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Analyzing the shape of observed trait distributions enables a
data-based moment closure of aggregate models
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Abstract

The shape of trait distributions may inform about the selective forces that structure ecological communi-
ties. Here, we present a new moment-based approach to classify the shape of observed biomass-weighted trait
distributions into normal, peaked, skewed, or bimodal that facilitates spatio-temporal and cross-system com-
parisons. Our observed phytoplankton trait distributions exhibited substantial variance and were mostly
skewed or bimodal rather than normal. Additionally, mean, variance, skewness und kurtosis were strongly
correlated. This is in conflict with trait-based aggregate models that often assume normally distributed trait
values and small variances. Given these discrepancies between our data and general model assumptions we
used the observed trait distributions to test how well different aggregate models with first- or second-order
approximations and different types of moment closure predict the biomass, mean trait, and trait variance
dynamics using weakly or moderately nonlinear fitness functions. For weakly non-linear fitness functions
aggregate models with a second-order approximation and a data-based moment closure that relied on the
observed correlations between skewness and mean, and kurtosis and variance predicted biomass and often
also mean trait changes fairly well and better than models with first-order approximations or a normal-based
moment closure. In contrast, none of the models reflected the changes of the trait variances reliably. Aggre-
gate model performance was often also poor for moderately nonlinear fitness functions. This questions a gen-
eral applicability of the normal-based approach, in particular for predicting variance dynamics determining
the speed of trait changes and maintenance of biodiversity. We evaluate in detail how and why better
approximations can be obtained.

Trait-based ecology greatly contributes to a detailed
understanding of population and community dynamics
(Norberg 2004). Functional traits are used to link species to
their functions in the ecosystem (McGill et al. 2006; Hille-
brand and Matthiessen 2009; Enquist et al. 2015). They are
well-defined, measureable properties of species (e.g., body
size, edibility, or diet selectivity) affecting their performance,
trophic interactions and responses to environmental changes
and hence community dynamics. The standing variation of
an individual trait, i.e., the presence and abundance of dif-
ferent trait values within a community at a given moment
in time, can be represented by a single continuous trait dis-
tribution. The latter can be described by its central moments:
The mean indicates the trait value of the most abundant spe-
cies when the trait distribution is unimodal and fairly
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symmetric. The variance denotes the functional diversity
present within a community. The symmetry and peakedness
of a trait distribution can be further estimated from its skew-
ness and kurtosis.

The mean, variance and shape of a trait distribution may
change in response to selection and inform in a concise and
comparable way about the dominant trait values, the actual trait
range (functional diversity) and the type of prevailing selection
pressure (e.g., stabilizing or disruptive). This implies a demand
to describe systematically the shape of trait distributions
enabling spatio-temporal and cross-system comparisons. Using
standard statistical tests for this purpose often fails because the
number of observations is typically unknown for plankton sam-
ples or changes pronouncedly along the trait axis. Therefore, we
developed a method that enables the classification of the shape
of trait distributions into normal, peaked, skewed, or bimodal
solely based on the first four central moments (mean, variance,
skewness, and kurtosis) of the trait distribution. These measures
are obtained easily and reliably from plankton observations and
it is not required to define a priori a distribution to which the
data are fitted or tested against.
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Knowledge on the shape of trait distributions is also essential
when using trait-based aggregate models. Full trait distribution
models that account for all possible trait values can describe the
dynamics of the mean, variance and shape of trait distributions
most accurately (Coutinho et al. 2016). However, their rather
high complexity may require long simulation times and may
prevent a general understanding of the model behavior. Thus,
ecologists recently advocated trait-based aggregate models (also
called dynamic trait or gradient dynamics models) to keep
model complexity low and facilitate insights into the mecha-
nisms underlying changes in the community composition.
Their equations inform directly about the properties of the fit-
ness landscape and trait distribution that drive the temporal
dynamics of the summed biomasses, mean trait values, and trait
variances (Wirtz and Eckhardt 1996; Merico et al. 2009). Thus,
the strong reduction in the system’s dimensionality promotes
rigorous analytic considerations and computational efficiency.
Such models have been used successfully to better understand
principal patterns in idealized or natural communities, includ-
ing eco-evolutionary dynamics and biomass-trait feedbacks. For
example, they were used to study the mutual adjustments of
traits in predator and prey communities and their conse-
quences for community dynamics (Tirok et al. 2011) and bio-
geographical differences in the size composition of
phytoplankton communities (Acevedo-Trejos et al. 2015) (for
other applications see below). When tailored to specific systems
either entire communities were considered (Merico et al. 2009;
Wirtz and Sommer 2013; Smith et al. 2016) or functional
groups covering more restricted trait ranges (Norberg et al.
2001; Terseleer et al. 2014).

The appealingly low number of state variables and thus
reduction in model complexity is achieved at the cost of mak-
ing simplifying assumptions about the shape of the trait distri-
bution and the curvature of the relationship between trait
values and per capita net growth rates, i.e., the fitness func-
tion. Inevitably, this reduces the accuracy of the model results.
Here, we evaluate under which conditions major inaccuracies
are to be expected and how they can be reduced. In line with
the approach of quantitative genetics (Lande 1976, 1982)
community ecologists often assumed the trait distributions to
be normal and to exhibit small variances and a constant
shape. This facilitates to approximate the trait distributions by
up to their first four central moments and to resolve the fitness
functions only locally around the mean trait value. However,
in contrast to the distribution of quantitative traits at the pop-
ulation level where some inherent justification for the
assumption of normality exists and its limitations are rather
well understood (e.g., Lande 1976; Abrams et al. 1993; Turelli
and Barton 1994) there is no clear reason or strong empirical
evidence that trait values are generally normally distributed at
the community level. A thoroughly testing for normality and
the consequences of potential deviations is still lacking.

Thus, the second objective of this study is to evaluate to
what extent aggregate models can adequately represent the
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changes of the biomasses, mean trait values and trait varian-
ces in real ecosystems. This implies evaluating (1) the vari-
ance and shape of trait distributions observed in natural
ecosystems using the abovementioned classification method,
and (2) the deviations arising between full and aggregate
models due to the approximations made.

We put the first issue into practice using comprehensive
observations of the distributions of two traits in phytoplank-
ton communities from two different habitats. Phytoplankton
communities provide an ideal testing ground for this pur-
pose. They contribute about half of the global primary pro-
duction and their dynamics have often been modeled using
trait-based approaches (Wirtz and Eckardt 1996; Merico et al.
2009; Kremer and Klausmeier 2013; Terseleer et al. 2014).
Furthermore, they typically undergo pronounced changes in
response to abiotic and biotic forcing that may lead to a
large range of differently shaped trait distributions. We use
high frequency long-term measurements in two temperate
freshwater bodies differing in their physico-chemical proper-
ties and algal growth conditions, large deep Lake Constance
(1979-1999, 853 sampling dates) and small Saidenbach Res-
ervoir (1975-2002, 1259 sampling dates). Generalizing our
findings, we consider two different traits, cell size (i.e., vol-
ume) and maximum length. They are closely related to the
usually most influential processes in phytoplankton dynam-
ics, growth and grazing losses. We test the validity of the
aggregate model assumptions by evaluating the magnitude
of the trait variance, the relative share of normal-like,
peaked, skewed, and bimodal trait distributions and correla-
tions among lower and higher moments.

