Your wingman could help land you a job: How beauty composition of applicants affects the call-back probability

Attakrit Leckcivilize and Alexander Straub
Leibniz Universität Hannover
straub@aoek.uni-hannover.de

Motivation

‘That’s not a knife. That’s a knife.’ – Crocodile Dundee

- We aim to combine literature on beauty premium with literature on decoy effect
- Combining the randomised CV (Correspondence testing) approach with a lab experiment
- Exploiting the German practice to include a photo in the CV
- Main result: The probability to receive a call-back is higher when a person competes with less attractive candidates of the same gender

Literature on appearance and decoy effect

- The Economics of Discrimination [Becker, 1957]
- Taste discrimination classified into employer, employee and customer
- or Statistical discrimination
- Beauty premium [Hamermesh and Biddle, 1994] (see Hamermesh, 2010 for an extensive review)
- Transmission mechanisms of beauty premium (Lab: Mobius and Rosenblat, 2006)
- Correspondence testing
 - Obesity [Rooth, 2010]
 - Beauty [Kraft, 2012]

Additionally, the Independence of Irrelevant Alternatives assumption might be violated because:

- People tend to make decisions based on comparisons
- “[We] not only tend to compare things with one another but also tend to focus on comparing things that are easily comparable - and avoid comparing things that cannot be compared easily” [Ariely, 2008]
- Ariely(2008) also applies this concept to appearance and calls the less appealing person “wingman”

The Experiment

Experiment is conducted in a computer lab with z-Tree [Fischbacher, 2007].

- A pool of 29 photos
- Recruiting 120 university students in Hanover
- Asked to act as HR-staff and select applicants for an interview
- Selecting 2 from 4 candidates for the interview in each position
- 8 positions (10 in the last five sessions) classified into
 - High skilled
 - Low skilled
 - With customers contact
 - No customers contact
- CVs are similar in every other aspect except for their photos and names (randomised)

- Part 1 (4 jobs, random draw of 16 photos for 16 CVs with random characteristics): For each job the decision makers see a brief job description Followed by 4 candidates (photo & characteristics) After the decision is made it cannot be reversed and the DMs move to the next job Break (another task for ≈ 15 minutes)
- Part 2 (4-6 new jobs): new random draw of 16 photos, new random characteristics in a CV

Methodology

- **Linear Probability Model** to assess if beauty or ethnicity affect the chance of being selected for the interview:

\[
y_j = \beta_0 + X_j\beta + Z_j\gamma + B_j\delta + BC_j\theta + \text{time}_ij + D_j + \epsilon
\]

- \(y_j\) be dummies if CV j is being chosen by participant j or not
- \(X_j\) are vectors of the CV’s characteristics
- \(Z_j\) are vectors of the participant’s characteristics
- \(B_j\) is a vector for our main explanatory variables (based on the photo \(k\) it appeared with each CV); female dummy, beauty rating score and dummies for ethnicity and headscarf
- \(BC_j\) vectors of interaction terms and beauty composition of the pool of applicants competing for the same job
- \(\text{time}_ij\) relative time each participant j used to look at the photo page of CV i
- \(D_j\) are dummies for the order of CV j in each job-position
- \(\epsilon\) are the error terms
- \(\theta\) Clustering the standard errors by photo \(k\) and participant \(j\)

Main Results. The probability to be selected

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Type of Occupation</th>
<th>Decision-Maker</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauty-rating (double std)</td>
<td>0.0615***</td>
<td>0.0590***</td>
<td>0.0632***</td>
<td>0.0398*</td>
<td>0.0782***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0146)</td>
<td>(0.0177)</td>
<td>(0.0235)</td>
<td>(0.0226)</td>
<td>(0.0175)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beauty-rating</td>
<td>-0.0385*</td>
<td>-0.0391</td>
<td>-0.0355</td>
<td>-0.0239</td>
<td>-0.0519**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0194)</td>
<td>(0.0276)</td>
<td>(0.0245)</td>
<td>(0.0242)</td>
<td>(0.0245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>samegender</td>
<td>0.0151</td>
<td>0.0133</td>
<td>0.0160</td>
<td>-0.0091</td>
<td>0.0342</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0183)</td>
<td>(0.0258)</td>
<td>(0.0206)</td>
<td>(0.0251)</td>
<td>(0.0240)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>-0.0499***</td>
<td>-0.0777***</td>
<td>-0.0226</td>
<td>-0.0487</td>
<td>-0.0455*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0187)</td>
<td>(0.0398)</td>
<td>(0.0203)</td>
<td>(0.0436)</td>
<td>(0.0245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,384</td>
<td>2,188</td>
<td>2,196</td>
<td>2,176</td>
<td>2,208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>0.0900</td>
<td>0.1039</td>
<td>0.0995</td>
<td>0.0970</td>
<td>0.1209</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robustness

- The effect is more pronounced in high skilled and contact jobs
- It is robust to different specifications of beauty and Wingman beauty
- Male Decision Makers seem to largely drive the results, Wingman beauty is not significant for female recruiters.
- There seems to be no difference between the first choice and the second choice
- The results of Conditional Logit Model are qualitatively similar

Data

- From the experiment
 - Selected candidates for each position
 - Characteristics of the participants e.g. age, gender, parental education, Big Five
- **Beauty variable**
 - Rating by 40 individuals on 1-7 Likert scale
 - Constructing a composite standardized score for beauty of each photo
 - First, standardize all photos within each rater
 - Then take average for each photo across raters
- **Wingman beauty** is measured by an average beauty score of all other applicants with the same gender as applicant in the same job opening

Conclusion & Next Steps

- In most jobs, the prettier/smarter you are, the more likely you will be chosen for the interview
- Besides absolute beauty rating, also the relative beauty rating within the same gender matters.
- The effect adds up to the beauty rating and the gender coefficient
- Especially relevant for jobs, where male and female applicants are unevenly distributed
- Caution! External validity (outside of the university and the lab)
- **Future works**
 - More robustness checks?
 - How to exclude random clicking behaviour?