its limitations are rather

well understood (e.g., Lande 1976; Abrams et al. 1993; Turelli

and Barton 1994) there is no clear reason or strong empirical

evidence that trait values are generally normally distributed at

the community level. A thoroughly testing for normality and

the consequences of potential deviations is still lacking.

Thus, the second objective of this study is to evaluate to

what extent aggregate models can adequately represent the

changes of the biomasses, mean trait values and trait varian-

ces in real ecosystems. This implies evaluating (1) the vari-

ance and shape of trait distributions observed in natural

ecosystems using the abovementioned classification method,

and (2) the deviations arising between full and aggregate

models due to the approximations made.

We put the first issue into practice using comprehensive

observations of the distributions of two traits in phytoplank-

ton communities from two different habitats. Phytoplankton

communities provide an ideal testing ground for this pur-

pose. They contribute about half of the global primary pro-

duction and their dynamics have often been modeled using

trait-based approaches (Wirtz and Eckardt 1996; Merico et al.

2009; Kremer and Klausmeier 2013; Terseleer et al. 2014).

Furthermore, they typically undergo pronounced changes in

response to abiotic and biotic forcing that may lead to a

large range of differently shaped trait distributions. We use

high frequency long-term measurements in two temperate

freshwater bodies differing in their physico-chemical proper-

ties and algal growth conditions, large deep Lake Constance

(1979–1999, 853 sampling dates) and small Saidenbach Res-

ervoir (1975–2002, 1259 sampling dates). Generalizing our

findings, we consider two different traits, cell size (i.e., vol-

ume) and maximum length. They are closely related to the

usually most influential processes in phytoplankton dynam-

ics, growth and grazing losses. We test the validity of the

aggregate model assumptions by evaluating the magnitude

of the trait variance, the relative share of normal-like,

peaked, skewed, and bimodal trait distributions and correla-

tions among lower and higher moments.

Subsequently, we use the observed trait distributions to

test how well the results of different aggregate models fit

with the ones of a corresponding full model. This depends

on the type of aggregate model and fitness function

employed. The fitness function may have a complex shape

and is model specific as it depends typically in a non-linear

way on the different factors influencing net growth (e.g.,

light, nutrients, grazing, and sedimentation for phytoplank-

ton). To achieve nevertheless generalizable results, we com-

bine four types of aggregate models of increasing complexity

with two common types of non-linearities with high ecologi-

cal relevance representing our fitness functions. We consider

a weak non-linearity represented by an allometric relation-

ship between growth rates and cell volume, and a moder-

ately non-linear, logistic fitness function. The latter reflects a

rather smooth transition along the trait gradient (here maxi-

mum cell length) from high to low values such as the feed-

ing rate on edible and less edible prey. The outcome of the

aggregate models is compared to a full model accounting for

the entire fitness landscape and the full shape of the trait

distribution observed at a distinct sampling date (i.e., we do

not aim to estimate potential long-term changes in the trait

distribution due to selection pressure imposed by the fitness

function).
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The reduction in complexity achieved by aggregate mod-

els restricts resolving potentially non-linear fitness functions

only locally around the current mean trait value and approx-

imating the exact shape of the trait distribution by the first

moments (Coutinho et al. 2016). Different types of aggregate

models exist along a gradient of increasing complexity and

precision depending on the accuracy of approximation and

moment closure involved. Models using a first order-

approximation consider only temporal changes in the total

biomasses and mean trait values, whereas second-order

approximations account also for the temporal changes in

the trait variance. A first-order approximation implies that

changes in the mean trait value are only based on the local

fitness gradient, i.e., the first derivative of the fitness func-

tion evaluated at the mean trait value. Furthermore, the trait

variance is either kept constant in time or estimated from

the mean trait value. Hence, reliable results can generally be

expected for rather linear fitness functions or small standing

trait variation so that the trait distributions at a given time

or location are well represented by their mean (Bolnick et al.

2011). It remains, however, to be tested whether these con-

ditions prevail in natural systems.

Second-order approximations account additionally for the

second derivative of the fitness function. This enables them

to capture to some degree also non-linearities in the fitness

function. Furthermore, they usually account for the variance

and its dynamics and resolve the shape of the trait distribu-

tions to a higher degree by considering also the skewness

and kurtosis. The latter can be achieved by assuming a par-

ticular shape of the trait distribution, e.g., normal, or by

using data-based relationships between skewness and mean,

and kurtosis and variance. Thus, aggregate models based on

such a second-order approximation are expected to perform

well for weakly non-linear fitness functions combined with

rather normal trait distributions, or trait distributions with

distinct correlations between the lower and higher moments

enabling a data-based moment closure. Small standing var-

iances will also improve the accuracy of the predictions

(Wirtz and Eckhardt 1996; Norberg et al. 2001; Tirok et al.

2011; Coutinho et al. 2016).

Using our novel and robust tool to classify the shape of

trait distributions into four common types, we show that

non-normal phytoplankton trait distributions with substan-

tial variance are the rule rather than the exception. We

found a high prevalence of skewness and multi- or bimodal-

ity for both traits and both habitats and pronounced tempo-

ral changes in the shape of trait distributions. Hence,

aggregate models assuming normal trait distributions likely

deliver inaccurate results. For a weakly non-linear fitness

function, the arising errors could be counteracted best using

second-order approximations with a data-based moment clo-

sure. They yielded reliable predictions for the temporal bio-

mass changes and partly also the trait changes but changes

in the variance were prone to substantial errors. For

moderately non-linear fitness functions, the reliability of

aggregate models has to be severely questioned and we sug-

gest a combination with species sorting models (Tirok and

Gaedke 2010) to reduce the variances of the individual trait

distributions and the non-linearities of the individual fitness

functions (Klauschies et al. 2016). Our results and conclu-

sions may also apply to other fields as aggregate approaches

were also used in e.g., spatial ecological (Gandhi et al. 2000)

and social-economical models (Wirtz and Lemmen 2003)

and fishery management (Akpalu 2009).

Materials and procedures

Data acquisition

Upper Lake Constance (LC, German: Bodensee) is a large

(472 km2), deep (mean depth 5 101 m), warm-monomictic

temperate lake north of the European Alps. During the study

period 1979–1999 it underwent re-oligotrophication and

mean annual phytoplankton biomass declined by a factor of

2 (Gaedke 1998). This indicates that the long-term changes

are small compared to the very pronounced seasonal dynam-

ics as individual species vary in density by a factor of 10–

1000 or more during the year and total biomass by a factor

of more than 20 (Rocha et al. 2011a). Culminating in 853

sampling dates between 1979 and 1999, the sampling was

conducted weekly during the growing season and approxi-

mately fortnightly in winter (for details see Gaedke 1998).

