Ming Xiang, Chris Kennedy, Weijie Xu, and Timothy Leffel University of Chicago

> Scales, degrees and implicature: Novel synergies between semantics and pragmatics University of Potsdam 28 May, 2021

Threshold semantics for gradable adjectives

(1) $\llbracket \log \rrbracket = \lambda x. \operatorname{length}(x) \ge \theta$

Threshold semantics for gradable adjectives

- (1) $\llbracket \text{long} \rrbracket = \lambda x. \text{length}(x) \ge \theta$
- (2) "Compositional" θ
 - a. That pole is two meters long.
 - b. That pole is longer than this knife.
 - c. That pole is too long to fit in the rack.

Threshold semantics for gradable adjectives

- (1) $\llbracket \text{long} \rrbracket = \lambda x. \text{length}(x) \ge \theta$
- (2) "Compositional" θ
 - a. That pole is two meters long.
 - b. That pole is longer than this knife.
 - c. That pole is too long to fit in the rack.
- (3) "Contextual" θ
 - a. That pole is long.
 - b. That knife is long.
 - c. That rope is long.

イロト イポト イヨト イヨト

Threshold uncertainty

- (4) a. That pole is made of $local_{to \ place}$ bamboo.
 - b. That pole is ready *for purpose*.
 - c. That pole isn't_{property}.

э

イロト 不得下 イヨト イヨト

Threshold uncertainty

(4) a. That pole is made of $local_{to \ place}$ bamboo.

イロト イポト イヨト イヨト

3/29

- b. That pole is ready *for purpose*.
- c. That pole isn't_{property}.
- (5) a. That pole is $long_{\theta}$.
 - b. That pole is expensive_{θ}.
 - c. That pole is heavy $_{\theta}$.

Threshold uncertainty and adjective class

- (6) **Relative:** $\theta \approx mid +$
 - a. That pole is long.
 - b. That pole is expensive.
 - c. That pole is heavy.

Threshold uncertainty and adjective class

- (6) **Relative:** $\theta \approx mid +$
 - a. That pole is long.
 - b. That pole is expensive.
 - c. That pole is heavy.

(7) Absolute maximum: $\theta \approx max$

- a. That pole is straight.
- b. That theater is empty.
- c. That countertop is flat.

イロト イポト イヨト イヨト

4 / 29

Threshold uncertainty and adjective class

- (6) **Relative:** $\theta \approx mid +$
 - a. That pole is long.
 - b. That pole is expensive.
 - c. That pole is heavy.

(7) Absolute maximum: $\theta \approx max$

- a. That pole is straight.
- b. That theater is empty.
- c. That countertop is flat.

(8) **Absolute minimum:** $\theta \approx min$

- a. That pole is bent.
- b. That door is open.
- c. That shirt is striped.

(a)

Two theories of thresholds

Semantic accounts

Thresholds are associated with scalar endpoints, when such endpoints are available, as a matter of semantic convention. $_{({\sf Paradis}}$

2001; Kennedy and McNally 2005; Rotstein and Winter 2004; Kennedy 2007; Toledo and Sassoon 2011; Burnett 2016; etc.)

Two theories of thresholds

Semantic accounts

Thresholds are associated with scalar endpoints, when such endpoints are available, as a matter of semantic convention. (Paradis 2001; Kennedy and McNally 2005; Rotstein and Winter 2004; Kennedy 2007; Toledo and Sassoon 2011; Burnett 2016; etc.)

Bayesian pragmatic accounts

- LG Thresholds are inherently uncertain, but both thresholds and utterance content are a function of iterated pragmatic reasoning taking into account cost, informativity and prior distribution of a comparison class (Lassiter and Goodman, 2014)
- QF Like LG, except that threshold posteriors eventually evolve into linguistic conventions (Qing and Franke, 2014)

Two questions

- (S) What are the truth conditions of utterances of (9a-c) in particular contexts?
- (P) What is the information communicated by utterances of (9a-c) in particular contexts?
- (9) a. That pole is long.
 - b. That pole is straight.
 - c. That pole is bent.

Two kinds of answers

Semantic accounts

- Provide answers to (S)
- Don't say much about (P), and what they do say appears to be wrong

Two kinds of answers

Semantic accounts

- Provide answers to (S)
- Don't say much about (P), and what they do say appears to be wrong

Bayesian pragmatic accounts

- Provide answers to (P)
- Don't directly answer (S), but can do so if supplemented by appropriate linking hypothesis

This study

- 1. Elicit truth value judgments and posterior degree judgments from human subjects, and use these data to evaluate the predictions of the different approaches.
- 2. Elicit empirical priors from human subjects and use these to compute the model predictions, instead of artificial priors.

