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A B S T R A C T

Eye movements can be used to analyze a viewer’s cognitive capacities or mental state.
Neural networks that process the raw eye-tracking signal can outperform methods that
operate on scan paths preprocessed into fixations and saccades. However, the scarcity
of such data poses a major challenge. We therefore develop SP-EyeGAN, a neural
network that generates synthetic raw eye-tracking data. SP-EyeGAN consists of Gen-
erative Adversarial Networks; it produces a sequence of gaze angles indistinguishable
from human ocular micro- and macro-movements. We explore the use of these syn-
thetic eye movements for pre-training neural networks using contrastive learning. We
find that pre-training on synthetic data does not help for biometric identification, while
results are inconclusive for the detection of ADHD and gender classification. How-
ever, for the eye movement-based assessment of higher-level cognitive skills such gen-
eral reading comprehension, text comprehension, and the distinction of native from
non-native readers, pre-training on synthetic eye-gaze data improves the models’ per-
formance and even advances the state-of-the-art for reading comprehension. The SP-
EyeGAN model, pre-trained on GazeBase, along with the code for developing your
own raw eye-tracking machine learning model with contrastive learning, is available at
https://github.com/aeye-lab/sp-eyegan.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Eye tracking data has a wide range of applications, including2

the assessment of linguistic and cognitive skills [1, 2], the detec-3

tion of conditions such as dyslexia [3, 4, 5] or attention deficit4

hyperactivity disorder (ADHD) [6], and even identifying indi-5

viduals based on their unique patterns of eye movements [7, 8].6

In the context of biometric identification, using the raw eye-7

tracking signal of yaw and pitch degrees of visual angles (dva)8
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at the tracker’s sampling rate as input to a deep neural network 9

rather than the preprocessed and possibly aggregated saccades 10

and fixations has been shown to improve performance by an 11

order of magnitude and enables the use of shorter input se- 12

quences [9, 8, 10, 11]. 13

However, data scarcity is a major challenge for developing 14

such neural networks; collecting eye-tracking data is costly in 15

terms of labor, equipment and time. There is also a risk that per- 16

sonal information such as gender, identity, or ethnicity may be 17

extracted from eye movements, creating a major privacy con- 18

cern [12, 13, 14]. Both of these problems could potentially be 19
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mitigated by using synthetic instead of real-world data to train1

