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Abstract. Trade-offs between functional traits are ubiquitous in nature and can promote
species coexistence depending on their shape. Classic theory predicts that convex trade-offs facil-
itate coexistence of specialized species with extreme trait values (extreme species) while concave
trade-offs promote species with intermediate trait values (intermediate species). We show here
that this prediction becomes insufficient when the traits translate non-linearly into fitness which
frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to
a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel,
general approach to evaluate the effect of different trade-off shapes on species coexistence. We
compare the trade-off curve to the invasion boundary of an intermediate species invading the
two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combi-
nations where invasion is or is not possible. The invasion boundary is calculated based on mea-
surable trait–fitness relationships. If at least one of these relationships is not linear, the invasion
boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead
to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-
offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical
description of their shape. We apply our approach to a well-established model of an empirical
predator–prey system with competing prey types facing a trade-off between edibility and half-
saturation constant for nutrient uptake. We show that the survival of the intermediate prey
depends on the convexity of the trade-off. Overall, our approach provides a general tool to make
a priori predictions on the outcome of competition among species facing a common trade-off in
dependence of the shape of the trade-off and the shape of the trait–fitness relationships.

Key words: coexistence; competition; fitness; functional traits; invasion boundary; neutrality; predator–
prey model; shape; trade-offs.

INTRODUCTION

Understanding the mechanisms of species coexistence
still poses a major challenge in ecology. Trade-offs
between different functional traits provide an essential
basis for coexistence by allowing differentiation of ecolog-
ical strategies through diverging trait values among coex-
isting species (Tilman 2000). Because species are unable to
optimize the values of all their traits at the same time due
to physiological, energetic, and genetic constraints, maxi-
mizing the value of one trait (e.g., defence against preda-
tion) generally implies costs regarding other traits (e.g.,
growth). Such trade-offs are common, occur for all types
of species interactions, and may prevent the occurrence of
a “superspecies” performing best under all conditions and
outcompeting all others (Kneitel and Chase 2004).
The existence of a trade-off does not necessarily imply

that different highly specialized species coexist. As first

reported by Levins (1962, 1968), the species composition
crucially depend on the shape of the trade-off between
the traits. Assuming that fitness increases linearly with
higher trait values, convex trade-offs imply that an inter-
mediate value of one trait x comes with high fitness costs
regarding the other trait y while the opposite holds for
concave trade-offs (Fig. 1a). Accordingly, convex trade-
offs which are mathematically defined by a positive sec-
ond derivative (@2y=@x2) were often called strong while
concave trade-offs having a negative second derivative
were named weak (Egas et al. 2004, Abrams 2006a,
Rueffler et al. 2006). Previous theory commonly predicts
that convex trade-offs select for extreme trait combina-
tions (extreme species) while concave trade-offs promote
species with intermediate trait values (intermediate spe-
cies). This was shown for trade-offs of consumers using
two different habitats/resources (Egas et al. 2004,
Abrams 2006a), host trade-offs between growth rate and
resistance against parasitism (Boots and Haraguchi
1999, Bowers and Hodgkinson 2001), trade-offs of
pathogens transmitted to two different hosts (Gudelj
et al. 2004), and prey trade-offs between reproduction/
resource competition and vulnerability to predation
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(Day et al. 2002, Abrams 2003, Jones et al. 2009). In
some of these studies, “convex” and “concave” were
oppositely defined while we refer here to the mathemati-
cal definition mentioned before (see Fig. 1a).
Empiricists have made a strong effort to measure

trade-off curves (Benkman 1993, Schluter 1995, O’Hara
Hines et al. 2004, Jessup and Bohannan 2008) and
recently tested Levins’ theory with competition experi-
ments (Maharjan et al. 2013, Meyer et al. 2015). How-
ever, the consequences of different trade-off curves for
the outcome of competition may strongly depend on the
considered traits trading off and how they relate to fit-
ness (de Mazancourt and Dieckmann 2004, Rueffler
et al. 2004, Bowers et al. 2005, White and Bowers 2005,
Hoyle et al. 2008). For specific cases, the prediction may
hold that convex trade-offs always favor extreme species
while concave trade-offs promote intermediate species. In
our paper, we abstract from specific cases and show that
this distinction is insufficient when the traits translate
non-linearly into fitness. To overcome this problem, we
present a novel, general approach to evaluate conse-
quences of different trade-off shapes for species coexis-
tence based on measurable trait–fitness relationships. In
order to do this, we calculate the invasion boundary of
an intermediate species invading the two extreme species
and compare the trade-off curve to it. This allows us to
predict whether the extreme species will dominate for a
given trade-off curve (invasion impossible) or whether an
intermediate species will be part of the community (inva-
sion possible). In addition, we evaluate when an interme-
diate species may stably coexist with one extreme species
or both of them based on invasion criteria (Fig. 1b). Our
approach is appropriate for systems without multi-stabi-
lity implying that a species which is unable to invade can
also not persist at high densities. Our results reveal that
convex and concave trade-offs do often not imply
different coexistence scenarios depending on the fitness
functions. Therefore, we suggest a new classification of

