Under approval at medRxiv (manuscript ID 2020/063768 )

Sequential data assimilation of the stochastic SEIR epidemic
model for regional COVID-19 dynamics

Ralf Engbert*! %, Maximilian M. Rabe*, Reinhold Kliegl>-°, and Sebastian Reich!~3:
! Research Focus Data-Centric Sciences, % Research Focus Cognitive Science, 3DFG Collaborative Research Center 1294,
4 Department of Psychology, ® Division of Training and Movement Sciences, S Institute of Mathematics
University of Potsdam, Germany

April 14, 2020

ABSTRACT

Newly emerging pandemics like COVID-19 call for better predictive models to implement early
and precisely tuned responses to their deep impact on society. Standard epidemic models provide
a theoretically well-founded description of dynamics of disease incidence. For COVID-19 with in-
fectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of
exposed individuals which challenges containment strategies, in particular, due to delayed epidemic
responses to non-pharmaceutical interventions. However, spatial heterogeneity questions the ade-
quacy of modeling epidemic outbreaks on the level of a whole country. Here we show that sequential
data assimilation of a stochastic version of the standard SEIR epidemic model captures dynamical
behavior of outbreaks on the regional level. Such regional modeling of epidemics with relatively
low numbers of infected and realistic demographic noise accounts for both spatial heterogeneity
and stochasticity. Based on adapted regional models, population level short-term predictions can
be achieved. More realistic epidemic models that include spatial heterogeneity are within reach via
sequential data assimilation methods.

The evolving spread of the novel coronavirus in Germany [1] resulted in containment measures based
on reduced traveling and social distancing [3]. In epidemic standard models [2, 14], which provide
a dynamical description of epidemic outbreaks [7, 20], containment measures aim at a reduction of
the contact parameter. Since the contact parameter is one of the critical parameters that determine
the speed of increase of the number of infectious individuals, estimation of the contact parameter is
a key basis of epidemic modeling [17].

The current situation of COVID-19 is characterized by extreme spatial heterogeneity [1]. In the ini-
tial phase of the outbreak, this heterogeneity is caused by random travel-based imports of infectious
cases and enhanced by local events with increased contacts. As a consequence, the assumption of
homogeneous mixing must be relaxed [12] and coupled dynamics of regional models seem to be a
more adequate description [15]. However, when modeling a relatively small region with population
size N = 10° compared to the country level with N = 107 to 10°, demographic stochasticity [9, 12]
must be addressed (see The stochastic SEIR model). The combination of dynamical modeling with
substantial fluctuations calls for sequential data assimilation methods for parameter inference [5, 19].

We investigate the stochastic SEIR epidemic model [2] for application to regional data of COVID-
19 incidence. The model assumes S, F, I, and R compartments representing susceptible, exposed,
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Figure 1: The SEIR model. The population is composed of four compartments that represent
susceptible, exposed, infectious, and recovered individuals. The contact parameter 3 is critical
for disease transmission, 1/a and 1/g are the average duration of exposed and infectious periods,
resp. Different from the standard model, birth and death processes are neglected for the short-term
simulations discussed throughout the current study.

infectious, and recovered individuals (Fig. 1). This model is particularly important for the descrip-
tion of the spread of COVID-19, since infectiousness seems to peak on or before symptom onset
[13], such that models without the exposed compartment cannot adequately address the time-delay
between build-up of exposed and infectious individuals.

Since we are interested in short-term modeling (weeks to months), we neglect birth and death pro-
cesses as a first-order approximation for the dynamics of the model. Disease-related model param-
eters are the rate parameters a = 1/Z (with average latency period Z) and ¢ = 1/D (with mean
infectious period D), which can be estimated independently from analysis of infected cases [13, 15].
Therefore, the time-dependent contact parameter 3 is the most critical parameter that needs to be
determined via data assimilation [19]. The contact parameter /3 is directly related to the basic re-
productive rate Ry in a SEIR-type model (see SEIR model and basic reproductive rate). Therefore,
non-pharmaceutical interventions that aim at Ry < 1 translate into the relation 5 < ¢ in the model.