(or pre-train) machine-learning models. Former approaches to2

generating synthetic eye-tracking data are limited in their abil-3

ity to create realistic data; most known approaches only gener-4

ate fixation positions and/or durations [15, 16, 17, 18, 19] or use5

statistical models with relatively few parameters [20, 21, 22].6

Hence, the data generated by these former methods cannot be7

used to (pre-)train state-of-the-art models that directly process8

the raw eye-tracking signal.9

In computer vision, biometrics, and other fields, the develop-10

ment of generative adversarial networks (GANs) for generating11

synthetic data has shown promising results [23]. In this pa-12

per, we develop SP-EyeGAN, a model that creates Scan Paths13

for Eye-tracking data using GANs. This system generates syn-14

thetic eye-tracking data that closely mimic real-world data, and15

that can be used to overcome the challenges of data scarcity and16

privacy.17

We investigate the potential of pre-training with synthethic18

data on different challenging downstream tasks: assessment19

of general reading comprehension, text comprehension, text20

difficulty, nativeness of a reader, biometric verification, gen-21

der classification, and ADHD detection. We develop and22

evaluate two pre-training strategies: (a) fine-tuning different23

task-specific state-of-the-art neural-network architectures after24

a task-independent embedding layer has been pre-trained on25

synthetic gaze data, and (b) training a random-forest classifier26

that uses the task-independent, pre-trained embedding layer as27

input features. In both cases, the embedding layer is trained28

solely on synthetic data generated with SP-EyeGAN using con-29

trastive learning [24, 25].30

This paper extends a previous conference publication Prasse31

et al. [26]. Its main contributions are as follows.32

• We develop SP-EyeGAN, a model based on generative ad-33

versarial networks that generates a sequence of horizontal34

and vertical gaze angles.35

• We show that SP-EyeGAN generates raw eye-tracking36

data that closely resembles human data, outperforming37

various statistical and machine-learning-based baseline38

models. 39

• We investigate the effect of using synthetic data gener- 40

ated by SP-EyeGAN for pre-training of neural networks 41

on four downstream tasks: assessing general reading com- 42

prehension, text comprehension, text difficulty, and decid- 43

ing whether a reader is a native speaker. 44

In addition, this extended manuscript makes the following ad- 45

ditional original contributions. 46

• In addition to fine-tuning neural network classifiers whose 47

embedding layer has been pre-trained on syntheric data, 48

we develop and evaluate the strategy of using the embed- 49

ding layer of a pre-trained network as input features to a 50

random-forest classifier. 51

• As an additional reference method, we include a random- 52

forest classifier on engineered features showing the classi- 53

fication performance of models not using embeddings. 54

• We evaluate the random-forest strategy on all downstream 55

tasks, and the neural-network strategy on three down- 56

stream tasks, namely biometric identity verification, gen- 57

der classification, and detection of ADHD, in addition to 58

the tasks included in Prasse et al. [26]. 59

• We investigate the impact of different training set sizes 60

during fine-tuning on the model’s performance for the task 61

of gender classification. 62

• We use a set of five different data sets with different eye 63

tracking devices and different sampling frequencies to in- 64

vestigate how the properties of different data sets effect the 65

usefulness of synthetic data. 66

• We establish a new state-of-the-art performance on the 67

task of assessing text comprehension and on two out of 68

four videos for ADHD detection. 69

The rest of this paper is structured as follows. In Section 2, 70

we discuss related work on creating synthetic data using ma- 71

chine learning models. Subsequently, in Section 3, we describe 72
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SP-EyeGAN , a neural-network to create human-like raw eye-1

tracking data, and how data generated with SP-EyeGAN can be2

used for contrastive pre-training of a neural network. Section 43

details our experimental results, which are examined for limi-4

tations in Section 5. In Section 6, we provide a more extensive5

analysis and discussion of the results.6

2. Related Work7

Existing methods for generating human-like eye-tracking8

data can be divided into training-free statistical models and9

trained machine-learning models.10

Statistical models. Lee et al. [27] and Duchowski and Jörg11

[28] presented statistical approaches that generate eye move-12

ments for rendered, animated faces. Ma and Deng [29] devel-13

oped a method that synthesizes human eye gaze from a head-14

motion sequence by statistically modeling the relationship be-15

tween gaze and head movements. Le et al. [30] generated real-16

istic head motion, eye gaze, and eyelid motion simultaneously17

based on speech input. Wood et al. [31] presented a method18

that generates eye crops together with gaze vectors. Yeo et al.19

[32] proposed a statistical model that generates an eye-tracking20

sequence of saccades and smooth pursuits for an agent catching21

a ball. All of these approaches aim at making rendered faces22

more realistic rather than creating realistic eye-tracking data23

that include micro- and macro-movements as well as a noise24

component.25

Campbell et al. [20] generated realistic eye-tracking data26

based on a statistical model of jointly estimated dynamic prop-27

erties of eye movements for a known saliency map of the stim-28

ulus. Duchowski et al. [33, 21] added micro-saccadic jitter,29

noise, simulated measurement error and pupil unrest to a previ-30

ously generated eye-tracking sequence. Fuhl and Kasneci [22]31

and Fuhl et al. [34] simulate saccadic movements by gamma32

distributions and smooth pursuit onsets with the sigmoid func-33

tion. EyeSyn, introduced by Lan et al. [35] generates fixational34

movement using Gaussian and pink noise. We use these two35

statistical models by Fuhl et al. [34] and Lan et al. [35] as refer-36

ence models in our evaluation as they are able to generate stim-37

ulus independent synthetic fixational and saccadic eye move- 38

ments. 39

Machine-learning models. Simon et al. [36] employed a con- 40

volutional neural network (CNN) and long short-term memory 41

(LSTM) modules to generate raw eye-tracking samples; this 42

model is limited to generating eye-tracking data for static im- 43

ages. Assens et al. [37] proposed a GAN that consumes im- 44

ages as input and generates fixation points, but is unable to 45

model saccadic movements. Fuhl and Kasneci [38] use a hier- 46

archical k-means algorithm, HPCGen, that generates raw eye- 47

tracking data. HPCGen generates random eye-tracking sam- 48

ples not following a specific stimulus with no constant sam- 49

pling rate, which is not suitable to generate micro-movements 50

and fixations. Fuhl et al. [39] devised a variational autoencoder 51

(VAE) that generates stimulus-independent eye-tracking data. 52

We use this model as one of the baselines in our evaluation as 53

comparison to the previous state-of-the-art neural network ap- 54

proach. 55

This paper extends our previous work [26] in which we intro- 56

duced SP-EyeGAN, a model to generate synthetic eye-tracking 57

data using two GANs. SP-EyeGAN generates synthetic eye- 58

tracking data that mimics real-world data, and that can be used 59

in situations where real-world data is limited or unavailable, 60

or privacy concerns don’t allow the use of real-world data. 61

This model can generate raw eye-tracking data relative to the 62

head position, and applies to experimental viewing conditions 63

in which the head is kept immobile (e.g., reading on a computer 64

screen with a chin rest), or the viewer is wearing eye-tracking 65

glasses. 66

3. Method 67

This section introduces SP-EyeGAN a framework to gener- 68

ate synthetic eye movement data, and a contrastive pre-training 69

scheme to use the generated data to pre-train a neural embed- 70

ding for eye movement sequences. 71

3.1. SP-EyeGAN 72

SP-EyeGAN is composed of two independent, structurally 73

identical GANs [40] for generating the raw velocity of fixations 74
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Step (2): Generate fixation locations [28]

synthetic eye-tracking sequence

EyeGAN (see Algorithm 1)

