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Long-term cyclic persistence in an 
experimental predator–prey system

Bernd Blasius1,2*, Lars Rudolf3, Guntram Weithoff4,5, Ursula Gaedke4,5 & Gregor F. Fussmann6

Predator–prey cycles rank among the most fundamental concepts in ecology, are 
predicted by the simplest ecological models and enable, theoretically, the indefinite 
persistence of predator and prey1–4. However, it remains an open question for how 
long cyclic dynamics can be self-sustained in real communities. Field observations 
have been restricted to a few cycle periods5–8 and experimental studies indicate that 
oscillations may be short-lived without external stabilizing factors9–19. Here we 
performed microcosm experiments with a planktonic predator–prey system and 
repeatedly observed oscillatory time series of unprecedented length that persisted 
for up to around 50 cycles or approximately 300 predator generations. The dominant 
type of dynamics was characterized by regular, coherent oscillations with a nearly 
constant predator–prey phase difference. Despite constant experimental conditions, 
we also observed shorter episodes of irregular, non-coherent oscillations without any 
significant phase relationship. However, the predator–prey system showed a strong 
tendency to return to the dominant dynamical regime with a defined phase 
relationship. A mathematical model suggests that stochasticity is probably 
responsible for the reversible shift from coherent to non-coherent oscillations, a 
notion that was supported by experiments with external forcing by pulsed nutrient 
supply. Our findings empirically demonstrate the potential for infinite persistence of 
predator and prey populations in a cyclic dynamic regime that shows resilience in the 
presence of stochastic events.

Cyclic dynamics are one of the most notable phenomena in population 
biology and are known to occur in a large range of communities both in 
the wild5–8,13,14 and the laboratory9–12,15–18. A number of mechanisms that 
cause populations to oscillate have previously been identified3,4,20; the 
most highly investigated, however, are the cyclic dynamics that arise from 
trophic interactions between populations of predator and prey organ-
isms. The nearly century-old fascination with this type of dynamics is 
rooted in the predictions of simple mathematical models, which suggest 
that the predator and prey may coexist on recurring cyclic trajectories 
over indefinitely long periods of time1,2. Empirical data that support 
the sustained nature of predator–prey cycles in the field are difficult to 
come by because tractable populations typically have cycle periods of 
three to ten years4,5,13. An alternative data source are laboratory studies 
with fast-reproducing organisms, with which long-running experiments 
can be realized under strictly controlled conditions9,10,12,16,21. In a seminal 
experimental study, population numbers of weevils and their larval 
parasites were recorded for a time span of about 20 cycles but oscilla-
tions could not be sustained for the whole duration of the experiment10. 
This observation is paradigmatic for many studies, which showed that 
cycles in closed laboratory predator–prey systems tend to be short-lived, 
with populations either becoming extinct or reaching a stationary state.

These findings suggest that sustained, intrinsically generated preda-
tor–prey cycles might be a construct of ecological theory and that 

predator–prey systems require external drivers such as spatial struc-
ture, immigration or environmental perturbations to exhibit persistent 
cycles9,11,12,17,22,23. To explore the potential for long-term persistence of 
predator–prey cycles, we cultured freshwater organisms—planktonic 
rotifers together with their prey, unicellular green algae—in several 
independent chemostat trials under constant environmental condi-
tions (Methods, experiments C1–C7). One of our experimental systems 
(Fig. 1a and Extended Data Fig. 1; C1 in Extended Data Table 1) persisted 
without any external stimuli in a homogeneous environment for over 
a year and displayed more than 50 cycles, which is equivalent to about 
300 predator generations and at least as many prey generations. This 
result of the long-term persistence of the predator and prey in a cyclic 
dynamic regime was confirmed in four additional, replicated chemostat 
experiments with the same species (C2–C5 in Extended Data Table 1, 
Extended Data Fig. 2), and in two additional experiments (C6 and C7) 
with a different algal prey species (Extended Data Fig. 3). We applied 
power analysis and phase analysis (in particular, bivariate wavelet 
analysis21,24–26) (Methods) to quantify the cyclic succession and the 
distribution of phase differences in our measured time series. Wavelet 
analysis revealed statistically significant associations between the 
dynamics of predator and prey densities in our experiments and power 
analysis determined a mean period length of 6.7 days (C1–C5) (Fig. 1d 
and Extended Data Fig. 1d, f).
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Transitions between different oscillation regimes
Although the experiments were not perturbed by external influences, 
we identified sharp transitions between two different dynamic regimes. 
For most of the time, we observed oscillations with a significantly coher-
ent, nearly constant phase relationship (coherent oscillation regimes) 
(Methods), in which the predator densities followed the prey densities 
with a phase lag of about θ = 0.5π (equivalent to 90°), consistent with 
classical predator–prey theory. These periods with coherent oscilla-
tions were intersected by non-coherent oscillation regimes in which the 
well-defined phase relationship between the measured signals was lost, 
but re-initiated shortly after (Fig. 1c, e). For example, the time interval 
between days 100 and 131 in C1 (Fig. 2a, b) and between days 37 and 66 
in C7 (Fig. 2c, d) showed sustained cycles with regular period lengths 
and a constant phase lag between prey and predator densities, which is 
also reflected in the anticlockwise motion in the prey–predator phase 
plane (Fig. 1b). This regime of coherent oscillations gave way to a non-
coherent, more irregular time series (days 132–161 in C1 and days 67–97 
in C7), in which the phase relationship between prey and predator was 
lost, although both populations continued to oscillate (Fig. 2). Finally, 
and without external intervention, the system displayed resilience and 
the characteristic predator–prey phase difference was re-established.

