Modul Rh Raumbezogene Informationsberarbeitung 2 Raumbezug

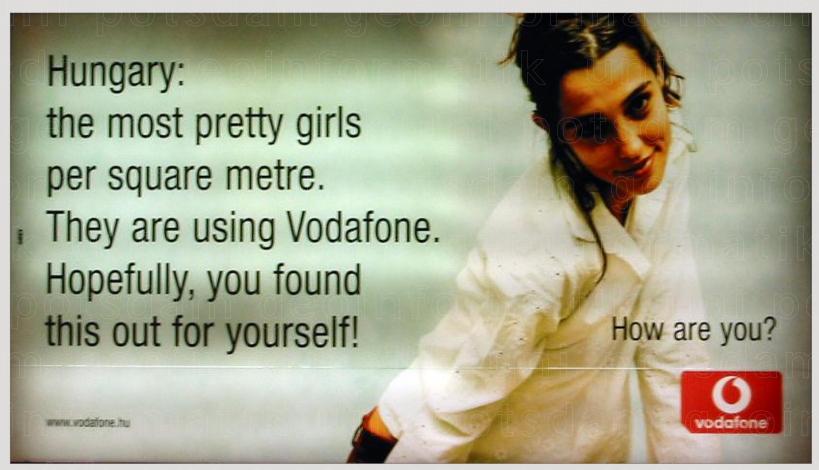
Vorlesung mit Seminar WiSe 2012/13 BEd Geographie | BSc Geoökologie

Hartmut Asche | Geoinformatik | IfG

riv|gife

2 Raumbezug Koordinaten, Meridianstreifen

- 2.1 Grundlagen
- 2.2 Erdmodelle
- 2.3 Koordinaten
- 2.4 Metrik
- 2.5 Kartennetzentwürfe
- 2.6 Geodätische Abbildungen



2.1 Grundlagen Begriffe, Festlegung

2.1 Grundlagen Raumbezug > Übersicht

Mobiltelefonwerbung Flughafen Budapest, 11/2003

2.1 Grundlagen Raumbezug > Übersicht

Begriff

- Eigenschaft bzw. Referenz von Objekten/Sachverhalten hinsichtlich georäumlicher Beziehung (BOLLMANN/KOCH 2002,2: 266) > Georeferenzierung, Geocodierung; Metrik
- Jedes Objekt der Realwelt bzw. in Karte/GIS besitzt Ort und/ oder Wirkungs-/Einflusszone > Objekte/Daten ohne Raumbezug (nichträumlich/aspatial) für Kartographie/GIS bedeutungslos

Arten

- Georäumliche Referenz durch exakte Zuordnung zu Koordinatensystemen > primäre Metrik
- Georäumliche Referenz aus Zusammenhang von Objekten und Umgebung (Standort) oder Nachbarschaften zwischen Objekten (Region) ohne exakte Position im Georaum > sekundäre Metrik

2.1 Grundlagen Raumbezug > Bestimmung

Verortung *Positioning*

- Begriff: Ermittlung der Position im Raum in Bezug zu Bezugspunkt durch mentale, geodätische Festlegung
- Arten: Ortsbestimmung: Bestimmung des eigenen Standortes;
 Ortung: Bestimmung eines entfernten Objektes

Verfahren: Geodätische Festlegung

- Begriff: Positionsbestimmung, Ortung auf Erdkörper durch Messung von Entfernungen, Winkel, Richtungen, Höhen; Laufzeiten
- **Ergebnis:** 2D-Koordinaten (*XY*: polar, geographisch), 3D-Koordinaten (*XYZ*: räumlich)
- Bedingung: Raumbezug/Georeferenz, Erdmodell, Datum; geographisches, geodätisches Koordinaten-/Bezugssystem, bezogen auf Erdmodell (Kugel, Ellipsiod)

2.1 Grundlagen Raumbezug > Repräsentation

Analog > Kartengrafik

- Position von Geoobjekten durch Lage in Koordinatensystem direkt abbildbar, visuell erfassbar, messbar
- Nachbarschaft von Geoobjekten aus Objektlage indirekt abbildbar, visuell erfassbar
- Chorographische Abbildung > parallele Informationsaufnahme
 Digital > Datei (Geodatenbank, GIS)
- Explizite Angabe der Position durch Koordinaten (z.B. Gauß-Krüger-Koordinaten) bzw. Raumbezugssystem
- Explizite Angabe der Nachbarschaftsbeziehungen durch Topologie
- Chronologische Abbildung > sequentielle Informationsaufnahme

2.1 Grundlagen Raumbezug > Bezugssystem

Begriff

• Mit Uhren und Maßstäben ausgestattetes materielles Gerüst, das auf der Grundlage eines idealen theoretischen Konzeptes ermöglicht, zeitliche und räumliche Abstände zwischen Ereignissen zu messen > sphärische, kartesische Koordinatensysteme

Gliederung

- Raumfeste Bezugssysteme (Celestial Reference Systems = CRS)
- Erdfeste Bezugssysteme (Terrestrial Reference System = TRS)
- Erdfeste, raumfeste Bezugssysteme durch Rotation der Erde miteinander verknüpft

2.2 Raumbezug Erdfigur // Erdmodell

Erdfigur (Erdgestalt) Figure, shape of the earth

- Begriff: mathematisch einfach definierbare Approximation des Erdkörpers (>Modell) durch Oberfläche von 3D-Körpern; [Original Erde: mathematisch nicht beschreibarer kugelähnlicher Körper, dessen Oberfläche Erhebungen, Vertiefungen aufweist]
- Relevanz: Bezugsfläche globaler 3D-Approximation des Erdkörpers in vielen Bereichen der Geowissenschaften für Berechnungen und Positionsangaben benötigt
- Historie: Überlegungen zur Erdfigur bereits in südamerikanischen, mesopotamischen, indischen Hochkulturen, in Europa insbesondere in ionische Naturphilosophie (>Naturbeobachtungen): Scheibe, Kugel