• Repeat for 𝑖 = 1 … 𝑛 − 1
1. sample fixation 𝐺𝑓𝑖𝑥 ~ FixGAN

2. add fixation to sequence

3. sample saccade 𝐺𝑠𝑎𝑐  ~ SacGAN

4. rotate saccade

5. add saccade to sequence

𝑙𝑖

𝑙𝑖+1

𝑙𝑖

𝑙𝑖+1

Step (3): Generate synthetic eye-tracking data

fixation locations 𝑙1, … , 𝑙𝑛

real sequences [°/s]
(bs x 100 x 2)

Discriminator noise
(bs x 32)

FC (1600) +
 BN + LeakyReLU

(bs x 1600)

DeConv (f=8,k=8) +
 BN + LeakyReLU

(bs x 100 x 8)

DeConv (f=4,k=4) +
 BN + LeakyReLU

(bs x 100 x 4)

Reshape
(bs x 100 x 16)

DeConv (f=2,k=2) 
(bs x 100 x 2)

Generator

real / fake

backpropagation backpropagation

Conv (f=32,k=8) +
 BN + LeakyReLU + DO (0.3)

(bs x 100 x 32)

Conv (f=64,k=16) +
 BN + LeakyReLU + DO (0.3)

(bs x 100 x 64)

Conv (f=128,k=32) +
 BN + LeakyReLU + DO (0.3)

(bs x 100 x 128)

Flatten 
(bs x 12800)

FC (1) + Sigmoid 
(bs x 1)

Step (1): Adversarial Training (FixGAN/SacGAN)

FixGAN/SacGAN

real fixation/saccade 
raw data

synthetic data

Fig. 1: Overview of SP-EyeGAN. The figure shows the complete pipeline where two GANs are first trained using real data to generate fixations (FixGAN) and
saccades (SacGAN) (step 1), and, resorting to generated fixation locations (step 2), are subsequently used to create synthetic data (step 3). The two GANs (SacGAN
and FixGAN) consist of fully connected layers (denoted as FC), batch normalization layers (denoted as BN), convolutional/deconvolutional layers (denoted as
Conv/DeConv with filter size f , kernel size k and dilation d), and the Leaky Rectified Linear Unit (LeakyReLU) activation function. The batch size (bs) determines
the memory consumption of the two GANs. Details about the generation of the synthetic eye-tracking data (step 3) can be found in Algorithm 1

Algorithm 1 The SP-EyeGAN algorithm generates a synthetic eye-movement sequence for given fixation locations.

Require: µ f ix, σ f ix, µsac, σsac, FixGAN, SacGAN, fixation locations F = l1, . . . , ln
Ensure: Synthetic eye movement sequence S = s1, . . . , sm

1: S = [ ] ▷ start location is first fixation location
2: for i ∈ [1 . . . n − 1] do
3: asac = computeS accadeAmplitude(li, li+1) ▷ compute saccade amplitude for jump from li to li+1
4: d f ix = N(µ f ix, σ f ix) ▷ sample duration for next fixation
5: dsac = N(µsac, σsac) ▷ sample duration for next saccade
6: G f ix = generateFixation(FixGAN, d f ix) ▷ generate fixation [◦/s] with duration d f ix

7: S = S + dva(G f ix) ▷ add fixation converted to degrees of visual angle to sequence
8: Gsac = generateS accade(SacGAN, dsac, asac) ▷ generate saccade [◦/s] with duration dsac and amplitude asac

9: Grot
sac = rotateS accade(Gsac, S [−1], li+1) ▷ rotate generated saccade to end at new fixation location li+1

10: S = S + dva(Grot
sac) ▷ convert rotated saccade to degrees of visual angle and add to eye movement sequence

11: end for
12: d f ix = N(µ f ix, σ f ix) ▷ sample duration for last fixation
13: G f ix = generateFixation(FixGAN, d f ix) ▷ generate fixation [◦/s] with duration d f ix

14: S = S + dva(G f ix) ▷ add fixation converted to degrees of visual angle to sequence