Combining the analyses of all five experiments with the same preda-
tor and prey species (C1–C5), we found that coherent oscillations were 
the dominant type of dynamics and comprised 66% of the total experi-
mental time with a typical regime duration of 58 days (Extended Data 
Fig. 4 and Methods). In the remaining 34% of the experiments, predator 
and prey continued to oscillate, but without a well-defined phase rela-
tionship (typical duration of non-coherent regimes, 23 days) (Methods). 
Phase analysis of surrogate data revealed that spurious coherent oscil-
lation regimes can arise also by chance, but with a significantly smaller 
duration (typical duration, 15 days) (Extended Data Fig. 4).

We performed additional analyses and experiments that were 
designed to provide mechanistic insights into the origin of the observed 
coherent oscillations and the intermittent breaks in the phase signature. 
First, we extended the specificity of the phase analysis by including 
predator life-history stages. Second, we formulated and analysed a 
mathematical model that accounts for the predator’s stage structure. 
And third, we performed three additional chemostat experiments: two 
experiments with periodic changes in the nutrient concentration in the 
supply medium, to explore how the phase relations were influenced 
by external forcing (C8 and C9); and one experiment at dilution rates 
that, according to bifurcation theory2,16 and our mathematical model, 
should cause the predator–prey system to cross over from oscillatory 
to equilibrium dynamics (C10).

Phase analysis of life-history stages
The predator in our system, the rotifer Brachionus calyciflorus27, is a 
small freshwater metazoan that reproduces asexually in the chemo-
stats (only females occur) and undergoes a stage-structured life cycle. 
Reproducing females carry 1–5 eggs, from which juveniles hatch and 
grow to adulthood without any larval stages; adults die shortly after 
the last egg has hatched. In addition to analysing algal and rotifer densi-
ties, we applied phase analysis to all discernible predator life-history 
stages: the number of eggs, the egg ratio (that is, the average number 
of eggs per female rotifer) and the number of dead animals. We found 
that these life-history parameters also exhibited persistent cycles that 
were coherently locked in phase with prey abundance (Fig. 3a). These 
phase differences were notably constant over all different experimental 
replicates (Extended Data Figs. 1–3). Averaging across all experiments 
(C1–C5), we obtained the following phase signature: the predator den-
sity followed the prey density with a phase difference of 93° ± 21°, the 
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Fig. 1 | Phase analysis of a year-long, oscillatory predator–prey time series 
(experiment C1). a, Time series of the predator, B. calyciflorus (red) and its 
prey, Monoraphidium minutum (green); abundance normalized to a range of 0 
to 1. b, Phase portrait of the bandpass-filtered predator–prey time series 
between days 90 and 135; the arrow indicates the direction of oscillation.  
c, Wavelet coherence (WCO) between predator and prey. Values range from 0 
(blue) to 1 (red). The cone of influence is indicated by black thin curved lines. 
The black contour lines enclose significant areas (95% significance level, 
WCO > 0.83). The thick black line segments show the instantaneous oscillation 

period ∼s t( ) of highest WCO within these areas (coherent oscillation regimes).  
d, Global wavelet power spectrum P(s) for the predator (red) and the prey 
(green). e, Phase difference θ(t) between predator and prey; well-defined 
relations between both signals are marked in red. f, Circular distribution of the 
mutual phase difference to prey (indicated in green) for the predator (red), the 
predator egg ratio (blue), the number of eggs (black) and the dead animals 
(yellow). c, d, The two horizontal lines indicate the prefixed period band of 
[s1, s2]. a, c, e, The solid vertical lines indicate selected time spans of regular and 
irregular oscillations, which are enlarged in Fig. 2.
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abundance of eggs was delayed to the abundance of prey with a phase 
difference of 27° ± 19°, whereas the egg ratio preceded the prey signal 
(−27° ± 16°); dead animals had a phase difference of −160° ± 68°. These 
mutual phase differences can be compactly visualized in a single cir-
cular histogram21 (Figs. 1f and 3b). This ‘phase signature’ enables the 
straightforward interpretation of the temporal succession of the com-
munity during the cycles and thus provides a fingerprint for the cyclic 
community structure.

Mathematical model
We compared our experimental results with numerical simulations of 
a stage-structured predator–prey model that included the operative 
parameters of the chemostat (inflow nutrient concentration and dilu-
tion rate) and essential organismal variables (algae as well as rotifer 
eggs, juveniles, adults and dead animals) (Extended Data Fig. 5 and 
Methods). Numerical simulations revealed sustained oscillations with 
a period length of 6.8 days (experimental mean, 6.7 days). When we 
introduced stochasticity into the model, we observed similar breaks 
in the oscillation regimes as in experiments C1–C7, with random tran-
sitions between coherent and non-coherent oscillating regimes that 
were triggered by stochasticity alone. We were still able to recover a 
phase signature that aligned well with the experimental observations 
(predator, 90° ± 11°; eggs, 11° ± 13°; egg ratio, −21° ± 2°; dead rotifers, 
−150° ± 60°) (Fig. 3c, d and Extended Data Fig. 5).

Notably, both in the data and the model, the predator egg ratio pre-
ceded the phase of prey availability, which is not immediately obvious as 

egg production is directly connected to food availability. This phase lag 
between prey density and egg ratio disappeared in model simulations 
when the juvenile maturation rate was set to zero (Extended Data Fig. 6), 
revealing the effect of juveniles on the phase difference signature. 
Juvenile predators (which, as immature individuals, carry no eggs by 
definition) have a crucial influence as they lead to an early breakdown 
of the egg-ratio maximum, caused by the multitude of non-egg-bearing 
juveniles during the prey maximum, finally giving rise to a negative 
phase difference between egg ratio and prey (Fig. 3a, c and Extended 
Data Fig. 6a). Thus, as physiological information may be encoded in the 
phase difference distributions, extending phase analysis to life-history 
stages enabled deeper insights into the functioning of our system.