In the following, we will use a combination of sequential data assimilation and stochastic modeling
on the regional level to estimate spatial heterogeneity in epidemics spread and show how to use such
a combined approach for epidemics prediction and uncertainty quantification.

Results

The key motivation of the current study was to apply sequential data assimilation of the stochastic
SEIR model to estimate the contact parameter. Using simulated data, we successfully applied an
ensemble Kalman filter [10, 19] for recovery of the contact parameter from data (see Parameter re-
covery from simulated data). When applied to empirical data on the level of a region, the estimation
of the contact parameter produces a comparable evidence profile (see Application to empirical data).

In the early phase of the outbreak of COVID-19 in Germany, the reported cumulative numbers of
cases strongly increase (Fig. 2a,b), however, epidemic dynamics vary on the regional level. Such
spatial heterogeneity is due to different onset times of the disease in different regions, but is also
enhanced by variations in the local contact parameters . In response to containment measures, we
expect 3 to change over time.

Time-dependence of the contact parameter

Estimation of the time-dependence of the contact parameter is done via the model’s best fit. An
approximative instantaneous negative log-likelihood L(¢x, ) of the contact parameter [ at observa-
tion time ¢, is obtained from the ensemble Kalman filter (see Model inference based on sequential
data assimilation). Thus, by determining the minimum of L(¢, 3) with respect to /3 at time t;, we
estimate the time-dependence of the best fit 3, (t;) (Fig. 2¢). The black line reports the average time
dependence for all 320 regions included in the analysis; standard deviations are indicated by the grey
area. Results for the two example regions are given by their corresponding colors.

The non-pharmaceutical interventions in the spread of COVID-19 were implemented at slightly
varying points in time across Germany. In the majority of regions, closings of schools and other
educational institutions started on March 16th, while large-scale contact bans was implemented on
March 22th. Since these social distancing measures will have an impact on the contact parameter,
we expected to observe a related drop in the contact parameter over time. Before we present a corre-
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sponding analysis, it should be made clear that any of these measures cannot produce an immediate
effect on the observed cases of infected individuals because of the latency period. To use a reliable
estimate of the contact parameter, the related interval should be as long as possible, since sequential
data assimilation will need several data points to adapt the model to the data. Therefore, we selected
the average value of [, () ) over the three days from March 17th to March 19th as a pre-intervention
value. The average over March 31st to April 2nd is taken as an estimate of the post-intervention
value. To analyze the effect across regions, we computed average values 3, (March 17-19) and
Bpost March 31-April 2) of the relevant (3, (t;) for all regions. A scatter plot indicated a clear re-
duction of the numerical value of the contact parameter from Bpre to Bpost (Fig. 2d). The reduction
is statistical significant (Wilcoxon test, p < 0.01).

Finally, the overall time-dependence [, (t;) shows a decreasing trend, however, Figure 2c suggests
that there is an additional weekly cycle with local minima at weekends (March 22 and 29). Both
of the example regions show this effect as well. For the RKI data, we do not expect that seemingly
reduced contact parameters are a simple consequence of increased reporting delay over the week-
end, since this database is continuously updating the reported cases back in time (see RKI data on
COVID-19 in Germany).

Simulations with time-varying contact parameter

The contact parameter (3 is the most critical parameter determining the dynamics of the stochastic
SEIR model. After time-resolved estimation of the best fit 5, (tx), we are able to generate simula-
tions from an initial state to predict the future trajectory (Fig. 3). Simulations I are started from the
first epidemic day in the corresponding region with greater than or equal to 30 cases. The initial
numbers of infected I were set to the observed number of cases yops(to), while the initial numbers
of exposed were set to Ey = g/a - Iy, which would hold at epidemic equilibrium. The initial num-
ber of infected people was disturbed by noise representing uncertainties in the initial model states.
Forward iteration with the estimated time-varying contact parameter show that the slope of the epi-
demic curve is approximately reproduced by the model (Fig. 3a,c; grey lines indicate the ensemble
of simulated trajectories; blue points are observed data).