We aggregated the numerous species encountered into 36

morphotypes comprising individual species or higher taxo-

nomic units that have identical or very similar trait values

and contributed to more than 92% of the total phytoplank-

ton biomass (cf. Rocha et al. 2011b; Weithoff et al. 2015).

The average number of morphotypes encountered per sam-

pling date amounts to 17 6 6.

Saidenbach Reservoir (SR) is a small dimictic drinking

water reservoir (area 1.5 km2, volume 22 3 106 m3) with an

average and maximum depth of about 15 m and 45 m,

respectively, situated in the low mountain range of southern

East Germany (Horn et al. 2011). Its trophic state changed

from mesotrophic to eutrophic in the 1970s, remained eutro-

phic in the 1980s and quickly returned to the mesotrophic

state due to a strong reduction of the phosphorous import

since 1990 after German Reunification. Supported by the

Saxony Academy of Science and hosted at the Ecological Sta-

tion Neunzehnhain of the Technical University of Dresden,

Heidemarie Horn analyzed the phytoplankton weekly from

1975 to 1985 and fortnightly until 2011, culminating in

1259 sampling dates (for details see Horn 2003; Horn et al.

2011, 2015). As in LC, samples were counted with an

inverted microscope. The average number of morphotypes

encountered per sampling date was 25 6 16.

Selection of traits

We selected two regularly measured traits, cell volume

(expressed in lm3/cell), and maximum length, (i.e., longest
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linear dimension, measured in lm) which are of outstanding

importance for the fitness of phytoplankton species (Weith-

off 2003; Litchman et al. 2007; Horn et al. 2011) and clearly

related to the observed phytoplankton biomass dynamics in

LC (Tirok and Gaedke 2007; Vasseur and Gaedke 2007;

Rocha et al. 2012). According to allometric theory, cell vol-

ume influences many physiological activities such as nutri-

ent uptake and maximum growth rates. The classification

was done according to the individual cell volume of single-

celled and colony-forming morphotypes. In addition, the

shape of a cell or colony is important with respect to their

ability to absorb nutrients, susceptibility to sedimentation

and to filter-feeding zooplankton grazing. A suitable measure

for these processes is the maximum length (i.e., the longest

linear dimension) for which the classification was done

according to the individual cell size, filament length or col-

ony size. The two traits cell volume and maximum length

were only moderately correlated (log (size) vs. log (length)

r2 5 0.58 for LC and r2 5 0.30 for SR) due to the frequently

elongated or complex shape of in particular the larger phyto-

plankton cells.

We log2-transformed both trait values to account for

their large range (covering over 4 and 3 orders of magni-

tude, respectively) and for the inherent skewness in size

distributions (Terseleer et al. 2014; Acevedo-Trejos et al.

2015). For ease of comparison, we grouped the biomass of

the morphotypes into 19 (cell volume) or 35 (maximum

length) equidistant classes on a log2 scale. To account for

individual growth and variability within each morphotype,

we assumed that the minimum and the maximum trait val-

ues of each morphotypes differ by a factor of a 5 4 for cell

volume and a 5 2 for length prior to log2-transformation

(Gaedke 1992). Following the shape of a normal distribu-

tion, we allocated 50% of the biomass to the class corre-

sponding to the mean trait value, �x, 20% to the two

adjacent classes corresponding to the a1/4 and a21/4 of �x

and 5% to the classes corresponding to the a1/2 and a21/2

of �x. All subsequent calculations are based on the mean

trait values of the classes. For a relative comparison

between the two traits, we standardized their variances by

dividing them by their theoretical maximum values (45 for

size and 18 for length). The maximum variance was

obtained by allocating 50% of the biomass to each of the

most extreme trait values possible.

Characterizing trait distributions based on their shape

Our classification scheme categorizes trait distributions

based on their dominant shape properties which are directly

related to their first four standardized central moments:

mean, �x, standing variance, v, skewness, S, and kurtosis, K.

They are calculated for both traits and each sampling date

after Eqs. 1–4:

�x5
XN
i51

wi � xi (1)

v5
XN
i51

wi � xi2�xð Þ2 (2)

S5
XN
i51

wi �
xi2�xffiffiffi

v
p

� �3

(3)

K5
XN
i51

wi �
xi2�xffiffiffi

v
p

� �4

(4)

where wi represents the weight, i.e., the fraction of biomass,

of the i-th class with trait value xi in the sample at time t

and N the number of classes. The normal distribution serves

as benchmark and has per definition S 5 0 and K 5 3. Hence,

large absolute values of S and K-3 (excess kurtosis) imply

that the shape of the distribution strongly deviates from a

normal one. Small absolute values of S indicate symmetric

distributions whereas large negative or positive values of S

are related to distributions skewed to the left or right. For

symmetric distributions, K provides good information about

the presence or absence of bimodality (DeCarlo 1997). Val-

ues of K>3 characterize rather unimodal distributions with

a pronounced peak around �x and heavy tails (extreme val-

ues) while values of K<3 result from less pronounced peaks,

heavy shoulders (�x6
ffiffiffi
v
p

) and lighter tails indicating

bimodality.

The absolute values of S and K are usually positively corre-

lated (Wyszomirski 1992) making S and K not entirely inde-

pendent from each other (Blest 2003; Dorić et al. 2009;

Jones et al. 2011). That is, high values of S and low values of

K (bimodality) rule out one another, as a distribution with

two distant maxima of similar magnitude cannot be highly

skewed. Therefore, we jointly considered S and K to evaluate

the shape of the trait distributions and allocated all trait dis-

tributions into one of the following four categories: (1) nor-

mal, (2) peaked, (3) skewed, or (4) bimodal, based on the

threshold values outlined below. Distributions falling into

the first three categories were conservatively considered as

unimodal although skewed ones may express substantial side

peaks or a pronounced shoulder.

First, we distinguished between normal and non-normal

trait distributions based on a functional relationship between

S and K entailed in the Jarque-Bera-Test-Statistic (Jarque and

Bera 1987) frequently used to test for the normality

assumption:

C15S2 1 K23ð Þ=2ð Þ2: (5)

The index C1 equals zero for the normal distribution (S 5 0,

K 5 3) and 9/25 for well-known non-normal distributions

such as the uniform (S 5 0, K 5 9/5), the logistic (S 5 0,

K 5 21/5) and the gamma distribution with a 5 13 (S 5 0.55,

K 5 3.46,). Hence, we categorized a trait distribution as nor-

mal for C1�9/25 and otherwise (C1>9/25) as non-normal.
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We further categorized the non-normal trait distributions

according to their prevalent properties of peakedness, skew-

ness, or bimodality by considering Pearson’s S-K difference

(Pearson 1929):

C25S22 K23ð Þ: (6)

We considered a trait distribution as bimodal for C2>6/

5 5 1.2. This is the value of C2 for the uniform distribution

(S 5 0, K 5 9/5) which can be considered as a transition stage

from symmetric unimodal to bimodal distributions. Indeed,

C2 has to be smaller than 1.2 in case of symmetric unimodal

distributions and cannot be larger than 186/125 5 1.49 for

any asymmetric unimodal trait distribution (Klaassen et al.