trade-offs into extreme-favoring (EF) and intermediate-
favoring (MF) trade-offs which differs from a purely
mathematical description of their shape. MF trade-offs
allow for the invasion of an intermediate species into the
extreme species while EF trade-offs do not.
Previous studies often examined trade-off shapes in an

evolutionary context with adaptive dynamics where
organisms could gradually adapt their trait values and
reached maximal fitness due to selection (de Mazancourt
and Dieckmann 2004, Rueffler et al. 2004, White and
Bowers 2005). Here, we take an ecological perspective
and analyse sorting of species (or genotypes) with fixed
trait values facing an interspecific (or intraspecific) trade-
off. Thus, in contrast to the previously mentioned studies,
the considered community does not necessarily has to be
evolutionary attainable via local mutations from a
monomorphic population but can be assembled, e.g., by
immigration. Typically, trade-offs are regarded to be spe-
cies specific. However, interspecific trade-offs are also
common in nature when organisms of different species
share similar physiological constraints between functional
traits (Tilman et al. 1982, Kneitel and Chase 2004), e.g.,
based on allometric relationships (Litchman et al. 2007).
Mechanistically, there is no difference between competi-
tion of species facing an interspecific trade-off and sort-
ing of genotypes of an asexually reproducing species with
an intraspecific trade-off (assuming no horizontal gene
transfer). In the following, we refer to species while the
results are transferable to genotype sorting.
First, we introduce our general framework on how to

calculate the shape of invasion boundaries based on
given trait–fitness relationships and how to infer conse-
quences of different trade-off shapes from that. We pre-
sent illustrative cases where the invasion boundary is not
linear but convex, concave, or a combination of both. In
the second part, we apply the general approach to a
well-established model of an empirical predator–prey
system with competing prey types facing a trade-off
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FIG. 1. (a) Different shapes of a trade-off between trait x and trait y. The trait values of the extreme species E1 and E2 are fixed
(solid circles) while the trait values of the intermediate species M (dashed circles) depend on the shape of the trade-off. (b) Coexis-
tence analysis based on the invasion criterion. Assuming that the extreme species always coexist in the absence of M and no multi-
stability occurs, five possible outcomes exist (i–v) which are illustrated behind the dashed arrows in the boxes. The necessary
invasion tests are shown in front of the dashed arrows. Arrows indicate successful invasion paths while struck-through arrows repre-
sent impossible invasion paths. Two species coexist if they are mutuallly invasible and if they are non-invasible by the third species
(i–iii). Only the intermediate species survives when both extreme species cannot invade it (iv). Coexistence of all three species occurs
if each species can invade the others (v) (cf. general approach).
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between edibility (probability of being attacked) and its
half-saturation constant for nutrient uptake. We calcu-
lated the invasion boundary of an intermediate prey
invading a defended extreme prey (low edibiblity) and a
competitive extreme prey (low half-saturation constant)
which was convex. Consequently, we found the same
coexistence pattern for concave and slightly convex
trade-offs lying above the invasion boundary. In addi-
tion to the analysis of stable coexistence, we considered
the duration of co-occurrence in case of competitive
exclusion which increased with trade-off curves getting
closer to the invasion boundary as expected based on
the theory on fitness equality (Hubbell 2001, He et al.
2012).

GENERAL APPROACH

Trait–fitness relationships and the invasion boundary

We consider a general system of three competing spe-
cies that face an interspecific trade-off between two func-
tional traits x and y: two species with extreme trait
values (E1, E2) and one intermediate species (M). We
assume niche differentiation of E1 and E2, i.e., their
traits (x1, y1 and x2, y2) are fixed at the opposite extreme
values of the trait range allowing them to stably coexist
when M is absent. The aim of this approach is first to
detect the invasion boundary of M invading a resident
community of E1 and E2 (combinations of trait values
xM and yM where the invasion fitness equals zero). The
invasion boundary may be linear, convex, concave or a
combination of convex and concave parts. This is
described by the second derivative of one trait with
respect to the other trait at the invasion boundary, i.e.,
@y2M=@x2M . In the following paragraphs, we achieve a
general representation of this second derivative based on
terms describing how xM and yM translate into fitness.
To achieve a criterion for the invasion success of M,

we consider its per capita growth rate which is defined as
its fitness. The fitness can be written as a function f of
its traits xM and yM , its population density M and the
population densities of the extreme species E1 and E2

