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Abstract 

Functionally diverse communities can adjust their species composition to altered environmental 

conditions, which may influence food web dynamics. Trait-based aggregate models cope with 

this complexity by ignoring details about species identities and focusing on their functional 

characteristics (traits). They describe the temporal changes of the aggregate properties of entire 

communities, including their total biomasses, mean trait values, and trait variances. The 

applicability of aggregate models depends on the validity of their underlying assumptions that 

trait distributions are normal and exhibit small variances. We investigated to what extent this 

can be expected to work by comparing an innovative model that accounts for the full trait 

distributions of predator and prey communities to a corresponding aggregate model. We used 

a food web structure with well-established trade-offs among traits promoting mutual 

adjustments between prey edibility and predator selectivity in response to selection. We altered 

the shape of the trade-offs to compare the outcome of the two models under different selection 

regimes, leading to trait distributions increasingly deviating from normality. Their biomass and 

trait dynamics agreed very well for stabilizing selection and reasonably well for directional 

selection, under which different trait values are favored at different times. However, for 

disruptive selection, the results of the aggregate model strongly deviated from the full trait 

distribution model that showed bimodal trait distributions with large variances. Hence, the 

outcome of aggregate models is reliable under ideal conditions but has to be questioned when 

confronted with more complex selection regimes and trait distributions, which are commonly 

observed in nature. 
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Introduction 

Diverse ecological communities can adjust their composition and corresponding (mean) 

properties to local environmental conditions, which may in turn alter their dynamics. To 

investigate this complex but important causal chain, ecologists have increasingly advocated 

trait based approaches (Leibold and Norberg 2004; Webb et al. 2010). They depict species by 

their functional traits and corresponding trait values. The heritable trait variation existing within 

and among species can be represented by a single continuous trait distribution that may change 

in response to natural selection. This change may proceed mainly through species sorting, as 

often assumed in discrete approximations of full trait distribution (FTD) models (Norberg et al. 

2001; Bruggeman and Kooijman 2007; Merico et al. 2009). However, such multispecies models 

require a high number of species entities, i.e., state variables, to reduce potential artefacts that 

may arise from assigning a priori exact trait values to the species present. This increases model 

complexity and computational effort and may preclude a detailed understanding of the feedback 

between biomass and trait dynamics. 

In order to turn intractable exact equations into tractable approximate equations, 

theoretical ecologists developed aggregate models. They describe the temporal changes of the 

aggregate properties of an entire community, such as its total biomass, mean trait value and trait 

variance, in response to selection. The mean trait value and trait variance correspond to the first 

and second central moments of the trait distribution and reflect the average strategy and the 

overall functional diversity of the community (Wirtz and Eckhardt 1996; Merico et al. 2009; 

Tirok et al. 2011) or functional group (Norberg et al. 2001; Terseleer et al. 2014). However, 

their temporal changes generally depend on higher-order moments, particularly the third and 

fourth central moment (related to skewness and kurtosis) of the trait distribution. These are 

usually neglected or estimated from lower-order moments by assuming trait values to be 

normally distributed and trait variances to be small (Wirtz and Eckhardt 1996; Merico et al. 

2009; Tirok et al. 2011; Terseleer et al. 2014). 

The assumption of such a narrow unimodal trait distribution is generally valid under 

stabilizing selection promoting the dominance of species with very similar trait values as seen 

in models (Merico et al. 2009) and observed, e.g., during blooms of cyanobacteria (Scheffer et 

al. 1997) or pennate diatoms (Horn et al. 2011) in freshwater phytoplankton. However, temporal 

changes in abiotic forcing (Fox et al. 2010; Sommer et al. 2012) or internal feedback 

mechanisms (e.g., biomass-trait feedback, Tirok and Gaedke 2010 or eco-evolutionary 

dynamics, Becks et al. 2010) may strongly alter the selection pressure on natural communities 

within ecological time, giving rise to directional or even disruptive selection. Under these 

conditions, the shape and variance of the trait distributions are expected to differ strongly from 

a narrow unimodal one, questioning the reliability of aggregate models. For example, under 

directional selection, trait distributions should exhibit skewness because different trait values 

are favored at different times, while disruptive selection will promote the co-occurrence of two 

greatly different strategies, giving rise to bimodal trait distributions with large variances. In 
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such cases, species with trait values much distant from the current mean trait value are 

frequently abundant, so that the mean trait value does not represent the majority of the 

community. According to Jensen’s inequality, the evaluation of functions at their mean trait 

value is not appropriate if the trait distributions exhibit large variances and if functional 

relationships are strongly nonlinear, as generally found in nature. Even when accounting for a 

second-order approximation, as it is done in aggregate models, the truncation of a Taylor 

expansion after the second term will strongly bias the results when the higher-order derivatives 

do not vanish and the trait variance is large. 

We thus reevaluated the reliability of the aggregate model approach for different 

selection regimes. Following empirical evidence (Tirok and Gaedke 2007), we considered a 

predator-prey system in which prey species vary in their intrinsic growth rates and 

vulnerabilities to predation, while predator species differ in respect to their prey selectivity and 

ability to graze efficiently on low prey densities, and we assumed corresponding trade-offs 

between the traits. To account for the FTD of the prey and predator communities, we 

generalized a multispecies predator-prey model (Tirok and Gaedke 2010; Bauer et al. 2014) to 

one that considers a continuum of trait values. We then derived a corresponding aggregate 

model from the FTD model using a moment closure technique based on the assumption of 

normally distributed trait values. Finally, we compared the temporal dynamics and long-term 

behavior of the two models across a set of different trade-off shapes that correspond to different 

selection regimes. In contrast to multispecies and aggregate models, our FTD model does not 

make any assumptions about the exact trait values present and the shape of the trait 

distributions, which confers a great generality to this innovative approach. 

We show that the aggregate model works well under strongly stabilizing selection but 

increasingly lacks accuracy when the selection regime changes towards more directional or 

even disruptive selection. It predicts under directional selection very similar temporal averages 

and types of dynamics of the biomasses and mean trait values, but accumulates large errors in 

the trait variances and timescale of the biomass-trait feedback. Under disruptive selection, the 

aggregate model entirely fails to match the results of the FTD model, showing very different 

temporal averages and dynamics of all aggregate properties of both communities. Indeed, the 

FTD model reveals strongly skewed or bimodal trait distributions with large variances, which 

the aggregate model is unable to accommodate, displaying very different alternative states. 

 

Methods 

The first two subsections describe the two model approaches we are going to compare under 

different tradeoff shapes: a full trait distribution (FTD) model and a corresponding aggregate 

model version. In the third subsection, we explain how trends in the shape of the trade-off 

functions alter the selection regime from stabilizing, over directional, to disruptive selection. 