2000). To be consistent with the threshold value for C1, we

chose the former value for C2 but our overall results and

conclusions also hold for more restricted conditions (Sup-

porting Information Appendix A).

Finally, we used a modification of Sarle’s bimodality coef-

ficient (Pfister et al. 2013) to differentiate between skewed

and peaked distributions:

C35 S211
� �2

=K: (7)

We categorized a trait distribution as skewed or peaked

when C3 is larger or smaller than 1156/1875 5 0.62, respec-

tively. The latter value results when aiming for consistency

with the other threshold values. Overall, this resulted in the

framework depicted in Fig. 1 where we classified our trait dis-

tributions based on combinations of S and K that jointly sat-

isfy conditions derived from the well-known mathematical

relationships between S and K provided above. The three

Fig. 1. (A) Characterization of the observed trait distributions of phytoplankton cell size in L. Constance according to their skewness, S, and kurtosis,
K. S � 0 indicates rather symmetric distributions and S>0 (S<0) skewness to the right (left). K<3 results from distributions with heavier shoulders

than normal distributions and K>3 from more peaked ones with small shoulders but heavy tails (extreme values). With increasing variance, the color
of the dots changes from dark to light gray. The outer black line encompasses the mathematically feasible range of S–K values, the inner red circle the
range for normal distributions following the index C1, S–K combinations more extreme than the outer brown line are classified as bimodal (index C2)

and values falling within the inner orange line as peaked (index C3). S–K combinations falling between the C2 (brown) and C3 (orange) isoclines are
considered as skewed (for details see “Materials and procedures”). The colored dots refer to the size distributions depicted in B–I. (B–I) Examples of

observed distributions selected from different locations in the S–K plane which were classified as uniform (B, at the threshold to bimodal), skewed (C,
D, I), bimodal (E, G), peaked (F), or normal (H). These examples represent the respective observed trait distributions which are closest to predefined
combinations of S and K indicated by the colored dots in (A). Note the different scales of the y axes.
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isoclines within the K-S-phase space represent combinations

of K and S values that yield the same threshold values of C1,

C2, and C3 and are used to separate groups of trait distribu-

tions with shared properties. In contrast to numerous other

approaches evaluating, e.g., the normality of a distribution,

this approach does not require to specify the number of cells

counted which was unknown for most of the sampling dates

and may vary along the trait range. It is also well suited for

distributions such as biomass-weighted frequency distribu-

tions in which each observation has a different weight. As

our framework does not allow testing for significance as this

would generally require information about the number of

observations, we also tested for potential relationships

between �x and S, and between v and K for the different traits

and water bodies. If the observed trait distributions would

originate from normal distributions, their skewness and

excess kurtosis (i.e., K-3) should fluctuate around zero inde-

pendently of �x and v (cf. Eqs. 1–4).

Evaluating the quality of the aggregate model approach

Temporal changes in the aggregated properties, i.e., total

biomass, BT, trait mean, �x, and standing trait variance, v, of

a community consisting of N species (i.e., the full trait distri-

bution) can be described by accounting for the dynamics of

each species separately:

dBi

dt
:¼ R xið Þ � Bi (8)

where R(xi) represents the per-capita net-growth rate and

thus fitness function of the i-th species with biomass Bi and

trait value xi at sampling date t. This approach, is subse-

quently called full model, as it accounts for all details in our

discrete trait distributions by using a correspondingly high

number of species. We calculated separately for each sam-

pling date the rates of change of the species biomasses based

on the trait distribution observed at sampling date t. The

temporal changes of the aggregate properties are described

by (for derivation see Supporting Information Appendix B):

dBT

dt
:¼ BT �

XN
i51

wi � R xið Þ (9a)

d�x

dt
:¼
XN
i51

wi � R xið Þ � xi2�xð Þ (9b)

dv

dt
:¼
XN
i51

wi � R xið Þ � xi2�xð Þ22v �
XN
i51

wi � R xið Þ (9c)

where wi denotes the relative biomass of the i-th species at

time t.

Aggregate models approximate the temporal dynamics of

BT, �x, and v by making assumptions about the shape of the

trait distribution and the linearity of the fitness function.

We compare four aggregate models which differ in their

approximations of the trait distribution and fitness function.

We first consider two aggregate models, which describe the

temporal dynamics of BT and �x by a first-order approxima-

tion of Eq. 9 (Wirtz and Eckhardt 1996; Brandt et al. 2012;

Wirtz 2013):

dBT

dt
� BT�R xð Þjx5�x (10a)

d�x

dt
� v �xð Þ � @R xð Þ

@x

����
x5�x

(10b)

Equation 10b includes the second central moment, i.e., the

trait variance v, which temporal dynamics are not described

by an equation. Hence, we have to close this system of dif-

ferential equations by assuming v either to be constant

(Wirtz and Eckhardt 1996; Merico et al. 2014) or to be well

expressed in terms of the lower central moment, �x (Wirtz

and Lemmen 2003). In general, such moment closure meth-

ods are based on assumptions about the shape of the trait

distributions. In the first case, we set v equal to the average

of the observed trait variances. This approximation, labeled

constant variance, is exact for linear fitness functions com-

bined with symmetric trait distributions (i.e., S 5 0) (Abrams

et al. 1993).

In the second case, we assumed a unimodal relationship

between v and �x and thus perform a data-based moment clo-

sure by fitting a parabolic function to our data:

v �xð Þ5a1 �x2a2ð Þ �x2a3ð Þ (11)

This approximation is exact for linear fitness functions and

communities that comprise only two distinct phenotypes

with the trait values xmin and xmax (Wirtz and Eckhardt

1996; Cortez 2011; Ellner and Becks 2011) in which case the

parameters a1, a2, and a3 equal 1, xmin and xmax,

respectively.