1
M

dM
dt

¼ f ðxM ; yM ;M;E1;E2Þ: (1)

For simplicity, we incorporate no further environmen-
tal variables, e.g., fluctuating abiotic factors, resource
concentration, parasite or predator density, which can
be added when considering a specific system. The fitness
of M may also depend on the traits of E1 and E2. How-
ever, to simplify the notation, we drop them out of the
function in Eq. 1 as they are fixed at constant values.
Furthermore, we call the traits ofM simply x and y from
now on.
The invasion fitness of M is defined as its long-term

mean per capita growth rate at very low densities
(M � 0) in a resident system of E1 and E2, i.e.,

1
M

dM
dt

� �
¼ f ðx; y; 0;E1;E2Þh i: (2)

If the resident community is in a stable equilibrium, the
angle brackets indicating the long-term mean can be omit-
ted as the population densities are constant over time. In
case of fluctuating densities, the mean is taken over one
cycle. At the invasion boudary, f ðx; y; 0;E1;E2Þh i is equal
to zero. In many cases, the traits affect different fitness
components, e.g., growth based on resource consumption
and loss due to predation. Therefore, we replace f by two
additive functions fx and fy where each refers to one fit-
ness component (for non-additive cases see Appendix S1)

fxðx; 0;E1;E2Þh i þ fyðy; 0;E1;E2Þ
� � ¼ 0 (3)

Trade-offs imply that the value of one trait depends
on the value of another trait. Thus, y can be expressed
as a function of x and Eq. 3 can be rearranged to
fyðyðxÞ; 0;E1;E2Þ
� � ¼ � fxðx; 0;E1;E2Þh i while differen-
tiating both sides of this equation with respect to x yields
@ fy
� �

=@y @y=@x ¼ �@ fxh i=@x and thus

@y
@x

¼ � @ fxh i=@x
@ fy
� �

=@y
: (4)

For simplicity, the arguments of fx and fy are not dis-
played any more. If @y=@x is negative the invasion bound-
ary has a negative slope and vice versa. The second
derivative of y with respect to x describes the change of
the slope of the invasion boundary along the gradient of x

@2y
@x2

¼
@hfxi
@x

@2hfyi
@y2

@y
@x � @2hfxi

@x2
@hfyi
@y

@hfyi
@y

� �2 : (5)

The invasion boundary is concave if @2y=@x2 is nega-
tive, convex for positive values, and linear when
@2y=@x2 ¼ 0. Thus, Eq. 5 provides information about
the shape of the invasion boundary. The individual
terms of Eq. 5 or at least their signs are typically known
or can be measured for specific systems: the signs of
@hfxi=@x and @hfyi=@y describe whether an increasing
trait value leads to a gain or a loss of fitness. The signs
of @2hfxi=@x2 and @2hfyi=@y2 indicate whether this
change in fitness accelerates or decelerates with increas-
ing trait values.
Fig. 2 summarizes different cases of trait-invasion fit-

ness relationships and the resulting directions and
shapes of the invasion boundary based on Eqs. 4 and 5.
Case 1 represents the standard case with positive, linear
trait–fitness relationships resulting in a linear invasion
boundary (@2y=@x2 ¼ 0) with a negative slope
(@y=@x\0). As shown in case 2, the slope can be posi-
tive when one of the traits affects the fitness negatively
(@hfxi=@x\0 or @hfyi=@y\0), e.g., an increasing value
of natural mortality reduces fitness.
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In cases 3–5, we focus on different shapes of the inva-
sion boundary instead of different directions and con-
sider only traits with a positive effect on the invasion
fitness, i.e., the slope is always negative. The invasion
boundary is concave when one trait has an increasingly
higher effect on the invasion fitness with increasing trait
values, i.e., @2hfxi=@x2 [ 0 (case 3). As shown in case 4,
it is convex when this effect is decreasingly higher
(@2hfxi=@x2\0). Case 5 reveals that an invasion bound-
ary can consist of convex and concave parts. Such special
shapes occur when the range of trait values determines
whether the effect of one trait on the invasion fitness is
increasingly or decreasingly higher with increasing trait
values. A typical example of such a trait is the neck
length of giraffes feeding on tree leaves. Below a certain
threshold, the leaves are out of reach. Above the thresh-
old, a longer neck increases fitness as they have access to
a larger number of leaves. However, once a giraffe’s neck
is sufficiently long so that most of the leaves are within
reach, a further increase in neck length does not lead any
more to a higher fitness. The often spheroid shape of tree
crowns causes the sigmoid shape of the fitness function.
Case 6 is further evaluated in the example below when

we apply this approach to a predator–prey system with a
trade-off between prey edibility and its half-saturation con-
stant for nutrient uptake. Higher values of both traits have
a negative effect on the invasion fitness which implies again