Subsequently, we use the observed trait distributions to
test how well the results of different aggregate models fit
with the ones of a corresponding full model. This depends
on the type of aggregate model and fitness function
employed. The fitness function may have a complex shape
and is model specific as it depends typically in a non-linear
way on the different factors influencing net growth (e.g.,
light, nutrients, grazing, and sedimentation for phytoplank-
ton). To achieve nevertheless generalizable results, we com-
bine four types of aggregate models of increasing complexity
with two common types of non-linearities with high ecologi-
cal relevance representing our fitness functions. We consider
a weak non-linearity represented by an allometric relation-
ship between growth rates and cell volume, and a moder-
ately non-linear, logistic fitness function. The latter reflects a
rather smooth transition along the trait gradient (here maxi-
mum cell length) from high to low values such as the feed-
ing rate on edible and less edible prey. The outcome of the
aggregate models is compared to a full model accounting for
the entire fitness landscape and the full shape of the trait
distribution observed at a distinct sampling date (i.e., we do
not aim to estimate potential long-term changes in the trait
distribution due to selection pressure imposed by the fitness
function).
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The reduction in complexity achieved by aggregate mod-
els restricts resolving potentially non-linear fitness functions
only locally around the current mean trait value and approx-
imating the exact shape of the trait distribution by the first
moments (Coutinho et al. 2016). Different types of aggregate
models exist along a gradient of increasing complexity and
precision depending on the accuracy of approximation and
moment closure involved. Models using a first order-
approximation consider only temporal changes in the total
biomasses and mean trait values, whereas second-order
approximations account also for the temporal changes in
the trait variance. A first-order approximation implies that
changes in the mean trait value are only based on the local
fitness gradient, i.e., the first derivative of the fitness func-
tion evaluated at the mean trait value. Furthermore, the trait
variance is either kept constant in time or estimated from
the mean trait value. Hence, reliable results can generally be
expected for rather linear fitness functions or small standing
trait variation so that the trait distributions at a given time
or location are well represented by their mean (Bolnick et al.
2011). It remains, however, to be tested whether these con-
ditions prevail in natural systems.

Second-order approximations account additionally for the
second derivative of the fitness function. This enables them
to capture to some degree also non-linearities in the fitness
function. Furthermore, they usually account for the variance
and its dynamics and resolve the shape of the trait distribu-
tions to a higher degree by considering also the skewness
and kurtosis. The latter can be achieved by assuming a par-
ticular shape of the trait distribution, e.g., normal, or by
using data-based relationships between skewness and mean,
and kurtosis and variance. Thus, aggregate models based on
such a second-order approximation are expected to perform
well for weakly non-linear fitness functions combined with
rather normal trait distributions, or trait distributions with
distinct correlations between the lower and higher moments
enabling a data-based moment closure. Small standing var-
iances will also improve the accuracy of the predictions
(Wirtz and Eckhardt 1996; Norberg et al. 2001; Tirok et al.
2011; Coutinho et al. 2016).

Using our novel and robust tool to classify the shape of
trait distributions into four common types, we show that
non-normal phytoplankton trait distributions with substan-
tial variance are the rule rather than the exception. We
found a high prevalence of skewness and multi- or bimodal-
ity for both traits and both habitats and pronounced tempo-
ral changes in the shape of trait distributions. Hence,
aggregate models assuming normal trait distributions likely
deliver inaccurate results. For a weakly non-linear fitness
function, the arising errors could be counteracted best using
second-order approximations with a data-based moment clo-
sure. They yielded reliable predictions for the temporal bio-
mass changes and partly also the trait changes but changes
in the variance were prone to substantial errors. For
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moderately non-linear fitness functions, the reliability of
aggregate models has to be severely questioned and we sug-
gest a combination with species sorting models (Tirok and
Gaedke 2010) to reduce the variances of the individual trait
distributions and the non-linearities of the individual fitness
functions (Klauschies et al. 2016). Our results and conclu-
sions may also apply to other fields as aggregate approaches
were also used in e.g., spatial ecological (Gandhi et al. 2000)
and social-economical models (Wirtz and Lemmen 2003)
and fishery management (Akpalu 2009).

Materials and procedures

Data acquisition

Upper Lake Constance (LC, German: Bodensee) is a large
(472 km?), deep (mean depth =101 m), warm-monomictic
temperate lake north of the European Alps. During the study
period 1979-1999 it underwent re-oligotrophication and
mean annual phytoplankton biomass declined by a factor of
2 (Gaedke 1998). This indicates that the long-term changes
are small compared to the very pronounced seasonal dynam-
ics as individual species vary in density by a factor of 10-
1000 or more during the year and total biomass by a factor
of more than 20 (Rocha et al. 2011a). Culminating in 853
sampling dates between 1979 and 1999, the sampling was
conducted weekly during the growing season and approxi-
mately fortnightly in winter (for details see Gaedke 1998).
We aggregated the numerous species encountered into 36
morphotypes comprising individual species or higher taxo-
nomic units that have identical or very similar trait values
and contributed to more than 92% of the total phytoplank-
ton biomass (cf. Rocha et al. 2011b; Weithoff et al. 2015).
The average number of morphotypes encountered per sam-
pling date amounts to 17 £ 6.

Saidenbach Reservoir (SR) is a small dimictic drinking
water reservoir (area 1.5 km?, volume 22 X 10° m®) with an
average and maximum depth of about 15 m and 45 m,
respectively, situated in the low mountain range of southern
East Germany (Horn et al. 2011). Its trophic state changed
from mesotrophic to eutrophic in the 1970s, remained eutro-
phic in the 1980s and quickly returned to the mesotrophic
state due to a strong reduction of the phosphorous import
since 1990 after German Reunification. Supported by the
Saxony Academy of Science and hosted at the Ecological Sta-
tion Neunzehnhain of the Technical University of Dresden,
Heidemarie Horn analyzed the phytoplankton weekly from
1975 to 1985 and fortnightly until 2011, culminating in
1259 sampling dates (for details see Horn 2003; Horn et al.
2011, 2015). As in LC, samples were counted with an
inverted microscope. The average number of morphotypes
encountered per sampling date was 25 = 16.

Selection of traits
We selected two regularly measured traits, cell volume
(expressed in pm?3/cell), and maximum length, (i.e., longest
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linear dimension, measured in ym) which are of outstanding
importance for the fitness of phytoplankton species (Weith-
off 2003; Litchman et al. 2007; Horn et al. 2011) and clearly
related to the observed phytoplankton biomass dynamics in
LC (Tirok and Gaedke 2007; Vasseur and Gaedke 2007;
Rocha et al. 2012). According to allometric theory, cell vol-
ume influences many physiological activities such as nutri-
ent uptake and maximum growth rates. The classification
was done according to the individual cell volume of single-
celled and colony-forming morphotypes. In addition, the
shape of a cell or colony is important with respect to their
ability to absorb nutrients, susceptibility to sedimentation
and to filter-feeding zooplankton grazing. A suitable measure
for these processes is the maximum length (i.e., the longest
linear dimension) for which the classification was done
according to the individual cell size, filament length or col-
ony size. The two traits cell volume and maximum length
were only moderately correlated (log (size) vs. log (length)
' =0.58 for LC and r*=0.30 for SR) due to the frequently
elongated or complex shape of in particular the larger phyto-
plankton cells.