As a second approach, we consider two aggregate models

which describe the temporal dynamics of BT, �x and v com-

bined with a second-order approximation of Eq. 9 (Wirtz

and Eckhardt 1996; Norberg et al. 2001; Merico et al. 2009;

Coutinho et al. 2016). These models consider additionally

the dynamics of v and enable a better approximation of the

non-linearity of the fitness function by including its second

derivative and of the shape of the trait distribution by

accounting for potential skewness and kurtosis:

dBT

dt
� BT � R xð Þj

x5�x
1v

1

2

@2R xð Þ
@x2

����
x5�x

� �
(12a)

d�x

dt
� v

@R xð Þ
@x
j
x5�x

1M3
1

2

@2R xð Þ
@x2

����
x5�x

(12b)

dv

dt
� M3

@R xð Þ
@x
j
x5�x

1 M42v2
� �1

2

@2R xð Þ
@x2

����
x5�x

(12c)

In general, this approximation is valid when v is small or

when the non-linearity of the fitness function is only weak

(cf. Supporting Information Appendix B). Equations 12b and
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12c include the third (M3) and fourth (M4) higher central

moments which have to be expressed in terms of lower

moments to close this system of differential equations. We

compare the results of two different moment closure techni-

ques. First, we assume the trait distribution to be normal

(Wirtz and Eckhardt 1996; Merico et al 2009). In this case

M3 5 0 and M4 5 3�v2. Second, similar to Norberg et al. (2001)

we perform a data-based moment closure based on linear

regressions between the absolute (S vs. mean) or log-

transformed (K vs. v) values of the standardized central

moments:

S5a � �x1b

ln Kð Þ5d � ln vð Þ1ln cð Þ
(13)

Hence, in accordance with Norberg et al. (2001), power-

functions of the lower moments express the higher

moments:

M35S � v3=25a � �x � v3=21b � v3=2

M45K � v25c � vd12
(14)

To evaluate the quality of these four aggregate models we

calculated the rates of change of the aggregate properties

according to Eqs. 9, 10, and 12 for the observed distributions

of size and maximum length by assuming two types of fit-

ness functions R(x) differing in their non-linearity. After-

wards we compared these results to the ones of the full trait

distribution model.

The first fitness function we used is a standard allometric

relationship between the species maximum growth rate, and

logarithmic cell size x, i.e., R xð Þ5m � 2xð Þ20:25
. To establish

realistic values for the range of maximum growth rates

within phytoplankton communities we chose the scaling

parameter m to take a value of 3. The second fitness function

relies on the maximum length of the algal cells, which is

linked more closely to the top-down control of the phyto-

plankton. Consumers can only exploit a limited prey spec-

trum, which can be linked to the maximum cell length. We

assumed grazing by a diverse zooplankton community that

prefers small phytoplankton over large ones and hence con-

servatively a rather gradual decline with maximum length.

Hence, as a second fitness function, we chose a logistic func-

tion according to R(x) 5 1-(1 1 exp(a(x-b)))21. The parameter

a describes how fast the transition from edible to less edible

species occurs and was set to 1. The parameter b reflects the

upper threshold of particle sizes, which can be processed effi-

ciently by common herbivores such as daphnids in our habi-

tats. We chose a value of log2(45) lm for maximum length

and log2(1024) lm3 for size (cf. Burns 1968; Lampert 1978).

We expressed the model performance as the ratio between

the rates of change of the aggregate properties of the aggre-

gate (Eqs. 10 or 12) and full (Eq. 9) models for the individual

trait distributions. For example, to evaluate the performance

of the aggregate models with a second order approximation

we computed the ratios (dB/dt)aggregate/(dB/dt)full (Eqs. 12a

and 9a), (d�x/dt)aggregate/(d�x/dt)full (Eqs. 12b and 9b) and (dv/

dt)aggregate/(dv/dt)full (Eqs. 12c and 9c). For positive ratios, the

median of 2|log2(ratios)| was used as an average factor across all

trait distributions giving equal weight to over- and underesti-

mations. In addition, we provide the share of negative ratios

implying that the aggregate model predicts temporal

changes into the wrong direction, which only occurred for

the variance dynamics.

Assessment

Classifying the shape of observed trait distributions

Our classification scheme involves a comprehensive char-

acterization of the shape of the trait distributions by consid-

ering S and K in concert (Fig. 1A, for details see

“Characterizing trait distributions based on their shape” sec-

tion). The shape of the distributions differed between both

traits and habitats, varied greatly in time and covered the

full range from strongly multimodal to peaked and rather

symmetric to pronouncedly skewed in either direction (Fig.

1, Supporting Information Appendix C, Figs. C1–C3; Table

1) as similarly found by Downing et al. (2014). The size dis-

tributions in LC were mostly characterized as skewed (44%)

or bimodal (36%) and rarely as normal (13%) or peaked

(7%). In SR peaked size distributions (40%) prevailed

together with skewed (31%) and normal ones (25%). This is

in line with the mostly highly diverse phytoplankton com-

munity of LC (Weithoff et al. 2015) yielding on average

higher trait variances than in SR (Table 1). Phytoplankton

biomasses were distributed usually across a major part of the

entire trait range. This holds in particular for maximum

length in both habitats and for size in Lake Constance (LC)

whereas size distributions in Saidenbach Reservoir (SR) were

typically restricted to a more narrow range (Table 1; Fig. 1,

Supporting Information Appendix D, Fig. D1) due to the fre-

quently dominating pennate diatoms (Horn et al. 2011). In

fact, length distributions in LC showed the largest diversity

in the shape from all traits and habitats (37% normal, often

relatively small absolute values of S, and K values relatively

close to 3) whereas in SR 92% of the length distributions

were (extremely) skewed or bimodal and exhibited large var-

iances. The large difference in the shape between the two

trait distributions in SR originates from the elongated shape

of the diatoms. Their cell size (i.e., volume) is similar to that

of many co-occurring, more spherical species resulting in

peaked size distributions. In contrast, their maximum length

is much larger than that of most other species yielding

heavily skewed or bimodal length distributions.

Testing the reliability of the moment-based classification

method

Our classification scheme depends on defining threshold

values based on relationships between S and K (cf.
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“Characterizing trait distributions based on their shape” sec-

tion) but their exact values had little influence on our over-

all results (Supporting Information Appendix A). The

classification of the different types of non-normal distribu-

tions was in line with the magnitudes of the variance, v, S,

and K, and the relationships among lower and higher

moments (Fig. 2; Table 1). For example, the highest fraction

of distributions classified as peaked (40% for size in SR) coin-

cides with the smallest standardized variance, and the high-

est fractions of skewed (51%) and bimodal distributions

(41%, length in SR) are associated with high v, maximum

absolute values in S and K and strong correlations among

lower and higher moments. The sign of S changed highly

significantly (p<0.001) from positive to negative with

increasing values of �x, for both traits in both habitats (Fig.

2A–D; Table 1). K was also clearly related to v (p<0.001)

(Fig. 2E–H; Table 1). These relationships were particularly

strong (r2: 0.69–0.73) if a low percentage of trait distributions

was classified as normal (13% for size in LC and 4% for

length in SR). In contrast, when we obtained a relatively

high share of normal distributions (37% for length in LC)

combined with a rather even occurrence of the other types

of shape, the different moments had intermediate values

with relatively high standard deviations and exhibited only

moderately strong correlations among each other (Table 1).