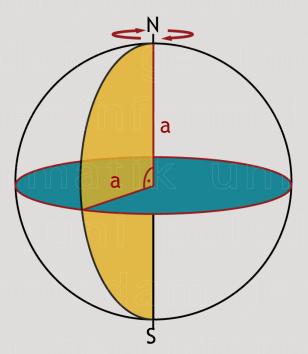
2.2 Raumbezug Erdmodell // Erdfigur

Erdfigur

- Mathematisch nicht beschreibbarer kugelähnlicher Körper, dessen Oberfläche Erhebungen, Vertiefungen, aufweist
- Fläche des konstanten Schwerepotenzials > Äquipotenzialfläche in Meereshöhe (=wahre Erdfigur)

Erdmodelle: globale 3D-Approximation des Erdkörpers

- Kugel: mathematisch definiertes Modell
- Ellipsoid: mathematisch definiertes Modell
- Geoid: geophysikalisch definiertes Modell


Repräsentation

Karte: 2D-Verebnung

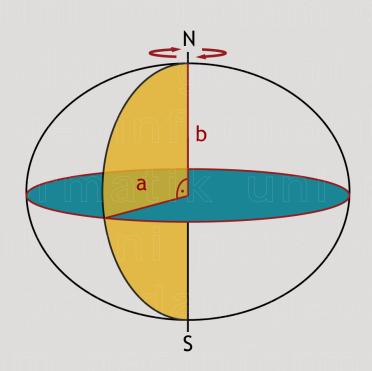
Globus: 3D-Körper

2.2 Raumbezug Erdmodell > Kugel

Begriff sphere

- Geometrische Approximation auf ideale Kugel
- Rotationssymetrischer Körper,
 Rotation Kugel um Erdachse

Dimension


- Einheitsradius 6.371 km
- Erdumfang 40.026 km
- Oberfläche 510.100.000 km²
- Erste gesicherte Erdmessung:
 ERATOSTHENES (ca. 200 v.Chr.)

Anwendung

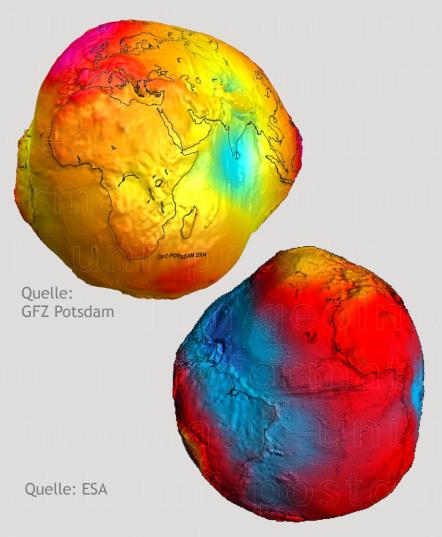
- Globale Entfernungsberechnungen; Kurzstreckennavigation; Online-Kartendienste
- Kartennetzentwürfe für kleinmaßstäbige Karten (< 1:1 Mill.): Abbildungsgenauigkeit < Rechengenauigkeit

2.2 Raumbezug Erdmodell > Ellipsoid

Begriff

- Geometrische Approximation der Erdfigur durch optimal angepasstes Rotationsellipsoid
- Rotationssymmetrischer K\u00f6rper durch Rotation Ellipse um kleine Halbachse b

Dimension


- (Ober)Fläche zweiter Ordnung
- Form definiert durch große Halbachse a (Äquatorialachse), kleine Halbachse b (Polarachse)

Anwendung

- Bezugs- und Rechenfläche für Lagemessungen
- Globale Navigation, z.B. GPS

2.2 Raumbezug Erdmodell > Geoid

Begriff

Geophysikalische Approximation der Erdfigur durch Äquipotenzialfläche im Schwerefeld der Erde, dem mittleren Meeresspiegel bestmöglich angenähert

Dimension

- Allseitig gekrümmter, unregelmäßiger Körper
- Geoidundulationen: Differenz zu optimal angepasstem Ellipsoid ø 50 m, max. 150 m

Anwendung

Höhen-/Schweremessung

2.2 Raumbezug Erdmodell > Geoid hwerelot Konstruktion Erdoberfläche Meeresoberfläche Meeresoberfläche

- Wird Meerwasser als frei bewegliche, der Schwerkraft unterworfene Masse aufgefasst, bildet sich nach Erreichen des Gleichgewichtszustandes eine Oberfläche als Niveaufläche des Schwerepotenzials aus (BOLLMANN/ KOCH 2002,1: 302)
- Wird idealisierter Meeresspiegel gemäß System kommunizierender Röhren unter Kontinenten fortgesetzt gedacht, entsteht geschlossene Fläche, die das Geoid veranschaulicht

a - Geoindulation

2.2 Raumbezug Erdmodell > Vergleich

Kugel

- Bestimmung: mathematisch; vereinfachtes Modell
- Anwendung: Kartennetzentwürfe > geographische Abbildungen <
 1:1.000.000

Rotationsellipsoid

- Bestimmung: mathematisch, optimal genähertes Modell
- Datenbasis: terrestrische Messungen, Satellitengeodäsie
- Anwendung: Kartennetzentwürfe > geodätische Abbildungen > 1:500.000, Lagemessung

Geoid

- Bestimmung: geophysikalisch; maximal angepasstes Modell
- Datenbasis: Gravitationsmessungen, Satellitengeodäsie
- Anwendung: Höhen-/Schweremessung, Lagerstättenforschung

2.3 Koordinaten Arten, Koord.-Systeme

2.3 Koordinaten Grundlagen > Begriff, Merkmale

Begriff Coordinates

- "Lageangabe", Parameter zur eindeutigen Festlegung der geometrischen Position von Punkten (BOLLMANN/KOCH 2002, 2: 74)
- Geordnetes Paar bzw. Tripel (allgemein n-Tupel) von Zahlen, die Lage eines Punktes in Fläche bzw. 3D-Raum entlang bestimmter Linien mittels Koordinatensystem [KOS] bestimmen.