We log,-transformed both trait values to account for
their large range (covering over 4 and 3 orders of magni-
tude, respectively) and for the inherent skewness in size
distributions (Terseleer et al. 2014; Acevedo-Trejos et al.
2015). For ease of comparison, we grouped the biomass of
the morphotypes into 19 (cell volume) or 35 (maximum
length) equidistant classes on a log, scale. To account for
individual growth and variability within each morphotype,
we assumed that the minimum and the maximum trait val-
ues of each morphotypes differ by a factor of a=4 for cell
volume and a=2 for length prior to log,-transformation
(Gaedke 1992). Following the shape of a normal distribu-
tion, we allocated 50% of the biomass to the class corre-
sponding to the mean trait value, X, 20% to the two
adjacent classes corresponding to the a'/* and a /* of x
and 5% to the classes corresponding to the a'/? and a '/
of x. All subsequent calculations are based on the mean
trait values of the classes. For a relative comparison
between the two traits, we standardized their variances by
dividing them by their theoretical maximum values (45 for
size and 18 for length). The maximum variance was
obtained by allocating 50% of the biomass to each of the
most extreme trait values possible.

Characterizing trait distributions based on their shape

Our classification scheme categorizes trait distributions
based on their dominant shape properties which are directly
related to their first four standardized central moments:
mean, x, standing variance, v, skewness, S, and kurtosis, K.
They are calculated for both traits and each sampling date
after Egs. 1-4:
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N
5(=ZW1 - Xi (1)

N i=1
v=>"wi (xi—x)? )

K:iwi . (";‘)4 4)

where w; represents the weight, i.e., the fraction of biomass,
of the i-th class with trait value x; in the sample at time ¢t
and N the number of classes. The normal distribution serves
as benchmark and has per definition $=0 and K= 3. Hence,
large absolute values of § and K-3 (excess kurtosis) imply
that the shape of the distribution strongly deviates from a
normal one. Small absolute values of § indicate symmetric
distributions whereas large negative or positive values of §
are related to distributions skewed to the left or right. For
symmetric distributions, K provides good information about
the presence or absence of bimodality (DeCarlo 1997). Val-
ues of K>3 characterize rather unimodal distributions with
a pronounced peak around X and heavy tails (extreme val-
ues) while values of K< 3 result from less pronounced peaks,
heavy shoulders (x+,/v) and lighter tails indicating
bimodality.

The absolute values of S and K are usually positively corre-
lated (Wyszomirski 1992) making S and K not entirely inde-
pendent from each other (Blest 2003; Dori¢ et al. 2009;
Jones et al. 2011). That is, high values of S and low values of
K (bimodality) rule out one another, as a distribution with
two distant maxima of similar magnitude cannot be highly
skewed. Therefore, we jointly considered S and K to evaluate
the shape of the trait distributions and allocated all trait dis-
tributions into one of the following four categories: (1) nor-
mal, (2) peaked, (3) skewed, or (4) bimodal, based on the
threshold values outlined below. Distributions falling into
the first three categories were conservatively considered as
unimodal although skewed ones may express substantial side
peaks or a pronounced shoulder.

First, we distinguished between normal and non-normal
trait distributions based on a functional relationship between
§ and K entailed in the Jarque-Bera-Test-Statistic (Jarque and
Bera 1987) frequently used to test for the normality
assumption:

C1=8%+ ((K-3)/2)%. (5)

The index C; equals zero for the normal distribution (S=0,
K=3) and 9/25 for well-known non-normal distributions
such as the uniform (§=0, K=9/5), the logistic (§=0,
K=21/5) and the gamma distribution with «=13 (§=0.55,
K=3.46,). Hence, we categorized a trait distribution as nor-
mal for C; <9/25 and otherwise (C; >9/25) as non-normal.
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Fig. 1. (A) Characterization of the observed trait distributions of phytoplankton cell size in L. Constance according to their skewness, S, and kurtosis,
K. S ~ 0 indicates rather symmetric distributions and $>0 (§<0) skewness to the right (left). K< 3 results from distributions with heavier shoulders
than normal distributions and K>3 from more peaked ones with small shoulders but heavy tails (extreme values). With increasing variance, the color
of the dots changes from dark to light gray. The outer black line encompasses the mathematically feasible range of S—K values, the inner red circle the
range for normal distributions following the index C1, S-K combinations more extreme than the outer brown line are classified as bimodal (index C2)
and values falling within the inner orange line as peaked (index C3). S-K combinations falling between the C2 (brown) and C3 (orange) isoclines are
considered as skewed (for details see “Materials and procedures”). The colored dots refer to the size distributions depicted in B-I. (B-1) Examples of
observed distributions selected from different locations in the S-K plane which were classified as uniform (B, at the threshold to bimodal), skewed (C,
D, I), bimodal (E, G), peaked (F), or normal (H). These examples represent the respective observed trait distributions which are closest to predefined
combinations of S and K indicated by the colored dots in (A). Note the different scales of the y axes.

We further categorized the non-normal trait distributions
according to their prevalent properties of peakedness, skew-
ness, or bimodality by considering Pearson’s S$-K difference
(Pearson 1929):

Cy=52—(K-3). (6)

We considered a trait distribution as bimodal for C,>6/
5=1.2. This is the value of C, for the uniform distribution
(§=0, K=9/5) which can be considered as a transition stage
from symmetric unimodal to bimodal distributions. Indeed,
C, has to be smaller than 1.2 in case of symmetric unimodal
distributions and cannot be larger than 186/125=1.49 for
any asymmetric unimodal trait distribution (Klaassen et al.
2000). To be consistent with the threshold value for C;, we
chose the former value for C, but our overall results and

conclusions also hold for more restricted conditions (Sup-
porting Information Appendix A).

Finally, we used a modification of Sarle’s bimodality coef-
ficient (Pfister et al. 2013) to differentiate between skewed
and peaked distributions:

Cy=(82+1)%/K. 7)

We categorized a trait distribution as skewed or peaked
when Cj is larger or smaller than 1156/1875 = 0.62, respec-
tively. The latter value results when aiming for consistency
with the other threshold values. Overall, this resulted in the
framework depicted in Fig. 1 where we classified our trait dis-
tributions based on combinations of S and K that jointly sat-
isfy conditions derived from the well-known mathematical
relationships between § and K provided above. The three



Gaedke and Klauschies

isoclines within the K-S-phase space represent combinations
of K and § values that yield the same threshold values of C,,
C,, and Cj3 and are used to separate groups of trait distribu-
tions with shared properties. In contrast to numerous other
approaches evaluating, e.g., the normality of a distribution,
this approach does not require to specify the number of cells
counted which was unknown for most of the sampling dates
and may vary along the trait range. It is also well suited for
distributions such as biomass-weighted frequency distribu-
tions in which each observation has a different weight. As
our framework does not allow testing for significance as this
would generally require information about the number of
observations, we also tested for potential relationships
between X and S, and between v and K for the different traits
and water bodies. If the observed trait distributions would
originate from normal distributions, their skewness and
excess kurtosis (i.e., K-3) should fluctuate around zero inde-
pendently of x and v (cf. Eqs. 1-4).