a negative slope of the invasion boundary but the assign-
ment of areas in the trait space where invasion is possible
or not is reversed as low values of both traits are beneficial.
Moreover, the shape of the invasion boundary is convex
and thus differs from the standard case because the trait y
has a non-linear effect on fitness (@2hfyi=@y2 [ 0).
So far, we have shown cases where only one trait trans-

lates non-linearly into fitness. In Appendix S1, we pre-
sent the resulting invasion boundaries for cases where
both traits affect the fitness non-linearly (Appendix S1:
Fig. S1). Moreover, we show invasion boundaries for
cases where the fitness components fx and fy are multi-
plicative rather than additive as assumed in Eq. 3.
Remarkably, even for linear trait–fitness relationships
the invasion boundary is non-linear when the fitness
components are multiplicative (Appendix S1: Fig. S2).
Applying our approach to a general resource competi-
tion model with a trade-off between specialization on
two different resources (Appendix S2) reveals that the
shape of the invasion boundary may depend on whether
the residents cycle or are in steady-state which is line
with previous results of Abrams (2006a).

Trade-off shapes, invasion boundaries, and coexistence

To assess the effect of different trade-off shapes on
coexistence, we compare the trade-off curve to the

FIG. 2. Invasion boundaries of the intermediate species M resulting from different cases how its traits x and y translate into its
additive invasion fitness components hfxi and hfyi. The sign of @y=@x determines the direction of the invasion boundary while its
shape depends on the sign of @2y=@x2. The black curve in the last column represents the invasion boundary and gray (white) areas
refer to trait combinations where the invasion ofM is impossible (possible).
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calculated invasion boundary. Both curves share the
same terminal points, i.e., the trait combinations of the
extreme species. Thus, a comparison of their shape
allows direct conclusions on coexistence. We classify
trade-offs as extreme-favoring (EF) when the invasion of
an intermediate species is not possible leading to coexis-
tence of only the extreme species and as intermediate-
favoring (MF) if an intermediate species can invade the
extreme species and becomes part of the community. We
define a trade-off as neutral if it is identical to the inva-
sion boundary. In Fig. 3, we show examples of different
trade-off curves and the respective invasion boundary.
In the standard case, the invasion boundary is linear,
implying that convex trade-offs are EF while concave
trade-offs are MF (Fig. 3a). For concave invasion
boundaries, EF trade-offs can be convex, linear, and
slightly concave while only strongly concave trade-offs
are MF (Fig. 3b). The assignment of EF and MF trade-
offs can be reversed depending on whether both traits
translate positively into fitness (Fig. 3c) or negatively
(Fig. 3d). If the trade-off curve or the invasion bound-
ary is a combination of convex and concave parts, the
trade-off may be MF and EF depending on the consid-
ered trait range (Fig. 3e, f). Thus, depending on the trait
combination of the intermediate species, it will be part
of the community or not.
Assuming that E1 and E2 stably coexist in the absence

of M, EF trade-offs always lead to coexistence of the
extreme species (Fig. 1b case i) while there are several
possibilities of coexistence in case of MF trade-offs where
M is part of the community. We use the invasion crite-
rion (Chesson 2000) to test for the different coexistence

scenarios. The invasion criterion states that two species
stably coexist if each one is able to invade a system domi-
nated by the other resident species (mutual invasibility).
We extend this criterion to our three-species system.
Assuming no multi-stability, four outcomes of coexis-
tence are possible for MF trade-offs (Fig. 1b): (ii) Coex-
istence of E1 and M when E1+M are mutual invasible
and not invasible by E2, (iii) Coexistence of M and E2

when M+E2 are mutual invasible and not invasible by
E1, (iv) Survival of only M if M is not invasible by E1

and E2, (v) Coexistence of E1, M and E2 when E1+E2 is
invasible by M, E1+M by E2 and M+E2 by E1. The three
conditions for coexistence of all three species ensure that
each species is able to increase after strong reduction in
density. For example, if E1 is reduced to very low densi-
ties, it can invade the remaining community whereby it is
not important whether the invasion occurs directly into
M+E2 or whether there is a step in between, e.g., E2

decreases also to very low densities followed by the inva-
sion of E1 into M and then the invasion of E2 into
E1+M. The conditions of case v comprise all of these
possible invasion paths.