These differences in correlation strength among lower and

higher moments support the reliability of our classification

scheme as for trait distributions originating from normal dis-

tributions S and excess kurtosis (K-3) should fluctuate by def-

inition around zero independently of �x and v. This implies

that a high percentage of normal distributions should coin-

cide with weaker correlations among lower and higher

moments that is in line with our data.

Tight relationships between lower and higher moments

allow a data-based moment closure

The relationships between the four moments can be used

to improve the accuracy of aggregate models using a data-

based moment closure. First-order approximations require

expressing v as a parabolic function of �x (for details see

“Evaluating the quality of the aggregate model approach”

section). Such a unimodal relationship is to be expected

given the usually restricted trait ranges in natural communi-

ties because extreme values of �x can only arise if most of the

biomass clusters at very small or high trait values, implying

a small variance. In contrast, intermediate mean trait values

can be associated with narrow or broad trait distributions

and, thus, small or large variances, respectively. Our data

reveal in principal a unimodal envelope for the relationship

between the maximum variance and �x (Supporting Informa-

tion Appendix D, Fig. D1). However, the scatter around fit-

ted parabolic relationships was high (r2 5 0.11–0.26) and in

two cases only the ascending part of the parabolic function

was relevant (size in SR and length in LC). The temporal var-

iability in v (Fig. 2E–H) also reveals the limited potential to

approximate the observed variances by their constant mean

value, as done in one of the first-order approaches. Further-

more, second-order approximations require expressing K and

S as functions of �x or v (for details see “Evaluating the quality

of the aggregate model approach”). In line with the low

share of normal distributions and the tight relationships

between �x and v, we found strong correlations between S

and �x, and K and v, for size in LC and maximum length in

SR (Table 1). These relationships arise from the fact that

within a limited trait range as it exists in our and presum-

ably most communities, small values of �x can only occur if

organisms with small trait values clearly dominate the bio-

mass. This results in a trait distribution skewed to the right

(S>0) as long as some organisms with larger trait values are

still present (e.g., Fig. 1C) and vice versa (e.g., Fig. 1I). In

addition, the negative correlation between v and K results

from the fact that peaked trait distributions with high K and

thus pronounced tails can only arise for smaller v within a

limited trait range (e.g., Fig. 1F). In line, v can only be large

for uniform (e.g., Fig. 1B) or multi- or bimodal distributions

(e.g., Fig. 1E). Such distributions imply low values of K due

to flat peaks with heavy shoulders or distinct peaks at both

extremes.

Table 1. Temporally averaged mean trait values, �x , mean
standing variance, v, standardized by the respective maximum
variance (45 for size and 18 for maximum length), mean abso-
lute values of the skewness, S, and the kurtosis, K (all values
with 6 one STD reflecting the temporal variation), frequencies in
% of the different types of distributions, and Pearson’s linear
correlation coefficients for �x vs. S, ln(v) vs. ln(K), and �x vs. v for
the traits size in log2 (lm3) and maximum length in log2 (lm)
in L. Constance (LC, 1979–1999, n 5 853) and Saidenbach Res-
ervoir (SR, 1975–2011, n 5 1259).

Trait/habitat �x v/vmax |S| |K-3|

LC size 10.8 6 1.7 0.14 6 0.06 0.85 6 0.6 1.7 6 2.0

SR size 9.96 1.1 0.06 6 0.05 0.6 6 0.5 2.0 6 2.0

LC length 5.1 6 1.0 0.11 6 0.07 0.6 6 0.5 1.4 6 1.9

SR length 6.4 6 0.9 0.13 6 0.08 1.8 6 1.4 6.5 6 10.8

Trait/habitat Normal Peaked Skewed Bimodal

LC size 13 7 44 36

SR size 25 40 31 4

LC length 37 12 35 16

SR length 4 4 51 41

Trait/habitat

r2 of
�xvs. S

r2 of

ln(v) vs. ln(K)

r2 of
�xvs. v

LC size 0.73 0.72 0.26

SR size 0.09 0.37 0.11

LC length 0.34 0.44 0.15

SR length 0.69 0.72 0.25
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To conclude, as exemplified by the size distributions in

LC and the length distributions in SR the remarkable fact

arises that strong correlations among moments on one side

point to major deviations from normality but on the other

hand imply a large potential to correct for the impact of v, S,

and K using a data-based moment closure. Subsequently, we

test whether this holds when confronting the aggregate

models with real data.

Comparing the performance of aggregate models with

normal- or data-based moment closures

We tested the performance of the different aggregate

models by evaluating the deviations of their predictions

from the results of a corresponding full model using the

observed trait distributions. We combined the observed size

distributions with an allometric relationship of the growth

rate representing a weakly non-linear fitness function, and

the length distributions reflecting grazing resistance with a

logistic function yielding a moderate non-linearity with a

turning point. This reflects that cell size determines the

growth rates of phytoplankton and maximum length their

edibility and thus loss rates. As this provokes a confounding

between the type of trait distribution and the type of non-

linearity we abstracted from the ecological context and cal-

culated also the aggregate model performance combining

the size distributions with the logistic function and the

length distributions with the allometric relationship (Sup-

porting Information Appendix E). For the sake of clarity, the

latter data are not described in detail, as they did not change

the overall patterns described below.

Independent of the type of non-linearity, the aggregate

models consistently approximated the changes of the com-

munity biomasses, dBT/dt, better than the changes of the

mean trait values, d�x=dt, which, in turn, were more accu-

rately predicted than the changes of the standing variances,

dv/dt (Fig. 3). In addition, the second-order approximations

delivered consistently more accurate (or similar, Fig. 3J)

results than the first-order approximations for the biomass

and trait changes (Fig. 3). For example, for size and the weak

non-linearity, dBT/dt of the aggregate models deviated from

the full models on average (for details see “Evaluating the

quality of the aggregate model approach” section) by a factor

of 1.1 (LC) and 1.03 (SR) when using first-order approxima-

tions. The corresponding values are only 1.01 (LC) and 1.001

(SR) when employing second-order approximations. For large

v, as found for size in LC and maximum length in both

Fig. 2. Correlations between the skewness, S, and (A) size (r2 5 0.73) and (B) maximum length (r2 5 0.34) in L. Constance and (C) size (r2 5 0.09)

and (D) maximum length (r2 5 0.69) in Saidenbach Reservoir, and between log2 of the kurtosis, K, and variance, v, of (E) size (r2 5 0.72) and (F) maxi-
mum length (r2 5 0.44) in L. Constance and (G) size (r2 5 0.37) and (H) maximum length (r2 5 0.72) in Saidenbach Reservoir of the observed trait dis-

tributions of phytoplankton. Note the differences in the scales of the axes.
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habitats, �x provides a less suitable representation of the

entire trait distribution. This results in larger deviations for

dBT/dt that could be strongly reduced by the second-order

approximations (Fig. 3).