(FixGAN) and saccades (SacGAN), respectively, and a module1

that assembles the generated fixations and saccades into a gaze2

sequence (see Figure 1). SP-EyeGAN requires a sequence of3

fixation positions as input. The fixation positions depend on4

the stimulus and can be generated using any type of model that5

outputs fixation locations. For example, the fixation locations6

can be sampled from a saliency map (e.g., for video and image7

stimuli [41]), or a distribution over word positions [42] for text8

stimuli. It can also be obtained from a sophisticated cognitive9

or machine learning model that generates fixation locations on 10

an image or video frame [43, 44] or on a textual stimulus [15, 11

16, 17, 18, 19]. 12

Both GANs use the same architecture (but do not share pa- 13

rameters) consisting of a discriminator and a generator shown 14

in the left box (step 1) in Figure 1. Both discriminators use the 15

horizontal and vertical velocities of fixations and saccades, re- 16

spectively, as input. The raw eye movement velocites are com- 17

puted by computing the change (or displacement) in x- and y- 18
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+ noise~𝑁 𝜇, 𝜎 + noise ~𝑁 𝜇, 𝜎

FC (128)  

FC (128)  

positive pair

maximize 
agreement

FC (128)  

FC (128)  

Pre-training on synthetic data

Step (3): Contrastive pre-trainingStep (1): Generate synthetic data 
with SP-EyeGAN (see Figure 1)

Step (2): Develop/Use a neural 
network architecture to process raw 
eye-tracking data

…

Embedding

Neural Network
…

Embedding

Neural Network

…

Embedding

Neural Network

Step (4b): Fine-tuning

fine-tuning

prediction

…

Embedding

Neural Network

Step (4a): Random Forest
prediction

Embedding

Random Forest

…

frozen weights

feature extraction with neural network

synthetic data

real data

Fig. 2: Pre-training overview. This figure depicts the contrastive pre-training using synthetic data generated by SP-EyeGAN (step 1). The contrastive pre-training is
shown in step 3 using any ( neural network (step 2). Steps 4a/4b show how the pre-trained models can be used to solve downstream tasks.

positions per millisecond.1

FixGAN generates low-amplitude fixational micro-2

movements, while SacGAN generates fast saccadic move-3

ments. Both GANs consist of a generative and a discriminative4

module. While the generator is used to create synthetic eye5

movements, the discriminator is trained to distinguish between6

real and generated synthetic data. Each GAN is trained by7

alternating the following steps: In the first step, the generator8

creates synthetic data. Back-propagation is employed to train9

the discriminator using this data, with the discriminator’s10

performance quantified through cross-entropy loss. The gen-11

erator’s loss is determined by the discriminator’s classification12

performance: it receives a reward when it manages to deceive13

the discriminator and incurs a penalty when it fails to do14

so [40].15

The generator creates a synthetic eye-movement sequence by16

projecting a noise vector into a higher dimensional space using17

a fully-connected layer followed by batch normalization and18

LeakyReLU activation. This output is then reshaped to match19

the required sequence length. In this work we used 100 ms for20

fixations and 30 ms for saccades because this matches the mean21

durations of typical fixations and saccades in natural viewing22

tasks [45]. The reshaping layer is followed by three deconvo-23

lutional blocks. Each block consists of a deconvolution (filter 24

size f , kernel size k) followed by batch normalization and a 25

LeakyReLU activation. 26

The discriminator consumes a sequence of eye movements 27

and decides whether this sequence was recorded from a hu- 28

man participant or whether it was synthesized by the genera- 29

tor. It consists of three convolutional blocks. Each convolu- 30

tional block consists of a convolution (filter size f , kernel size k) 31

followed by batch normalization and a LeakyReLU activation. 32

The output of the last convolutional block is flattened and is 33

fed into a fully connected layer, followed by a sigmoid activa- 34

tion to compute the estimated probability of the eye-movement 35

sequence being real. 36

SP-EyeGAN, as shown in Algorithm 1, generates a complete 37

eye movement velocity sequence S of fixations and saccades by 38

sampling velocities that constitute fixations and saccades using 39

the trained FixGAN and SacGAN generators. Raw fixation and 40

saccade sequences of different durations can be created by sam- 41

pling multiple times using the GANs and fusing or cutting the 42

sequences to obtain the desired duration. The algorithm creates 43

a synthetic eye-movement sequence given the mean µ f ix and 44

standard deviation σ f ix for fixation durations, the mean µsac and 45

standard deviation σsac for saccade durations and n fixation lo- 46
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cations F = l1 . . . ln as shown in Figure 1 (top right). The means1