Evaluating the quality of the aggregate model approach

Temporal changes in the aggregated properties, i.e., total
biomass, Br, trait mean, X, and standing trait variance, v, of
a community consisting of N species (i.e., the full trait distri-
bution) can be described by accounting for the dynamics of
each species separately:

— = R(X,') - B; (8)

where R(x;) represents the per-capita net-growth rate and
thus fitness function of the i-th species with biomass B; and
trait value x; at sampling date t. This approach, is subse-
quently called full model, as it accounts for all details in our
discrete trait distributions by using a correspondingly high
number of species. We calculated separately for each sam-
pling date the rates of change of the species biomasses based
on the trait distribution observed at sampling date t. The
temporal changes of the aggregate properties are described
by (for derivation see Supporting Information Appendix B):

N
% = BT . Z Wi - R(Xi) (9&)
i=1
= N
DS iR () (9b)

dv S
— = wi-R(x) - (x=X)>=v- > wi-R(x;) 0
: i=1

where w; denotes the relative biomass of the i-th species at
time f.

Aggregate models approximate the temporal dynamics of
By, X, and v by making assumptions about the shape of the
trait distribution and the linearity of the fitness function.
We compare four aggregate models which differ in their
approximations of the trait distribution and fitness function.

Trait distributions and aggregate models

We first consider two aggregate models, which describe the
temporal dynamics of By and X by a first-order approxima-
tion of Eq. 9 (Wirtz and Eckhardt 1996; Brandt et al. 2012;
Wirtz 2013):

o~ Br-R(X)|,— (10a)
dx . OR(x)
i v(x) - oy (10b)

Equation 10b includes the second central moment, i.e., the
trait variance v, which temporal dynamics are not described
by an equation. Hence, we have to close this system of dif-
ferential equations by assuming v either to be constant
(Wirtz and Eckhardt 1996; Merico et al. 2014) or to be well
expressed in terms of the lower central moment, x (Wirtz
and Lemmen 2003). In general, such moment closure meth-
ods are based on assumptions about the shape of the trait
distributions. In the first case, we set v equal to the average
of the observed trait variances. This approximation, labeled
constant variance, is exact for linear fitness functions com-
bined with symmetric trait distributions (i.e., S =0) (Abrams
et al. 1993).

In the second case, we assumed a unimodal relationship
between v and x and thus perform a data-based moment clo-
sure by fitting a parabolic function to our data:

v(x)=ai(x—ay)(x—az) (11)

This approximation is exact for linear fitness functions and
communities that comprise only two distinct phenotypes
with the trait values X, and xp.x (Wirtz and Eckhardt
1996; Cortez 2011; Ellner and Becks 2011) in which case the
parameters a;, a,, and az equal 1, Xy, and Xmax,
respectively.

As a second approach, we consider two aggregate models
which describe the temporal dynamics of Br, x and v com-
bined with a second-order approximation of Eq. 9 (Wirtz
and Eckhardt 1996; Norberg et al. 2001; Merico et al. 2009;
Coutinho et al. 2016). These models consider additionally
the dynamics of v and enable a better approximation of the
non-linearity of the fitness function by including its second
derivative and of the shape of the trait distribution by
accounting for potential skewness and kurtosis:

i 10?R(x)
B (R(X)L:x R X:x) e
dx _ OR(x) LO°R()
% =V ox lx:x 3 Z ox? X=X (12b)
& OR() ~?) 1R
a ~ 3 8)( |x:)7 + (M4 v )E 8X2 X=X (12C)

In general, this approximation is valid when v is small or
when the non-linearity of the fitness function is only weak
(cf. Supporting Information Appendix B). Equations 12b and
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12c include the third (M3) and fourth (M4) higher central
moments which have to be expressed in terms of lower
moments to close this system of differential equations. We
compare the results of two different moment closure techni-
ques. First, we assume the trait distribution to be normal
(Wirtz and Eckhardt 1996; Merico et al 2009). In this case
M5 =0 and M, = 3+2. Second, similar to Norberg et al. (2001)
we perform a data-based moment closure based on linear
regressions between the absolute (S vs. mean) or log-
transformed (K vs. v) values of the standardized central
moments:

S=a-x+b

13)
In (K)=d - In (v)+In (c)
Hence, in accordance with Norberg et al. (2001), power-
functions of the lower moments express the higher
moments:

My=S-v¥2=a % - v¥2+b 32

(14)
My=K - v?=c.vi*+2

To evaluate the quality of these four aggregate models we
calculated the rates of change of the aggregate properties
according to Egs. 9, 10, and 12 for the observed distributions
of size and maximum length by assuming two types of fit-
ness functions R(x) differing in their non-linearity. After-
wards we compared these results to the ones of the full trait
distribution model.

The first fitness function we used is a standard allometric
relationship between the species maximum growth rate, and
logarithmic cell size x, i.e., R(x)=m- (2")70'25. To establish
realistic values for the range of maximum growth rates
within phytoplankton communities we chose the scaling
parameter m to take a value of 3. The second fitness function
relies on the maximum length of the algal cells, which is
linked more closely to the top-down control of the phyto-
plankton. Consumers can only exploit a limited prey spec-
trum, which can be linked to the maximum cell length. We
assumed grazing by a diverse zooplankton community that
prefers small phytoplankton over large ones and hence con-
servatively a rather gradual decline with maximum length.
Hence, as a second fitness function, we chose a logistic func-
tion according to R(x) = 1-(1 + exp(a(x-$))) " '. The parameter
o describes how fast the transition from edible to less edible
species occurs and was set to 1. The parameter f reflects the
upper threshold of particle sizes, which can be processed effi-
ciently by common herbivores such as daphnids in our habi-
tats. We chose a value of log,(45) ym for maximum length
and log,(1024) um? for size (cf. Burns 1968; Lampert 1978).

We expressed the model performance as the ratio between
the rates of change of the aggregate properties of the aggre-
gate (Egs. 10 or 12) and full (Eq. 9) models for the individual
trait distributions. For example, to evaluate the performance
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of the aggregate models with a second order approximation
we computed the ratios (dB/df)aggregate/ (dB/db)sn (Egs. 12a
and 9a), (dx/dt)aggregate/ (dX/dt)sa (Egs. 12b and 9b) and (dv/
dt)aggregate/ (Av/dt)san (Eqs. 12¢ and 9c¢). For positive ratios, the
median of 2/1°82(ato9)l wag ysed as an average factor across all
trait distributions giving equal weight to over- and underesti-
mations. In addition, we provide the share of negative ratios
implying that the aggregate model predicts temporal
changes into the wrong direction, which only occurred for
the variance dynamics.