At March 26th, we started simulations II which exploits the full potential of sequential data assim-
ilation. The sequential data assimilation approach via the ensemble Kalman filter (see Ensemble
Kalman filter) is based on the forward modeling of an ensemble of trajectories. After each time step
(1 day), the ensemble of trajectory is compared to the next observation and adjusted via a linear re-
gression step. Therefore, we obtained an adapted ensemble of internal model states at each epidemic
day. Here we exploit this fact in a forward simulation with initial conditions from the assimilated
ensemble of internal model states. The corresponding forward simulations are close to the real time-
evolution of the epidemics in the two example regions (Fig. 3a,c; grey lines indicate the ensemble
of simulated trajectories; blue points are observed data). A related plot of the daily reported new
cases indicates approximately constant level of numbers of new cases for Koln (Fig. 3b) and slowly
decreasing daily new cases for Miinster (Fig. 3d); both predictions are in agreement with empirical
observations.

Predictions for two different scenarios

The forward simulations discussed in the previous section demonstrated the predictive power of the
SEIR model after sequential data assimilation. In the next step, we generated simulations under
two different scenarios. In scenario I, we started with the adapted ensemble of internal model states
after data assimilation (April 4th) and iterated the model forward with the mean contact parameter
estimated in the week March 29th to April 4th after implementation of interventions (Fig. 4, green
area). The simulations smoothly continue the time-course of infected cases for both example regions
(Fig. 4a,b). Daily reported case numbers show a decline for both regions (Fig. 4c,d).

In scenario II, we assumed that all governmental intervention measures were terminated. Therefore,
we used the estimated in the week March 15th to March 21st. Again we started simulations with
the adapted ensemble of internal states after sequential data assimilation (Fig. 4, red area). For both
example regions, we observe a strong increase in infected cases under scenario II (Fig. 4c,d). The
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Figure 2: Analysis of time-dependent contact best fit contact parameters S, (tx). (a) For two regions
(LK Koln and LK Miinster), the cumulative numbers show strong increase after different disease
onset times. (b) Semi-logarithmic scaling suggests approximate exponential growth in early as
well as later regimes. (c) The time dependent contact parameter (. (¢x) indicates a small decrease
over time due to social distancing interventions (black: average for 320 regions; red, blue: contact
parameter for the examples above; grey shading: standard deviation across regions. (c) Scatter plot
of the time averaged contact parameter 3, before intervention and /3.4 after intervention. Note
that the critical value for disease containment is 5.t = 1/3 in our model (red lines).

dramatic increase can be seen most clearly in the plot of daily numbers of new cases (for more
examples see Supplementary Information Appendix).

Discussion

The ongoing worldwide spread of the new coronavirus exerts enormous pressure on health systems,
societies and governments. Therefore, predicting the epidemic dynamics under the influence of non-
pharmaceutical interventions (NPI) is an important problem from a data science and mathematical
modeling perspective [18]. The motivation of the current work was to explore the potential of
sequential data assimilation [19] for a regional epidemic model as a forecasting tool.
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Figure 3: Simulations of the stochastic SEIR model for two example regions. Simulations I indicate
an ensemble of 100 runs of the model with initial conditions from the first epidemic day with number
of cases greater than or equal to 30 (grey: ensemble of trajectories; blue: observations). Simulations
I start on March 26th, using an ensemble size of 100 after data assimilation (grey: ensemble of
trajectories; red: observations). (a) Cumulative cases of infected individuals over time for LK Kd&ln.
(b) Daily reported new cases for Koln. (c) Cumulative cases for LK Miinster. (d) Daily new cases
for Miinster.

Standard epidemic SEIR-type models implement a compartmental description under the assump-
tion of homogeneous mixing of individuals [2]. More realistic modeling approaches require spatial
heterogeneity due to time-varying disease onset times, regionally different contact rates, and the
time-dependence of the contact rates due to implementation of containment strategies. However,
regional descriptions require models that include effects of demographic stochasticity due to limited
population sizes and cases numbers in the region considered [6]. Effects of such statistical fluctua-
tions are inherently reproduced via stochastic versions of the standard epidemic models [9, 12].