APPLYING THE GENERAL APPROACH TO

A PREDATOR–PREY SYSTEM

Model description

We applied the general framework to a model of an
empirically well-studied chemostat system with the roti-
fer Brachionus calyciflorus as predator (B), different
genotypes of the green algae Chlamydomonas reinhardtii
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FIG. 3. Trade-offs are extreme-favoring (EF) or intermediate-favoring (MF) depending on their shape, the invasion boundary
of the intermediate species M (solid line), and the direction of fitness increase (arrows). Dashed lines highlight examples of EF
trade-offs while dotted lines indicate MF trade-offs. Trait combinations (x, y) of M where M cannot (can) invade the extreme
species are marked with gray (white). (a) Standard case with a linear invasion boundary where convex trade-offs are EF while con-
cave ones are MF. Non-linear invasion boundaries lead to deviations from the standard case. (b) For concave invasion boundaries,
even slightly concave trade-offs are EF. (c) Convex invasion boundaries allow slightly convex trade-offs to be MF. (d) Inverse trait–
fitness relationships reverse the assignment of EF and MF trade-offs. (e, f) More complex shapes of the trade-off or the invasion
boundary allow for EF and MF parts within one trade-off curve.
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as prey (E1, M, and E2) and a limiting nutrient (N) for
the algae. The algal genotypes face a trade-off between
edibility for the predator, i.e., probability of being
attacked, and the half-saturation constant for the uptake
of nutrients while we assume the other parameters to be
identical (Becks et al. 2010, 2012). Some genotypes exhi-
bit defence mechanisms (e.g., colony formation) which
reduces their edibility but lowers also their affinity for
nutrients (e.g., due to a lower diffusion velocity of nutri-
ents through the matrix surrounding the colonies), i.e.,
increases their half-saturation constant (Becks et al.
2012, N. Woltermann and L. Becks, unpublished data).
The trait values used in the model and stated below are
based on Becks et al. (2010). The defended extreme prey
E1 has the lowest edibility (p1 ¼ 0) but the highest half-
saturation constant (K1 ¼ 8 lmol N/L). The opposite
holds for the competitive extreme prey E2 (p2 ¼ 1,
K2 ¼ 2 lmol N/L). We vary the trait values of the inter-
mediate prey M between these extremes (pM between 0
and 1, KM between 2 and 8 lmol N/L).
The changes of the nutrient concentration and popu-

lation densities over time are defined by the following
differential equations

dN
dt

¼ dðNI �NÞ � r
v

NM
KM þN

� r
v

X2
i¼1

NEi

Ki þN

dM
dt

¼ M r
N

KM þN
� gpMB
KB þ pMM þP

piEi
� d

� 	

dEi

dt
¼ Ei r

N
Ki þN

� gpiB
KB þ pMM þP

piEi
� d

� 	

dB
dt

¼ B vB
gðpMM þP

piEiÞ
KB þ pMM þP

piEi
� d

� 	

(6)

with i ¼ 1; 2. The chemostat system is characterized by
a continuous inflow of medium with nutrients at the
concentration NI and outflow of medium with nutrients
and organisms. The magnitude of the inflow and the
outflow is described by the dilution rate d. The con-
sumption of nutrients by the prey and the consumption
of prey by the predator are described by a classical Hol-
ling-type II functional response (Monod’s Equation).
For further details on the parameters and their values
see Appendix S3: Table S1. In order to investigate the
duration of co-occurrence and the population dynam-
ics, we performed numerical integrations of this model
with the lsoda solver of the deSolve package in R (Soe-
taert et al. 2010). In the simulations, we used the fol-
lowing initialization: N ¼ NI , B ¼ 1 individual/mL and
E1;M;E2 ¼ 105 cells/mL. The simulations run for 200 d
representing a relevant time scale for chemostat experi-
ments. We determined the time until the first extinction
event, i.e., the duration of co-occurrence, where the
population density of one of the prey types falls below
the extinction threshold (100 cells/mL), for each trait
combination in a 1001 9 1001 grid covering the total
trait space.

The invasion boundary of the intermediate prey

Here, we detect the shape of the invasion boundary of
the intermediate prey M in a resident community of the
defended extreme prey E1 and the competitive extreme
prey E2. This specific system involves additionally nutri-
ents N and the predator B. The invasion fitness of the
intermediate prey (M � 0) equals

1
M

dM
dt

� �
¼ r

N
KM þN

� �
� pM

gB
KB þP

piEi

� �
� d :

(7)

Remarkably, the non-linear effect of pM in the denom-
inator of the functional response term cancels out in the
invasion fitness due to M ¼ 0 (compare Eqs. 6 and 7).
For simplicity, the traits of the intermediate prey are

represented by p and K from now on. The traits affect
different components of the invasion fitness which are
additive (see Eq. 7). Therefore, the invasion fitness can
be represented by two additive functions each depending
on one trait and the respective population densities

fpðp; 0;E1;E2;BÞ
� � ¼ �p

gB
KB þP

piEi

� �
� d (8)

and

fK ðK;NÞh i ¼ r
N

K þN

� �
: (9)