Merkmale

- Koordinaten sind Ortsvektor vom Koordinatenursprung aus zugeordnet > 3D-Raum: Geozentrum; 2D-Raum: ebene Koordinaten
- Jeder Satz von Koordinaten auf KOS bezogen, das durch Anhaftung an vermarkte, materielle Punkte der Erdoberfläche zu Bezugssystem wird

2.3 Sphärische Koordinaten Übersicht

Begriff Spherical coordinates

- Polarkoordinaten auf der Einheitskugel > Kugelkoordinaten
- Schnittkreise der Ebenen, die das KOS repräsentieren, mit der Kugel: Grundkreis, Nullkreis > globales Koordinatensystem

Bestimmung

- Positionsangabe durch Abstand von Kugelmittelpunkt (Ursprung) und 2 Winkeln
- Ist Abstand von Ursprung konstant (auf Kugeloberfläche=Sphäre), werden lediglich die 2 Winkel benötigt, um Punkt eindeutig zu bezeichnen

Ausprägungen

Geographische Koordinaten > Erdmodell (Kugel, Ellipsoid)

2.3 Sphärische Koordinaten Geographische Koord.

Begriff Geographical coordinates

- 2D-Koordinaten zur Festlegung eines Punktes P der definierten Erdoberfläche, Basis: sphärisches Polarkoordinatensystem
- Koordinatenwerte unabhängige, dimensionslose **Winkelgrößen**: geographische Breite φ (phi), geographische Länge λ (lambda) > krummlinige Flächenkoordinaten

Merkmale

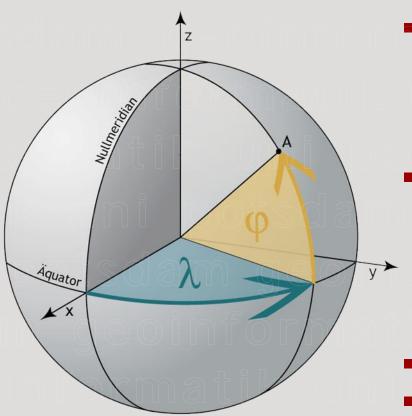
- Globales Bezugssystem aus Längen- und Breitenkreisen
- Äquator: (Breiten-)Kreis, dessen Ebene senkrecht zur Erdachse durch Erdmittelpunkt verläuft
- Äquator teilt Erdkörper in nördliche Hemisphäre (0 bis +90°),
 südliche Hemisphäre (0 bis -90°)

2.3 Sphärische Koordinaten Geographische Koord.

Breitenkreise Latitudes

- Parallelkreise; Kreisebenen senkrecht zur Erdrotationsachse
- Kreisdimension von Äquator zu Pol abnehmend: Äquator Großkreis, übrige Parallelkreise Kleinkreise
- Nullbreitenkreis: Äquator > natürliche Festlegung

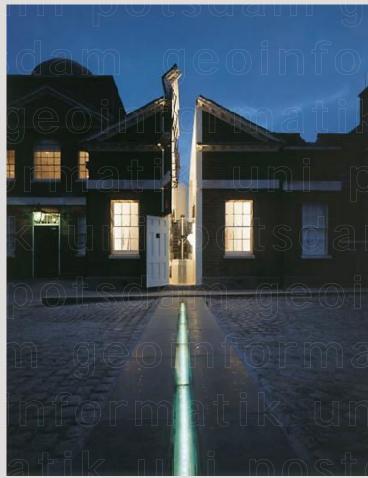
Längenkreise Longitudes


- Großkreise gleicher Dimension; Kreisebenen schneiden Äquatorebene, alle Breitenkreise senkrecht in Erdrotationsachse
- Nulllängenkreis: Nullmeridian Sternwarte Greenwich (London) > willkürliche Festlegung (1884)

Punktbestimmung

- Maßeinheit: Grad (°), Minuten ('), Sekunden (")
- Breite φ : nördl./südl. Äquator; Länge λ : westl./, östl. Greenwich

2.3 Sphärische Koordinaten Geographische Koord.



Punktbestimmung


- Geographische Breite φ
 Höhenwinkel in Meridianebene (nördl., südl.) der Äquatorebene > 90° n.B.- 0° -90° s.B.
- Geographische Länge λ
 Winkel in Äquatorebene zu festgelegtem Ausgangsmeridian,
 z.B. Greenwich > 180° w.L. 0° -180° ö.L.
- Alle Punkte am Äquator: φ =0
- Alle Punkte am Nullmeridian:
 λ =0

2.3 Sphär. Koordinaten Geogr. Koord. > Nullmeridian

Nullmeridian Greenwich

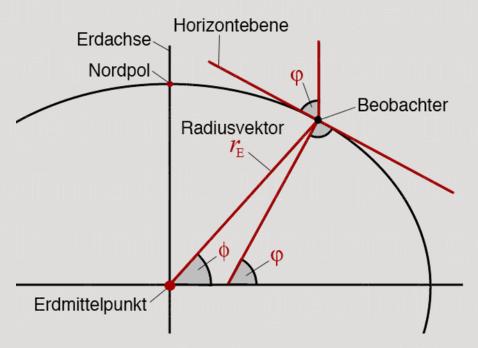
Nullmeridian Ferro (>Hierro)

2.3 Sphärische Koordinaten Geozentrische Koord.

Begriff *Geocentric coordinates*

- 3D-Koordinaten zur Festlegung eines Punktes P (Länge, Breite)
 auf Kugeloberfläche relativ zum Erdmittelpunkt
- System sphärischer Koordinaten (x,y,z) mit Ursprung im Erdschwerpunkt (Geozentrum) (BOLLMANN/KOCH 2002,1:325)

Merkmale


- Globales erdfestes rechtwinkliges 3D-System
- Z-Achse: mittlere Erdrotationsachse
- XY-Ebene: mittlere Äquatorebene
- XZ-Ebene: mittlere Meridianebene von Greenwich

Anwendung

Astronomie, Satellitentechnik; Ortung, Navigation: GPS

2.3 Sphärische Koordinaten Geozentrische Koord.

 Abweichung geographische Breite geozentrische Breite bis +0,19° bzw 20 km, da auf Lotrichtung bzw.
 Normale zum Erdellipsoid bezogen

Geozentrische Breite ϕ

 Winkel, den Radiusvektor vom Geozentrum zum Beobachter mit Äquatorebene bildet.