Assessment

Classifying the shape of observed trait distributions

Our classification scheme involves a comprehensive char-
acterization of the shape of the trait distributions by consid-
ering § and K in concert (Fig. 1A, for details see
“Characterizing trait distributions based on their shape” sec-
tion). The shape of the distributions differed between both
traits and habitats, varied greatly in time and covered the
full range from strongly multimodal to peaked and rather
symmetric to pronouncedly skewed in either direction (Fig.
1, Supporting Information Appendix C, Figs. C1-C3; Table
1) as similarly found by Downing et al. (2014). The size dis-
tributions in LC were mostly characterized as skewed (44%)
or bimodal (36%) and rarely as normal (13%) or peaked
(7%). In SR peaked size distributions (40%) prevailed
together with skewed (31%) and normal ones (25%). This is
in line with the mostly highly diverse phytoplankton com-
munity of LC (Weithoff et al. 2015) yielding on average
higher trait variances than in SR (Table 1). Phytoplankton
biomasses were distributed usually across a major part of the
entire trait range. This holds in particular for maximum
length in both habitats and for size in Lake Constance (LC)
whereas size distributions in Saidenbach Reservoir (SR) were
typically restricted to a more narrow range (Table 1; Fig. 1,
Supporting Information Appendix D, Fig. D1) due to the fre-
quently dominating pennate diatoms (Horn et al. 2011). In
fact, length distributions in LC showed the largest diversity
in the shape from all traits and habitats (37% normal, often
relatively small absolute values of S, and K values relatively
close to 3) whereas in SR 92% of the length distributions
were (extremely) skewed or bimodal and exhibited large var-
iances. The large difference in the shape between the two
trait distributions in SR originates from the elongated shape
of the diatoms. Their cell size (i.e., volume) is similar to that
of many co-occurring, more spherical species resulting in
peaked size distributions. In contrast, their maximum length
is much larger than that of most other species yielding
heavily skewed or bimodal length distributions.

Testing the reliability of the moment-based classification
method

Our classification scheme depends on defining threshold
values based on relationships between S and K (cf.
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Table 1. Temporally averaged mean trait values, X, mean
standing variance, v, standardized by the respective maximum
variance (45 for size and 18 for maximum length), mean abso-
lute values of the skewness, S, and the kurtosis, K (all values
with = one STD reflecting the temporal variation), frequencies in
% of the different types of distributions, and Pearson’s linear
correlation coefficients for x vs. S, In(v) vs. In(K), and x vs. v for
the traits size in log, (um>) and maximum length in log, (um)
in L. Constance (LC, 1979-1999, n=853) and Saidenbach Res-
ervoir (SR, 1975-2011, n=1259).

Trait/habitat X V/Vimax |S] |K-3]
LC size 10.8+1.7 0.14 = 0.06 0.85+0.6 1.7+2.0
SR size 9.9+ 1.1 0.06 = 0.05 0.6 0.5 2.0=*+2.0
LC length 51*+1.0 0.11 +0.07 0.6 0.5 1.4+1.9
SR length 6.4+0.9 0.13+0.08 1.8+1.4 6.5+10.8
Trait/habitat Normal Peaked Skewed Bimodal
LC size 13 7 44 36
SR size 25 40 31 4
LC length 37 12 35 16
SR length 4 4 51 41

7 of ? of ? of
Trait/habitat Xvs. § In(v) vs. In(K) Xvs. v
LC size 0.73 0.72 0.26
SR size 0.09 0.37 0.11
LC length 0.34 0.44 0.15
SR length 0.69 0.72 0.25

“Characterizing trait distributions based on their shape” sec-
tion) but their exact values had little influence on our over-
all results (Supporting Information Appendix A). The
classification of the different types of non-normal distribu-
tions was in line with the magnitudes of the variance, v, S,
and K, and the relationships among lower and higher
moments (Fig. 2; Table 1). For example, the highest fraction
of distributions classified as peaked (40% for size in SR) coin-
cides with the smallest standardized variance, and the high-
est fractions of skewed (51%) and bimodal distributions
(41%, length in SR) are associated with high v, maximum
absolute values in § and K and strong correlations among
lower and higher moments. The sign of S changed highly
significantly (p<0.001) from positive to negative with
increasing values of x, for both traits in both habitats (Fig.
2A-D; Table 1). K was also clearly related to v (p <0.001)
(Fig. 2E-H; Table 1). These relationships were particularly
strong (r*: 0.69-0.73) if a low percentage of trait distributions
was classified as normal (13% for size in LC and 4% for
length in SR). In contrast, when we obtained a relatively
high share of normal distributions (37% for length in LC)
combined with a rather even occurrence of the other types
of shape, the different moments had intermediate values
with relatively high standard deviations and exhibited only
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moderately strong correlations among each other (Table 1).
These differences in correlation strength among lower and
higher moments support the reliability of our classification
scheme as for trait distributions originating from normal dis-
tributions § and excess kurtosis (K-3) should fluctuate by def-
inition around zero independently of x and v. This implies
that a high percentage of normal distributions should coin-
cide with weaker correlations among lower and higher
moments that is in line with our data.

Tight relationships between lower and higher moments
allow a data-based moment closure

The relationships between the four moments can be used
to improve the accuracy of aggregate models using a data-
based moment closure. First-order approximations require
expressing v as a parabolic function of x (for details see
“Evaluating the quality of the aggregate model approach”
section). Such a unimodal relationship is to be expected
given the usually restricted trait ranges in natural communi-
ties because extreme values of X can only arise if most of the
biomass clusters at very small or high trait values, implying
a small variance. In contrast, intermediate mean trait values
can be associated with narrow or broad trait distributions
and, thus, small or large variances, respectively. Our data
reveal in principal a unimodal envelope for the relationship
between the maximum variance and x (Supporting Informa-
tion Appendix D, Fig. D1). However, the scatter around fit-
ted parabolic relationships was high (*=0.11-0.26) and in
two cases only the ascending part of the parabolic function
was relevant (size in SR and length in LC). The temporal var-
iability in v (Fig. 2E-H) also reveals the limited potential to
approximate the observed variances by their constant mean
value, as done in one of the first-order approaches. Further-
more, second-order approximations require expressing K and
§ as functions of x or v (for details see “Evaluating the quality
of the aggregate model approach”). In line with the low
share of normal distributions and the tight relationships
between x and v, we found strong correlations between S
and X, and K and v, for size in LC and maximum length in
SR (Table 1). These relationships arise from the fact that
within a limited trait range as it exists in our and presum-
ably most communities, small values of X can only occur if
organisms with small trait values clearly dominate the bio-
mass. This results in a trait distribution skewed to the right
(§>0) as long as some organisms with larger trait values are
still present (e.g., Fig. 1C) and vice versa (e.g., Fig. 1I). In
addition, the negative correlation between v and K results
from the fact that peaked trait distributions with high K and
thus pronounced tails can only arise for smaller v within a
limited trait range (e.g., Fig. 1F). In line, v can only be large
for uniform (e.g., Fig. 1B) or multi- or bimodal distributions
(e.g., Fig. 1E). Such distributions imply low values of K due
to flat peaks with heavy shoulders or distinct peaks at both
extremes.
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Fig. 2. Correlations between the skewness, S, and (A) size (#=0.73) and (B) maximum length (*=0.34) in L. Constance and (C) size (= 0.09)
and (D) maximum length (* = 0.69) in Saidenbach Reservoir, and between log, of the kurtosis, K, and variance, v, of (E) size (* =0.72) and (F) maxi-
mum length (= 0.44) in L. Constance and (G) size (©* = 0.37) and (H) maximum length (?=0.72) in Saidenbach Reservoir of the observed trait dis-

tributions of phytoplankton. Note the differences in the scales of the axes.