Finally, we outline the analyses performed. 
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Full trait distribution model 

Building on previous work (Tirok and Gaedke 2010; Tirok et al. 2011; Bauer et al. 2014), we 

used a modification of the classical Rosenzweig-MacArthur predator-prey model (Rosenzweig 

and MacArthur 1963) to simulate a continuous set of predator and prey species differing in their 

selectivity ω and edibility φ, respectively. Hence, the predators can be more or less selective 

and the prey can be more or less susceptible to predation. The functional traits of both trophic 

levels determine the grazing rate g of each predator on each prey species and adhere to well-

established trade-offs. The prey’s edibility trades off with their intrinsic growth rate r’, so that 

r’ becomes higher the more edible a prey is. The predator’s selectivity trades off with their half-

saturation constant M so that a more selective predator has a lower half-saturation constant (for 

details see “Trade-offs and selection regimes” section). To merge intra- and interspecific trait 

variation, we generalized the multispecies predator-prey model previously used (Tirok and 

Gaedke 2010; Bauer et al. 2014) to one that considers a continuum of trait values. Our 

corresponding FTD model allows any possible community composition by tracking the biomass 

of every phenotype within a finite trait range. Hence, we do not make any assumptions in 

advance about the species’ or genotypes’ exact trait values, or the shape of the communities 

trait distributions. 

 The prey (A) and predator (C) community biomasses change according to the following 

set of equations: 
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where e is the conversion efficiency, d the predator mortality rate, and IA and IC the prey and 

predator immigration rates, respectively, preventing complete exclusion of any single trait value 

in the FTD model. Since we consider predominantly predator-prey interactions in invertebrates 

like phytoplankton and zooplankton communities, which often show dormancy, immigration 

may not only account for external input of trait variation but also capture germination from seed 

banks and resting stages, which are ubiquitous mechanisms maintaining functional diversity. 

We assumed a common carrying capacity, K, for the prey community and a type II functional 

response (Holling 1965) for the predators. The growth rate r for a single prey type and the 

grazing rate g for a single predator type are given by: 
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where r’ is the maximum intrinsic growth rate of the prey, and M, q, and gm are the half-

saturation constant, grazing preference, and maximum grazing rate of the predators. The index 

φ denotes that the integration is done over all prey species, independent of φ, that is, of the 

particular species for which the growth or grazing rate is calculated. The preference function q 

increases with decreasing values of ω and increasing values of φ and is given by: 

 

      1
exp1,


  cbq .            (3) 

 

 Hence, non-selective predators (ω ≈ 0) have high q values for all prey species, whereas 

more selective ones (ω >> 0) have high q values only for a more restricted prey spectrum (φ >> 

0), the range of which is quantified by the parameter c. The value of b determines the sharpness 

of the transition of the q values from non-preferred to preferred prey species. The boundary 

function B in Eq. 1 accounts for all ecologically relevant processes, such as size and metabolic 

constraints, that restrict trait values to a biologically feasible range, which we take to be between 

[0, 1] since, e.g., prey species cannot be more than fully edible (φ = 1) or less than entirely 

inedible (φ = 0). The boundary function B is modeled as: 

 

       1expexp  xwwxxB ,            (4) 

 

where x refers to the edibility or selectivity of the respective prey or predator species. The 

parameter w determines the overall shape of B and was set to 40 so that B is very close to zero 

over most of the trait range but gets increasingly negative close to the minimum (x = 0) and the 

maximum (x = 1) trait values, making trait values at the extremes unfavorable. The boundary 

function B prevents the FTD model to exhibit any edge effects such as non-smooth trait 

distributions, which would arise if we simply restrict the feasible trait range, and it keeps the 

FTD model and corresponding aggregate model fully comparable. The implementation of a 

boundary function is akin to methods used in evolutionary biology where general fitness 

functions are implemented that give rise to overall stabilizing selection restricting standing trait 

variation (Doebeli et al. 2007; Baptestini et al. 2009) and changes in mean trait values 

(Saloniemi 1993; Abrams 2006) of populations or communities to their ecologically feasible 

ranges. 
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Table 1. Description and values of parameters used. 

Symbol Description Value Unit 

K Prey carrying capacity 10 g Cm-2 

r  Mean growth rate of prey 9/8 day-1 

mr Ratio between maximum and minimum growth rate 8 - 

d Predator mortality rate 0.15 day-1 

e Predator growth efficiency 0.2 - 

gm Maximum grazing rate 2 day-1 

mM 
Ratio between minimum and maximum half-saturation 

constant 
1/8 

- 

1
M  Mean grazing rate of predators at low prey densities ln(8)/7 g Cm-2 

B Trade-off exponent for sharpness of the predator preference q 6 - 

C Trade-off coefficient relating φ and ω in the preference q 0.9 - 

IA Prey immigration rate 0.0001 g Cm-2 

IC Predator immigration rate 0.00002 g Cm-2 

W Steepness of the boundary function 40 - 

 

In building this model, we assume a strictly trait-based approach, where organisms are 

characterized exclusively by their trait values and all individuals produce only new individuals 

with exactly the same trait value. This is in line with communities predominantly composed by 

asexually reproducing unicellular organisms or small metazoans, dominating marine and 

freshwater ecosystems (Sommer et al. 2012). Hence, we adopted parameter values that are 

typical of a system consisting of phytoplankton and ciliates (protozoans; cf. Tirok and Gaedke 

2007), in which cell sizes increase with trophic level and so, by allometry, weight-specific rates 

decrease with trophic level (Tang 1995; Hansen et al. 1997). For a detailed description of the 

parameters and corresponding values used, see Table 1. 

 At every moment in time, the FTD model yields the biomass densities of the prey and 

predator communities as a function of their respective traits. In order to describe general 

changes in the magnitude, location, and shape of these trait distributions, we consider the three 

aggregate properties of those communities: total biomasses, mean trait values, and trait 

variances, defined by:  

 



8 

 

 

 

    .
1

1

2



















 dA
A

v

dA
A

dAA

T

T

T

             (5) 

 

with analogous expressions for predator community’s quantities (CT , .ω, and νω). The mean 

trait values may reflect the most abundant species in the prey and predator communities, 

whereas the trait variances denote their functional diversities. 

 

Aggregate model 

The FTD model describes the temporal changes in the biomass density of each trait value, from 

which the aggregate properties of the prey and predator communities are calculated. 

Alternatively, one may focus directly on the temporal changes of the aggregate properties using 

moment approximation methods. In this case, the dynamics of the FTD model is approximated 

by a corresponding aggregate model which tracks only the changes in the total biomasses (AT 

and CT), mean trait values (  and  ), and trait variances (νφ and νω) of the prey and predator 

communities. Following previous studies (Norberg et al. 2001; Savage et al. 2007), we 

formulated an aggregate model that can be derived through a moment approximation, that 

truncates the moment expansion of the trait distribution at the second order, assuming trait 

variances to be small or higher-order derivatives of the species’ fitness, i.e., of its per-capita net 

growth rate, to vanish (for a detailed derivation see “Appendix A: Derivation of the aggregate 

model”). In order to derive self-contained expressions for the temporal development of the 

aggregate properties, we applied a moment closure which assumes trait values to be normally 

distributed (cf.Wirtz and Eckhardt 1996; Merico et al. 2009; Tirok et al. 2011). The aggregate 

properties change according to the following set of equations: 
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where RA and RC are the instantaneous per capita net growth rates of the prey and the predators 

evaluated at their respective mean trait values   and   
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and G is the aggregate grazing function, defined below. 