Geographische Breite φ

- Winkel, den Horizontebene (Tangentialebene an Rotationsellipsoid am Punkt) mit Erdachse bildet
- Lot auf Horizontebene (Normalenvektor, Nadir, Schwerkraftvektor) bildet mit Äquatorebene Winkel φ

2.3 Sphärische Koordinaten Geozentrische Koord.

Punktbestimmung

 Festlegung durch drei unabhängige Streckengrößen x,y,z

Aquator

2.3 Ebene Koordinaten Übersicht

Begriff Plane coordinates

- Geordnete Zahlenpaare (Koordinaten) in ebenem Koordinatensystem
- 2D-System aus senkrecht aufeinander stehenden Koordinatenachsen mit gleichen Maßeinheiten, die sich im Ursprung (= Nullpunkt) schneiden: X-Achse (Abszisse), Y-Achse (Ordinate) > regionales Koordinatensystem für definierten Abbildungsbereich

Bestimmung

Positionsangabe in der Ebene durch vom Ursprung ausgehende
 Vektoren > relativ, 2 unabhängige Streckengrößen x,y

Ausprägungen

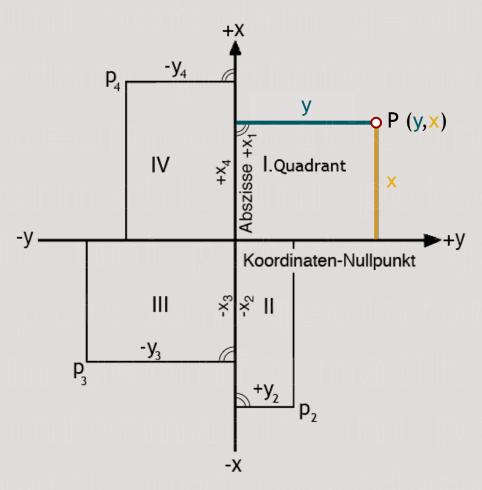
Kartesische Koordinaten > Meridianstreifen

2.3 Ebene Koordinaten Kartesische Koordinaten

Begriff Cartesian coordinates

 2D-Koordinaten; Richtungsachsen mit gleichen Maßeinheiten, schneiden sich orthogonal in Ursprung (= Nullpunkt): X-Achse (Abszisse), Y-Achse (Ordinate) > gradlinige, kartesische KO

Merkmale


- Regionales Bezugssystem für definierten Abbildungsbereich
- Nullpunkt gemäß Festlegung bei geodätischen Abbildungen
- Koordinatenlinien Geraden in konstantem Abstand (Grid)
- Koordinatenangaben in metrischen Einheiten
- Bezeichnung nach Erfinder Descartes, lat. Cartesius (16. Jh.)

Punktbestimmung

Vom Ursprung ausgehende Vektoren > relativ, 2 unabhängige
 Streckengrößen x,y > gradlinige Koordinaten

2.3 Ebene Koordinaten Kartesische Koordinaten

Positionsbestimmung

- Kürzeste Abstände x, y von Koordinatenachsen (Lot), bezogen auf jeweiligen Quadranten
- Ergebnis: Koordinatensatz (x,y) aus paarweise rechtwinkligen Zahlenangaben
- Quadranten mit römischen Ziffern im Urzeigersinn bezeichnet (math. Prinzip Rechtshändigkeit)

2.3 Koordinatensystem Übersicht > Begriff

Begriff

- Räumliches Bezugssystem mit der Möglichkeit, Punkte durch Koordinaten zu bestimmen (BOLLMANN/KOCH 2002, 1:316)
- Aus 1 bzw. 2 (allgem. n) Koordinatenachsen und/oder Bezugsrichtungen im 2D/3D- (allg. n-D-) Raum bestehendes System, in dem geometrische Gebilde (z.B. Punkte, Linien, Flächen) gegebenen Koordinaten zugeordnet werden vice versa
- Koordinatensystem wird zu Bezugssystem durch Anhaftung an vermarkte, materielle Punkte

Merkmale

 Mathematisch-geometrisches Ordnungssystem, mit dessen Hilfe räumliche Daten georeferenziert werden können

2.3 Koordinatensystem Übersicht > Anwendung

Anwendung

- Erdoberfläche nur mittels Geographischer Koordinaten eindeutig abbildbar > krummlinige Flächenkoordinaten
- Lokal angepasste (Projektions-)Systeme besitzen Vorteil ebenrechtwinkliger Achsen mit einheitlicher metrischer Teilung > geodätische Koordinaten > Anwendung euklidischer Metrik (> Gauß-Krüger-System, UTM-System)

2.4 Metrik Konzept, Arten, **Anwendung**

2.4 Metrik Übersicht > Begriff, Relevanz

Begriff

- Eindeutige Festlegung des Raumbezugs durch mathematische Funktion, die Abstand d von je 2 Geoobjekten A,B eines Raumes mit nachfolgenden Eigenschaften voneinander bestimmt
- Raum definiert als Menge, deren Elemente (hier: Geoobjekte) geometrisch als Punkte aufgefasst werden.
- Jeder metrische Raum ist ein topologischer Raum mit der Topologie, die durch die Metrik induziert wird

Relevanz

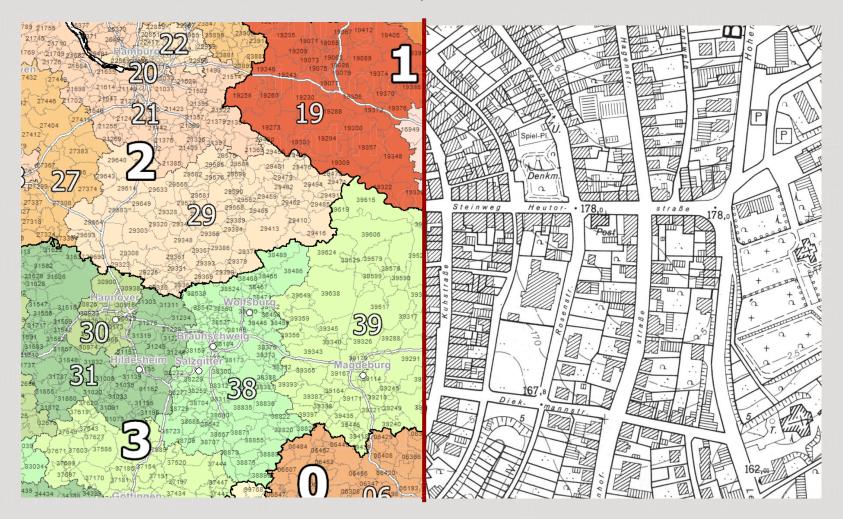
- Raumbezogene Abfragen (Suchoperationen), z.B.
 - alle Biotope mit Rote-Liste-Arten, die mindestens 150 m von Autobahn und Bundesstraße enfernt sind
 - alle Wasserschutzgebiete im Landkreis Potsdam-Mittelmark