We found similar patterns but stronger deviations for

d�x=dt. The models deviated on average by a factor of 1.4

(constant variance) and 1.3 (data-based variance, LC) and 1.8

and 1.7 (SR) for the first-order approximations and only by

1.2 (normal-based) and 1.1 (data-based) (LC) and 1.1 and 1.1

(SR) for the second-order approximations using the weak

non-linearity. The differences can be attributed to the large

temporal variability of v and S (Figs. 2, 3B) for which first-

order approximations do not account for. Accordingly, both

second-order approximations greatly improved the fit. This

holds in particular for the data-based moment closure (Fig.

3, Supporting Information Appendix E) which accounted for

S and K. Based on the tight relationships between S and �x,

and K and v the data-based moment closure strongly reduced

the deviations compared to the predictions of the normal-

based aggregate model. Remarkably, the second-order

approximation with a normal-based moment closure was

better than the first-order approximations for most data

points even when many trait distributions were (strongly)

non-normal (Fig. 3A–D, G–J). This happens because both

second-order approximations account at least partially for

the non-linearity of the fitness function and the actual val-

ues of v.

Under certain conditions, second-order approximations

may also predict the variance dynamics, dv/dt, reasonably

well but in our case, the predictions of dv/dt from the aggre-

gate models strongly deviated from the results of the full

models already for the weak non-linearity (Fig. 3E,F). Even

the direction of the changes in v (i.e., the sign of dv/dt) was

falsely predicted for 21% (LC) and 12% (SR) of the size distri-

butions and for 45% (LC) and 12% (SR) of the length distri-

butions by the normal-based approximation (Fig. 3K,L). For

the data-based approach, the corresponding values are 5%

(LC) and 12% (SR) for size and 29% (LC) and 5% (SR) for

length. For data points with a correct sign, dv/dt deviated on

average by a factor of 3.5 (LC) and 4.1 (SR) for the size distri-

butions and of 2.8 (LC) and 9 (SR) for the length distribu-

tions for the normal-based moment closure. The data-based

moment closure reduced these factors substantially to 1.5

(LC) and 1.8 (SR) for the size distributions and to 2.2 (LC)

Fig. 3. Deviation of the four different types of aggregate models from the respective full models expressed as the ratio between aggregate and full
model in respect to the rates of biomass ([dB/dt]aggregate/[dB/dt]full; (A, B, G, H), trait ([d�x/dt]aggregate/[d�x/dt]full; C, D, I, J) and variance ([dv/dt]aggre-

gate/[dv/dt]full; E, F, K, L) changes at the individual sampling dates. They are based on a weakly non-linear allometric relationship (fitness function) and
the size distributions from Lake Constance, LC (A, C, E) and Saidenbach Reservoir, SR (B, D, F), and a moderately non-linear, logistic relationship and
the distributions of maximum length from LC (G, I, K) and SR (H, J, L). Labeling of the x axis: c stands for the aggregate model with constant vari-

ance, p for the one with a parabolic relationship between trait mean and variance (both first-order approximations), and n and d for the second-order
approximations based on normality or data. The blue boxes represent the 25% and 75% quartiles with the median (red horizontal bar) and the

whiskers reflecting the 5% and 95% quartiles of all sampling dates which are partially truncated to improve the clarity of the figure. A ratio of 1
implies a perfect fit between the approximated values derived from aggregate models and the full model. Values<0 arise if the aggregate model pre-
dicts changes in the wrong direction. By definition, the variance is constant (i.e., its rate of change is 0) for the first-order moment closures and the

types of moment closures do not affect dB/dt, i.e., the values are identical within the first- and second order approximations. Note the different scales
of the y-axes.
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and 1.4 (SR) for the length distributions (cf. Supporting

Information Appendix E, Fig. E1L). As expected, the greatest

improvements were achieved when the correlations between

lower and higher moments were most pronounced. Further-

more, the normal-based approach mostly underestimated dv/

dt when the sign was correct whereas the data-based

approach was less biased (see also Supporting Information

Appendix E). The latter implies that under- and overestima-

tions at individual sampling dates may counteract each

other in the long term whereas errors accumulate in the

normal-based approach leading to an unrealistic decline of v.

As expected, the aggregate models usually performed bet-

ter for the weak than for the moderate non-linearity (Fig. 3,

Supporting Information Appendix E). For example, for size

and the moderate non-linearity the deviations of dBT/dt

increased to a factor of 1.13 (LC) and 1.14 (SR) when using a

first-order approximation, and to a factor of 1.27 (LC) and

1.08 (SR) when employing a second-order approximation.

For d�x=dt the corresponding values are 1.5 and 1.6 (LC) and

2.1 and 1.8 (SR) for the first-order approximations, and 1.5

and 1.8 (LC) and 1.4 and 1.2 (SR) for the second-order

approximations. The pattern was less consistent for dv/dt

deviating on average by a factor of 1.9 (LC) and 2.3 (SR) for

the normal-based moment closure and by 2.4 (LC) and 2.7

(SR) for the data-based moment closure if the sign of dv/dt

was correct. Both approaches failed to predict the sign cor-

rectly for 12–15% (LC) or even 37% (SR) of the size distribu-

tions (Supporting Information Appendix E).

Comparing the two aggregate models based on the first-

order approximation reveals only a slight improvement with

a data-based moment closure which predicts the value of v

with a parabolic relationship from the actually observed

value of �x rather than using constantly the mean observed

variance (Fig. 3C,D,I,J). This is in line with the large scatter

around the parabolic relationship between v and �x (Support-

ing Information Appendix D, Fig. D1). Relating the two

second-order approximations to each other delivers consis-

tently a better fit by the data-based approach than by the

one based on normality for the weak but not for the moder-

ate non-linearity (Fig. 3). The data-based approach accounts

for the impact of S and K on the estimates of d�x=dt and dv/

dt which improved the latter in particular (see also Support-

ing Information Appendix E). However, in case of the mod-

erate non-linear fitness function, higher derivatives strongly

influenced the dynamics of the aggregate properties that

were not accounted for by any of the aggregate models

evaluated.

