"Chipentwurf
Ubungsblatt 3

4. Januar 2019

1. In den kommenden Ubungen soll ein Taschenrechner implementiert werden. Der Ta-
schenrechner soll zunéchst iiber vier Operationen (Addition, Subtraktion, Multiplikati-
on, Division) verfiigen. Dariiber hinaus soll er die Negation des gegenwiértigen Operan-
den und das Speichern und Laden von 8 Ergebnissen unterstiitzen. Das Design soll in
mehrere Blocke unterteilt werden. Jeweils ein Block ist fiir die Eingabe und die Anzeige
zustindig, ein weiterer fiir die Speicherung der Operanden, Ergebnisse und der aktuellen
Eingabe. Schliefslich iibernimmt eine Einheiten die Berechnung der Ergebnisse und eine
weitere die Steuerung.

e Die Eingabe erfolgt iiber 5 Pins K[4:0]. Ein zusétzlicher Ausgabepin KE zeigt an,
ob eine Fingabe getitigt werden darf.

Codierung | Beschreibung
0x00 | keine Eingabe
0x01 | Negation des Operanden
0x02 - 0x05 | Operationen '+, -7, 7 /7

7 7 7

7 ?

0x06 | Ergebnis berechnen =
0x07 | Speichern des Ergebnisses (gefolgt von einer Zahl von 1-8)
0x08 | Laden des Ergebnisses (gefolgt von einer Zahl von 1-8)
0x09 | Loschen der letzten Stelle
0x0a | Loschen der Eingabe

0x10 - 0x19 | Eingabe der Zahlen 0-9
Ox1f | Zuriicksetzen

e Die Ausgabe erfolgt Digitweise, d.h., es wird ein ganzes Zeichen iiber einen 4-
Bit-Datenbus iibertragen. Damit 1dsst sich spéter beispielsweise eine Anzeige aus
11 Siebensegmentanzeigen realisieren, die iiber ein Schieberegister angesprochen
werden. Entsprechend wird ein Taktsignal DE benétigt:

Pin | Beschreibung
DE | Ubernahme von D und Linksshift
D[3:0] | Kodierung der Zahlen und des Negationszeichens




Die Codierung der Zeichen ist wie folgt definiert:

D[3:0] | Beschreibung

0x0-

0x9 | Zahlen von 0-9

Oxa | Vorzeichen -’

Oxb | Blank ’’

Oxe | ’E’ zur Anzeige eines Fehlers

Die Ausgabe erfolgt immer als Sequenz von 11 Stellen, wobei das hochwertigste
Digit zuerst ausgegeben wird. Belegt die Zahl nicht alle 11 Stellen, werden die
fithrenden Stellen mit Blanks ’ ’ aufgefiillt. Abbildung 1 zeigt die entsprechende

Ausgabesequenz:

DE

D[3:0]

sign_p—digit(10))— digit(9) )

Abbildung 1: Ausgabesequenz

igit(9)

e Implementieren Sie das Design modular und {iberlegen Sie sich, welche Schnitt-
stellen notwendig sind. Orientieren Sie sich an dem folgenden Blockschaltbild in
Abbildung 2. Das Blockschaltbild ist nicht zwingend vollstindig. Uberlegen Sie
sich, welche zusétzlichen Signale bendtigt werden.

octrl

en
CPU
opc[?:0]
opc_valid =) Py value[31:0]
Elt
K[4:0] . op[31:0] we
ictrl
KE op_valid flags[?:0]
Control
ctrl_flags[?:0 busy | rdy
) g 5]
o d o ¢ 3
5 Z 3 v
2 S ©
Regfile

Abbildung 2: Blockschaltbild

DE

D[3:0]
>

e Implementieren Sie das Eingabemodul, dass die Eingaben in Bindrzahlen umrech-
net, sowie die auszufithrende Operation speichert. Auch sollte das Eingabemodul



die eingegebenen Digits zwischenspeichern, so dass das Loschen der zuletzt einge-
geben Ziffer leicht moglich ist. Wird eine Zahl eingegeben, so werden die bisherigen
Digits in das néchst hohere Digitregister verschoben, gleichzeitig der Operand (op)
neu berechnet und an die CPU weitergereicht. Diese wiederum reicht die 32-Bit-
Zahl an das Anzeigemodul weiter.

Implementieren Sie das Modul zur Speicherung der Operanden und Ergebnisse, so
dass bis zu 8 Zwischenergebnisse und 8 Ergebnisse gespeichert werden kénnen. Diese
Funktionen werden spéter benotigt. Das Speichermodul soll grundsétzlich iiber ein
Speicherinterface angesprochen werden, wie es im Blockschaltbild angedeutet ist.

Implementieren Sie die Zentrale Einheit mit einer ALU die Zugriff auf das Speicher-
modul und einen Akkumulator hat. Realisieren Sie den Dividierer als Schaltwerk.
Teil der Zentralen Einheit ist auch das Steuerwerk (Control), das die anderen Kom-
ponenten iiberwacht und entsprechende Steuersignale generiert.

Implementieren Sie das Anzeigemodul mit Hilfe des Binér-zu-BCD-Konvertierungs-
algorithmus. Das Komma soll vor der ersten anzuzeigenden Ziffer platzieren werden.