To conclude, as exemplified by the size distributions in
LC and the length distributions in SR the remarkable fact
arises that strong correlations among moments on one side
point to major deviations from normality but on the other
hand imply a large potential to correct for the impact of v, §,
and K using a data-based moment closure. Subsequently, we
test whether this holds when confronting the aggregate
models with real data.

Comparing the performance of aggregate models with
normal- or data-based moment closures

We tested the performance of the different aggregate
models by evaluating the deviations of their predictions
from the results of a corresponding full model using the
observed trait distributions. We combined the observed size
distributions with an allometric relationship of the growth
rate representing a weakly non-linear fitness function, and
the length distributions reflecting grazing resistance with a
logistic function yielding a moderate non-linearity with a
turning point. This reflects that cell size determines the
growth rates of phytoplankton and maximum length their
edibility and thus loss rates. As this provokes a confounding
between the type of trait distribution and the type of non-

linearity we abstracted from the ecological context and cal-
culated also the aggregate model performance combining
the size distributions with the logistic function and the
length distributions with the allometric relationship (Sup-
porting Information Appendix E). For the sake of clarity, the
latter data are not described in detail, as they did not change
the overall patterns described below.

Independent of the type of non-linearity, the aggregate
models consistently approximated the changes of the com-
munity biomasses, dBr/dt, better than the changes of the
mean trait values, dx/dt, which, in turn, were more accu-
rately predicted than the changes of the standing variances,
dv/dt (Fig. 3). In addition, the second-order approximations
delivered consistently more accurate (or similar, Fig. 3J])
results than the first-order approximations for the biomass
and trait changes (Fig. 3). For example, for size and the weak
non-linearity, dBy/dt of the aggregate models deviated from
the full models on average (for details see “Evaluating the
quality of the aggregate model approach” section) by a factor
of 1.1 (LC) and 1.03 (SR) when using first-order approxima-
tions. The corresponding values are only 1.01 (LC) and 1.001
(SR) when employing second-order approximations. For large
v, as found for size in LC and maximum length in both
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Fig. 3. Deviation of the four different types of aggregate models from the respective full models expressed as the ratio between aggregate and full
model in resPECt to the rates of biomass ([dB/dt]aggregate/[dB/dt]full; (A/ B/ G/ H)/ trait ([d)_(/dt]aggregate/[d)_(/dt]full; c: D/ I/ l) and variance ([dV/dt]aggre-
gate/[dV/dt]iun; E, F, K, L) changes at the individual sampling dates. They are based on a weakly non-linear allometric relationship (fitness function) and
the size distributions from Lake Constance, LC (A, C, E) and Saidenbach Reservoir, SR (B, D, F), and a moderately non-linear, logistic relationship and
the distributions of maximum length from LC (G, I, K) and SR (H, }, L). Labeling of the x axis: ¢ stands for the aggregate model with constant vari-
ance, p for the one with a parabolic relationship between trait mean and variance (both first-order approximations), and n and d for the second-order
approximations based on normality or data. The blue boxes represent the 25% and 75% quartiles with the median (red horizontal bar) and the
whiskers reflecting the 5% and 95% quartiles of all sampling dates which are partially truncated to improve the clarity of the figure. A ratio of 1
implies a perfect fit between the approximated values derived from aggregate models and the full model. Values < 0 arise if the aggregate model pre-
dicts changes in the wrong direction. By definition, the variance is constant (i.e., its rate of change is 0) for the first-order moment closures and the
types of moment closures do not affect dB/dt, i.e., the values are identical within the first- and second order approximations. Note the different scales
of the y-axes.

habitats, x provides a less suitable representation of the points even when many trait distributions were (strongly)
entire trait distribution. This results in larger deviations for non-normal (Fig. 3A-D, G-J). This happens because both
dBr/dt that could be strongly reduced by the second-order second-order approximations account at least partially for

approximations (Fig. 3). the non-linearity of the fitness function and the actual val-
We found similar patterns but stronger deviations for ues of v.
dx/dt. The models deviated on average by a factor of 1.4 Under certain conditions, second-order approximations

(constant variance) and 1.3 (data-based variance, LC) and 1.8 may also predict the variance dynamics, dv/dt, reasonably
and 1.7 (SR) for the first-order approximations and only by well but in our case, the predictions of dv/dt from the aggre-
1.2 (normal-based) and 1.1 (data-based) (LC) and 1.1 and 1.1 gate models strongly deviated from the results of the full
(SR) for the second-order approximations using the weak models already for the weak non-linearity (Fig. 3E,F). Even
non-linearity. The differences can be attributed to the large the direction of the changes in v (i.e., the sign of dv/dt) was
temporal variability of v and S (Figs. 2, 3B) for which first- falsely predicted for 21% (LC) and 12% (SR) of the size distri-
order approximations do not account for. Accordingly, both butions and for 45% (LC) and 12% (SR) of the length distri-
second-order approximations greatly improved the fit. This butions by the normal-based approximation (Fig. 3K,L). For

holds in particular for the data-based moment closure (Fig. the data-based approach, the corresponding values are 5%
3, Supporting Information Appendix E) which accounted for (LC) and 12% (SR) for size and 29% (LC) and 5% (SR) for
S and K. Based on the tight relationships between S and X, length. For data points with a correct sign, dv/dt deviated on

and K and v the data-based moment closure strongly reduced average by a factor of 3.5 (LC) and 4.1 (SR) for the size distri-
the deviations compared to the predictions of the normal- butions and of 2.8 (LC) and 9 (SR) for the length distribu-
based aggregate model. Remarkably, the second-order tions for the normal-based moment closure. The data-based
approximation with a normal-based moment closure was moment closure reduced these factors substantially to 1.5
better than the first-order approximations for most data (LC) and 1.8 (SR) for the size distributions and to 2.2 (LC)
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and 1.4 (SR) for the length distributions (cf. Supporting
Information Appendix E, Fig. E1L). As expected, the greatest
improvements were achieved when the correlations between
lower and higher moments were most pronounced. Further-
more, the normal-based approach mostly underestimated dv/
dt when the sign was correct whereas the data-based
approach was less biased (see also Supporting Information
Appendix E). The latter implies that under- and overestima-
tions at individual sampling dates may counteract each
other in the long term whereas errors accumulate in the
normal-based approach leading to an unrealistic decline of v.

As expected, the aggregate models usually performed bet-
ter for the weak than for the moderate non-linearity (Fig. 3,
Supporting Information Appendix E). For example, for size
and the moderate non-linearity the deviations of dBy/dt
increased to a factor of 1.13 (LC) and 1.14 (SR) when using a
first-order approximation, and to a factor of 1.27 (LC) and
1.08 (SR) when employing a second-order approximation.
For dx/dt the corresponding values are 1.5 and 1.6 (LC) and
2.1 and 1.8 (SR) for the first-order approximations, and 1.5
and 1.8 (LC) and 1.4 and 1.2 (SR) for the second-order
approximations. The pattern was less consistent for dv/dt
deviating on average by a factor of 1.9 (LC) and 2.3 (SR) for
the normal-based moment closure and by 2.4 (LC) and 2.7
(SR) for the data-based moment closure if the sign of dv/dt
was correct. Both approaches failed to predict the sign cor-
rectly for 12-15% (LC) or even 37% (SR) of the size distribu-
tions (Supporting Information Appendix E).