Additional experiments
In experiments C8 and C9, we externally forced the dynamics 
through pulsed supply of nutrients (Methods). We chose a forcing 
period (8.0 days) that was clearly distinguishable from the period 
of the unforced experiments (6.7 days) but sufficiently close to 
enable, in theory, predator and prey (that is, living populations with 
demographic constraints) to lock to the external signal. Indeed, we 
observed predator–prey oscillations that were locked to the external 
signal, both in chemostat experiments and model results (Fig. 3e, g 
and Extended Data Fig. 7). As expected, oscillations were persistently 
coherent, without the non-coherent breaks in the time series from 
the unforced experiments (C1–C7), although intermittent period 
doubling occurred in experiment C8 (Fig. 3e and Extended Data 
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Fig. 2 | Resilience of phase relationship in experiments with two different 
prey species. a, Enlarged view of the densities of the predator (animals per 
millilitre, red) and prey (M. minutum, 106 cells per millilitre, green) in 
experiment C1 for a time window of 90 days. b, Enlarged view of their WCO 
during the same time interval (colours and lines as in Fig. 1c). a, b, Solid vertical 
lines border a time interval without significant wavelet coherence between 
predator and prey, separating three dynamic regimes: days 100–131, distinct 

predator–prey cycles with a constant phase shift of θ = π/2; days 132–161, 
regime of non-coherent oscillations (grey background); days 162–190, 
spontaneous re-initiation of the regular phase-locked oscillation. c, d, As in  
a, b, but showing a time window of 90 days for experiment C7 with a different 
algal prey, Chlorella vulgaris. Non-coherent oscillations arise between days 67 
and 97.
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Fig. 7c, d). Notably, externally forced and unforced experiments 
produced essentially the same phase signature (Fig. 3b, f), which 
was repeated also in model simulations (Fig. 3d, h). Thus, even in a 
dynamic regime that was strongly influenced by and locked to an 
external factor, phase analysis of different life-history stages was 
able to reveal the underlying predator–prey structure and to disen-
tangle between intrinsic and external origins of cycles. This demon-
strates that phase signature analysis can be a powerful diagnostic 
tool for the analysis of field data, for which it is often not known 
whether oscillations are the result of external factors or originate 
from species interactions.

Finally, we confirmed that the coherent oscillations observed in 
our experimental system indeed represent stable limit cycles, which 
arise from the destabilization of a stable equilibrium point. Oscilla-
tions in experiment C10 persisted only in a certain parameter range; 
if the dilution rate was increased, the oscillations died out (Extended 
Data Fig. 8). This result agrees with model predictions and previous 
experiments showing that increased dilution rates drive the system 
over a Hopf bifurcation16 (Extended Data Fig. 9).

Conclusions
Persistent and coherent predator–prey oscillations are a potential 
dynamic regime enabling the prolonged coexistence of predator and 
prey populations, as predicted by fundamental theory. In live systems, 
stochasticity and other external perturbations can obscure or prevent 
predator–prey oscillations, and our simulations suggest that stochas-
ticity is probably responsible for the reversible shifts from coherent 

to more-erratic oscillations that we observed in our highly controlled 
experiments. Four separate lines of evidence support a causal rela-
tionship between sustained cycles and predator–prey interactions. 
(1) Cyclic patterns dominated throughout the entire experiment and 
the system displayed resilience—that is, it returned to a well-defined 
phase relationship after intermittent non-coherent periods. (2) Planned 
experimental interventions enabled us to suppress cycles (C10) and to 
quench intermittent non-coherent oscillations (C8 and C9). (3) Data on 
the stage structure of the predator population enabled us to explicitly 
link characteristics of the predator–prey cycles to recurring changes in 
the demographic structure of the predator population. Therefore, our 
case for sustained predator–prey cycles is much stronger than it is pos-
sible for unstructured microbial populations, in which population den-
sities are the only variables. (4) Finally, the experimental predator–prey 
cycles manifested as a regular phase-locked succession, a pattern that 
we were able to capture as a community phase signature. Our approach 
firmly establishes this phase signature—which, in a similar way, can 
be constructed for any oscillating system—as a robust measure for 
identifying species interactions, cyclic or seasonal species succession, 
and the regulatory dependencies that underlie community dynamics.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-019-1857-0.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Experiments
We ran chemostat experiments with parthenogenetic rotifers (B. 
calyciflorus sensu strictu27, a small metazoan freshwater zooplankton 
species) as predators and unicellular algae (M. minutum or C. vulgaris) 
as prey under constant temperature (23 °C) and permanent illumina-
tion. Experiments were conducted (mostly consecutively) in the same 
well-maintained climate chamber. We carefully searched for possible 
sources of external perturbations, but all measured parameters (for 
example, temperature and irradiance) remained constant throughout 
the experimental runs. For inoculation, we used stock cultures origi-
nally raised from a single individual and added B. calyciflorus 10 days 
after the algae had reached a biomass that enabled rotifer growth. The 
chemostats (experimental volume, 0.8 l) had a constant inflow of sterile 
medium with a rate of 0.55 per day. We used a modified WC medium28 
with a reduced nitrogen concentration of 80 μmol l−1 nitrate as the 
limiting resource. In the experiments with external forcing, we periodi-
cally changed the concentration in the external medium to between 
0 and 160 μmol l−1 nitrate with a period length of 8 days. We took daily 
subsamples of 8 ml to determine the abundance of both predator and 
prey. The algal abundance was analysed with an electronic particle 
counter (CASY, Schärfe). The rotifers were counted using an inverted 
microscope at 100-fold magnification. For the rotifers, we recorded 
the total number of rotifers and of asexually produced subitaneous 
eggs and the dead animals. No males or sexually reproducing females 
were observed throughout the experiment. The egg ratio (that is, the 
total number of eggs divided by the total number of animals in the 
population) is a measure of the reproductive status of the population.