By deriving the fitness terms in Eqs. 8 and 9, we can
infer how the traits of the intermediate prey translate into
invasion fitness components which yields @hfpi=@p\0,
@2hfpi=@p2 ¼ 0, @hfK i=@K\0 and @2hfK i=@K2 [ 0 (for
details see Appendix S4). This implies that the invasion
fitness decreases linearly with higher p. With higher val-
ues of K, it decreases whereby the slope of that decrease
becomes less negative. These relationships determine the
shape of the invasion boundary. By applying the proce-
dure explained above (see Eqs. 3–5), we end up with the
first and the second derivative of K with respect to p at
the invasion boundary

@K
@p

¼ � @hfpi=@p
@hfK i=@K\0 (10)

and

@2K
@p2

¼
@hfpi
@p

@2hfK i
@K2

@K
@p � @2hfpi

@p2
@hfK i
@K

@hfK i
@K

� �2 [ 0: (11)

We can conclude that the slope of the invasion bound-
ary for the traits p and K has a negative sign since the
first derivative is negative (Eq. 10). Furthermore, the
shape of the invasion boundary is convex, i.e., the
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second derivative is larger than zero (Eq. 11). As higher
values of both traits are unfavorable, a EF trade-off
(invasion of M impossible) occurs for trait combinations
above the invasion boundary. This corresponds to case 6
shown in Fig. 2 and Fig. 3d.

Coexistence and co-occurrence of different prey types

The coexistence analysis described here is based on the
invasibility criterion (Fig. 1b) and demands the calculation
of invasion fitness and invasion boundaries, which is docu-
mented in Appendix S5. EF trade-offs imply coexistence of
the defended extreme prey E1 and the competitive extreme
prey E2 as they cannot be invaded by the intermediate prey
M (Fig. 1b case i, Fig. 4a, b). For MF trade-offs, M can
invade and thus different outcomes are possible (Fig. 1b
case ii–iv, Fig. 4a, c–e): At low pM values, M coexists with
E2 (Fig. 4a, c) where M represents an additional defended
prey type which outcompetes the defended extreme prey

E1 by having the advantage of a lower half-saturation con-
stant. In a narrow range of intermediate pM values, neither
E1 nor E2 can invadeM since they are functionally not dif-
ferent enough from M. This leads to the survival of only
M which is reasonably defended but can still sustain the
predator and has a relatively low half-saturation constant
(Fig. 4a, d). For high values of pM , coexistence of E1 and
M occurs (Fig. 4a, e) where M outcompetes E2 since it
has also a relatively low half-saturation constant but a
lower edibility compared to E2.
Stable coexistence of three prey types demands that

every prey type can invade the system of the two other
prey types (Fig. 1b case v). This is precluded in our sys-
tem due to the fact that the conditions for invasibility of
E1 þ E2 byM and of E1 þM by E2 as well asM þ E2 by
E1 are mutually exclusive. Hence, the maximum number
of stably coexisting prey types is two. However, all three
prey types can co-occur for long periods (Fig. 4c). The
duration of co-occurrence increases for trait combinations

FIG. 4. (a) Coexistence and duration of co-occurrence of the three prey types depending on the edibility pM and the half-satura-
tion constant KM (lmol N/L) of the intermediate prey type M. The capital letters E1, E2, and M indicate which prey types coexist
in the different regions framed by the solid lines representing the invasion boundaries (line I: M into E1+E2; line II: E2 into M; line
III: E1 into M). The invasion boundary of M (line I) is convex and differs distinctly from the often assumed linear case (dashed
line). The color grid indicates the duration of co-occurrence (i.e., time until first extinction) which increases when getting closer to
the invasion boundary of M. The dots labeled with lowercase letters mark trait combinations for which potential shapes of the
trade-off and the population dynamics of the prey types (104 cells/mL) and the predator B (individuals/mL) are shown in panels
b–f. The lower limit of the population density axis equals the extinction threshold of the prey types, 100 cells/mL. Trade-off curves
are defined as extreme-favoring (EF), intermediate-favoring (MF) or neutral depending on whether they are above, below or identi-
cal to the invasion boundary ofM. [Color figure can be viewed at wileyonlinelibrary.com]
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closer to the invasion boundary (Fig. 4a–e). Exactly on
the invasion boundary, i.e., for neutral trade-offs, none of
the prey types is outcompeted due to fitness equality
(Fig. 4a, f). This is called unstable coexistence as none of
the prey types can invade the others because the invasion
fitness equals zero. They only coexist if they are present at
sufficiently high initial densities.