Changes in the prey and predator community biomasses follow the same functional 

forms as in the FTD model while changes in the mean traits and trait variances are determined, 

respectively, by the first and second derivatives of the per capita net growth rates. Hence, the 

mean trait values change with a speed proportional to the local fitness gradient, i.e., the first 

derivative of the per-capita net-growth rate evaluated at the respective mean trait value, and to 

the trait variance. Furthermore, Eq. 6 includes additional terms to account for non-linear 

averaging and changes in the location and width of the assumed normal trait distributions due 

to immigration (cf. “Appendix A: Derivation of the aggregate model” and Norberg et al. 2001). 

In accordance with the FTD model, the immigration rates IA and IC preclude the trait variance 

from becoming exactly zero in the aggregate model, whereas the boundary function B 

constrains changes in the mean trait values .φ and .ω to the delimited range and ensures that the 

trait variance vanishes when the mean trait value approaches an extreme (4). The growth and 

grazing functions of the aggregate model are given by: 
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This model represents the closest aggregate model one can build using the same assumptions 

as in the FTD model. The two model approaches fundamentally differ in the way the aggregate 

properties of the trait distribution change. In the aggregate model, the changes are consequences 

only of the fitness landscape, i.e. the per-capita net-growth rate as a function of the respective 

trait, around the current mean trait value, whereas the FTD model accounts for the entire fitness 

landscape. The fitness landscape at a given point in time can be rather complex due to the non-

linearity usually inherent to the feeding relationships and the trade-offs underlying the system. 

As a result, in the FTD model, the mean trait value may change in the opposite direction of the 

gradient of the fitness landscape evaluated at the mean trait value (Fig. 1). 

 

Figure 1. Difference between the FTD and aggregate model approach. a Biomass density 

distribution with respect to the edibility (φ) of the prey at a certain moment in time. b 

Corresponding per capita net growth rate as a function of the trait φ (fitness landscape), 

calculated using the FTD model. The vertical dashed line represents the mean trait value and 

the arrow indicates the direction of its change. In the aggregate model, the rate of change of the 

mean trait is proportional to the value of the fitness gradient at the mean trait value (depicted 

by the slope of the tangent black line), while for the FTD model the contributions of all trait 

values are summed over. This implies in the present example that the temporal changes in the 

mean trait value strongly differ in magnitude and even direction due to the high growth rates at 

high values of φ. 

 

Trade-offs and selection regimes 

Species can use resources either to increase reproduction or to counteract stress, like grazing 

losses (Strauss et al. 2002; Norberg 2004). For this reason, we assume the maximum growth 
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rate of the prey to increase with its edibility, so that fast growing prey species are highly 

vulnerable to grazing and vice versa. In addition, the predators’ capacity to exploit many 

different food items, i.e., its selectivity, may trade off with the ability to exploit low prey 

densities (cf. Straub et al. 2011). Hence, we assume the half-saturation constant of the predators 

to attain its maximum for the least selective species, for which M = Mmax, while the most 

selective species has a half saturation constant mM times smaller. The explicit expressions of 

the trade-offs are given by the following set of equations:  
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where β determines the shape of the trade-offs, which is linear when β = 1 (Fig. 2a–c). 

 We systematically altered the shape of the trade-offs to manipulate the selection regime 

on the prey and predator communities (cf. Levins 1962; Abrams 2006). When β is small, r’ 

increases quickly for small φ, but slowly for high φ, and M declines steeply at low ω, but gently 

for high ω (Fig. 2a). This gives rise to stabilizing selection at both trophic levels, in which 

intermediate values of both φ and ω are favored, since they experience relatively low costs for 

their relatively high growth and grazing rates. For large values of β, the selection pressure is 

reversed because r’ increases slowly at low φ and quickly at high φ, while M decreases slowly 

at low, but steeply for high ω (Fig. 2c), thus favoring both extreme trait values in both trophic 

levels. This constitutes a case of disruptive selection, in which intermediate trait values are 

maladapted, since they experience relatively high costs for their relatively low growth and 

grazing rates. Intermediate values of β provoke a balance between costs and benefits along the 

trait range, where each species may be favored at a given moment in time depending on the 

current prey and predator biomasses, resulting in recurrent changes in the dominant trait value 

and thus directional selection (Fig. 2b). Hence, increasing β from low to high values changes 

the selection regime on the prey and predator communities from stabilizing to disruptive 

selection, thereby altering the expected shape of the trait distributions (Fig. 2). 

We can depict the expected long-term effect of the changes in β on the shape of the trait 

distributions by looking at the effective carrying capacity of the rate of change of the prey 

biomasses. The latter can be expressed as (cf. Eqs. 1 and 2): 
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KK denotes the effective carrying capacity of the prey, which 

accounts for the effects of both the per capita death rate by predation 
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and the intrinsic growth rate  'r . The functions η 

and r’ are monotonically increasing in φ, but only r’ changes with β. This formulation makes 

explicit the relative roles of the intrinsic growth rate and predation for overall prey competition, 

i.e., K’, and shows that the long-term trait distribution of the prey is expected to be strongly 

concentrated when β is low (Fig. 2d), whereas it should present peaks at both low and high trait 

values for large β, giving rise to large trait variances (Fig. 2f). In addition, we expect the trait 

distributions to be on average rather uniform for β ≈ 1 (Fig. 2e). 

 

 

Figure 2. The top panels show the trade-off relations between the maximum growth rate (r’, 

green solid line) and edibility (φ), and between the grazing half-saturation constant (M, blue 

dashed line) and selectivity (ω) for three values of β. The arrows in panels a and c indicate the 

direction of selection on traits, in comparison to the linear case. The bottom panels show how 

the shape of the trade-offs shapes the effective carrying capacity K’ of prey, which can be 

thought of as an expected trait distribution. It was calculated assuming a total biomass of K/2 

for prey and K/3 for predators, with uniform trait distributions at both trophic levels 

 

To avoid any confounding effects when changing the parameter β, we maintained the relative 

growth and grazing rates, i.e., the ratios between the maximum and minimum growth rates (mr) 

and half-saturation constants (mM), constant within each trophic level. In addition, we chose the 

dependence of rmin and Mmax on β in such a way that, given a homogeneous distribution of traits, 

the averages of the prey’s maximum growth rate,    drr 
1

0
' , and the predator’s grazing rate 
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, were constant. This is important because, otherwise, 

the direct increase or decrease in prey productivity or in sensitivity of predators to the amount 

of prey would shadow any effect of changes in β. These assumptions lead to: 
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where 2F1 is the hypergeometric function. 

 

Numerical simulations and data analysis 

We evaluated the suitability of the aggregate model under different selection regimes using 

numerical simulations for different values of β. As initial conditions, we assumed total 

biomasses in each trophic level to be 1 g Cm−2 (cf. Gaedke and Wickham 2004) and both traits 

to be normally distributed with means of 0.5 or 0.9 and variances of 1/400. These two initial 

conditions led to different long-term solutions, so we explored the extent of these bistable 

regions and how they change with β. We continued solutions in these regions using the final 

state of a simulation as initial condition for the next one with a slightly modified value of β, 

hence revealing the extent of the range of values of β where bistability is present. The FTD 

model and its aggregate properties were numerically integrated using a discretization along the 

trait axes (n = 100). 