We demonstrated the potential of sequential data assimilation for COVID-19 dynamics at the level
of a regional, stochastic model. Based an the ensemble Kalman filter [10], we successfully recov-
ered the contact parameter from simulated data and obtained reliable estimates from empirical data.
The contact parameter is the most critical free parameter in the stochastic SEIR model, since other
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Figure 4: Model predictions for COVID-19 after data assimilation. In scenario I (green area),
an assimilated ensemble of internal model states starts the forecast with contact parameter Bpost
(continuation of social distancing interventions). In scenario II (red area), the equivalent forcase is
generated with contact parameter . (termination of interventions). (a) Predictions for cumulative
case numbers in Koln. (b) Predictions of daily new cases in Koln. (c) Predictions of cumulative
cases for Miinster. (d) Predictions of daily new cases for Miinster.

parameters (mean exposed and infectious duration) can be estimated independently from observed
time series [13, 15]. Moreover, the contact parameter of the SEIR model is directly related to the ba-
sic reproductive rate Ry [16]. Therefore, our approach could also be framed as model-based method
for statistical inference of the basic reproductive rate.

Next, we ran time-resolved analyses that generated estimates of the time-dependence of the contact
parameter. The drop in mean contact rates from an early (Bpre, March 17-19) to a later period (Bpost,
March 31-April 2) indicated the effect of non-pharmaceutical interventions. We also generated
model prediction under two different scenarios. In scenario I, started simulations from April 4th with
sampling from the assimilated ensemble as initials conditions and the contact parameter estimated
for the post-intervention period (March 29-April 4). In scenario II, we replaced the post-intervention
contact parameter by its pre-intervention value (March 15-21). As a results, the two scenarios predict
rather different temporal developments (decline of daily new cases for scenario I, and strong increase
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for scenario II). Therefore, our model predictions suggest that lifting off the current interventions
would clear switch the epidemic dynamics to the exponential increase before implementation of
non-pharmaceutical interventions. Such predictions can easily be scaled up to the federal state level
(Bundeslinder) or to the country level; a corresponding predictive model will be potentially quite
robust because of explicit modeling of spatial and temporal heterogeneities, captured by a separate
time-course of the contact parameter for each region.

The recent simulation study Li et al. [15] used a similar approach of sequential data assimilation for
dynamic epidemic models. However, the deterministic SEIR model was implemented and extended
by additional noise assumptions. We proposed the usage of the stochastic SEIR model in the for-
mulation of a master equation [9] which can be simulated exactly and numerically efficiently using
Gillespie’s algorithm [11]. A more complex spatiotemporal stochastic model has been considered
in [4].

Furthermore, the state-parameter estimation in [15] utilises the ensemble Kalman filter directly on
an augmented state space [19]. Contrary to that study, we found a direct application of the ensemble
Kalman filter to the augmented state space (X, 3) not suitable because of the strongly nonlinear
interaction between the model states X and the contact parameter 8. This led us to the two stage
approach, as presented in this study, combining the ensemble Kalman filter for state estimation with
a likelihood based inference of the contact parameter (3.

Our current study was mainly motivated by the methodological problem of a possible contribution
from data assimilation to epidemics modeling based on a stochastic SEIR model. There are obvious
limitations in our current modeling framework, which we did not address because of the method-
ological focus. Longer-term predictions (~ months) are important, but clearly dependent critically
on the estimation of undocumented infections (see Li et al. [15]). Such hidden infections create, after
recovery, an unknown reduction in the number of susceptibles that slows down epidemic dynamics;
such an effect is currently not included in our current model. However, it seems compatible with our
framework to extend the SEIR model by an additional class of undocumented infected individuals
[15].

Another important limitation of these results comes from the simplifying assumption that there is
no coupling to neighboring regions. As a consequence, regional differences in the contact parame-
ter might in fact be due to differences in contacts between regions. Introducing couplings between
regions [15] could also be integrated in our modeling framework. However, the no-coupling approx-
imation might be realistic in the current situation of social distancing and contact ban.