and standard deviations of durations can be estimated on the en-2

tire training data. Algorithm 1 samples the fixation and saccade3

durations using a Normal distribution (lines 4 and 5). For use4

cases that require highly diverse synthetic data, durations can be5

sampled by other statistical models or cognitive models. Each6

sequence starts with fixation velocities on the first fixation lo-7

cation, with fixational movements created by the FixGAN and8

clipped or extended (line 6) to the sampled fixation duration d f ix9

(line 4). The velocities comprising each fixation are appended10

to the generated sequence S (line 7). The amplitude asac of the11

preceding saccade at iteration i is determined by the distance12

between the two fixation locations li and li+1 (line 3). In the13

next step, we use the SacGAN generator to generate a saccade14

matching the amplitude (line 8) and the saccade duration dsac15

(line 5). This saccade can move in another direction and there-16

fore has to be rotated accordingly (line 9) before being added to17

the sequence (line 10). The generation ends with sampling the18

velocities for the last fixation location (lines 12-14).19

3.2. Pre-Training and Task-Specific Fine-Tuning20

SP-EyeGAN is able to generate raw eye-movement se-21

quences (Figure 2 (step 1)) which can serve to pre-train neural22

networks (Figure 2 (step 2)) using the self-supervised technique23

contrastive learning [24, 25]. Contrastive learning can be ap-24

plied without labels for any downstream task, making it a suit-25

able approach for learning representations from synthetic data.26

The objective of contrastive learning, as shown in Figure 2 (step27

3), is for the neural network to be able to differentiate between28

positive pairs that originate from the same sequence and nega-29

tive pairs that originate from different sequences. In our study,30

we create positive pairs by augmenting a base sequence with31

Gaussian noise twice. Negative pairs are created by augment-32

ing two different sequences with Gaussian noise. The two se-33

quences that constitute a (positive or negative) pair are fed into34

the neural network, which computes a hidden representation35

whose dimension is then reduced using two bottleneck layers.36

The objective of the neural network training during the con-37

trastive learning process is to maximize the agreement between38

the hidden representations of positive pairs and minimize the 39

agreement in negative pairs. 40

We investigate two different strategies that exploit the pre- 41

trained embedding for downstream tasks. The first strategy is to 42

use the pre-trained embedding in a task-specific neural-network 43

architecture and fine-tune the model parameters for a specific 44

downstream task using a—potentially smaller—amount of real 45

data labeled for the downstream task (see step 4b in Figure 2). 46

The second strategy under investigation uses the feature em- 47

bedding of an eye-tracking sequence as input to any machine 48

learning model. In this paper, we use a simple random forest 49

classifier that consumes the feature representation created by 50

the pre-trained neural network (see step 4a in Figure 2). 51

To summarize, our method is comprised of the following 52

steps: 53

1. Adversarial training of FixGAN and SacGAN using unla- 54

beled human eye movement data2; 55

2. Selection of a model (e.g., a cognitive model) that gener- 56

ates fixation locations for a given stimulus; 57

3. Generation of synthetic raw eye-tracking data using SP- 58

EyeGAN together with the fixation location model; 59

4. Development or selection of a neural network architecture 60

suitable to process raw eye-tracking data for the down- 61

stream task at hand; 62

5. Pre-training of the neural network on the synthetic data 63

using contrastive learning; 64

6. Fine-tuning of the neural network or use of the pre-trained 65

neural embedding as input to any machine learning model 66

(e.g., random forest) on labeled data for the downstream 67

task. 68

Note that for generating a synthetic gaze sequence there is no 69

need to train the FixGAN or SacGAN from scratch (our trained 70

weights are made publicly available with the code). Hence, for 71

training a model for a new task, only the last step needs to be 72

re-done. 73

2The data is not used for training in the subsequent classification task.
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Table 1: Descriptive statistics for used datasets.

Dataset Number of participants Eye tracking device Sampling frequency
GazeBase [46] 322 (151 female, 171 male) EyeLink 1000 1,000 Hz
SB-SAT [47] 95 EyeLink 1000 1,000 Hz
JuDo1000 [48, 49] 150 EyeLink 1000 1,000 Hz
Gaze on Faces [50] 428 (223 female, 205 male) EyeLink 1000 60 Hz
HBN [51] 67 (Video 1), 159 (Video 2), 316 (Video 3), 341 (Video 4) iView-X Red-m (SMI) 120 Hz

3.3. Evaluation Metrics1

We evaluate the quality of generated eye movement data by2

comparing properties commonly used to describe eye track-3

ing data of generated fixations and saccades with the same4

properties of human eye-movement data [52] using the Jensen-5

Shannon divergence. The Jensen-Shannon divergence mea-6

sures the similarity between two probability distributions and7

is a symmetric variant of the Kullback-Leibler divergence;8

its symmetry makes it more suitable for comparing distribu-9

tions that may have different shapes or scales. For discrete10

probability distributions P and Q defined on the same sample11

space X the Jensen-Shannon divergence (JSD) is defined as12

JS D(P||Q) = 1
2 KL(P||M) + 1

2 KL(Q||M), where M = 1
2 (P + Q)13

and KL(P||Q) =
∑

x∈X P(x)log2

(
Q(x)
P(x)

