

www.dynatrait.de

Inducible defense destabilizes predator-prey dynamics

Ellen van Velzen¹, Tamara Thieser¹, Thomas Berendonk², Markus Weitere³, Ursula Gaedke¹

¹Ecology and Ecosystem Modelling, University of Potsdam; ²Faculty for Environmental Sciences, TU Dresden; ³Department of River Ecology, UFZ Magdeburg

Introduction

Inducible defenses are ubiquitous in many prey species. Defended phenotypes are induced only if the benefits outweigh the costs.

Theoretical studies have universally shown that this **stabilizes** predatorprey dynamics¹⁻³.

total prey

1.0

-1.0

pr

elatio

Does incompatible defense stabilize dynamics in a two-predator system?

Numerical simulations of a mathematical predator-prey model:

» two predators

» two prey phenotypes » incompatible inducible defense

However

In incompatible defense, induction of defense against some predators increases vulnerability to others⁴.

How this affects stability of predatorprey dynamics is unexplored.

 χ_{21}

» switching between phenotypes depends on predation risk

 \rightarrow what is the effect of increased switching rates?

Target parameters:

 $\chi_{\rm max}$: maximum switching rate θ : sensitivity to predation risk φ

Model equations

 $\frac{dP_i}{dt} = r\left(1 - \frac{P_1 + P_2}{K}\right)P_i - \frac{aC_iP_i}{1 + haP_i} - \chi_{ij}P_i + \chi_{ji}P_j$

maximum switching rate $(\log(\chi_{max}))$

Conclusions

- » pattern of stability is reversed in a two-predator system: instead of stabilizing, inducible defenses destabilize dynamics
- » this pattern is entirely driven by switching-induced synchronization, and independent of mechanisms regulating switching
- » destabilization is a result of **incompatible defense**, rather than the presence of two predators in itself

Why does plasticity synchronize?

References

4 Weitere, M. et al. Environ. Micorbiol. 7 (2005) Vos, M. et al., *Oikos* **105** (2004) Cottingham, K. L. et al. *Ecol. Lett.* **4** (2001) 2 Yamamichi, M. et al. Am. Nat. 178 (2011) Tilman, D. et al. *Science* **277** (1997) Cortez, M. *Ecol. Lett.* **14** (2011)