Linking back to the potential of NPI to control COVID19 until vaccination or medicine is available
we close with an observation relating to a recent study [8]. Our analyses covered the same time
span as Dehning et al. [8] and we also picked up a systematic pattern of contact reduction which
we interpret as a weekly cycle (see Statistical modeling of trends and weekly oscillations). Indeed,
the dates of the interventions analyzed by Dehning et al. are confounded with day of the week; the
three dates refer to three Sundays in March. It is reasonable to assume that in Germany there is
much less contact to persons outside the family context on weekends than during working days. Of
course, there are also other reasons why certified reports of COVID19 infections are less frequent for
weekends. For example, people are more likely to go to their GP on Monday than to the emergency
room on Sunday, especially as long as the symptoms are mild. No reason, in our opinion, is a lack
of recording at the RKI; the cases reported for the weekend are added on Monday and Tuesday. One
advantage of the method proposed here is that we recover effects with comparatively little data at the
level of regions, not an entire country. In the absence of a vaccine or of medication, having such an
epidemic forcasting tool seems almost like a necessary precondition for selective and optimal timing
of tightening and loosening of NPI-based containment measures.

Materials and Methods

RKI data on COVID-19 in Germany

The Robert Koch Institute (RKI), the central scientific institution in the field of biomedicine within
the portfolio of the Federal Ministry of Health, provides daily access to the number of confirmed
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cases, deaths, and recovered patients, broken down by 412 counties, six age groups, and sex. As
they are official records, only cases certified by doctors or labs according to a strict medical protocol
in accordance with the Infection Protection Act are entered into the data base. The exact time of
an infection is usually not known. The associated time stamp refers to the date on which the local
health authority became aware of the case and recorded it electronically. As records are passed from
the physician or lab via local and state health authorities to the RKI, there is a delay of several days
before cases are available on the website. Statistics relating to the most recent three or four days are
incomplete and cannot be interpreted; retrospective updates and corrections are possible for all days
of the pandemic spell as they become available. We use data inclusive April 4, as reported on April
8, 2020; they are included as part of the supplement.

SEIR model and basic reproductive rate

The SEIR epidemic model is a four-compartment model with susceptibles, which are able to con-
tract the disease, exposed, those who are infected but not yet infectious, infectious individual, and
recovered individuals who are immune. The model is typically formulated as a system of ordinary
differential equations (ODE), i.e.,

S m— (m+\)S 1)
E = M —(m+a)FE )
I = aE—(m+g)I 3)
R gl —mR 4)

where the total number of individual N = S + E + I + R is constant under temporal evolution
due to N = 0. The ODE system, Eq. (1-4), has a non-trivial equilibrium point, denoted as epidemic
equilibrium (S, Ey, Iy, Ro), where the number of susceptibles Sy at equilibrium is related to basic
reproductive rate. Since we aim at a short-term description of the system, we neglect birth and death
processes here, equivalent to the limit m — 0, we obtain

1 aB B

Ry==——F"———— for m—0. 5
78  (m+a) (m+g) g ©)
We use a numerical values of ¢ = 1/3, equivalent to an average infectious period of D = 3 days,
and a = 0.192, or an average latency period Z = 5.2 [13]. As a consequence, the critical condition
for disease containment Ry < 1 is obtained for 8 < Bt = 1/3 in our model.

The stochastic SEIR model

While the classical model is formulated as a system of ordinary differential equations, we are ex-
ploring the application to relatively low numbers of cases in the early phase of the current epidemics
on the regional level with population sizes from 10° to 10%. Therefore, we use the stochastic SEIR
model in the form of a master equation [9], which is particularly useful for modeling small numbers
of infected individuals occuring in smaller regions or in the beginning of epidemics.

The demographic SEIR model contains four variables denoted by X = (S,E,I,R)T € N*
representing the number of individuals in each of the four classes with constant population size
N = S+ E + I + R. The transition rate of the ODE compartmental model translate into tran-
sition probabilities in the master equation formulation for the evolution of the model’s conditional
probability density, that is,

d
TPXIXo 1) = D (Wi x p(X'| X0, 1) = Wi xo p(X[ X0, £)} (6)
X'#£X

with transition probabilities given in Table 1 and initial condition Xg. Single trajectories for the
model’s temporal evolution can be simulated exactly and numerically efficiently [9] using Gillespie’s
algorithm [11].
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Table 1: Transitions and transition probabilities in the stochastic SEIR model. Transition are from
state X = (S, E, I, R)T to X’ with probability Wx _, x.

z' Wz sz

51 Et1 T R BSI/N
S E—-1 I+1 R aF
s E I—1 R+1 gl

Model inference based on sequential data assimilation

Publicly available data on the cumulative number of infected individuals is used to infer the model
states X = (S, F, I, R)T and the contact parameter 3 of the stochastic SEIR model. Note that the
cumulative number of infected individuals corresponds to Y = I + R in the SEIR model.