Bivariate wavelet analysis
Because the measured signals showed large variability, we applied 
phase analysis6, which relies on the fact that the regulatory depend-
ence between state variables is often encoded in their phase relation-
ship, whereas the amplitudes may be highly erratic and uncorrelated6. 
The wavelet method24 is a particularly powerful tool for extracting 
optimally resolved phase information from ecological time series25,26 
and enables us to quantify transient associations between two non-
stationary signals24,29–32.

Continuous wavelet transformation
The continuous wavelet transformation24 (CWT) of a signal x(t) is 
calculated as the convolution of the signal with a localized complex-
valued wavelet function ψ(τ) centred at time t and dilated by the scale 
parameter s
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and phase ϕx(s, t).

Throughout our analysis, we used the Morlet wavelet ψ τ( )=
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2

 with ω0 = 6 so that the scale parameter s can simply be 
interpreted as the period length of the oscillation24. We always took s 
from 100 uniform steps per octave on a logarithmic scale. Edge effects 
were minimized by applying zero padding to the time series to the next 

highest integer power of two. We always indicate the cone of influence, 
which marks the zone in the CWT that is affected by edge effects24.

Wavelet power spectrum
Although the wavelet transform is complex, the real-valued local wavelet 
power spectrum (WPS) of a signal x(t) at time t and scale s can be defined as

W s t W s t W s t( , ) = ( , ) ( , )xx x x
⁎

in which ‘⟨…⟩’ denotes a smoothing operator in both scale and time (see 
‘Parametrization and smoothing’). The global WPS Px(s) is defined as 
the time average of the local WPS and measures the averaged variance 
of the signal x(t) at scale s. We used the maximum of Px(s) to estimate 
the mean oscillation period of the signal.

Wavelet cross-spectrum
To quantify the statistical relationship between two non-stationary 
signals x(t) and y(t), the wavelet cross-spectrum (WCS) is defined as 
the smoothed product of the corresponding wavelet transforms24,29–31

W s t W s t W s t( , ) = ( , ) ( , )x y x y,
⁎

The WCS is complex-valued. After decomposition into amplitude 
and phase W s t A s t( , ) = ( , ) ex y x y

i ϕ s t
, ,

Δ ( , )x y, , the phase describes the de-lay 
ϕ s t ϕ s t ϕ s tΔ ( , ) = ( , ) − ( , )x y x y,

 between the two signals at time t and scale 
s, whereas the amplitude Ax,y(s, t) expresses the covarying power of the 
two processes.

Wavelet coherence
The WCS is not specific, because it exhibits high values when either a 
true covariance between the two signals exists or when one of the spec-
tra exhibits a high value. To solve this problem, a normalized measure 
is given by the WCO29–31, which is defined as the amplitude of the WCS 
divided by the square roots of the two local WPS

s t
W s t

W s t W s t
WCO ( , ) =

( , )

( , ) ( , )x y
x y

x x y y
,

,

,
1/2

,
1/2

The WCO estimates the relationship between the two signals at time 
t and scale s, normalized into the range 0 ≤ WCO ≤ 1. As the WCO is real-
valued, it cannot be used to extract the delay between two signals, in 
contrast to the WCS.

Dominant phase difference
The phase difference Δϕx,y(s, t) between two signals x(t) and y(t), as 
obtained from the WCS, depends on the scale parameter s. Assume 
now that the two signals oscillate with a common, but possibly time-
varying, period length. To obtain their dominant phase difference, we 
define for every time instance t the dominant scale ∼s t( ) as the scale 
parameter that has the maximal WCO at time t over all scales in a pre-
fixed band [s1, s2]:

∼s t s t( ) = argmax WCO( , )s s s< <1 2

These values ∼s t( ) constitute a line of the strongest co-oscillating 
component of both signals in the timescale plane32. Inserting this line 
in the WCS yields the dominant phase difference θx,y(t) between the 
two signals at every time instance

∼ ∼θ t ϕ s t t ϕ s t t( ) = ( ( ), ) − ( ( ), )x y x y,

Significance testing
To assess the statistical significance of the WCO, we generated n = 1,000 
independent realizations of surrogate data by time-scrambling the 



empirical signals (that is, sampling 1,000 random values with replace-
ment from the measured predator and prey time series). The resulting 
surrogate data retain the frequency histogram of the original data 
but lose all temporal correlations. Using Monte Carlo simulations, we 
found that for our chosen parameterization (see ‘Parametrization and 
smoothing’) two signals are significantly correlated at time t and scale 
s on a 95% critical level if WCO(s, t) = 0.83.

Coherent oscillation regime
We defined a maximal contiguous time interval for which the dominant 
scale ∼s t( ) is within a statistically significant area in the timescale plane—
that is, being inside the cone of influence and having a significant 

∼s t tWCO( ( ), ) > 0.83—as a coherent oscillation regime. The remaining 
time intervals constitute the non-coherent oscillation regimes. Each 
signal on its own may well oscillate in a regular fashion even within a 
non-coherent oscillation regime, but for a pair of signals the wavelet 
analysis guarantees a significantly correlated oscillation—and therefore 
a well-defined phase relationship—only in a coherent oscillation regime.