2.4 Metrik Arten > Primäre, sekundäre Metrik

Arten

Nach geometrischer Exaktheit des Raumbezugs werden unterschieden:

Primäre Metrik


direkte Zuordnung der Objektinformation zu Position auf Erdoberfläche durch Angabe exakter Koordinaten eines KOS

Sekundäre Metrik

indirekte Zuordnung der Objektinformation zu Position auf Erdoberfläche durch Angabe von Bezugsgrößen bzw. beschreibender alphanumerischer Information, wie z.B. von Adresse, Postleitzahl, Kilometrierung

2.4 Metrik Arten > Primär, sekundär

2.4 Primäre Metrik Übersicht

Begriff

 Exakte, direkte Festlegung des Raumbezugs durch Referenzsystem, Konstruktionsvorschriften

Merkmale

 Exakt definiert: hohe geometrische Genauigkeit, direkter Raumbezug

Referenzsystem

- Koordinatensystem (2D/3D), z.B. Gauß-Krüger-Koordinatensystem
 - > Ortsangabe durch Hoch-/Rechtswert
- Konstruktionsvorschriften: definiertes Bezugssystem

Anwendung

Topographie, Georeferenzierung

2.4 Sekundäre Metrik Übersicht

Begriff

 Unscharfe, indirekte Festlegung des Raumbezugs durch Bezugsgrößen oder beschreibende Information

Merkmale

- Schwach definiert: variable Genauigkeit, indirekter Raumbezug
- Bezugsgrößen: Kennziffern, die Gebietsgliederung in hierarchischer Form wiedergeben, z.B. Postleitzahlen, Gemeindekennziffern, Flurstücksnummern, Nielsen-Gebiete, NUTS, ...
- Beschreibende Information: Adresse: Stadt, Straßenname, Hausnummer; Namen: Flur-, Orts-, Stadtteilname, Lagebezeichnung

Anwendung

 (Amtliche) Statistik, Geomarketing (Business Mapping), Einwohnermeldewesen, Ver-/Entsorgungswirtschaft, ...

ni potsdam geoinformatik ur

2.5 Kartennetzentwürfe Abbildungsflächen, Merkmale, Beispiele

2.5 Kartennetzentwürfe Übersicht > Kartennetz

Begriff Graticule, map grid

 Abbildung der systematischen Anordnung von Linien runder Koordinatenwerte (z.B. Längen-/Breitenkreise) in Kartenebene > Koordinatennetz

Funktion

- Übertragung von Geoobjekten der Erdoberfläche in Karte
- Positionsbestimmung von Kartenobjekten durch Koordinaten
- Geographische Einordnung des abgebildeten Raumausschnitts

Repräsentation

- Kleinmaßstäbige Karten: Kartennetz gebildet aus Linien (Länge, Breite) des geographischen Koordinatensystems
- Großmaßstäbige Karten: Kartennetz (Kartengitter) gebildet aus Linien eines ebenen Koordinatensystems (>Meridianstreifen)

2.5 Kartennetzentwürfe Übersicht > Begriff

Begriff Map projection

- Sonderfall der Abbildung der Koordinatennetze von 2 beliebigen Flächen aufeinander
- Mathematische Grundlage für analoge Karte bzw. digitales Kartenmodell unterschiedlicher Zweckbestimmung

Varianten

 Theoretisch unbegrenzte Zahl an Netzentwürfen, ausgearbeitet ca. 400, angewendet ca. 50

Funktion

- Kartographisch: Abbildung Bezugsfläche (Kugel, Ellipsoid) in die Ebene durch geographisches, geodätisches Koordinatensystem
- Grundlage kleinmaßstäbiger Karten (<1:500.000): kartographische Abbildungen i.e.S.

2.5 Kartennetzentwürfe Übersicht > Merkmale

Merkmale Features

- Abbildung beruht auf eindeutigen, differenzierbaren Funktionsbeziehungen zwischen Urbild (Bezugsfläche) und Abbild:
 Bedingung muss von Abbildungsgleichungen erfüllt werden
- Abbildung des Erdkörpers in die Ebene (3D>2D) unterliegt stets mathematischer Verzerrung > Längen-, Flächen-, bzw. Winkelverzerrungen
- Verzerrung durch Gestaltung der Abbildungsgleichungen für jeweiligen Kartenzweck minimierbar
- Kartennetzentwürfe ohne bestimmte Verzerrungen, besitzen mathematische Treueeigenschaften: Längen-, Flächen- oder Winkeltreue

2.5 Kartennetzentwürfe Übersicht > Gliederung

Parameter des Kartennetzes Parameters of graticule

- Geographische Netze
- Geodätische Gitter

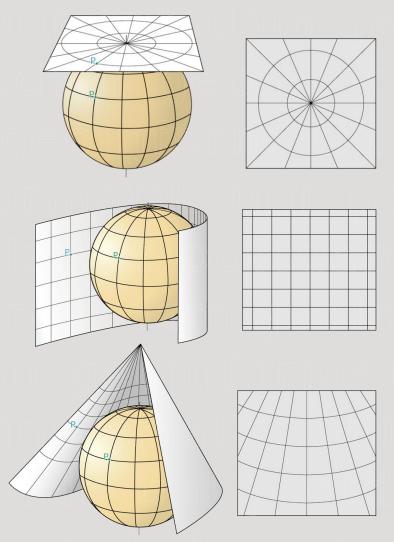
Art des Netzbildes Graticule class

Echte Abbildungen | unechte Abbildungen

Abbildungsfläche Developable surface

- Azimutale Abbildungen
- Zylindrische Abbildungen
- Konische Abbildungen

Lage der Abbildungsfläche Projection aspect


Polar | transversal | allgemein

Abbildungseigenschaften Projection properties

Geometrisch: Längentreue | Flächentreue | Winkeltreue

2.5 Abbildungsflächen Übersicht

Ebene Plane

- Längenkreise: Geraden, die sich im Berührungspunkt schneiden
- Breitenkreise: konzentrische Kreise um Berührungspunkt