In the present study we combine sequential data assimilation for the model states with an approxi-
mate log-likelihood function for the contact parameter [19]. The basic algorithmic idea is to prop-
agate an ensemble of M model forecasts using Gillespie’s algorithm up to the next available obser-
vation point ¢;. The forecast ensemble is denoted by Xf(") (t) withn € {1,..., M}. We used an
ensemble size of M = 100 in this study. The reported cumulative number of infected individuals
Yobs (tx) 18 then used via a linear regression approach to obtain adjusted model states X, m (tx). This
step is implemented via the ensemble Kalman filter [19]. While the forecast ensemble is used to
compute the temporary negative log-likelihood L(¢x, 3) of the model’s contact parameter 3 at time
tx, the adjusted model states serve as starting values for the next Gillespie prediction cycle.

The above algorithm is run over a fixed range of contact parameters 5 € [Smin, Omax] and over a
fixed time window [tinitial, tanal] Of available data points yons(tr). The best fit contact parameter
B (tx) at any time any ¢y, is found as the one that minimises the temporary negative log-likelihood
function, that is,

Bu(tr) = arg mﬁin L(tk, B) (N
with L(tx, 8) defined by (13) below.

Ensemble Kalman filter The observed cumulative number of infected individuals yobs(tx) is
linked to the model states X = (S, E, I, R)T via

Y (tg) :=1(tg) + R(ty) = HX (tx) , ®)

ie., H=(0,0,1,1). As initial condition, we set I as the number of infected cases, R; = 0, so that
Yobs(to) = I1 + Ry, and Ey = g/a-I; with additive noise. We assume that the errors in the observed
Yobs(tx) is additive Gaussian with mean zero and variance p. We set p = 10 in our experiments.
The analysis step of the ensemble Kalman filter is now based on the empirical mean

1L .
mi(ty) = 7 ST XM () e RY )
n=1

and the empirical covariance matrix

M
Pr(te) = % > (Xf(n)(tk) - mf@k)) (Xf(n)(tk) - mf(tk)>T e R4 (10)

of the forecast ensemble. These two quantities are used to quantify the forecast uncertainty. Com-
bining the forecast uncertainty with the assumed data error model leads to the linear regression
formula

n ]' n
X (1) 1= X{ (1) = 5K (1) {HX§ )(t) + Hme(tr) — 2yobs(tk)} 11
with the Kalman gain defined by
K(ty) = Pr(ty) H {HP(tx)H + p} " € R, (12)

9
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Figure 5: Parameter recovery analysis. (a) Simulated data with b = 0.6. (b) Negative log-likelihood
Lecum(B) indicates a minimum at about the true parameter value.

The resulting analysis ensemble X" (tr) € R*, n € {1,..., N}, can be mapped back onto the
integers N* if needed.

Model evidence The model’s negative log-likelihood at an observation time ¢;, is approximated
by

1 [Hmg(tr) — Yobs(tr)|?
Lty ) o= L)~ (1)

2 HP(te)H" +p

Note that the first contribution penalises the data misfit while the second penalises model uncertainty.
The smaller the negative log-likelihood the better the chosen model parameter S fits the data y;, at
time t. The best parameter fit over a time Window [tmin, tmax] is defined as the value of 3 which
minimises the cumulative negative log-likelihood

+ %log(HPf(tk)HT + p). (13)

tmax

Lam(B) = Y L(t, ), (14)
tk=tmin
that is,
B* = arg InﬁinLcum(6>' (15)

Parameter recovery from simulated data To test the inference scheme, we simulated data for 20
days. In Figure 6, the black line indicates the evolution of the SEIR model’s predicted cumulative
numbers of infected individuals, Y (t,) = HX (¢tx) = I(tx) + R(tx). Red dots represent the
daily number of reported cases as in real data. In the simulation, the contact rate was chosen as
Btrue = 0.6. In the following, we analyzed whether this true value could be recovered using the
inference procedures described above.