To characterize the typical duration 
∼
T of coherent oscillations in an 

ensemble of signals, we first measure the length Ti of each coherent 
oscillation regime i = 1 … N that occurs in the ensemble and then cal-
culate the expected oscillation regime duration, 

∼
T , of a randomly cho-

sen time instance taken from a coherent oscillation regime 
∼
T T T= ∑ / ∑i

N
i i

N
i=1

2
=1 . We found that this measure gives a better  

description of the typical time to observe a coherent oscillation inter-
val than the median or the mean T T N= ∑ /i

N
i=1  of the length distribution.

Circular phase distribution
To characterize the phase relationship between a pair of covarying 
signals, we calculated the dominant phase differences θk for all time 
instances within a coherent oscillation regime. We used circular sta-
tistics33 to characterize the resulting distribution of phase differences 
θk. For this we calculated the complex order parameter z, which is 

defined as the average of the complex numbers eiθk

∑z R
N

= e =
1

eiθ

k

N
iθ

=1

k

Here the phase angle θ  of z indicates the circular mean of the phase 
differences, and the amplitude R of z gives the circular standard devi-
ation of the distribution as R−2 ln .

Given the sampling frequency of 1 day−1, the Nyquist frequency is 
0.5 day−1, which for an average period length of 6.7 days roughly cor-
responds to a phase resolution of 27°. Averaging phase differences 
over many cycles enabled us to achieve a much better phase resolution, 
yielding typically rather smooth distributions of phase differences. 
We verified that these smooth phase distributions are no artefacts, 
by comparing phase distributions obtained from our highly resolved 
numerical simulations (see ‘Numerical simulation’) with those obtained 
from time series sampled from these simulations once per day, which 
yielded very similar results.

Phase signature
To characterize the mutual phase relationship of not only two but also an 
ensemble of time series (for example, total densities of predator and prey 
and of measured life history stages), we calculated the distribution of 
phase differences of all time series with respect to one selected reference 
time series. The combined plot of all resulting circular distributions in 
one common polar histogram defines our ‘phase signature’, providing a 
fingerprint for the cyclic succession of the corresponding state variables.

Parametrization and smoothing
Following a previously published study31, we performed smoothing in 
time by convolution with a normalized real Morlet wavelet 

τ s sexp[− /(2 )]/( 2π )2 2 . Smoothing in scale direction was obtained by 
averaging over a constant-length (boxcar) window over 0.6 octaves—the 
scale decorrelation length for the Morlet wavelet—on a logarithmic 
scale31. Similarly, we took the upper and lower scale band borders s1 
and s2 as ± 0.6 octaves from the peak in the global (that is, time-aver-
aged) WCS. For a better visualization, circular histograms (bin width of 
π/100) were smoothed by a moving average (window width 0.15π, the 
above calculated phase resolution).

We verified that the resulting phase distributions remain largely 
unchanged for different parameterizations of the wavelet analysis, 
in particular for different wavelet functions, different values of the 
wavelet parameter ω0, different smoothing parameters and scale band 
borders s1 and s2.

Numerical simulation
We developed a mathematical model to describe a stage-structured 
predator–prey community in a chemostat34,35, which closely follows 
our experimental setup. The model includes as state variables the 
concentration of nitrogen N, phytoplankton P, and three life stages 
of the predator, namely eggs E, juveniles J and adults A. Additionally 
the model keeps track of the dead animals D in the chemostat. We 
assume a constant time delay θ for egg development, a constant 
time delay τ for juvenile maturation, and the same constant mor-
tality rate for juveniles and adults (deliberately keeping the model 
simple, as intake-related regulations34,35 did not improve the agree-
ment between simulation results and data). We assume that the phy-
toplankton population is unstructured. All variables are measured 
in μmol N l−1.

The model is written as the following system of time-delayed ordinary 
differential equations:

̇

̇

̇

̇

̇

̇

N δN F N P δN

P F N P F P B ε δP

E R R δE

J R R m δ J

A βR m δ A

D m J A δD

= − ( ) −

= ( ) − ( ) / −

= − −

= − − ( + )

= − ( + )

= ( + ) −

in P

P B

E J

J A

A

Here, β is the adult/juvenile mass ratio (the juvenile/egg mass ratio 
is assumed to be 1) and the recruitment rates are

R t F P t A t

R t R t θ δθ

R t R t τ δτ

( ) = ( ( )) ( )

( ) = ( − ) exp(− )

( ) = ( − ) exp(− )

E B

J E

A J

Algal nutrient uptake FP(N) is modelled as a Monod function and 
predator recruitment as a type-3 functional response with Hill coef-
ficient κ

F N r
N

K N

F P r
P

K P

( ) =
+

( ) =
+

κ

κ κ

P P
P

P B
B

The total predator density is given by B(t) = βJ(t) + A(t) and the egg 
ratio is βE(t)/B(t). As state variables are given in units of nitrogen, juve-
niles and eggs here need to be scaled by the adult/juvenile mass ratio β.

The model is solved numerically by an Euler scheme with a time 
step of h = 0.001 days. We included environmental stochasticity by 
taking the growth rates rP and rB as autocorrelated random num-
bers by multiplying them in every time step i with a factor of 1 + si. 
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Autocorrelation (that is, red noise) is implemented as si + 1 = asi + ξi 
(first-order autoregressive AR(1) process36) with autocorrelation 
parameter a and independent and identically distributed Gaussian 
numbers ξi with mean 0 and variance σ2(1 −a2). For wavelet analysis 
and for representation in figures, the simulated states are sampled 
with a rate of 1 per day, in accordance with the experiments. To cap-
ture measurement error and additional stochastic influences, we 
replaced the sampled rotifer state variables, E(t), J(t), A(t) and D(t), 
by random values drawn from a Poisson distribution with an expecta-
tion value equal to that of the state variable. Finally, algal and rotifer 
state variables were rescaled to individuals per volume using the 
constants νP, and νB, respectively.