Human judgments

Degree priors

Experiment 1: Degree priors

Goal: establish a prior probability for distribution of objects in a comparison class are relative to different scalar dimensions

Constraint: should be independent of facts about language users' experience with words used to talk about these dimensions

Method: use restricted judgment of likelihood as a proxy for prior degree probability: *"Which of these objects is most likely?"*

Reality check: two categories of objects, *artifacts* and *shapes* (inspiration: Foppolo and Panzeri, 2011)

- Human judgments
 - Degree priors

Image sets

24 artifacts; 24 shapes

Artifacts

Scalar dimension: HEIGHT

Shapes

Scalar dimension: HEIGHT

Scalar dimension: BEND

Scalar dimension: BEND

Human judgments

Degree priors

Experiment 1: Example stimuli

97 participants

Which one of these is the most likely?

Human judgments

Degree priors

Experiment 1: Results

- Human judgments
 - Truth value judgments

Experiment 2: Truth value judgments

Three adjective classes:

- Relative: big, small, long, tall, short,* narrow, wide, thick, thin
- Maximum: straight, closed, plain, smooth, empty, full
- Minimum: curved, open, striped, spotted, bent, bumpy

Two image types:

- Shapes
- Artifacts

Two groups of 58 participants for each image type, who each saw 48 items (24 image sets \times 2 adjectives)

Human judgments

Truth value judgments

Experiment 2: Sample stimuli

"Please click on the checkbox beneath the image or images that the sentence appropriately describes."

14 / 29

- Human judgments
 - Truth value judgments

Experiment 2: Results

- · Overall effect of adjective class as reported in literature
- Overall effect of image type
- Interaction of image type and adjective class

For statistical analysis fit Bayesian hierarchical models to data using R package "brms" (Bürkner, 2017))

Human judgments

Posterior degree estimations

Experiment 3: Posterior degree estimations

Same images as Experiments 1 and 2; new procedure:

- Speaker: "I saw a candle. It was tall."
- Prompt: "Make a guess: how tall was the candle that the speaker saw?"

Participants allowed to choose exactly one item from same item sets used in Experiments 1 and 2.

Human judgments

Posterior degree estimations

Experiment 3: Sample stimuli

Speaker: I saw a cylinder. It was tall.

Make a guess: How tall was the cylinder that the speaker saw? Choose one image from below.

Speaker: I saw a nail. It was straight.

Make a guess: How straight was the nail that the speaker saw? Choose one image from below.

Human judgments

Posterior degree estimations

Experiment 3: Results

Same statistical analysis as Experiment 2, but results merely descriptive, since we don't have any initial hypotheses.

Model predictions: Procedure

Derive LG and QF model predictions for posterior object degree and posterior θ for each position on our 5-point scales:

- Use empirical priors collected in Experiment 1
- Assume uniform prior θ (LG)
- Set free parameters to $\lambda=3$ and cost = 2 (both models)

-Model predictions

Posterior degree estimations

Degree posteriors: Models = humans

LG

- Model predictions

Truth value judgments

Linking θ posteriors to truth value judgments

As noted already, the Bayesian models do not directly predict truth value judgments.

But they do make predictions about θ posteriors, which can be combined with the following linking hypothesis to generate predictions about truth value judgments:

(10)
$$P("x_i \text{ is adj" is TRUE}) = P(\theta \leq i) = \sum_{\theta \leq i} P(\theta)$$

- Model predictions
 - Truth value judgments

θ posteriors

-Model predictions

Truth value judgments

Truth value judgments: Models \neq humans

LG

- Bayesian models largely align human judgments about posterior degree estimations
- Bayesian models do not align with human truth value judgments, in particular for absolute adjectives
- Three possible explanations:
 - 1. Problem with our method for eliciting priors
 - 2. Problem with our parameter settings ($\lambda = 3$, cost = 2)
 - 3. Problem with model predictions about θ posteriors

- Bayesian models largely align human judgments about posterior degree estimations
- Bayesian models do not align with human truth value judgments, in particular for absolute adjectives
- Three possible explanations:
 - 1. Problem with our method for eliciting priors
 - 2. Problem with our parameter settings ($\lambda = 3$, cost = 2)
 - 3. Problem with model predictions about θ posteriors