Comparing the two aggregate models based on the first-
order approximation reveals only a slight improvement with
a data-based moment closure which predicts the value of v
with a parabolic relationship from the actually observed
value of x rather than using constantly the mean observed
variance (Fig. 3C,D,L,]). This is in line with the large scatter
around the parabolic relationship between v and x (Support-
ing Information Appendix D, Fig. D1). Relating the two
second-order approximations to each other delivers consis-
tently a better fit by the data-based approach than by the
one based on normality for the weak but not for the moder-
ate non-linearity (Fig. 3). The data-based approach accounts
for the impact of § and K on the estimates of dx/dt and dv/
dt which improved the latter in particular (see also Support-
ing Information Appendix E). However, in case of the mod-
erate non-linear fitness function, higher derivatives strongly
influenced the dynamics of the aggregate properties that
were not accounted for by any of the aggregate models
evaluated.

Mechanisms underlying the deviations of the aggregate
from the full models

Considering the deviations of the aggregate from the full
models in more detail reveals systematic patterns reflecting
the underlying mathematical relationships. Without loss of
generality, we exemplify them for the size distributions in
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LC and the weak non-linearity. The magnitude of the second
and higher derivatives of the allometric relationship repre-
senting here the weak non-linearity strongly depends on the
mean and thus the location of the trait distribution. How-
ever, the derivatives are all monotonically increasing or
decreasing functions of the trait and thus their signs remain
constant along the trait range. Hence, the rather simple cur-
vature of the allometric relationship leads to a clear depen-
dence of the deviations between aggregate and full model on
the shape of the trait distributions described by their higher
moments. For dBr/dt the first-order approximations which
either kept v constant or had little power to estimate
changes in v from Xx, delivered deviations which strictly
increased with v (Fig. 4A,B; Supporting Information Appen-
dix B, Eg. BS5; Spearman rank correlation coefficient
p=-0.96). Accordingly, the second-order approximations
considering v provided an almost perfect fit and the small
deviations were tightly linked to the third moment (Fig.
4C,D; p=0.99; cf. Supporting Information Appendix B, Eq.
BS). Thus, dBy/dt was consistently underestimated due to the
curvature of the allometric relationship (Jensen’s inequality).
Deviations between aggregate models with first-order
approximations and the full models in respect to dx/dt were
again related to v, in particular for the approach assuming a
constant v (Fig. 4E; p = —0.92). The correlation between devi-
ations and v remaining in the data-based approach (Fig. 4F;
p=—0.70) reveals that it accounted only partly for the effect
of v due to the lack of a distinct relationship between x and
v (Fig. D1). Deviations found in the second-order approxima-
tions were linked to the third moment both in the normal
(Fig. 4G; p=0.90) and to a lesser extent in the data-based
approach (Fig. 4H; p =0.45). In the normal-based approach,
the third moment accounted for deviations from normality
whereas in the data-based approach, the smaller deviations
and weaker correlation with the third moment arise from
the rather close fit between x and § (Fig. 2A). Much of the
remaining variation is attributable to K and higher moments
(ct. Supporting Information Appendix B, Eq. B10).
Considering dv/dt, the absolute values of the pronounced
deviations between aggregate and full models declined with
K, in particular when using the normal-based approach (Fig.
4l; p=-0.91). This reveals that dv/dt is estimated reliably
only for size distributions with K ~ 3. For rather broad
(K<<3) or peaked distributions (K>>3) the normal-based
moment closure strongly over- or underestimated dv/dt. The
data-based approach strongly reduced the deviations (Fig.
3E,F) due to the tight relationship between v and K (Fig. 2E).
In contrast to the allometric relationship, both the sign
and magnitude of the higher derivatives of the logistic func-
tion strongly depend on the relative location of x compared
to the turning point of the logistic function. Hence, for the
moderate non-linearity we did not find reliable correlations
between the deviations and the higher moments but the
deviations were non-linearly related to x. Given the resulting
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Fig. 4. Relationships between the deviation in the rates of the aggregate properties of the four different types of aggregate models from the respec-
tive full models and higher moments at the individual sampling dates for the observed size distributions in Lake Constance and the weak nonlinearity.
The deviation is expressed as the ratio of the rates of biomass ([dB/dt]aggregate/[dB/dt]iu; A-D), trait ([dX/dt]aggregate/[dX/dt]sui; E-H) or variance ([dv/
dt]aggregate/ [dV/dtlian; 1, J) changes of the aggregate model and the full model, respectively. The two aggregate models with first-order approximation
are labeled c (constant variance; A, E) and p (data-based variance; B, F), and those with second-order approximation are labeled n (normal-based; C,
G, I) or d (data-based; D, H, J). p provides the respective values of the Spearman correlation coefficient. Note the different scales of the y-axes.

lack of generality details of those relationships are not
shown.

Discussion

We developed a novel approach to classify the critical
shape properties of biomass-weighted trait distributions into
four common types: normal, skewed, peaked, and bimodal.
Our approach is easy to employ as it involves only the calcu-
lation of the first four moments and is robust with respect to
the exact threshold values chosen (Supporting Information
Appendix A). Furthermore, it does not demand to specify
the number of items counted which is typically unknown or
uneven across the trait range in plankton counts, and will be
rather insensitive to the exact number of classes chosen
along the trait axis. This method goes beyond purely testing
for a distinct type of distribution such as normality. It ena-
bles spatial-temporal and cross-system comparisons with
respect to the predominant shapes of trait distributions and
investigations of changes in the predominant selection
pressure.

In accordance with highly skewed and multimodal size
and length distributions of aquatic invertebrates (Zimmer
et al. 2001), birds, and insects (Griffiths 1986) our method

classified a low share of observed phytoplankton trait distri-
butions as normal. This is in line with the pronounced corre-
lations between mean, X, and skewness, S, and variance, v,
and kurtosis, K, which is likely generalizable across systems
where traits are restricted to a finite range. These relation-
ships represent two sides of one coin: on the one side, nor-
mal trait distributions cannot be assumed as the rule when
the trait distributions observed at a given date or location
cover a substantial part of the entire possible trait range.
This feature is to be expected unless substantial parts of the
community under consideration are entirely absent in
numerous samples. Thus, our data question the realism of
the simplifying assumption made by numerous aggregate
models that trait adjustments proceed through a shift in the
mean trait value while the variance or shape of the trait dis-
tribution remain unchanged (Supporting Information
Appendix F, Fig. F1). A more realistic abstraction for
restricted trait ranges is that not only the mean and partly
the variance but also the shape varies in time, leading to cor-
relations among the lower and higher moments (Supporting
Information Appendix F, Fig. F1). On the other side, strong
correlations between S and X, and K and v may strongly
improve the performance of aggregate models using a
second-order approximation and a data-based moment
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closure. We demonstrate these two counteracting processes
by comparing the aggregate approaches for different trait dis-
tributions and aggregate properties. For example, the size
distributions of LC were characterized by a high v and pro-
nounced deviations from normality but at the same time
had strong correlations among the lower and higher
moments (Table 1). Accordingly, the data-based moment clo-
sure was in reasonable agreement with the full model for
biomass and trait dynamics despite the high variance and
delivered more reliable approximations than approaches
with first-order approximations or a normal-based moment
closure (Fig. 2).