Parameter values were taken as follows. Mass ratio adult/juve-
niles, β = 5; dilution rate, δ = 0.55 per day; nitrogen concentration 
in the external medium, Nin = 80 μmol l−1; phytoplankton maximal 
growth rate, rP = 3.3 per day; phytoplankton half-saturation constant: 
kP = 4.3 μmol l−1; rotifer maximal egg-recruitment rate, rB = 2.25 per 
day; rotifer half-saturation constant, kB = 15 μmol l−1; Hill coefficient 
of the functional response, κ = 1.25; predator assimilation efficiency, 
ε = 0.25; rotifer mortality rate, m = 0.15 per day; egg development time, 
θ = 0.6 days; juvenile maturation time, τ = 1.8 days; autocorrelation 
parameter, a = 0.9; noise strength, σ = 0.5; nitrogen content per adult 
female Brachionus, νA = 0.57 × 10−3 μmol N per female; nitrogen content 
per algal cell, νP = 28 × 10−9 μmol N per cell.

Environmental parameters (δ, Nin) were taken according to the 
experimental set-up. Parameters for uptake and growth (rP, kP, rB, kB 
and ε) were taken according to a previous study16. The rotifer mortality 
rate (m) was increased compared with this previous study16, as we did 
not include the loss of the reproducing rotifer cohort into senescent 
animals. The mass ratio of adults to juveniles (β) was taken from the 
literature37. Duration of development stages (θ, τ) was adjusted to be 
within the previously reported range38. We used a type-3 functional 
response39,40. Only the parameter values of population dynamics 
(θ, τ, κ and m) and stochasticity (noise levels and noise colour) were 
adjusted by hand within ecologically reasonable ranges to simultane-
ously optimally fit the comprehensive experimental data. As criteria 
we used the observed range and variability of the state variables, 
existence of oscillatory dynamics with correct period length, phase 
signatures (that is, phase relationships between all state variables, 
including the egg ratio), power and wavelet spectra, and the typical 
duration of coherent oscillatory regimes—both in the unforced and 
forced scenarios.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Experimental data are publicly available on Figshare (https://doi.
org/10.6084/m9.figshare.10045976.v1).

Code availability
Data analysis and the model were implemented in the language Julia 
v.1.141. The source code for the wavelet analysis is publicly available on 
GitHub (https://github.com/berndblasius/WaveletAnalysis).
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Extended Data Fig. 1 | Detailed dynamics and phase relationship in 
experiment C1. a, Time series of the predator, B. calyciflorus (red), and its prey, 
M. minutum (green), (normalized to the range of 0 and 1). b, Phase portrait of 
the bandpass-filtered predator–prey time series between days 90 and 130. The 
arrow indicates the direction of oscillation. c, Local WPS for the prey, ranging 
from 0 (blue) to maximum (red), and the instantaneous oscillation period ∼s t( ) 
(black line) of the highest WCO within the prefixed period length band 
(horizontal black lines). The cone of influence is also indicated (black).  
d, Global WPS P(s) for the prey (green). Horizontal lines as in c. e, f, As in c, d, but 
for the predator. g, WCS between predator and prey, colour-coding and other 
lines as in c. h, Amplitude of the global WCS for the predator and the prey.  

i, WCO between predator and prey, ranging from 0 (blue) to 1 (red). Significant 
areas (WCO > 0.83) are enclosed by thin solid lines; the thick black line 
segments show the instantaneous oscillation period ∼s t( ) in these segments.  
j, Histogram of period lengths within coherent oscillation regions as detected 
in i. k, Phase difference θ(t) to prey for the predator (red), the predator egg ratio 
(blue), the number of eggs (black) and dead animals (yellow). Significant 
relations between respective signals are marked as a solid line. l, Circular 
distribution of the mutual phase difference to prey (indicated in green) for the 
predator (red), the predator egg ratio (blue), the number of eggs (black) and 
dead animals (yellow).
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Extended Data Fig. 2 | Dynamics and phase relationships in three further 
experimental time series in a constant environment. a–d, Analysis of 
experiment C2. a, Predator–prey time series. b, Phase signature. c, WCO. d, 

Global WPS. e–h, As in a–d, for experiment C3. i–l, As in a–d, for experiment C4. 
Details and colours as in Fig. 1.



Extended Data Fig. 3 | Dynamics and phase relationships in measured time series with a different algal species (C. vulgaris). a–d, Analysis of experiment C6. a, 
Predator–prey time series. b, Phase signature. c, WCO. d, Global WPS. e–h, As in a–d, for experiment C7. Details and colours as in Fig. 1.
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Extended Data Fig. 4 | Dynamics and phase relationship in surrogate data 
and length distribution of coherent oscillation regimes. a–f, As in Fig. 1, but 
for surrogate data, obtained by time scrambling—that is, randomly drawing 
360 values with replacement from the predator and prey time series in 
experiment C1—yielding a time series without temporal correlation (white 
noise) but with the same abundance distribution as the experimental data. The 
figure shows a typically outcome. Occasionally, for short bursts the 
randomized predator and prey time series oscillate with a common frequency 
(a), yielding areas of high coherence (c; WCO > 0.83; spurious coherent 
oscillation regimes) with random phase differences (e). Whereas most time 
intervals with coherent predator–prey cycles in the surrogate data have a short 
duration, in this example (by chance) there is one regime (days 187–209) with a 
duration of 23 days. g, h, Box plots of oscillation regime length. Boxes show the 
interquartile range, orange lines indicate the median, whiskers range from the 
lowest to the highest data point within 1.5× the interquartile range and markers 
indicate outliers. g, Length distribution of coherent oscillation regimes for the 

experimental data under free-running conditions (C1–C5) and for a large 
ensemble of surrogate data. This shows that time intervals with coherent 
oscillations are significantly longer in the experiments (n = 20; median, 16 days; 
mean ± s.d., 29 ±28 days) than in the surrogate data (n = 13,719; median, 8 days; 
mean ± s.d., 9 ± 7 days). The two outliers in the left box plot correspond to the 
two long coherent oscillation regimes of 111 days and 85 days in C1, which (even 
though they are outliers in the length distribution) effectively dominate the 
dynamic behaviour in C1. Consequently, we calculate the typical duration 