DISCUSSION

We developed a novel and general approach to analyse
the consequences of different trade-off curves for coexis-
tence based on measurable trait–fitness relationships. We
revealed limitations of the common prediction that convex
trade-offs favor species with extreme trait values while
concave trade-offs enable survival of intermediate species.
These limitations arise from the implicit assumption of lin-
ear trait–fitness relationships implying that the invasion
boundary of an intermediate species invading the extreme
species is linear. Here, we infer the shape of the invasion
boundary directly from the trait–fitness relationships and
show that it is often non-linear. This holds when the rela-
tionship between at least one trait and the fitness is non-
linear (Fig. 2, Fig. 4) or when the fitness components are
non-additive (Appendix S1). We show how information
on the shape of the invasion boundary can be used to infer
consequences of different trade-off curves for coexistence.
Depending on the relative position of the trade-off curve
to the invasion boundary, we classify trade-offs as
extreme-favoring (EF, invasion of intermediate species not
possible) or intermediate-favoring (MF, invasion possible;
Fig. 3). We apply our approach to an illustrative example
of a predator–prey system with a trade-off between prey
edibility and half-saturation constant for nutrients where
the invasion boundary of an intermediate prey is convex.
The impacts of non-linear invasion boundaries on evo-

lution were already highlighted by Rueffler et al. (2004)
and de Mazancourt and Dieckmann (2004) who extended
Levins’ approach by allowing for density- and frequency-
dependent fitness. They compared trade-off curves and
invasion boundaries of mutant strategies in a monomor-
phic resident population to assess the direction of selection
with gradual evolution. Rueffler et al. (2004) discussed
under which conditions the invasion boundaries are non-
linear but they did not specify their shape. For instance,
non-linear invasion boundaries occur in stage-structured
models when the traits are characteristic for different
stages (Ebenman et al. 1996, Hoyle et al. 2008) and differ-
ent resource competition models depending on the state of
the resident community (Abrams 2006b, Abrams and
Rueffler 2009). Further studies underline the importance
of assessing the curvature of invasion boundaries for pre-
dicting evolutionary outcomes (Bowers et al. 2005, White
and Bowers 2005). However, our study is the first which
explicitly addresses the question of when the invasion
boundary becomes convex, concave or has a more com-
plex shape depending on the trait–fitness relationships
(Fig. 2). Moreover, our approach is released from the

limitation that coexistence has to be evolutionary attain-
able via local mutations. We consider coexistence within
an existing pool of species with fixed trait values.
Our approach is based on the assumption that two

extreme species facing a two-dimensional trade-off stably
coexist in the absence of an intermediate species indepen-
dent of the shape of the trade-off, i.e., they are mutual
invasible. However, depending on the magnitude of the
trade-off and the environment, only one extreme species
may survive. For example, a defended prey cannot coexist
with a fast-growing prey if the defence costs in terms of
growth are very high (Abrams 1999, Kasada et al. 2014).
Moreover, if the physiologically feasible trait range is very
narrow, the extreme types may be too similar for stable
coexistence. In such cases, we can adapt our approach
and consider a resident community of only one extreme
species to check for the invasion of an intermediate spe-
cies. In the previously described case with two coexisting
resident extreme species, the trade-off curve and the inva-
sion boundary shared the same terminal points (see
Fig. 3). This needs not to be the case when only one resi-
dent extreme species is present. The trade-off curve and
the invasion boundary still converge at the trait combina-
tion of the resident species which is neutrally invasible
while at the other end of the trait range they may diverge.
Nevertheless, it is possible to distinguish between EF and
MF trade-offs just by detecting whether the trade-off
curve lies below or above the invasion boundary of the
intermediate species invading the one resident species.
We applied our general approach to an empirically well

understood predator–prey chemostat system with a
trade-off between prey edibility (probability of being
attacked) and its half-saturation constant for nutrient
uptake. We found that the invasion boundary of an inter-
mediate prey invading the two extreme prey types was
convex and had a negative slope. A subsequent invasion
analysis (Fig. 1b) could explain the coexistence of differ-
ent prey types (Fig. 4). Remarkably, for MF trade-offs,
the intermediate prey outcompeted both extreme prey
types or stably coexisted with one of them depending on
its trait values while stable coexistence of all three prey
types is impossible in this system even under cycling pop-
ulation densities. This follows the general theorem stating
that at most n species can coexist on n regulating variables
(Mesz�ena et al. 2006), i.e., two different prey types can
coexist based on one resource and one predator. How-
ever, previous theory revealed that fluctuating population
densities may allow for a higher number of coexisting spe-
cies. For example, Abrams (2006b) showed that two spe-
cialist and one generalist consumer can stably coexist on
two resources for slightly convex trade-offs when the
resources cycle asynchronously. This was possible due to
the relative non-linearity arising from the different satu-
rating functional responses of the consumers to the
resources which promoted the fitness of the generalist. In
models on interactions of prey species sharing one
resource and a common predator, non-linear functional
responses also promote cycles and allow for coexistence
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of two different prey strategies (Abrams and Matsuda
1997, Abrams et al. 1998, Abrams 1999, Yoshida et al.
2007). However, relative non-linearities enabling stable
coexistence of three prey strategies under fluctuating den-
sities have not been found in these predator–prey systems,
as shown in our study.
The three prey types cannot stably coexist but they may