- Bayesian models largely align human judgments about posterior degree estimations
- Bayesian models do not align with human truth value judgments, in particular for absolute adjectives
- Three possible explanations:
 - 1. Problem with our method for eliciting priors
 - 2. Problem with our parameter settings ($\lambda = 3$, cost = 2)
 - 3. Problem with model predictions about θ posteriors

- Bayesian models largely align human judgments about posterior degree estimations
- Bayesian models do not align with human truth value judgments, in particular for absolute adjectives
- Three possible explanations:
 - 1. Problem with our method for eliciting priors
 - 2. Problem with our parameter settings ($\lambda = 3$, *cost* = 2)
 - 3. Problem with model predictions about θ posteriors

Model fit by adjective class ($\lambda = 3$, *cost* = 2)

Evaluation of model fit corroborates qualitative assessment:

	LG (<i>R</i> ²)		$QF\left(R^{2} ight)$	
	TVJ	POSTERIOR	TVJ	POSTERIOR
Overall	0.65	0.84	0.6	0.88
Maximum	0.63	0.94	0.85	0.98
Minimum	0.7	0.67	0.39	0.71
Relative	0.91	0.81	0.81	0.87

- Both models less good on TVJs than degree posteriors
- Problems with TVJs driven by absolute adjectives

Reverse engineering θ distributions

What kind of θ distributions *would* derive empirical truth value judgments? We can use our linking hypothesis to recover them from human TVJs.

(10)
$$P("x_i \text{ is adj" is TRUE}) = P(\theta \leq i) = \sum_{\theta \leq i} P(\theta)$$

Reverse engineering θ distributions

What kind of θ distributions *would* derive empirical truth value judgments? We can use our linking hypothesis to recover them from human TVJs.

(10)
$$P("x_i \text{ is adj" is TRUE}) = P(\theta \leq i) = \sum_{\theta \leq i} P(\theta)$$

These are "semantic" θ s!

27 / 29

Comparison of poster degree predictions (QF only)

Conclusion

Results do not indicate that absolute adjectives require a "two stage" analysis (semantic thresholds; pragmatic content): empirical priors needed to explain different TVJs for shapes and artifacts.

Instead, results suggest that a single pragmatic model can account both for communicated content (posterior degree estimations) and TVJs (threshold estimations) as long as it is supplemented with reasoning based on lexical/conceptual content (scale structure).

This information is available in the input and attended to by children (Syrett, 2007), so why not give it to the robots too?

- Burnett, H. (2016). Gradability in Natural Language: Logical and Grammatical Foundations. Oxford Studies in Semantics and Pragmatics. Oxford University Press, Oxford, UK.
- Bürkner, P.-C. (2017). brms: An r package for bayesian multilevel models using stan. Journal of Statistical Software, Articles, 80(1):1–28.
- Foppolo, F. and Panzeri, F. (2011). When straight means relatively straight and big means absolutely big. Paper presented at the 31st Incontro di Grammatica Generativa, Rome, Italy, February 24-26.
- Kennedy, C. (2007). Vagueness and grammar: The semantics of relative and absolute gradable predicates. *Linguistics and Philosophy*, 30(1):1–45.
- Kennedy, C. and McNally, L. (2005). Scale structure and the semantic typology of gradable predicates. *Language*, 81(2):345–381.
- Lassiter, D. and Goodman, N. (2014). Context, scale structure, and statistics in the interpretation of positive-form adjectives. In *Proceedings of Semantics and Linguistic Theory*, volume 24, pages 587–610.

Paradis, C. (2001). Adjectives and boundedness. Cognitive Linguistics, 12(1):47-65.

Qing, C. and Franke, M. (2014). Gradable adjectives, vagueness, and optimal language use: A speaker-oriented model. In Champollion, L. and Szabolcsi, A., editors, *Proceedings of Semantics and Linguistic Theory 24*, pages 23–41.

Rotstein, C. and Winter, Y. (2004). Total adjectives vs. partial adjectives: Scale structure and higher-order modifiers. *Natural Language Semantics*, 12:259–288.

Pragmatic Reasoning and Semantic Convention: A Case Study on Gradable Adjectives $\case{-}$ Discussion

- Syrett, K. (2007). Learning about the Structure of Scales: Adverbial Modification and the Acquisition of the Semantics of Gradable Adjectives. PhD thesis, Northwestern University.
- Toledo, A. and Sassoon, G. W. (2011). Absolute vs. relative adjectives variance within vs. between individuals. In Ashton, N., Chereches, A., and Lutz, D., editors, *Proceedings of Semantics and Linguistic Theory 21*, pages 135–154.