Zylinder Cylinder

- Längenkreise: Geraden, die sich im Berührungspunkt schneiden
- Breitenkreise: konzentrische Kreise um Berührungspunkt

Kegel Cone

- Längenkreise: Strahlenscharen aus Ursprung Kegelspitze
- Breitenkreise: konzentrische Kreissegmente um Kegelspitze

2.5 Abbildungsflächen Lage

Polare Lage Polar aspect

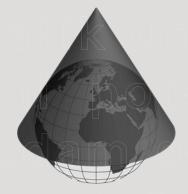
- Achse des Abbildungskörpers bzw. Senkrechte der Abbildungsfläche fällt mit Erdachse zusammen
- Synonym: polständig, erdachsig, normalachsig

Transversale Lage Equatorial aspect

- Achse des Abbildungskörpers steht senkrecht auf Erdachse bzw. fällt mit Senkrechten der Abbildungsfläche zusammen
- Synonym: äquatorständig, querachsig

Schiefachsige Lage Oblique aspect

- Achse des Abbildungskörpers bzw. Senkrechte der Abbildungsfläche bildet Winkel zwischen >0° bis < 90° mit Erdachse
- Synonym: zwischenständig, allgemein



B4.2 Abbildungsflächen Lage

Polare Lage Polar aspect

Transversale Lage Equatorial aspect

Schiefachsige Lage Oblique aspect

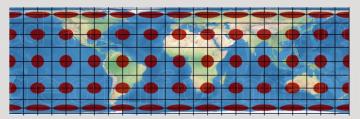
2.5 Abbildungseigenschaften Übersicht

Begriff *Projection properties*

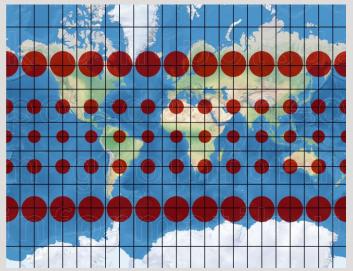
- Übertragung Eigenschaften von Objekten des Urbildes in Abbild
- Durch Projektion erzeugte Entsprechung der Eigenschaften von Objekten der Bezugsfläche (3D) im Kartennetzentwurf (2D)

Merkmale

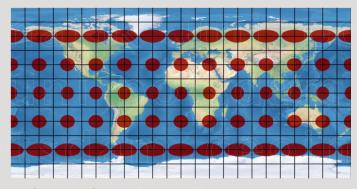
- Abbildungstreue (=Verzerrungsfreiheit) nur bei gleicher Dimensionalität von Ur- und Abbild: 3D > 3D: Erdkörper > Globus
- Reduktion der Dimensionalität 3D > 2D erzwingt Verzerrungen;
 Kontrolle durch Definition Verzerrungs-/Treueeigenschaften
- Beschreibung lokaler Verzerrungseigenschaften in einem Punkt durch Tissotsche Indikatrix (Verzerrungsellipse)

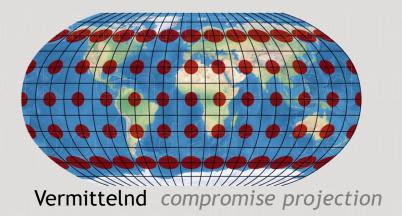

Gliederung nach geometrischer Eigenschaft:

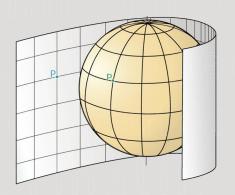
Längentreue, Flächentreue, Winkeltreue



2.5 Abbildungseigenschaften Arten > Indikatrix


Tissotsche Indikatrix (Kreisradius 750 km) Tissot's indicatrix


Flächentreue equal-area projection


Winkeltreue equal-angle projection

Abstandstreue

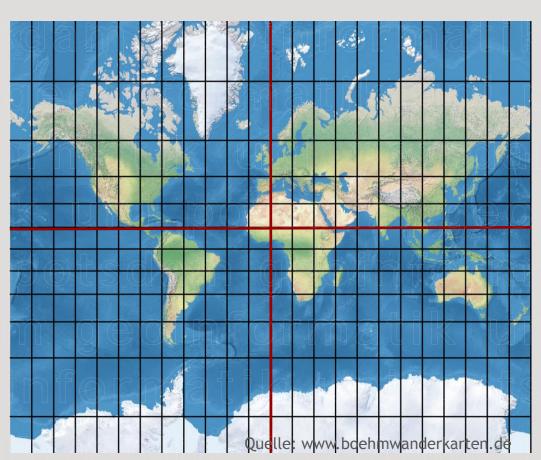
2.5 Beispiel Zylinderabbildung Übersicht

Begriff Cylinder

- Abbildung der Erdoberfläche durch Projektion oder anderes geometrisches Verfahren auf Zylindermantel
- Kegelöffnungswinkel (=0°

Konstruktion Construction

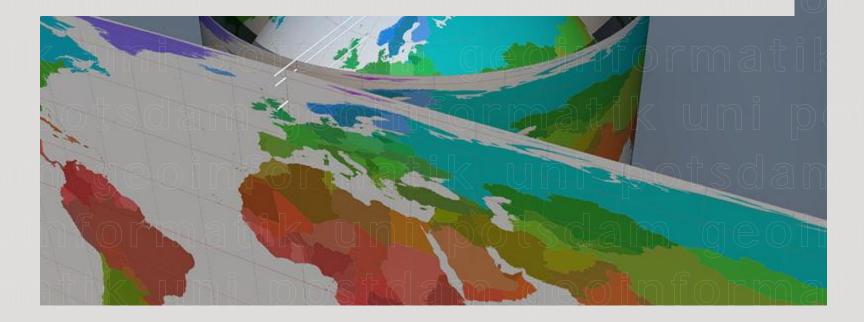
Indirekte Abbildung: Zylinder umschließt Erdkörper > Zylindermantel Zwischenabbildungsfläche > Auftrennen entlang Netzlinie > verzerrungs-freie Abwicklung in die Ebene