∼
T  of 

coherent oscillations as the expected regime duration for a randomly chosen 
time instance taken from a coherent oscillation regime (Methods) (

∼
T  = 58 days 

in C1–C5; 
∼
T  = 15 days in the surrogate data). h, As in g, but for durations of non-

coherent oscillation regimes, showing that time intervals of non-coherent 
oscillations are significantly shorter in the experiments (n = 15; median, 17 days; 
mean ± s.d., 16 ± 11 days; typical duration 

∼
T  = 23 days) than in the surrogate data 

(n = 12,719; median, 43 days, mean ± s.d., 60 ± 11 days; typical duration 
∼
T  = 113 days).



Extended Data Fig. 5 | Detailed dynamics and phase relationships in a 
modelled time series. a–l, As in Extended Data Fig. 1, but for a simulated time 
series of the stochastic time-delayed model in a constant environment. The 
simulation time was 300 days. A typical model outcome is shown. In this 

example, we obtained five coherent oscillation regimes (indicated as thick 
lines in i, k). Similar to the experimental systems (C1–C7), these regimes are 
interspersed by short non-coherent oscillation regimes without a significant 
phase relationship.
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Extended Data Fig. 6 | Dynamics and phase relationships in a model without 
juvenile maturation delay. a, Simulated time series of algae (green), rotifers 
(red), eggs (black), egg ratio (blue) and dead animals (yellow) in a model 
without juvenile maturation delay, τ = 0, under constant conditions with all 
stochasticity removed (mean centred, relative units). b, Phase signature 
obtained from stochastic simulations (free-running conditions, τ = 0). c, d, As in 
a, b, but for an externally driven system (external nutrient concentration 
shown in magenta). The figure shows that in a scenario without juvenile 
maturation delay (τ = 0), the phase of the egg ratio coincides with that of the 

algae, both in a free-running and in an externally driven model. This is in 
contrast to the experimental observations (Fig. 3, rows 1 and 3) and simulations 
with non-vanishing juvenile maturation delay (τ = 1.8 days) (Fig. 3 rows 2 and 4, 
Extended Data Fig. 9d, f), in which the egg ratio is significantly preceding the 
algae signal. Thus, the phase signature helps to disentangle life-history 
mechanisms, as—by comparison of observed and simulated phase 
signatures—a delay of juvenile maturation is essential to attain the 
experimentally observed phase relations.



Extended Data Fig. 7 | Dynamics and phase relationships in externally driven 
systems. a–d, Analysis of experiment C8. a, Predator–prey time series. b, Phase 
signature. c, WCO. d, Global WPS. e–h, As in a–d, for experiment C9. i–l, As in  
a–d, for simulation results of an externally driven system. Details and colours 

as in Fig. 1. In a, e, i, the blue dotted line shows the input concentration in the 
external medium in normalized units. In b, f, j, the phase difference distribution 
between the external medium and the prey is shown in magenta.
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Extended Data Fig. 8 | Dynamics and phase relationships in experiments and 
simulations with changed dilution rate and press perturbations. a–d, 
Analysis of experiment C5, which has an increased dilution rate (δ = 0.66 per 
day). a, Predator–prey time series. b, Phase signature. c, WCO. d, Global WPS. 
e–h, As in a–d, for experiment C10, which undergoes press perturbations 
(vertical black lines) at day 84 (dilution rate was increased from δ = 0.55 per day 

to δ = 1.2 per day) and day 123 (dilution rate increased further to δ = 1.35 per 
day). i–l, As in a–d, with simulation results of a system undergoing a press 
perturbation in which the dilution rate was increased to δ = 0.75 per day at day 
100 (vertical black line in i, k). Under conditions of the increased dilution rate, 
the oscillations are suppressed (Extended Data Fig. 9a). Details and colours as 
in Fig. 1.



Extended Data Fig. 9 | Bifurcation diagrams. a, Simulated values of predator 
(red) and prey (green) for different values of the dilution rate. Thick solid lines 
show maximal and minimal values obtained in the unforced model without 
stochasticity. Shaded areas show range of values in the stochastic model. 
Sustained predator–prey oscillations appear for 0.47 < δ < 0.71 per day. For 
large values of the dilution rate, δ > 0.87 per day, the predator goes extinct. b, 
As in a, but for the externally forced system. The model shows oscillations for 
all parameters without predator extinction δ < 0.8 per day, it exhibits a 
bistability regime (small- versus large-amplitude oscillations) for 
0.23 < δ < 0.31 per day and a period-2 oscillation regime for 0.42 < δ < 0.57 per 
day. c, d, Bifurcation diagrams of the unforced model as a function of the 

juvenile maturation delay τ. c, As in a, but for the different bifurcation 
parameter. d, Phase difference to the algae for the predator (red), eggs (black) 
and the egg ratio (blue). The shaded areas indicate the range of phase 
differences (±1 s.d.) from the experiments in a constant environment (C1–C5). 
For large values of τ, the simulated phase signature aligns with the 
experimental data, whereas for small values of τ, the simulated phase 
difference of the egg ratio approaches zero. e, f, As in c, d, but for the externally 
forced model. e, For small delay times, 0.4 < τ < 1 day, the model exhibits a 
chaotic regime. f, Additionally the phase difference between algae and external 
nutrients is shown (magenta). Vertical solid lines show the actually used 
parameter values δ = 0.55 per day and τ = 1.8 days.
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Extended Data Table 1 | Summary of all experiments