We evaluated the agreement between the two model approaches by comparing the 

temporal dynamics and long-term behavior of their aggregate properties as a function of β. The 

latter was done by calculating the temporal average and variation of the community biomasses, 

the mean trait values, and the trait variances. We also evaluated the stability of the predator-

prey dynamics by calculating the coefficient of variation (CV) for both prey and predator 

community biomasses. In order to better understand potential differences between the two 

model approaches, we also looked at the trait distributions’ skewness (S) and (excess) kurtosis 

(κ), obtained from solutions of the FTD model, which are directly related to the third and fourth 

order central moments. In general, large absolute values of skewness or kurtosis imply that the 

shape of the trait distribution strongly deviates from a normal one, highlighting the importance 

of higher-order moments. 

A small absolute skewness may indicate that the trait distribution is rather symmetrical, 

whereas a large absolute skewness points to a trait distribution possessing a heavy tail on the 

right (positive skewness) or left (negative skewness) side of the distribution’s mean trait value. 
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Since we are mainly interested in the overall magnitude of a trait distribution’s skewness, rather 

than its sign, we computed the average of the skewness’ absolute values over a long time. 

For symmetrical trait distributions, large negative values of kurtosis (−2 < κ << 0) 

indicate light tails and flatness, as seen for uniform and, in its extreme, bimodal trait 

distributions, which have most density at the distribution’s shoulders, i.e., around ±1SD of the 

mean (DeCarlo 1997). In contrast, large positive values of kurtosis (κ >>0) point toward peaked 

and heavy-tailed trait distributions, since this describes the dispersion of density around ±1SD 

of the mean (Moors 1986; DeCarlo 1997). High skewness, however, strongly affects kurtosis 

values, and the relationship between these measures is hard to disentangle (Blest 2003; Jones 

et al. 2011). Therefore, we use a measure for bimodality based on Pearson’s inequality (Pearson 

1929): 

 

   .)(
2

ttStP              (12) 

 

The value of P is maximal for the two-point binomial (P = 2), amounts to 1.2 for a uniform 

distribution, and to 0 for a normal distribution (Klaassen et al. 2000). We record how frequently 

P surpasses the value of 1.2 over a long time as evidence for bimodal trait distributions. 

Simulations and analyses of the aggregate model were performed in MATLAB, version 

7.13, using solver ode23 for ODEs (The MathWorks Inc., Natick, MA, 2011). We increased 

the precision of the solver by setting the absolute and relative tolerance to 10−9 and 10−12 and 

the maximum step size to 0.1. The FTD model was implemented discretizing the trait axes and 

solving the resulting system of ODEs using the Python wrapper odeint provided by SciPy (Jones 

et al. 2001) for the LSODA solver contained in the library ODEPACK (Hindmarsh 1983). The 

simulation results are robust to the choice of solver algorithm. 

 

Results 

We tested the performance of the aggregate model under different selection regime using the 

full trait distribution (FTD) model as benchmark. For trade-off shapes arising from values of β 

below 0.45, selection is strongly stabilizing as indicated by unimodal trait distributions with 

small trait variances within both prey and predator communities in the FTD model (Figs. 3, 4, 

and cf. Fig. 2d). As expected under such conditions, the two models predict very similar 

dynamics and long-term states of the aggregate properties, in which both edibility and 

selectivity settle at low values. The latter are linked to relatively low growth and grazing rates 

(Fig. 2) promoting stable biomass dynamics (Fig. 4). The remaining small differences between 

the two model approaches arise from the fact that the trait distributions in the FTD model are 

highly skewed and peaked despite being unimodal (Table 2). However, skewness and 

peakedness hardly influence the overall model predictions because of the low trait variances (ν 

<<1), implying even lower higher-order moments. 
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Figure 3. Temporal averages (lines) and variation (± 1 standard deviation; shades) of total 

biomass, mean trait, and standing trait variance of the solutions of the FTD (red) and aggregate 

(green) models as the shape of the trade-offs (β) is varied. All other parameters as in Table 1. 

The dotted lines correspond to alternative long-term solutions, obtained by exploring different 

initial conditions, leading to distinct basins of attraction. 

 

Decreasing the strength of stabilizing selection (β > 0.45) allows prey species with very 

different trait values to increase their biomass share in the community of residents, leading to 

bimodal trait distributions with high standing variances in the FTD model (Fig. 3). The outcome 

of this is an increase in the mean trait value and thus in productivity of the prey community, 

causing lower and higher equilibrium biomasses of the prey and predator communities, 

respectively. In contrast to the FTD model, the aggregate model predicts much smaller changes 

with β in the aggregate properties of the prey and predator communities. This occurs because 
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to achieve a drastic change in the mean trait value, it is not sufficient that species with extreme 

trait values are able to increase their share of the community biomass. Rather, it is necessary 

that species with trait values close to the previously favored one become sufficiently fit to out-

compete the resident species. 

 

 

Figure 4. Long-term solutions show stasis in the biomass and trait dynamics of the prey and 

predator communities under stabilizing selection (β = 0.2). Top: Total biomass of prey AT 

(green) and predators CT (blue) for the FTD (left) and aggregate (right) models. The panels just 

below show the mean trait values and trait variances of the trait distributions of prey edibility, 

φ, and of predator selectivity, ω, as a function of time. Bottom: The panel shows the final trait 

distribution of prey (biomass density as a function of edibility, φ, in green), and predators 

(biomass density as a function of selectivity, ω, in blue) in the FTD model. 
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Table 2. Long-term behavior of the aggregate properties of the FTD (light gray) and the 

aggregate (white) models for both trophic levels (TL) under four distinct selection regimes (4 

values of β) The measures correspond to the numerical solutions shown in Figs. 4, 5, 6 (state 

I), and 7 (state II). We show the coefficient of variation of the community biomasses (CV) and 

the long-term temporal averages of the mean trait value, trait variance (ν), and absolute 

skewness (|S|). We also present the proportion of time when the trait distributions were bimodal 

according to Pearson’s measure of bimodality (P; see methods, “Numerical simulations and 

data analysis”). The last two measures apply only to the FTD model. 