Arten Class

- Berührungszylinder: Zylinderdurchmesser entspricht Erddurchmesser > längentreuer Berührkreis, dort geringste Verzerrungen
- Schnittzylinder: Zylinderdurchmesser kleiner als Erddurchmesser > 2
 längentreue Schnittparallele > verzerrungsarmer Bereich vergrößert

2.5 Beispiel Zylinderabbildung Mercator-Abbildung

Mercator-Abbildung (1569) Mercator's conformal cylindrical



Berührzylinder

- Winkeltreu
- Gradnetz: parallele längentreue Längenkreise; parallele orthogonale Breitenkreise in Äquatorlänge
- Nullmeridian:Greenwich

2.6 Geodätische Abbildungen Meridianstreifensysteme

2.6 Geodätische Abb. Übersicht > Meridianstreifen

Begriff Meridional zone

 Zwischen 2 Meridianen liegendes Segment des Erdellipsoids (>sphärisches Zweieck) durch transversale konforme Zylinderabbildung in die Ebene >Gauß-Krüger-Abbildung, UTM

Merkmale

- Geometrie: exakte, verzerrungsarme Abbildung 3D-Erdmodellsegmente in 2D-Kartenebene mittels ebener Koordinaten
- Koordinatenachsen: Mittelmeridian (Abszisse x), Äquator(segment) (Ordinate y) > Meridian: halber Längenkreis (>Großkreis)
- Grenzmeridiane: Meridianstreifen östlich, westlich begrenzende Meridiane
- Ausdehnung: Begrenzung Streifenbreite auf 3° bzw. 6° Länge wegen Flächen-, Längenverzerrung

2.6 Meridianstreifen Koordinatensystem

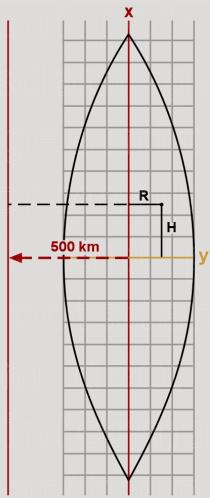
Begriff KOS Coordinate system

 Errichtung ebenen Koordinatensystems in Meridianstreifen auf Koordinatenachsen durch jeweils parallele Geradenscharen

Koordinatenachsen

- Senkrechte: Abszisse x > Mittelmeridian (Hauptmeridian)
- Waagerechte: Ordinate y > zugehöriges Äquatorsegment

Koordinatenursprung


Schnittpunkt Hauptmeridian mit Äquator

Merkmale

- Rechtwinkliges Kartengitter
- Einfache Punktbestimmung in metrischen Einheiten
- Winkeltreue Abbildung > geringe Flächen-/Längen-/Formverzerrung

2.6 Meridianstreifen Koordinatensystem

Punktbestimmung

- X-Wert (Abszisse): Abstand Punkt P vom Äquator, gemessen parallel zu Mittelmeridian; Nordhalbkugel: positive Werte
- Y-Wert (Ordinate): Abstand Punkt P vom Mittelmeridian, gemessen parallel zum Äquator; Vermeidung negativer Ordinatenwerte durch Verschiebung des Koordinatenursprungs (MM) um 500 km westwärts
- Nomenklatur: Rechts-/Hochwert (R/H, Gauss-Krüger), Ost-/Nordwert (E/N, UTM)

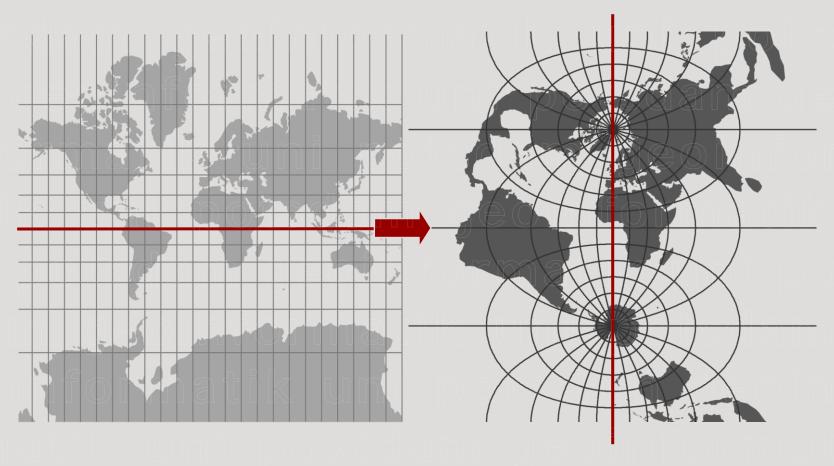
2.6 Meridianstreifensystem Übersicht

Begriff Meridional zone system

 Koordinierte Anordnung mehrerer benachbarter Meridianstreifen, bezogen auf Ursprungsmeridian

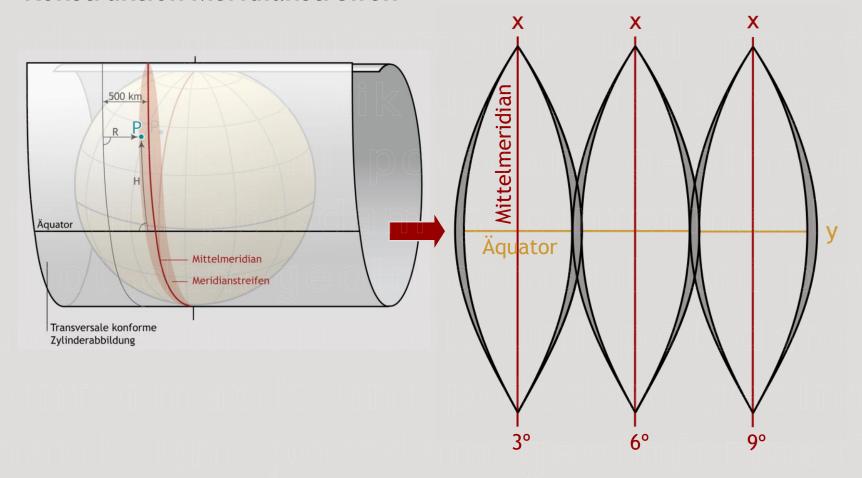
Konstruktion

- Erzeugung fortlaufender Meridianstreifen durch Rotation des Abbildungszylinders um Erdachse von W nach E um 3° bzw. 6°
- Übergang zwischen 2 benachbarten Meridianstreifen durch beidseitige Überlappung von 0,5°