)
.14

We evaluate the performance of models trained on a down-15

stream task in terms of the area under the receiver operating16

characteristic curve (AUC) for all classification tasks. The AUC17

is a quantitative indicator of classification performance. Inde-18

pendently of the class ratios, the AUC ranges from 0 for in-19

verted predictions to 1 for perfect predictions, while 0.5 rep-20

resents random guessing. For the downstream task of biomet-21

ric identity verification we evaluate the performance using the22

equal error rate (EER), which is the rate of false matches and23

non-matches that is attained when the decision threshold is ad-24

justed such that the risk of incorrectly verifying the identity of25

an impostor (false match rate) is equal to the risk of incorrectly26

denying verification (false non-match rate).27

3.4. Data28

To train SP-EyeGAN, we use eye movement data from a29

reading experiment taken from the GazeBase dataset [46].30

GazeBase consists of gaze recordings from 322 college-aged31

participants recorded monocularly with an EyeLink 1000 eye 32

tracker at a sampling frequency of 1,000 Hz. The participants 33

were repeatedly recorded while reading a poem up to nine times 34

over a period of 37 months. 35

We use the raw eye movement recordings of the Stony Brook 36

Scholastic Assessment Test (SB-SAT) dataset [47] for four 37

different downstream tasks(General Reading Comprehension, 38

Text Comprehension, experienced Text Difficulty, and whether 39

the reader is a Native Speaker). SB-SAT consists of eye move- 40

ment data from 95 undergraduate students reading Scholastic 41

Assessment Test (SAT) texts, followed by comprehension ques- 42

tions recorded at a sampling rate of 1,000 Hz. 43

For the downstream task of biometric identity verification, 44

we use two different datasets recorded on different stimuli. 45

We use the reading part of the GazeBase [46] dataset that 46

was recorded while 322 participants were reading a text.3The 47

JuDo1000 [49] dataset consists of recordings from 150 partici- 48

pants who attended four experimental sessions with a lag of at 49

least one week between any two sessions recorded at a sampling 50

rate of 1,000 Hz. In each session, participants were presented 51

with trials in which a black dot appeared consecutively at 5 ran- 52

dom screen locations on a light gray background. 53

For the downstream task of gender classification, we use the 54

Gaze on Faces [50] dataset. This dataset consists of record- 55

ings of 428 visitors to the Science Museum of London recorded 56

at a sampling rate of 250 Hz. Stimuli consisted of video clips 57

of eight different actors (four females, and four males). Each 58

clip depicted the actor initially gazing toward the bottom of the 59

screen for 500 ms, then gazing up at the participant for a vari- 60

3Please note that for downstream fine-tuning, we exclusively utilize the part
of the data on which SP-EyeGAN was trained.
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able amount of time, and finally gazing back at the bottom of1

the screen for 500 ms. We use the publicly available subset of2

the Gaze on Faces dataset that consists of data downsampled to3

60 Hz.4

For the downstream task of detecting ADHD we use the5

Healthy Brain Network (HBN) [51] dataset. This dataset con-6

sists of recordings from children (mean age 9.97 years ± 37

years) watching four different age-appropriate videos: (1) an8

educational video clip (“Fun with Fractals”), (2) a short ani-9

mated film (“The Present”), (3) a short clip of an animated film10

(“Despicable Me”), and (4) a trailer for a feature-length movie11

(“Diary of a Wimpy Kid”). The eye gaze was recorded at a12

sampling rate of 120 Hz.13

Table 1 shows descriptive statistics and eye-tracking devices14

used for recording the datasets used in this study.15

Fig. 3: Generated eye movement sequence using SP-EyeGAN. The fixation
locations are sampled using a statistical model [42]. Raw saccadic and fixation
samples are shown in red and green, respectively.