Ni ( )

A series of ten chemostat experiments was performed, constituting a total of 1,948 measurement days (corresponding to 5.3 years of measurement) and covering 3 scenarios. (1) Constant 
environmental conditions (C1–C7, 1,428 measurement days). This scenario consisted of 4 trials with the alga M. minutum (C1–C4), 1 trial with M. minutum and an increased dilution rate of δ = 0.66 
per day (C5), and 2 trials with the alga C. vulgaris and a doubled concentration of the external medium Nin = 160 μmol l−1 (C6 and C7). (2) Externally forced conditions (C8 and C9, 323 measure-
ment days). The concentration of the external medium was periodically changed between Nin = 160 μmol l−1 and Nin = 0 μmol l−1 with a period length of 8 days. (3) Press perturbation (C10, 197 
measurement days). The dilution rate was increased from the standard value δ = 0.55 per day in two steps to δ = 1.2 per day at day 84 and δ = 1.33 per day at day 123, suppressing the predator–
prey oscillations.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Measured data were first transfered to Excel-files (Versions 9-14) and subsequently archieved as csv-files.

Data analysis Data analysis and the model were implemented in the language Julia 1.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Experimental data were made publicly available on Figshare – doi.org/10.6084/m9.figshare.10045976.v1. Data analysis and the model were implemented in the 
language Julia 1.1 (ref. 41). The source code for the wavelet analysis was made publicly available on https.//github.com/berndblasius/WaveletAnalysis.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The aim of the study was to generate and analyse experimental long term data. Thus, the experimental design differs from the typical 
(multi-)factorial design. From our time series, the relevant parameters were extracted. We had four replicates for the core long term 
experiments. Treatment factors were nutrient supply (constant vs. pulsed), type of algae (Monoraphidium vs Chlorella) and flow rate 
(shift from standard flow rate to high rates). These were run in duplicate or triplicate, which is common for such long-term 
experimental studies (see Extended Data Table 1). Each run represents an individual independent chemostat vessel. Each vessel 
contained 800 ml culture medium. All experiments were run under stable conditions at 23 °C and permanent illumination.

Research sample The experimental algae were Monoraphidium minutum (SAG-243-1, Göttingen, Germany) and Chlorella vulgaris (UTEX 26, Texas, 
USA). Stock cultures were kept under non-limiting conditions to avoid synchronization of the cells. Animals were Brachionus 
calyciflorus, strain IGB, grown in stock cultures with the experimental algae under the same conditions. All species are cosmopolitan 
species occuring in various types of freshwaters. During the experiments, a daily sample of 8 ml was taken, representing 1 % of the 
total experimental volume. This sample size is large enough to quantify the number of algae and animals (see below) and small 
enough in order not to change the flow rate.

Sampling strategy The sample volume was constant throughout the study and chosen according to the expected number of algae/rotifers within the 
sample. Each experimental vessel contained up to several thousands of rotifers and up to several billions of algae. Since turbulent 
mixing prevents spatial heterogeneity both species are randomly distributed. A sample of 8 ml was taken (5 ml for the analysis of 
animals, 3 ml for the analysis of algae). The maximum abundance of the animals is higher than 100/ml so that a 5 ml sample is 
representative. As for the algae, the abundance is much higher (mio/ml), a smaller sub-sample was analysed using an electronic 
particle counter (CASY, Schärfe, Germany). Three sub-samples of 400μl were analysed and the mean was calculated. The coefficient 
of variation was on average 0.015.

Data collection Data were collected daily, mostly by E. Denzin, or other staff members, guided by G. Weithoff and G. Fussmann. Each person who 
participated in sampling was individually trained to avoid sampling bias. The same holds for the quantitative analysis of algae and 
rotifers. The raw data from the electronic particle counter were archived on a computer and also transferred to Excel-files (Versions 
9 - 14). The data from the microscopic quantification of the animals were first recorded on paper in a laboratory folder and then 
transferred to Excel-files (Versions 9 - 14). The correct transfer was doublechecked in order to avoid any error through the transfer 
process. From these files, csv-files were created and used further onwards.

Timing and spatial scale The first experiments started in April 2001 and lasted until May 2009; data acquisition (counting) and analyses extended until 2019. 
Depending on human and spatial resources up to four chemostats were run simultaneously, often only two. The sampling frequency 
of daily samples was chosen in accordance to the growth rate of the experimental organisms. Daily samples allow for capturing the 
dynamic population behavior of the organisms and the subsequent analysis of population oscillations.

Data exclusions Experimental runs were discarded from the data set when technical problems (leakage of tubes, blackout of pumps or illumination 
etc.) occurred before the data set was sufficiently long to extract the key parameters for this study.

Reproducibility The reproducibility is part of the study, demonstrating that the findings were recurrent in several independent experimental runs.

Randomization Treatments were set up independently and placed randomly in the climate chamber or different experimental runs, which were run 
subsequently, were run at the same spot.

Blinding Blinding was neither possible, nor necessary. The correct type of medium, and flow rate had to be visible to the experimentalists.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
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ChIP-seq
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MRI-based neuroimaging
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