β TL model CV trait v |S| P 

0.2 Prey cont. 6 ∙ 10-5 0.12 0.0002 133 0% 

  agg. 5 ∙ 10-16 0.12 0.0004   

 Predators cont. 3 ∙ 10-5 0.15 0.0003 54 0% 

  agg. 7 ∙ 10-16 0.16 0.0007   

1.0 Prey cont. 0.4 0.58 0.023 6.1 24% 

  agg. 0.5 0.65 0.0017   

 Predators cont. 0.4 0.35 0.023 4.6 40% 

  agg. 0.5 0.38 0.0021   

3.0(II) Prey cont. 10-5 0.43 0.16 0.4 100% 

  agg. 5 ∙ 10-16 0.12 0.0005   

 Predators cont. 6 ∙ 10-5 0.58 0.13 0.4 100% 

  agg. 5 ∙ 10-16 0.13 0.0006   

5.0 (I) Prey cont. 0.6 0.81 0.024 86 29% 

  agg. 0.7 0.96 0.0003   

 Predators cont. 0.4 0.46 0.08 1.6 100% 

  agg. 0.2 0.87 0.0003   

 

Higher values of β (> 0.55) allow fast-growing well edible prey and selective predator species 

to recurrently increase their share. The relatively high growth and grazing rates (Fig. 2) strongly 

destabilize the biomass dynamics of the prey and predator communities in both models, giving 

rise to directional selection, in which different trait values are favored at different times. As a 

result, both models show considerable variation in the aggregate properties of the prey and 

predator communities over time (Figs. 3 and 5). However, the transition from stable to unstable 

dynamics occurs in the FTD model at a lower value of β than in the aggregate model, producing 

substantial differences in their predictions of the temporal averages of the aggregate properties 

for values of β between 0.55 and 0.75. The higher stability of the aggregate model is due to the 

way the fitness landscape changes: the equilibrium trait value of the prey community 

established forβ < 0.45 is no longer a global maximum, but still remains a local maximum of 

the fitness landscape. This prevents the prey community from adapting its mean trait value to 
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the currently favored one in the aggregate model. In contrast, in the FTD model, as well as in 

nature, it is sufficient that another species exists that is currently more fit and thus able to 

increase its share to the total biomass of the community, even when its trait value is very distant 

from the previously favored one. 

Under directional selection, the environmental conditions change sufficiently fast to 

promote the emergence of skewed trait distributions with substantial variances in the FTD 

model (Fig. 5c). Since the direction of selection is changing over time, the trait distribution also 

changes its skewness between positive and negative values, passing through states in which it 

exhibits bimodality and a large variance (see P in Table 2; Fig. 5b, d). In contrast to the effect 

of disruptive selection, these trait distributions are a combined result of past and present growth 

and death processes that exist only temporarily. In comparison to the FTD model, the aggregate 

model presents much lower trait variances (Fig. 3), since it is unable to accommodate the 

simultaneous occurrence of only lower and higher trait values, i.e., bimodal trait distributions. 

In the aggregate model, the mean trait value exhibits a period length that is more than two orders 

of magnitude larger than those in the FTD model, since its rate of change is proportional to the 

trait variance. 

Despite this major deviation in the period length of the trait and biomass dynamics, both 

models show up to β ≈ 1.8 very similar temporal averages of the biomass and mean trait values 

(Figs. 3 and 5). The aggregate model also depicts correctly the (mutual) trait adjustments of the 

prey and predator communities in response to altered selection pressures: in general, when 

highly edible (large φ) species dominate the prey community, the predator community changes 

its composition toward more selective species (large ω) that exploit the available prey more 

efficiently (Fig. 5a, b). Subsequently, the prey community escapes the enhanced predation 

pressure by changing its composition toward less edible species. Since the predators are no 

longer able to control the dominant species, the prey community biomass increases, whereas 

the predator community biomass decreases (Fig. 5b). The predator community responds to the 

altered selection pressure by decreasing its selectivity (Fig. 5c). The enhanced grazing pressure 

on the prey community dampens both, the increase in prey biomass and the decrease in predator 

biomass. However, the nonselective predators grow very slowly and therefore need a long time 

to recover. After building up sufficiently high biomasses, the predators are finally able to 

control the less edible prey. This, in turn, results in a shift within the prey composition toward 

more edible species, since they are able to out-compete the less edible ones due to their higher 

growth rates (Fig. 5d). From then onwards, the pattern repeats. As a result of this biomass-trait 

feedback, both models predict out-of-phase dynamics between prey and predator community 

biomasses. However, the high similarity of the predictions from the two models under 

directional selection strongly rely on immigration (“Appendix B: Model version with 

mutation”). When maintaining the trait variance by trait diffusion instead of immigration, the 

aggregate model results no longer match the results of the corresponding FTD model. 
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Figure 5. Long-term solutions show recurrent trait shifts in both prey and predator communities 

under directional selection (β = 1). Top: Total biomass of prey AT (green) and predators CT 

(blue) for the FTD (left) and aggregate (right) model. The panels just below show the mean trait 

values and trait variances of the trait distributions of prey edibility, φ, and of predator 

selectivity, ω, as a function of time. Note the large difference, i.e., of two orders of magnitude, 

in the time scales of the two types of models. Bottom: The panels show a sequence of four 

snapshots of the trait distribution of prey (biomass density as a function of edibility, φ, in green), 

and predators (biomass density as a function of selectivity, ω, in blue) in the FTD model. The 

snapshots correspond to the times labeled and marked by vertical dotted lines in the top left 

panel 

 

Increasing β to values above 1.8 changes the selection regime toward more disruptive selection, 

in which the two model approaches substantially differ in their predictions about the temporal 

dynamics and long-term states of the aggregate properties (Fig. 3). Although both models 

exhibit bistability, the parameter range is much larger for the aggregate model. In one state 

(“state I”), the aggregate model features unstable predator-prey dynamics in which the prey and 
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predator communities exhibit intermediate to high values of edibility and selectivity, 

respectively, which is in line with our findings from the FTD model for values of β up to 2.4. 

 

Figure 6. Long-term solutions show complex predator-prey dynamics in the FTD model but 

regular cycles in the aggregate model under disruptive selection (β = 5), for solutions in the 

basin of attraction of “state I” (see Fig. 3). For detailed explanations of the panels and coloring, 

see legend of Fig. 4. 

 

However, for higher values of β, the two model approaches strongly differ in their predictions 

about the temporal dynamics and long-term states of the aggregate properties. The FTD model 

shows complex predator-prey cycles where high-frequency biomass oscillations are 

superimposed upon low-frequency trait oscillations (Fig. 6; for an animation of the temporal 

dynamics see also Online Resource 1). The prey and predators exhibit phase relationships of a 

quarter-period at the high-frequency and of a half-period at the low-frequency oscillations. In 

addition, the trait distributions of the prey and predator communities often considerably deviate 

from a normal distribution, displaying recurrently very large variances and skewnesses as well 
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as bimodality most of the time (Fig. 6a–d, Table 2). As a result, the effects of typical non-

linearities enclosed in the grazing structure on the temporal development of the lower-order 

moments (i.e., aggregate properties) are enhanced by large higher-order moments. Because of 

this, the aggregate model here strongly deviates from the FTD model, predicting regular 

predator-prey cycles instead of out-of-phase dynamics, with constantly highly edible prey being 

grazed upon by highly selective predators. The latter results from the fact that the mean trait 

values of the prey and predator communities hardly change over time in the aggregate model 

because they are constrained by local fitness maximization. 

 

Figure 7. Long-term solutions show stasis in both prey and predator communities under 

disruptive selection (β = 3) for both models in the “state II” (Fig. 3) basin of attraction. For 

detailed explanations of the panels and coloring, see legend of Fig. 4. 