Merkmale

- Verzerrungsarme konforme regionale Abbildung von Erdräumen (Territorien) in großen, mittleren Maßstäben (> 1:300.000)
- Globale Abdeckung mit 120 (3°) bzw. 60 (6°) Meridianstreifen
- Koordinatenbestimmung durch globale Nomenklatur

2.6 Meridianstreifensystem Konstruktion


Basis: transversale Mercator-Abbildung

2.6 Meridianstreifensystem Konstruktion

Konstruktion Meridianstreifen

2.6 Meridianstreifensystem Gauß-Krüger-System

Begriff GKS Gauss-Krueger grid system

- Abbildung Bessel-Ellipsoid in Meridianstreifen 3° Breite (je 1,5° rechts/links vom Mittelmeridian) aus transversaler Zylinderprojektion = Gauß-Abbildung
- Mittelmeridian längentreu abgebildet
- Meridianstreifenbreite: Äquator ca. 333 km, 210 km bei 51°N
- Koordinaten der Kartenebene: Gauß-Krüger-Koordinaten (GKK)

Nomenklatur

- Global 120 Meridianstreifen: fortlaufende Kennziffern von W nach E ab Nullmeridian Greenwich
- Kennziffer: Division Mittelmeridian (MM) durch Streifenbreite, z.B. 9°:3 (Streifenbreite) = 3. System ö.L.
- D: Meridianstreifen 3 (MM 9° ö.L.), 4 (MM 12°), 5 (MM 1°)

2.6 Meridianstreifensystem UTM-System

Begriff Universal Transverse Mercator grid system

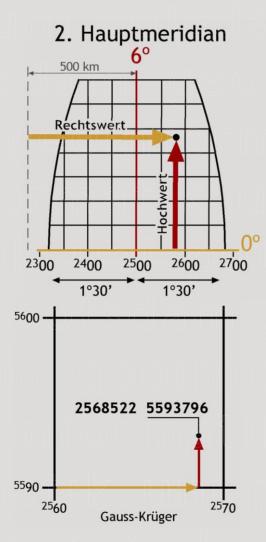
- Abbildung Internationales Ellipsoid in Meridianstreifen 6° Breite (je 3° rechts/links MM) aus transversaler Mercator-Schnittzylinderprojektion = Universale Transversale Mercatorprojektion
- Mittelmeridian gestaucht um Faktor 0,9996; Schnittparallele 180 km westl./östl. vom MM längentreu abgebildet
- Breite der Meridianstreifen: Äquator ca. 666 km, 420 km bei 51°N
- Koordinaten der Kartenebene: UTM-Koordinaten

Nomenklatur

Global 60 Meridianstreifen (=Zonen): fortlaufende Kennziffern 1-60 von W nach E ab 177°W (~Datumsgrenze), untergliedert in Bänder von 8° Breite, beginnend bei 80°S bis 84°N; Bezeichnung mit C-X fortlaufend ohne I,O

2.6 Meridianstreifensystem Vergleich GKS-UTM

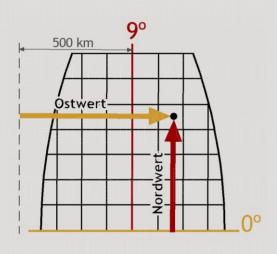
Gauß-Krüger-System

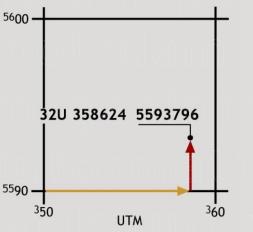

- Geringe Ausdehnung Meridianstreifen: geringe Verzerrungen, insbesondere bei grafischer Abbildung zu vernachlässigen
- Häufiger Wechsel der Meridianstreifensysteme bei größeren Erdräumen > Systemübergang, Gittersprung
- Regionale Begrenzung > Vergleichbarkeit geodätischer Abbildungen > Koordinatentransformationen

UTM

- Globale Anwendung, internationale Akzeptanz > Europäisches Bezugssystem > Umstellung der TK/DLM von GK auf UTM
- Etwas größere Verzerrungen als bei Gauß-Krüger, bei grafischer Abbildung i.d.R. ohne Bedeutung

2.6 Meridianstreifensystem Punktbestimmung GKS


X-Wert: Hochwert


- Abstand Punkt P vom Äquator, gemessen parallel zu Mittelmeridian > metrische Angabe
- Nordhalbkugel: stets positive
- Beispiel: H 5512673=5512,673 km nördlich Äquator

Y-Wert: Rechtswert

- Abstand Punkt P vom Mittelmeridian, gemessen parallel zu Äquator
- Vermeidung negativer Ordinatenwerte durch Verschiebung des Koordinatenursprungs (MM) um 500 km westwärts
- Beispiel: R 4541238 = 4: 4. System (MM 12° E); 5: Zuschlag (östl. MM) = 41,238 km östl. 12° E

2.6 Meridianstreifensystem Punktbestimmung UTM

X-Wert: Nordwert

- Abstand Punkt P vom Äquator, gemessen parallel zu MM > metrische Angabe
- Vermeidung negativer Abszissenwerte auf Südhalbkugel durch Verschiebung des Koordinatenursprungs auf Südpol (Zuschlag 10.000 km)
- z.B. H 559353=5593,53 km nördl. Äquator

Y-Wert: Ostwert

- Abstand Punkt P vom MM, parallel zu Äquator
- Vermeidung negativer Ordinatenwerte durch Verschiebung Koordinatenursprung (MM) um 500 km
- Beispiel: 32U 355584 = 32: Zone (MM 9° E);
 U: Band; 3: MM, 5: Zuschlag (östl. MM), Lage: 55,84 km östl. MM

Fragen? Kritik? Anregungen?

Kontakt: gislehre@uni-potsdam.de

Folien und Skripte zur Lehrveranstaltung: http://www.geographie.uni-potsdam.de

Autor: Hartmut Asche | IfG 2012

© asche·ifg·uni·potsdam 2012