4. Results16

This section reports on our experimental results. All code17

to reproduce the results and pre-trained SP-EyeGAN models to18

create synthetic eye movement data can be found online.4 19

4.1. Synthetic Data Quality 20

We evaluate the quality of generated synthetic data by com- 21

paring generated and real eye-movement events in terms of 22

descriptive features by subsampling real and model-generated 23

eye-movement data 10 times. In order to measure the quality 24

of generated fixations, we calculate the Jensen-Shannon diver- 25

gence between real and generated fixations in terms of veloc- 26

ities, mean velocities, and dispersion, respectively. The qual- 27

ity of generated saccades is determined by comparing the peak 28

velocity, mean velocity, peak acceleration, mean acceleration, 29

and the amplitude of a saccade. We compare SP-EyeGAN to 30

the statistical models proposed by Fuhl et al. [34] and Lan et al. 31

[35], and the neural network approach of Fuhl et al. [39]. Note 32

that this section focuses solely on examining the two genera- 33

tive components of the SP-EyeGAN architecture: FixGAN for 34

fixations and SacGAN for saccades. 35

Table 2 compares generated fixations. Note that the statisti- 36

cal model only creates absolute velocities without directions so 37

we cannot compute the dispersions. Our FixGAN model out- 38

performs all the other models and generates fixation profiles 39

that are more similar to fixation profiles of real human eye- 40

movement sequences. 41

The results for comparing model-generated saccades can be 42

seen in Table 3.5 From the results we can conclude that Sac- 43

GAN creates saccades that are more similar to human saccades 44

than the baseline methods. SacGAN performs best for all the 45

attributes under investigation and significantly outperforms all 46

the baseline models in four out of five attributes. Figure 3 47

shows a synthetic eye movement sequences generated using 48

SP-EyeGAN that are similar to eye movement data generated 49

by humans. SP-EyeGAN generates a sequence consisting of 50

an alternation between fixations and saccades, which can be 51

identified using the Dispersion-Threshold Identification algo- 52

rithm [53]. To validate the data generated by SP-EyeGAN, we 53

4https://github.com/aeye-lab/sp-eyegan
5We cannot compute saccade amplitudes for the statistical model proposed

by [34] because it only generates velocities without directions.

https://github.com/aeye-lab/sp-eyegan
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Table 2: Quality of generated fixations in terms of Jensen-Shannon divergence between human eye movement data and data generated by the model. Values show
the Jensen-Shannon divergence ± standard error for 10 resamplings of the data. For reference, the table also shows the divergence between two different sequences
of human eye movement data, denoted as real. Bold values indicate the best model. An asterisk (“*”) denotes models with a performance significantly better than
the second best performing model (paired t-test with α ≤ 0.05).

Jensen-Shannon divergence ↓
Method Velocity Mean velocity Dispersion
Statistical model [34] 0.286 ± 0.001 0.692 ± 0.004 –
VAE [39] 0.204 ± 0.001 0.958 ± 0.003 0.742 ± 0.007
EyeSyn [35] 0.065 ± 0.001 0.793 ± 0.006 0.99 ± 0.002
SP-EyeGAN [26] 0.03 ± 0.001∗ 0.321 ± 0.007∗ 0.326 ± 0.006∗

Real 0.001 ± 0.0 0.073 ± 0.003 0.114 ± 0.004

Table 3: Quality of generated saccades in terms of Jensen-Shannon divergence between human data and data generated by the model. Values show the Jensen-
Shannon divergence ± standard error for 10 resamplings of the data. For reference, the table also shows the divergence between two different sequences of human
eye movement data, denoted as real. Bold values indicate the best model. An asterisk (“*”) denotes models with a performance significantly better than the second
best performing model (paired t-test with α ≤ 0.05).

Jensen-Shannon divergence ↓
Method Peak velocity Mean velocity Peak acceleration Mean acceleration Amplitude
Statistical model [34] 0.426 ± 0.007 0.253 ± 0.007 0.922 ± 0.003 0.859 ± 0.004 –
VAE [39] 0.951 ± 0.004 0.906 ± 0.007 0.895 ± 0.003 0.871 ± 0.006 0.92 ± 0.008
SP-EyeGAN [26] 0.399 ± 0.006∗ 0.251 ± 0.004 0.293 ± 0.004∗ 0.24 ± 0.004∗ 0.267 ± 0.006∗