 

In the alternative state (“state II”), the aggregate model and the FTD model both achieve stasis 

in the biomass and trait dynamics (Fig. 7). However, the aggregate model entirely fails to match 

the predictions of the FTD model as it features low biomasses of non-selective predators grazing 

on high biomasses of low edibility prey. In contrast, the FTD model predicts bimodal trait 

distributions within both the prey and predator communities, where both low and high edibility 

prey, and both non-selective and highly selective predator species coexist (Fig. 7, Table 2). This 
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results in prey and predator biomasses which are strongly over and underestimated by the 

aggregate model, respectively. While this basin of attraction (“state II”; Fig. 3) vanishes in the 

FTD model when increasing β to values above 3.5, it remains in the aggregate model. In 

addition, when the alternative states are evaluated separately, the aggregate model predicts less 

temporal variation in the aggregate properties than the FTD model, and thus overestimates the 

stability of the trait and biomass dynamics. 

 

Discussion 

Community ecology is recognizing that standing trait variation has to be incorporated into 

models in order to predict the behavior of food web dynamics (Norberg et al. 2001; Tirok et al. 

2011). However, ecology inherited from population genetics the early view that stabilizing or 

weak directional selection prevails in natural communities promoting a distribution of 

phenotypic traits that follows closely the optimum of the fitness landscape (Lande 1982; 

Abrams et al. 1993). This prevalent view has facilitated the frequently made assumption of 

normally distributed trait values with small variances in aggregate models (Wirtz and Eckhardt 

1996; Merico et al. 2009). However, there is ample empirical evidence for strong directional 

and disruptive selection promoting trait distributions much different from a normal distribution, 

questioning the strong assumptions made in aggregate models. For instance, directional 

selection is evidenced by the well-established alterations in phytoplankton and zooplankton 

composition (Sommer et al. 2012; Tirok and Gaedke 2007), where recurrent changes in the 

abiotic and biotic environment favor different species and trait values at different times 

(Vasseur and Gaedke 2007; Fox et al. 2010). Disruptive selection occurs at the population level 

(Kingsolver et al. 2001; Martin and Pfennig 2012), and also at the scale of whole communities 

where greatly different strategies coexist, e.g., small (edible) and large (less edible) 

phytoplankton species during summer (Sommer et al. 2012). As a consequence, a wide range 

of size distributions was observed within aquatic (Chisholm 1992; Tackx et al. 1994; Havlicek 

and Carpenter 2001; Schartau et al. 2010) and terrestrial (Maurer et al. 2004; Thibault et al. 

2011) communities that exhibited large skewness and multiple modes. In addition, trait 

distributions may show very large variances as exemplified by phytoplankton and zooplankton 

size distributions (Gaedke 1992; Vergnon et al. 2009; Segura et al. 2013; Downing et al. 2014). 

Hence, we investigated the reliability of the aggregate model approach for different 

selection regimes. As expected, stabilizing selection resulted in narrow, single-peaked trait 

distributions and, thus, the aggregate model captured the features of the full trait distribution 

(FTD) model very well, which is in line with Merico et al. (2009). Under directional selection, 

our two models delivered similar kinds of oscillations and averages of the biomass and mean 

trait values in accordance with Norberg et al. (2001) and Terseleer et al. (2014). However, the 

FTD model predicted much higher trait variances than the aggregate model, resulting in major 

discrepancies in the timescales of their oscillations. This happens because the trait distribution 

in the FTD model tunnels from one end of the interval to the other without ever having its mode 
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in the middle, because as soon as selection favors a trait far from that currently abundant, a 

population with the now-favored trait expands, promoting temporarily broad, bimodal trait 

distributions (for an animation of the temporal dynamics see Online Resource 1). The 

persistently high trait variances in the FTD model suggest that mutual adjustment between prey 

and predators is able to maintain functional trait diversity at both trophic levels by endogenous 

forces. In contrast, in the aggregate model, the mean trait has to follow one mode, i.e., a local 

maximum of the fitness landscape, so that it goes through all intermediate values separating the 

fitness peaks whenever the direction of selection changes. Unfortunately, close to a maximum, 

the second derivative is negative, leading to a decline of the trait variance in the aggregate 

model approach. Since the variance scales the rate of change of the mean trait value, trait 

adaptation slows down. In order to maintain high trait variances and sufficiently fast trait 

adaptation in the aggregate model, the mean trait value needs to stay close to a fitness minimum, 

where the second derivative is positive, something the local fitness maximization approach 

selects against. Hence, functional diversity could only be maintained through a strict balance 

over time between well- and maladapted mean trait values, which may rarely occur in both 

ecological models and natural systems. The strong constraints of aggregate models thus 

promote the loss of trait variance when no other source of variation is accounted for (Merico et 

al. 2014). To compensate for this shortcoming, previous studies introduced other ecological 

processes, such as additional trade-offs (Tirok et al. 2011) or trait diffusion mimicking mutation 

(Merico et al. 2014) which increases model complexity and may obscure real processes 

responsible for the maintenance of functional diversity. 

The systematic underestimation of the trait variance by aggregate models may cause 

serious problems when aiming for the quantitative representation of food web dynamics in real 

ecosystems. For example, combining the aggregate model approach with observed seasonal 

forcing likely results in a mismatch between trait and biomass dynamics, since the small 

standing variance does not allow a sufficiently fast adaptation. As a result, the temporal 

variation in mean trait values and trait variances is underestimated. This reasoning is in line 

with Savage et al. (2007), who showed that increasing the amplitude or frequency of 

environmental fluctuations, and thus the strength of directional selection, amplified the 

oscillations of the mean and variance and reduced the match between their multispecies model 

and its moment closure approximation. Despite this, aggregate models were successfully 

incorporated into larger models used to address more general questions in ecosystem dynamics 

(Wirtz and Eckhardt 1996; Terseleer et al. 2014; Acevedo-Trejos et al. 2015). However, the 

timescales of their trait dynamics had to be corrected by fitting the immigration rates needed to 

obtain the required level of standing trait variance or by keeping the variance constant. 

Although the model of Terseleer et al. (2014) tracked changes in the biomass and mean cell 

size of a diatom community quite well, it strongly underestimated the temporal variation of the 

standing trait variance. Indeed, under (recurrent) directional selection, fitting higher order 

central moments such as skewness and kurtosis was necessary for a good approximation of the 
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temporal dynamics of the trait variance (Norberg et al. 2001). However, a high immigration 

rate was still needed to get a high average value of the trait variance, and therefore the right 

timescale. 

The predictions of our two models differed most strongly for disruptive selection, both 

in terms of the overall magnitude of the aggregate properties and their temporal dynamics. 

Disruptive selection consistently favored extreme trait values compared to intermediate ones 

giving rise to persistent bimodal trait distributions with large variances in the FTD model. In 

the aggregate model, a co-occurrence of biomass peaks at different trait values is impossible, 

making this approach especially conducive to large errors in such cases when higher-order 

moments are neglected. Accordingly, the aggregate model either strongly over- or 

underestimated the prey or predator biomasses. This may have a strong impact on the food web 

structure, the energy transfer from one trophic level to the next, and related ecosystem services, 

when implementing the aggregate model approach into global ocean or other ecosystem models 

tailored to specific systems. Trait variation was also incorporated into fishery management 

models using an aggregate approach (Akpalu 2009). However, our results lead us to the 

expectation that, depending on the underlying trade-offs of the system, a FTD model may 

deliver strongly deviating predictions concerning the sustainable yield of fish, with major 

economic and ecological consequences. 

