
Chipentwurf
Übungsblatt 3

4. Januar 2019

1. In den kommenden Übungen soll ein Taschenrechner implementiert werden. Der Ta-
schenrechner soll zunächst über vier Operationen (Addition, Subtraktion, Multiplikati-
on, Division) verfügen. Darüber hinaus soll er die Negation des gegenwärtigen Operan-
den und das Speichern und Laden von 8 Ergebnissen unterstützen. Das Design soll in
mehrere Blöcke unterteilt werden. Jeweils ein Block ist für die Eingabe und die Anzeige
zuständig, ein weiterer für die Speicherung der Operanden, Ergebnisse und der aktuellen
Eingabe. Schlieÿlich übernimmt eine Einheiten die Berechnung der Ergebnisse und eine
weitere die Steuerung.

• Die Eingabe erfolgt über 5 Pins K[4:0]. Ein zusätzlicher Ausgabepin KE zeigt an,
ob eine Eingabe getätigt werden darf.

Codierung Beschreibung
0x00 keine Eingabe
0x01 Negation des Operanden

0x02 - 0x05 Operationen '+', '-', '*', '/'
0x06 Ergebnis berechnen '='
0x07 Speichern des Ergebnisses (gefolgt von einer Zahl von 1-8)
0x08 Laden des Ergebnisses (gefolgt von einer Zahl von 1-8)
0x09 Löschen der letzten Stelle
0x0a Löschen der Eingabe

0x10 - 0x19 Eingabe der Zahlen 0-9
0x1f Zurücksetzen

• Die Ausgabe erfolgt Digitweise, d.h., es wird ein ganzes Zeichen über einen 4-
Bit-Datenbus übertragen. Damit lässt sich später beispielsweise eine Anzeige aus
11 Siebensegmentanzeigen realisieren, die über ein Schieberegister angesprochen
werden. Entsprechend wird ein Taktsignal DE benötigt:

Pin Beschreibung
DE Übernahme von D und Linksshift

D[3:0] Kodierung der Zahlen und des Negationszeichens

1



Die Codierung der Zeichen ist wie folgt de�niert:

D[3:0] Beschreibung
0x0-0x9 Zahlen von 0-9

0xa Vorzeichen '-'
0xb Blank ' '
0xe 'E' zur Anzeige eines Fehlers

Die Ausgabe erfolgt immer als Sequenz von 11 Stellen, wobei das hochwertigste
Digit zuerst ausgegeben wird. Belegt die Zahl nicht alle 11 Stellen, werden die
führenden Stellen mit Blanks ' ' aufgefüllt. Abbildung 1 zeigt die entsprechende
Ausgabesequenz:

sign digit(10) digit(9)

DE

D[3:0]

Abbildung 1: Ausgabesequenz

• Implementieren Sie das Design modular und überlegen Sie sich, welche Schnitt-
stellen notwendig sind. Orientieren Sie sich an dem folgenden Blockschaltbild in
Abbildung 2. Das Blockschaltbild ist nicht zwingend vollständig. Überlegen Sie
sich, welche zusätzlichen Signale benötigt werden.

CPU

Regfile

do
ut

[3
1

:0
]

d
in

[3
1

:0
]

a
d

d
r[

?:
0

]

w
e

<r
e>

?

octrlictrlK[4:0] op[31:0]

opc[?:0]

value[31:0]

we

busy | rdy

en

DE

D[3:0]

A
LU ac

c

Control

op_valid

opc_valid

ctrl_flags[?:0]

flags[?:0]KE

Abbildung 2: Blockschaltbild

• Implementieren Sie das Eingabemodul, dass die Eingaben in Binärzahlen umrech-
net, sowie die auszuführende Operation speichert. Auch sollte das Eingabemodul

2



die eingegebenen Digits zwischenspeichern, so dass das Löschen der zuletzt einge-
geben Zi�er leicht möglich ist. Wird eine Zahl eingegeben, so werden die bisherigen
Digits in das nächst höhere Digitregister verschoben, gleichzeitig der Operand (op)
neu berechnet und an die CPU weitergereicht. Diese wiederum reicht die 32-Bit-
Zahl an das Anzeigemodul weiter.

• Implementieren Sie das Modul zur Speicherung der Operanden und Ergebnisse, so
dass bis zu 8 Zwischenergebnisse und 8 Ergebnisse gespeichert werden können. Diese
Funktionen werden später benötigt. Das Speichermodul soll grundsätzlich über ein
Speicherinterface angesprochen werden, wie es im Blockschaltbild angedeutet ist.

• Implementieren Sie die Zentrale Einheit mit einer ALU die Zugri� auf das Speicher-
modul und einen Akkumulator hat. Realisieren Sie den Dividierer als Schaltwerk.
Teil der Zentralen Einheit ist auch das Steuerwerk (Control), das die anderen Kom-
ponenten überwacht und entsprechende Steuersignale generiert.

• Implementieren Sie das Anzeigemodul mit Hilfe des Binär-zu-BCD-Konvertierungs-
algorithmus. Das Komma soll vor der ersten anzuzeigenden Zi�er platzieren werden.

3