Mechanisms underlying the deviations of the aggregate

from the full models

Considering the deviations of the aggregate from the full

models in more detail reveals systematic patterns reflecting

the underlying mathematical relationships. Without loss of

generality, we exemplify them for the size distributions in

LC and the weak non-linearity. The magnitude of the second

and higher derivatives of the allometric relationship repre-

senting here the weak non-linearity strongly depends on the

mean and thus the location of the trait distribution. How-

ever, the derivatives are all monotonically increasing or

decreasing functions of the trait and thus their signs remain

constant along the trait range. Hence, the rather simple cur-

vature of the allometric relationship leads to a clear depen-

dence of the deviations between aggregate and full model on

the shape of the trait distributions described by their higher

moments. For dBT/dt the first-order approximations which

either kept v constant or had little power to estimate

changes in v from �x, delivered deviations which strictly

increased with v (Fig. 4A,B; Supporting Information Appen-

dix B, Eq. B5; Spearman rank correlation coefficient

q 5 20.96). Accordingly, the second-order approximations

considering v provided an almost perfect fit and the small

deviations were tightly linked to the third moment (Fig.

4C,D; q 5 0.99; cf. Supporting Information Appendix B, Eq.

B5). Thus, dBT/dt was consistently underestimated due to the

curvature of the allometric relationship (Jensen’s inequality).

Deviations between aggregate models with first-order

approximations and the full models in respect to d�x=dt were

again related to v, in particular for the approach assuming a

constant v (Fig. 4E; q 5 20.92). The correlation between devi-

ations and v remaining in the data-based approach (Fig. 4F;

q 5 20.70) reveals that it accounted only partly for the effect

of v due to the lack of a distinct relationship between �x and

v (Fig. D1). Deviations found in the second-order approxima-

tions were linked to the third moment both in the normal

(Fig. 4G; q 5 0.90) and to a lesser extent in the data-based

approach (Fig. 4H; q 5 0.45). In the normal-based approach,

the third moment accounted for deviations from normality

whereas in the data-based approach, the smaller deviations

and weaker correlation with the third moment arise from

the rather close fit between �x and S (Fig. 2A). Much of the

remaining variation is attributable to K and higher moments

(cf. Supporting Information Appendix B, Eq. B10).

Considering dv/dt, the absolute values of the pronounced

deviations between aggregate and full models declined with

K, in particular when using the normal-based approach (Fig.

4I; q 5 20.91). This reveals that dv/dt is estimated reliably

only for size distributions with K � 3. For rather broad

(K<<3) or peaked distributions (K>>3) the normal-based

moment closure strongly over- or underestimated dv/dt. The

data-based approach strongly reduced the deviations (Fig.

3E,F) due to the tight relationship between v and K (Fig. 2E).

In contrast to the allometric relationship, both the sign

and magnitude of the higher derivatives of the logistic func-

tion strongly depend on the relative location of �x compared

to the turning point of the logistic function. Hence, for the

moderate non-linearity we did not find reliable correlations

between the deviations and the higher moments but the

deviations were non-linearly related to �x. Given the resulting
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lack of generality details of those relationships are not

shown.

Discussion

We developed a novel approach to classify the critical

shape properties of biomass-weighted trait distributions into

four common types: normal, skewed, peaked, and bimodal.

Our approach is easy to employ as it involves only the calcu-

lation of the first four moments and is robust with respect to

the exact threshold values chosen (Supporting Information

Appendix A). Furthermore, it does not demand to specify

the number of items counted which is typically unknown or

uneven across the trait range in plankton counts, and will be

rather insensitive to the exact number of classes chosen

along the trait axis. This method goes beyond purely testing

for a distinct type of distribution such as normality. It ena-

bles spatial-temporal and cross-system comparisons with

respect to the predominant shapes of trait distributions and

investigations of changes in the predominant selection

pressure.

In accordance with highly skewed and multimodal size

and length distributions of aquatic invertebrates (Zimmer

et al. 2001), birds, and insects (Griffiths 1986) our method

classified a low share of observed phytoplankton trait distri-

butions as normal. This is in line with the pronounced corre-

lations between mean, �x, and skewness, S, and variance, v,

and kurtosis, K, which is likely generalizable across systems

where traits are restricted to a finite range. These relation-

ships represent two sides of one coin: on the one side, nor-

mal trait distributions cannot be assumed as the rule when

the trait distributions observed at a given date or location

cover a substantial part of the entire possible trait range.

This feature is to be expected unless substantial parts of the

community under consideration are entirely absent in

numerous samples. Thus, our data question the realism of

the simplifying assumption made by numerous aggregate

models that trait adjustments proceed through a shift in the

mean trait value while the variance or shape of the trait dis-

tribution remain unchanged (Supporting Information

Appendix F, Fig. F1). A more realistic abstraction for

restricted trait ranges is that not only the mean and partly

the variance but also the shape varies in time, leading to cor-

relations among the lower and higher moments (Supporting

Information Appendix F, Fig. F1). On the other side, strong

correlations between S and �x, and K and v may strongly

improve the performance of aggregate models using a

second-order approximation and a data-based moment

Fig. 4. Relationships between the deviation in the rates of the aggregate properties of the four different types of aggregate models from the respec-
tive full models and higher moments at the individual sampling dates for the observed size distributions in Lake Constance and the weak nonlinearity.

The deviation is expressed as the ratio of the rates of biomass ([dB/dt]aggregate/[dB/dt]full; A–D), trait ([d�x/dt]aggregate/[d�x/dt]full; E–H) or variance ([dv/
dt]aggregate/[dv/dt]full; I, J) changes of the aggregate model and the full model, respectively. The two aggregate models with first-order approximation
are labeled c (constant variance; A, E) and p (data-based variance; B, F), and those with second-order approximation are labeled n (normal-based; C,

G, I) or d (data-based; D, H, J). q provides the respective values of the Spearman correlation coefficient. Note the different scales of the y-axes.
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closure. We demonstrate these two counteracting processes

by comparing the aggregate approaches for different trait dis-

tributions and aggregate properties. For example, the size

distributions of LC were characterized by a high v and pro-

nounced deviations from normality but at the same time

had strong correlations among the lower and higher

moments (Table 1). Accordingly, the data-based moment clo-

sure was in reasonable agreement with the full model for

biomass and trait dynamics despite the high variance and

delivered more reliable approximations than approaches

with first-order approximations or a normal-based moment

closure (Fig. 2).