Hence, it is important to establish robust model approaches incorporating trait variation 

based on observable data. This demands to understand precisely the limitations of 

characterizing the functional trait diversity of whole communities only in terms of aggregate 

measures. Accordingly, recent model studies applied the aggregate model framework to 

functional groups instead of entire communities (Norberg et al. 2001; Terseleer et al. 2014), or 

combined the approach of quantitative genetics with a multispecies model approach (Norberg 

et al. 2012). However, it can be challenging in practice to define functional groups that are not 

too numerous but sufficiently cohesive so that their fitness landscapes are not subject to 

disruptive selection pressure. Even at the population level, frequency-dependent selection can 

split a sexual population into separate phenotypic clusters when mating is assortative (Doebeli 

1996; Doebeli et al. 2007). Another option might be to dynamically model higher-order 

moments, such as the third and fourth ones. However, model complexity increases very quickly, 

the quality of the aggregate model approximation strongly decreases with increasing moment 

order (Bruggeman and Kooijman 2007; Savage et al. 2007), and even the direct fitting of those 

higher-order moments was not able to keep trait variances high (Norberg et al. 2001). 

Our FTD model offers a promising alternative tool to account for the inherent flexibility 

in natural populations and communities. In line with Abrams (2006) and Maharjan et al. (2013), 

we show that the shape of trade-offs strongly influences the manifold interactions between all 

the different phenotypes in our predator-prey system allowing for stabilizing, directional or 

even disruptive selection. In the last two cases, this frequently leads to bimodal trait 

distributions with large variance implying that the maintenance of diversity is related to the 
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complex interactions between the ubiquitous non-linearities in the growth and death rates of 

populations and the diversity of their traits (see Eq. 24). This fits with recent studies linking 

frequency-dependent interactions to pattern formation in phenotypic space in the form of 

multimodal trait distributions (Dieckmann et al. 2004; Allen et al. 2006; Doebeli et al. 2007; 

Pigolotti et al. 2010). However, in contrast to previous studies, we consider in addition to direct 

resource competition (Scheffer and van Nes 2006; Doebeli et al. 2007) also apparent 

competition. Hence, trophic interactions such as prey and predator relationships may also give 

rise to lumpiness in pattern formation as already pointed out in the prospective study of Holling 

(1992). This agrees with findings from an NPZ (nutrient-phytoplankton-zooplankton) model, 

showing persistent multimodal size distributions within phytoplankton and zooplankton 

communities when accounting for empirical allometric relationships in their growth and loss 

rates (Banas 2011). In our FTD model, the emergent trait distributions in the prey and predator 

communities are very similar because both trophic levels are strongly linked. This may explain 

the very similar size distributions in herbivores and carnivores in natural systems (Holling 

1992). Hence, our FTD model predicts a testable relationship between trade-off shapes and 

forms of functional trait distributions, which may encourage future empirical studies to measure 

the shape of trade-offs and relate it to observed trait distributions. Although the shapes of the 

trade-offs are pivotal in determining the dynamics and diversity of the modeled ecosystems, 

empirical data on such relationships is scant (but see Maharjan et al. 2013). 

The formation of bimodal trait distributions in our FTD model under directional and 

disruptive selection was stabilized but not caused by immigration (“Appendix B: Model version 

with mutation”; for an animation of the temporal dynamics, see also Online Resource 2). 

Indeed, a FTD model version without immigration but with mutation, modeled as trait diffusion, 

maintained the main features of our original FTD model. In contrast, the corresponding 

aggregate model deviated both from its FTD analogue as well as from the model version with 

immigration (“Appendix B: Model version with mutation”). This shows that aggregate 

approaches have also to be careful about the choice of mechanism responsible for maintaining 

diversity (variance), as the predictions are not robust to those choices. 

In conclusion, community and ecosystem models need to account for the possibility of 

strongly non-linear fitness landscapes that may give rise to bimodal trait distributions with large 

variances, rendering aggregate models inaccurate. The common practice to consider only the 

fitness landscape close to the optimum trait has to be questioned and carefully assessed in each 

case. Aggregate models approximate trait dynamics well under specific conditions, such as 

stabilizing selection, but fail to do so if largely different trait values prevail simultaneously 

within the community or functional group considered. Hence, with the FTD model presented, 

we are better equipped to reveal the mechanisms underlying the maintenance of functional 

diversity in traits. 
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Supporting Information 

Appendix A: Derivation of the aggregate model 

The FTD model describes the temporal changes in the biomass density of each particular trait 

value and thus yields, at every moment in time, the biomass densities of the prey and predator 

communities (or functional groups) as a function of their respective traits φ and ω. As a 

consequence, the magnitude and shape of the biomass-trait distributions may change in time. 

Instead of resolving the rate of change of the biomass density for each particular trait value, one 

may directly describe the temporal changes in the aggregate properties of the prey and predator 

communities using moment approximation methods. In this case, the dynamics of the FTD 

model is approximated by a corresponding aggregate model which tracks only the temporal 

changes in the total biomasses of the prey and predator communities and the locations (mean 

trait values) and widths (trait variances) of the corresponding trait distributions. These 

aggregate quantities are related to the trait distribution by integrals over the ecologically 

feasible trait range, in accordance with Eq. 5. In this way, aggregate models explicitly represent 

the trait-dependent growth and loss terms that determine the dynamics of the aggregate 

properties of the trait distribution (cf. Tirok et al. 2011). 

To derive the aggregate model (6–8) from the FTD model (1–3), one has to write down 

the rate of change of the aggregate properties using Eqs. 1–3 and expand all functions in Taylor 

series around the mean trait value, since the average over the distribution of the per-capita net 

growth rates determines the overall trait and biomass dynamics. This leads to expressions 

written in terms of (central) moments of the trait distributions. Afterwards, a moment 

approximation is performed by truncating these series up to the second order. This will be a 

good approximation when the growth and grazing functions have only weak non-linearities and 

thus all higher-order derivatives quickly vanish, or when the trait distribution is very narrow, 

that is, has a small variance. Hence, the error in the biomass and trait dynamics will be most 

pronounced if both the higher-order derivatives of the fitness landscape, i.e., the per-capita net-

growth rate as a function of the trait, evaluated at the mean trait value and the higher-order 

moments of the trait distribution obtain large absolute values at the same time. For example, if 

trait distributions with a sufficiently large variance exhibit large values of skewness or kurtosis, 

the quality of the approximation made by the corresponding aggregate model will be rather 

poor when the fitness landscape is highly non-linear. This holds since the performance of 

species with trait values away from the community average   will likely differ from the 

performance of a species with a trait value equal to   (cf. Ruel and Ayres 1999; Tirok et al. 

2011). 