Based on 4200 trait distributions we tested the perfor-
mance of four aggregate model approaches for a weakly and
a moderately nonlinear fitness function, which are used fre-
quently to describe growth and loss processes (Peters 1983;
Lampert and Sommer 2007). The deviations between the
aggregate and full models depended on all five factors inves-
tigated: the aggregate property considered (i.e., the changes
in the biomass, trait, or variance), the strength and curvature
of the non-linearity in the fitness function, the type of
aggregate model, the variance, and the shape of the trait dis-
tribution. We found distinct patterns for the first two factors:
The quality of the fit consistently declined from the biomass
to the trait dynamics and particularly to the variance
dynamics, and with increasing non-linearity of the fitness
function as expected from theory (Savage et al. 2007; Merico
et al. 2009). The impact of the other three factors was more
complex and context dependent. The patterns in the devia-
tions clearly reflected the mathematics underlying the
respective model approaches in concert with the properties
of the trait distributions (Fig. 4). Overall, most deviations
correlated strongly with the next higher moment or deriva-
tive not considered in the respective approach.

Considering the weak non-linearity, dBr/dt estimated with
first- or second-order approximations deviated on average by
0.1-10% from the full model. This may appear acceptable
given the usual uncertainties in parameter estimates. It
should, however, be acknowledged that we judged the per-
formance of the aggregate models separately for distinct
points in time and separately for dBr/dt, dxdt and dv/dt for
the sake of generality and clarity. This neglects a potential
accumulation of errors in time that may lead to substantial
differences in the long run and disregards the consequences
of potential deviations in one aggregate property for the
others through potential feedbacks. For example, v influen-
ces the speed of trait adaptation, dxdt, which describes the
adjustment to altered environmental conditions such as
predator and prey biomasses (Tirok et al. 2011). Hence, stud-
ies on biomass-trait dynamics are sensitive to a correct esti-
mation of v and the changes thereof, dv/dt, as their results
often depend on the relative speed of biomass (indicating
ecological dynamics) and trait changes (may indicate evolu-
tionary dynamics), i.e., on the magnitude of dBy/dt and dxdt
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(cf. Saloniemi 1993; Dercole et al. 2006; Mougi 2012). Pre-
dicting v and dv/dt reliably is also highly relevant in the con-
text of functional biodiversity research and of the
maintenance of biodiversity in particular.

Unfortunately, predictions of all aggregate approaches
were prone to often substantial errors with respect to dv/dt
even for a weakly non-linear fitness function. Furthermore,
the normal-based approach mostly underestimated dv/dt
when the sign was correct (Fig. 3). Given the positive sign of
the second derivative of the allometric function, this implies
an underestimation of the increase of v. This is in line with
the overall tendency of v to decline in aggregate models pre-
viously explored in other studies (Merico et al. 2009; Cou-
tinho et al. 2016). To counteract this permanent loss of
functional diversity and thus adaptive potential, previous
studies had to maintain v by other processes such as immi-
gration or diffusion terms or more complex trade-offs, all
demanding additional assumptions (Wirtz and Eckhardt
1996; Norberg et al. 2001; Merico et al. 2014; Tirok et al.
2011). It shows that even for weakly non-linear fitness func-
tions the normal-based model approach may not be able to
reflect changes in biodiversity realistically. This is supported
by a recent model study where a normal-based aggregate
model overestimated the time scale of the biomass and trait
dynamics by a factor of 10 when assuming rather smooth fit-
ness functions (Coutinho et al. 2016).

For the moderately non-linear logistic fitness function,
the aggregate models often failed (Fig. 3, Supporting Infor-
mation Appendix E) since even second-order approximations
with a data-based moment closure could not capture such a
curvature. The higher derivatives of the fitness function for
which none of the aggregate models accounts, limited the
model accuracy more strongly than the type of moment clo-
sure, i.e., the actual representation of the shape of the trait
distribution. This was particularly true for dv/dt for both, the
normal- and the data-based approach but deviations for dBry/
dt and dxdt were generally also much larger than for the
weak non-linearity.

A potential solution to improve the performance of trait-
based models while maintaining their operability in particu-
lar for moderately or strongly nonlinear fitness functions or
trait distributions with high variance are “hybrid” models.
They attempt neither, to describe the entire population or
community only by the mean and variance of its trait distri-
bution nor go to the opposite extreme of tracking the entire
discretized distribution (i.e., a discretized full model). They
combine a multi-species model with an aggregate approach
and split the community into a limited number of entities
such as species or functional groups. The adjustment of their
mean trait values and variances to ambient conditions
within a limited trait range can then be described more ade-
quately by the aggregate model approach (Norberg et al.
2012; Klauschies et al. 2016). For example, the phytoplank-
ton community can be separated into two functional groups
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(e.g., edible and less edible algae) at the trait value of the
turning point of the logistic function. This results in two
only weakly non-linear fitness functions for each group cov-
ering more restricted trait ranges with smaller variance
where x better represents the properties of the functional
group. Such an increase in food web resolution was advo-
cated or used by Norberg et al. (2001) and Terseleer et al.
(2014) to improve the accuracy of ecological models. A simi-
lar strategy is employed in some management models more
strongly tailored to specific systems that split e.g., the phyto-
or zooplankton community into 2 or more functional groups
(Baretta et al. 1995; Prowe et al. 2014). Our results show that
such an increase in model complexity and computational
effort is warranted for the sake of the obtainable accuracy.
Errors in the speed of biomass, trait, and variance dynamics
may cause a temporal mismatch between abiotic forcing,
community dynamics, and adjustment to altered conditions.
Thus, evaluating the prevailing shape of the trait distribu-
tions, potentially subdividing the trait range into two or
more groups (hybrid model), and employing a data-based
moment closure should improve our skills to manage ecosys-
tem appropriately.

To conclude, our newly developed classification scheme
relying solely on skewness and kurtosis overcomes previous
operational problems in comparing the shape of observed
trait distributions. For freshwater phytoplankton they ranged
from peaked to highly skewed and multi- or bimodal and
mostly deviated substantially from normal distributions. The
latter is to be expected if many of the trait distributions at a
given time or location cover a substantial part of the entire
feasible trait range which gives rise to tight correlations
between skewness and mean trait, and kurtosis and variance.
As this likely holds for many communities the common use
of normal-based moment closures in aggregate models needs
reconsideration. At the same time, these correlations
enhance the performance of data-based moment closures.
Accordingly, this approach yielded mostly reliable predic-
tions for the biomass and trait changes at least for weakly
non-linear fitness functions. Thus, we strongly recommend
to use this method, if required combined with a hybrid
model, when tailoring aggregate models to specific systems.
However, predictions of the rate of change in the trait vari-
ance and even its direction were subject to substantial errors,
which may hamper a realistic assessment of the maintenance
of biodiversity, biomass-trait feedbacks, and eco-evolutionary
cycles. For a moderately non-linear logistic fitness function,
all aggregate models deviated often strongly from the true
values for biomass, trait and variance dynamics which calls
for combining the species sorting with the aggregate model
approach. Overall, accounting in a fully quantitative way for
the naturally inherent biodiversity and the resulting poten-
tial to adapt to ambient conditions remains a challenge for
natural communities.
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