Based on 4200 trait distributions we tested the perfor-

mance of four aggregate model approaches for a weakly and

a moderately nonlinear fitness function, which are used fre-

quently to describe growth and loss processes (Peters 1983;

Lampert and Sommer 2007). The deviations between the

aggregate and full models depended on all five factors inves-

tigated: the aggregate property considered (i.e., the changes

in the biomass, trait, or variance), the strength and curvature

of the non-linearity in the fitness function, the type of

aggregate model, the variance, and the shape of the trait dis-

tribution. We found distinct patterns for the first two factors:

The quality of the fit consistently declined from the biomass

to the trait dynamics and particularly to the variance

dynamics, and with increasing non-linearity of the fitness

function as expected from theory (Savage et al. 2007; Merico

et al. 2009). The impact of the other three factors was more

complex and context dependent. The patterns in the devia-

tions clearly reflected the mathematics underlying the

respective model approaches in concert with the properties

of the trait distributions (Fig. 4). Overall, most deviations

correlated strongly with the next higher moment or deriva-

tive not considered in the respective approach.

Considering the weak non-linearity, dBT/dt estimated with

first- or second-order approximations deviated on average by

0.1–10% from the full model. This may appear acceptable

given the usual uncertainties in parameter estimates. It

should, however, be acknowledged that we judged the per-

formance of the aggregate models separately for distinct

points in time and separately for dBT/dt, d�xdt and dv/dt for

the sake of generality and clarity. This neglects a potential

accumulation of errors in time that may lead to substantial

differences in the long run and disregards the consequences

of potential deviations in one aggregate property for the

others through potential feedbacks. For example, v influen-

ces the speed of trait adaptation, d�xdt, which describes the

adjustment to altered environmental conditions such as

predator and prey biomasses (Tirok et al. 2011). Hence, stud-

ies on biomass-trait dynamics are sensitive to a correct esti-

mation of v and the changes thereof, dv/dt, as their results

often depend on the relative speed of biomass (indicating

ecological dynamics) and trait changes (may indicate evolu-

tionary dynamics), i.e., on the magnitude of dBT/dt and d�xdt

(cf. Saloniemi 1993; Dercole et al. 2006; Mougi 2012). Pre-

dicting v and dv/dt reliably is also highly relevant in the con-

text of functional biodiversity research and of the

maintenance of biodiversity in particular.

Unfortunately, predictions of all aggregate approaches

were prone to often substantial errors with respect to dv/dt

even for a weakly non-linear fitness function. Furthermore,

the normal-based approach mostly underestimated dv/dt

when the sign was correct (Fig. 3). Given the positive sign of

the second derivative of the allometric function, this implies

an underestimation of the increase of v. This is in line with

the overall tendency of v to decline in aggregate models pre-

viously explored in other studies (Merico et al. 2009; Cou-

tinho et al. 2016). To counteract this permanent loss of

functional diversity and thus adaptive potential, previous

studies had to maintain v by other processes such as immi-

gration or diffusion terms or more complex trade-offs, all

demanding additional assumptions (Wirtz and Eckhardt

1996; Norberg et al. 2001; Merico et al. 2014; Tirok et al.

2011). It shows that even for weakly non-linear fitness func-

tions the normal-based model approach may not be able to

reflect changes in biodiversity realistically. This is supported

by a recent model study where a normal-based aggregate

model overestimated the time scale of the biomass and trait

dynamics by a factor of 10 when assuming rather smooth fit-

ness functions (Coutinho et al. 2016).

For the moderately non-linear logistic fitness function,

the aggregate models often failed (Fig. 3, Supporting Infor-

mation Appendix E) since even second-order approximations

with a data-based moment closure could not capture such a

curvature. The higher derivatives of the fitness function for

which none of the aggregate models accounts, limited the

model accuracy more strongly than the type of moment clo-

sure, i.e., the actual representation of the shape of the trait

distribution. This was particularly true for dv/dt for both, the

normal- and the data-based approach but deviations for dBT/

dt and d�xdt were generally also much larger than for the

weak non-linearity.

A potential solution to improve the performance of trait-

based models while maintaining their operability in particu-

lar for moderately or strongly nonlinear fitness functions or

trait distributions with high variance are “hybrid” models.

They attempt neither, to describe the entire population or

community only by the mean and variance of its trait distri-

bution nor go to the opposite extreme of tracking the entire

discretized distribution (i.e., a discretized full model). They

combine a multi-species model with an aggregate approach

and split the community into a limited number of entities

such as species or functional groups. The adjustment of their

mean trait values and variances to ambient conditions

within a limited trait range can then be described more ade-

quately by the aggregate model approach (Norberg et al.

2012; Klauschies et al. 2016). For example, the phytoplank-

ton community can be separated into two functional groups
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(e.g., edible and less edible algae) at the trait value of the

turning point of the logistic function. This results in two

only weakly non-linear fitness functions for each group cov-

ering more restricted trait ranges with smaller variance

where �x better represents the properties of the functional

group. Such an increase in food web resolution was advo-

cated or used by Norberg et al. (2001) and Terseleer et al.

(2014) to improve the accuracy of ecological models. A simi-

lar strategy is employed in some management models more

strongly tailored to specific systems that split e.g., the phyto-

or zooplankton community into 2 or more functional groups

(Baretta et al. 1995; Prowe et al. 2014). Our results show that

such an increase in model complexity and computational

effort is warranted for the sake of the obtainable accuracy.

Errors in the speed of biomass, trait, and variance dynamics

may cause a temporal mismatch between abiotic forcing,

community dynamics, and adjustment to altered conditions.

Thus, evaluating the prevailing shape of the trait distribu-

tions, potentially subdividing the trait range into two or

more groups (hybrid model), and employing a data-based

moment closure should improve our skills to manage ecosys-

tem appropriately.

To conclude, our newly developed classification scheme

relying solely on skewness and kurtosis overcomes previous

operational problems in comparing the shape of observed

trait distributions. For freshwater phytoplankton they ranged

from peaked to highly skewed and multi- or bimodal and

mostly deviated substantially from normal distributions. The

latter is to be expected if many of the trait distributions at a

given time or location cover a substantial part of the entire

feasible trait range which gives rise to tight correlations

between skewness and mean trait, and kurtosis and variance.

As this likely holds for many communities the common use

of normal-based moment closures in aggregate models needs

reconsideration. At the same time, these correlations

enhance the performance of data-based moment closures.

Accordingly, this approach yielded mostly reliable predic-

tions for the biomass and trait changes at least for weakly

non-linear fitness functions. Thus, we strongly recommend

to use this method, if required combined with a hybrid

model, when tailoring aggregate models to specific systems.

However, predictions of the rate of change in the trait vari-

ance and even its direction were subject to substantial errors,

which may hamper a realistic assessment of the maintenance

of biodiversity, biomass-trait feedbacks, and eco-evolutionary

cycles. For a moderately non-linear logistic fitness function,

all aggregate models deviated often strongly from the true

values for biomass, trait and variance dynamics which calls

for combining the species sorting with the aggregate model

approach. Overall, accounting in a fully quantitative way for

the naturally inherent biodiversity and the resulting poten-

tial to adapt to ambient conditions remains a challenge for

natural communities.
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