For sake of brevity, we will derive the prey equations in detail below, as the derivation 

of the equations for the predators are completely analogous. The Taylor expansion of a function 

f around the prey’s mean trait value   is given by: 

 



28 

 

 
   









0 !n

n

nn

d

fd

n
f




 .                      (13) 

 

Since we are dealing with aggregate quantities such as prey biomass summed over the whole 

trait range, we will need the expansion of integrals over the prey’s trait distribution A(φ), such 

as: 
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where Mn is the nth central moment of the distribution A(φ) (in particular, M2 = νφ), defined by 
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The rate of change of the total prey biomass AT is 

 

 
 

       


 dIRAd
dt

dA
dA

dt

d

dt

dA
A

T ~
,       (15) 

 

where R
~

 is the per capita net growth rate from Eq. 1: 
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Now, the grazing term already contains an integral over φ’, independent of φ, so we expand it 

first: 
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and here we drop terms of order higher than two (denoted by the dots), which gives us simply 

G(φ, ω) defined by Eq. 8. We now proceed expanding the integral in terms of ω: 
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and, stopping once again at the second order, we arrive at the expression for RA(φ) (7). 

Substituting it back into Eq. 15 and expanding: 
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which yields Eq. 6 when we truncate at the second order. The rate of change of the mean trait 

value is derived in a similar fashion: 
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Finally, the trait variance will be expressed by:  
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The second term can be expanded directly using Eq. 19 
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while the first term can be written as: 
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Given the fact that the terms proportional to νφ in Eq. 23 cancel with the ones from Eq. 22 and 

that the terms proportional to 2

v combine with those from Eq. 22, the rate of change of the trait 

variance can be approximated by: 
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As seen in Eqs. 20 and 24, temporal changes in the aggregate properties (lower-order moments) 

generally depend on higher-order moments. To derive self-contained expressions for the 

evolution of the aggregate properties, and thus to close the system of differential equations, one 

has to describe the higher-order moments in the corresponding equations by lower-order 

moments. Different moment closure techniques were described in detail by Norberg et al. 

(2001) and Merico et al. (2009). For instance, Norberg et al. (2001) described the third and 

fourth central moments by power-functions of the first (mean trait) and second (variance) 

central moments and the optimal trait value. The parameters were estimated from the trait 

distributions obtained from simulations of the underlying multispecies model. Another 

approach is to assume the trait distributions to be well represented by a Gaussian (Wirtz and 

Eckhardt 1996; Merico et al. 2009; Tirok et al. 2011) for which the higher-order moments are 

either zero (odd moments) or fully determined by the variance alone (even moments). 

Following Wirtz and Eckhardt (1996) and Merico et al. (2009), we assume traits to be 

normally distributed. Using the fact that the third central moment of a Gaussian distribution 

equals zero (M3 = 0; the normal distribution is symmetric), and that its fourth central moment 

is proportional to the square of its variance  2

24
3MM  , that is, its excess kurtosis is 0, we can 

approximate the rate of change of the mean trait value Eq. 20 and of the trait variance Eq. 24 

by Eq. 6. 
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Appendix B: Model version with mutation 

The immigration term in Eqs. 1 and 6 prevents the extinction of species by providing a very 

small constant influx of immigrants of all trait values. This is generally realistic and necessary 

to ensure that some variance is retained in the aggregate model, but may in principle strongly 

influence the dynamics of both types of models. Here, we build versions of the FTD model and 

the aggregate model without immigration, but with mutation instead. Mutation can be an 

important process when dealing with narrowly defined functional groups, where the trait 

variance may originate mostly from intra-populational processes rather than standing trait 

variance among different species. 

Here, mutation is understood as a small probability of offspring to have trait values 

slightly different than their parents (we do not account for sexual mixing). It is modeled as a 

(Fokker-Planck) diffusive term, corresponding to the second derivative of the population 

density times the birth rate with respect to the trait value. In the case of prey, we assign all 

density-dependent terms to the mortality, and thus their birth rate, ρA, is simply the intrinsic 

growth rate (r’). The birth rate ρC of predators is their grazing rate. This leads to the modified 

FTD model: 

 

 
        

  

 
       

   

   













































dge

r

C
CBddge

t

tC

A
dCgABr

t

tA

C

A

C

C

A

A

,

'

,
,

,
,

2

2

2

2

,      (25) 

 

where μA and μC are the mutation rates for prey and predator, respectively, and all other terms 

and parameters are as before. We derive the aggregate model from the FTD model from this 

equation together with Eq. 5. Due to the boundary functions imposed, the population densities 

go to zero very quickly outside the range of traits from 0 to 1. Therefore, we assume that A(φ), 

as well as its derivatives, go fast enough to 0 as φ goes to (plus or minus) infinity, which 

guarantees that terms calculated at infinity appearing via integration by parts vanish. 

 The derivation proceeds exactly as in “Appendix A: Derivation of the aggregate model”. 

We begin by calculating the rate of change of total biomass, dtdA
T

. The new term 

corresponding to mutation in Eq. 15 will be: 
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which means that mutation does not contribute any extra term to the total biomass equation. 

Proceeding to the mean trait equation, dtd , we now get the following contribution of the 

mutation term: 
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and hence mutation does not affect the mean trait value either. Finally, the equation for the rate 

of change of the trait variance, dtdv , has a term due to mutation given by: 
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Thus the equation for trait variance becomes: 
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We analyzed the resulting dynamics of the FTD model and the aggregate model as described 

in the methods of the main text. For all selection regimes, Fig. 8 shows very similar patterns for 

the FTD model with mutation compared to the FTD model with immigration (cf. Fig. 3). In 

contrast, the aggregate model no longer displayed large oscillations in its mean trait values for 

intermediate values of β, but high trait variances instead, indicating that even the type of 

dynamics it generates is not robust to such structural modification. Importantly, immigration 

influenced the mean trait values directly, pulling toward intermediate values and facilitating 

recurrent changes in trait values. Even for stabilizing selection, the agreement between the two 

types of models in the temporal averages of the total biomasses and mean trait values is worse 

than in the scenario with immigration, since variance levels of the FTD model are higher in the 

mutation variant (4 × 10−3 compared to 2 × 10−5, when β = 0.2), leading to worse performance 

of the aggregate model due to Jensen’s inequality. 
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Figure 8. Temporal averages (lines) and variation (± 1 standard deviation; shades) of biomass, 

mean trait, and standing trait variance of the solutions of the FTD (red) and aggregate (green) 

models with mutation instead of immigration (25, 29), as the shape of the trade-offs (β) is 

varied. Mutation rates were set to μA = 10−4 and μC = 2 × 10−5, with all other parameters as in 

Table 1. The dotted lines correspond to alternative long-term solutions, obtained by exploring 

different initial conditions, leading to distinct basins of attraction. 

 

In the absence of immigration, the FTD model no longer exhibited bistability. Also, the 

transition between states of very different dominant trait values occurred more slowly, leading 

to longer cycles. Nonetheless, it still presented bimodal trait distributions for a wide range of 

parameters. For instance, P was above 1.2 (see “Numerical simulations and data analysis” 

section) during 12 and 68 % of the time for prey and predators, respectively, with β = 3, and 

during 5 and 45 % for β = 5. This confirms that bimodal trait distributions were stabilized but 

not caused by immigration, which is in accordance with findings from Pigolotti et al. (2010). 
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