We varied the contact rate 3 and determined the cumulative negative log likelihood values Lcum (8),
Eq. (14). The position of the minimum of L., (8) indicates the best estimate for the numerical
value of the underlying contact rate 3., Eq. (15). The position of the minimum turns out to be close
to the true value, 8, ~ Birue = 0.6 (Fig. 6b). Thus, parameter recovery can be demonstrated for a
relatively short time series of 10 observations, which represents a typical data-set in the early phase
of newly emerging epidemics. Next, we apply our inference scheme to real data.

Application to empirical data Since parameter inference was successful for simulated data, the
next step was an application to empirical observations. We applied the inference framework to two
regional data sets from the RKI data base. As an example, we selected the COVID-19 time series

10
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Figure 6: Contact parameter estimates for real data. (a) Data for Koln. (b) Negative log-likelihood
Liota1(8) for Kéln give a minimum at 5, ~ 0.7.

for Koln (RKI data, population size N = 1,085, 664), which includes 27 days of observations
with more than 30 cases and is plotted in Figure 7. Parameter estimation yields an estimate for the
contact rate of 3, ~ 0.7 (Fig. 7b). Thus, analysis of the negative log-likelihood function produced
qualitatively similar results for simulated SEIR time series and empirical data for a representative
region. In the main text, we carry out an estimation of the time-resolved instantaneous optimal
parameter values (3, () ) using the instantaneous negative log-likelihood function L(¢x, 8), Eq. (13).

We found that our results were relatively insensitive to the choice of the measurement error vari-
ance p appearing in (12) and (13). At the same time, we emphasise that the errors in the re-
ported cumulative numbers of infected individuals are complex, may vary over time, and will cer-
tainly impact on the inferred parameters. The same applies to the unknown initial model states
X(to) = (S(to), E(to), I(to), R(to))T and their uncertainties.

Statistical modeling of trends and weekly oscillations Mean certified cases, computed across
regions per day, reveal a strong daily profile with local minima always falling on Sundays. The
corresponding mean of log contact parameters reveals the same oscillation. The negative slopes are
compatible with the expectation that a decrease in contact rates causes a decrease in daily cases.
These illustrative analyses imply two considerations. If evaluated against statistics of daily cases,
obviously containment measures must take the weekly cycle into account and avoid confounds in the
design. There are many potential sources for this cycle, some of them possibly quite trivial (e.g., the
number of tests carried out). However, if experimental research and statistical modeling can establish
that part of these fluctuations are indeed due to reduced contact rates beyond the family context on
weekends, then dynamical models may help with the prediction of the timing of tightening and
loosening decisions in local contexts. For example, one may consider moving to a three- or four-
workday week for some time, in well-defined contexts, and in targeted regions to facilitate this
dynamic.
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Figure 7: Weekly cycles in contact parameter estimates and daily reported cases. (a) Log contact
parameter estimates; (b) Confirmed daily cases. Black: means across regions; red: simple regression
of means on date; blue: smoothing with span 0.28 days;grey bands are 95% confidence intervals.
RKI data from 10 April 2020.
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Supplementary Information Appendix

This PDF file includes additional examples for regional modeling.
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Figure S1: Model predictions for COVID-19 after data assimilation. For details of modeling sce-
narios I and II see main text and Figure 4.
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Figure S2: Model predictions for COVID-19 after data assimilation. For details of modeling sce-
narios I and II see main text and Figure 4.
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Figure S3: Model predictions for COVID-19 after data assimilation. For details of modeling sce-

narios I and II see main text and Figure 4.
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Figure S4: Model predictions for COVID-19 after data assimilation. For details of modeling sce-
narios I and II see main text and Figure 4.
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Figure S5: Model predictions for COVID-19 after data assimilation. For details of modeling sce-
narios I and II see main text and Figure 4.
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Figure S6: Model predictions for COVID-19 after data assimilation. For details of modeling sce-

narios I and II see main text and Figure 4.
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Figure S7: Model predictions for COVID-19 after data assimilation. For details of modeling sce-

narios I and II see main text and Figure 4.
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Figure S8: Model predictions for COVID-19 after data assimilation. For details of modeling sce-

narios I and II see main text and Figure 4.
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