co-occur on long, ecologically relevant time scales when
fitness differences are small, i.e., the trade-off is nearly neu-
tral. Studies on the role of neutrality and nearly neutral
trade-offs for maintaining functional diversity in natural
communities have a long tradition in ecology (e.g., Hub-
bell 2001, 2005, Adler et al. 2007). High fitness equality
extends the duration of co-occurrence and may increase
the possibility of coexistence even if only weak stabilizing
mechanisms are present (Chesson 2000, He et al. 2012,
Pedruski et al. 2015). We argue here that nearly neutral
trade-offs and the resulting low differences in fitness may
help to explain the partly observed high functional diver-
sity in simple, short-term experimental systems like the
predator–prey system considered in our study. Chemostat
experiments mostly cover up to 100 generations (Becks
et al. 2010, Hiltunen et al. 2014). Within this time scale,
all prey types maintain empirically detectable population
densities for nearly neutral trade-offs even if one prey type
would die out in the long term (Fig. 4c). It should be
mentioned here that the duration of co-occurrence
depends not only on the degree of fitness equality but also
on the extinction threshold and the initial population den-
sities, e.g., low initial densities of an inferior competitor
decrease the duration of co-occurrence.
So far, we focused on two-dimensional trade-offs.

However, multiple traits may trade off in nature (e.g.,
Edwards et al. 2011) and our approach can be extended
to multi-dimensional trade-offs. For example, a trade-off
among three traits can be represented by a plane in a
three-dimensional trait space. We can calculate the inva-
sion boundary of an intermediate species invading the
three possible extreme strategies. By comparing the
planes of the trade-off and the invasion boundary, we
can conclude whether the trade-off is EF or MF. Fur-
thermore, there is the possibility that a trait affects more
than one fitness component, e.g., the size of phytoplank-
ton cells determines their growth, nutrient uptake, sedi-
mentation and grazing losses (Litchman and Klausmeier
2008, Finkel et al. 2010). Accordingly, such traits were
often called “master traits.” Dividing a “master trait”
into the associated functional parameters like maximum
growth rate, nutrient affinity, sedimentation velocity,
and vulnerability to predation leads us to individual fit-
ness functions that can be handled with our approach.
Previous research has documented that trade-offs often

tend to be EF and found specialization of strategies indi-
cating high costs of intermediate strategies (Benkman
1993, Schluter 1995, O’Hara Hines et al. 2004, Mealor
and Boots 2006). However, evidently, MF trade-offs are
also relevant, e.g., for trade-offs between stress tolerance
and resource-dependent growth in different Escherichia

coli strains (Maharjan et al. 2013). Empirical evidence for
trade-offs consisting of EF andMF parts is currently lack-
ing but development of theory on trade-off curves com-
bining concave and convex parts, which have the potential
to be EF and MF, has been intensified (Zu et al. 2011, Zu
and Takeuchi 2012). Our approach contributes to this the-
oretical work and allows to assess consequences of more
complex trade-off shapes. Furthermore, previous research
showed that the shape of trade-offs may depend on the
environment (Jessup and Bohannan 2008), which would
allow for a continuous switching between EF and MF
under fluctuating conditions. This also implies that neu-
tral trade-offs may be of low relevance in natural systems
because a trade-off curve identical to the invasion bound-
ary is unlikely to prevail for extended periods of time.
Nevertheless, nearly neutral trade-offs may be relevant.
For instance, trait measurements on the edibility and max-
imum growth rate of different phytoplankton species indi-
cate a nearly linear trade-off (Wirtz and Eckhardt 1996).
According to our study, the invasion boundary for these
traits is linear as well (Fig. 2, case 2) suggesting that these
phytoplankton species co-occur due to low fitness differ-
ences instead of strong niche differentiation.

CONCLUSION

We conclude that the common prediction that convex
trade-offs promote species with extreme trait values
while concave trade-offs favor species with intermediate
trait values fails in case of non-linear trait–fitness
relationships, which frequently occur in nature. Our
approach stating how the shape of a trade-off affects
coexistence in dependence of the fitness functions over-
comes this limitation and can be readily used in practice:
establishing the trait–fitness relationships enables to cal-
culate the invasion boundary of an intermediate species
invading a community of species with extreme trait
values. A comparison of this boundary with the shape of
the trade-off allows to predict coexistence. This leads
us to a new classification of trade-offs into extreme-
favoring and intermediate-favoring which is more speci-
fic in terms of the ecological consequences than a purely
mathematical description of their curvature, i.e., convex
or concave.
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