Real 0.079 ± 0.005 0.052 ± 0.003 0.254 ± 0.007 0.046 ± 0.002 0.075 ± 0.003

checked the overlap between saccades and fixations identified1

using this algorithm and the output of SP-EyeGAN generating2

fixations and saccades. To do so, we sampled 10 scan paths3

for a text and checked for each training sample whether the4

outcome of the Dispersion-Threshold Identification algorithm5

matches the label assigned by SP-EyeGAN. We observe an ac-6

curacy of 0.971±0.001, indicating that scan paths generated by7

SP-EyeGAN are plausible.8

4.2. Evaluation on Downstream Tasks9

In order to quantify the benefit of pre-training a model using10

synthetic data generated by SP-EyeGAN, we investigate the ef-11

fectiveness on five publicly available datasets (see Table 1). Re-12

member that SP-EyeGAN is trained on reading data extracted13

from GazeBase at 1,000 Hz. This means that we are creating14

data with a resolution of 1,000 Hz using Algorithm 1. To get15

lower sampling rates we simply downsample the data using lin-16

ear interpolation.17

For all the downstream tasks we compare the performance of18

different deep neural models [8, 25] that can process raw eye-19

tracking data, and, for the task of biometric identity verification,20

have been shown to perform exceptionally well: CLRGaze [25]21

and EKYT [8] (see Figure 4). We evaluate the performance 22

of these models on all downstream tasks in three settings: (1) 23

when being trained from scratch on human data without any 24

pre-training, (2) when being first pre-trained on synthetic eye 25

movement sequences generated by SP-EyeGAN and then fine- 26

tuned on the human data, and (3) when being pre-trained on 27

synthetic eye movements generated by SP-EyeGAN and then 28

used to compute feature embeddings of the human data which 29

are then used as input to train a random forest. Furthermore, 30

we compared against a baseline using a random forest on en- 31

gineered features reported in the literature [54]. This base- 32

line extracts features from eye tracking sequences by detect- 33

ing the fixations and saccades and computing features like the 34

saccade durations, peak velocities, gaze entropy, and many 35

more [55, 56, 57, 58, 54]. 36

4.2.1. Stony Brook Scholastic Assessment Test 37

This section reports on the results using the SB-SAT dataset 38

for four different downstream tasks. The labels extracted for the 39

different tasks are: overall comprehension score across all pas- 40

sages (General Reading Comprehension), text-based compre- 41

hension accuracy (Text Comprehension), a subjective difficulty 42
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(a) EKYT model used for downstream tasks. See Lohr and Komogortsev [8] for more details.
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(b) CLRGaze model used for downstream tasks. See Bautista and Naval [25] for more details.

Fig. 4: Neuronal Networks used to pre-train and fine-tune a model on the downstream task. Figure 4a and4b depict the model architectures trained with batch size
bs consisting of fully connected layers (denoted as FC), batch normalization (denoted as BN), convolutional layers (denoted as Conv with filter size f , kernel size k
and dilation d), and the rectified linear unit (ReLU) activation function. The numbers in brackets show the dimensions of the data after each layer.

Table 4: Comparison of a diverse set of downstream tasks on the SB-SAT dataset. AUC ± standard error reported for 5-fold CV. The model in brackets denotes the
model used during pre-training/ fine-tuning. An asterisk (“*”) denotes models with a performance significantly better than random guessing and a pre-trained model
marked with a dagger (“†”) indicates a model that is significantly better than its variant trained from scratch (paired t-test with α ≤ 0.05).

Task

Method General Reading
Text Comprehension Text Difficulty Native Reader

Comprehension
BEyeLSTM 0.608 ± 0.037* 0.542 ± 0.015* 0.710 ± 0.017* 0.670 ± 0.025*
Random forest on engineered features 0.619 ± 0.039* 0.584 ± 0.039* 0.544 ± 0.013* 0.737 ± 0.057*
Without pretraining (EKYT) 0.585 ± 0.015* 0.566 ± 0.020* 0.494 ± 0.021 0.550 ± 0.014*
Pre-training & fine-tuning (EKYT) 0.622 ± 0.029* 0.574 ± 0.024* 0.545 ± 0.006*† 0.721 ± 0.061*†
Random forest on feature embeddings (EKYT) 0.575 ± 0.074 0.597 ± 0.026* 0.501 ± 0.012 0.556 ± 0.057
Without pre-training (CLRGaze) 0.569 ± 0.065 0.560 ± 0.055 0.516 ± 0.034 0.528 ± 0.046
Pre-training & fine-tuning (CLRGaze) 0.577 ± 0.033 0.592 ± 0.032* 0.566 ± 0.018* 0.704 ± 0.050*†
Random forest on feature embeddings ( CLRGaze) 0.507 ± 0.05 0.562 ± 0.026* 0.488 ± 0.016 0.577 ± 0.042

rating (Text Difficulty), and whether the presented text was the1

native (L1) language of the reader (Native Reader).2

We compare the results obtained with our approach in com-3

bination with EKYT and CLRGaze to the performance of i)4

the current state-of-the-art BEyeLSTM model [1] (which is not 5

able to process raw data, but only preprocessed fixations) and 6

ii) the random forest on engineered features. We apply 5-fold 7

cross-validation splitting the data such that no reader is simul- 8
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Table 5: Equal error rates ± standard error for biometric verification on the
GazeBase data. An asterisk (“*”) denotes models with a performance signifi-
cantly lower than 0.5 (α < 0.05).

Method EER
Without pre-training (EKYT) 0.165 ± 0.004*
Pre-training & fine-tuning (EKYT) 0.169 ± 0.003*
Zero-shot with pre-training (EKYT) 0.495 ± 0.004
Without pre-training (CLRGaze) 0.181 ± 0.003*
Pre-training & fine-tuning (CLRGaze) 0.188 ± 0.003*
Zero-shot with pre-training (CLRGaze) 0.493 ± 0.003

taneously included in both the training and test portions of the1

data [1]. Note that splitting along readers has been found to2

be the more challenging evaluation setting since it assesses the3

models’ ability to generalize to new readers [59, 1].4

An overview of the results can be found in Table 4. We5

find that a fine-tuned model that is based on a previously con-6

trastively pre-trained model significantly improves over mod-7

els trained without pre-training in three cases and numerically8

(though not significantly) improves the performance in the re-9

maining five cases. When using the pre-trained network to com-10

pute neural feature representations (embeddings) of the human11

data, even a simple random forest establishes a new state-of-12

the-art for the Text Comprehension task. This highlights the13

utility of the learned embeddings. The random forest on engi-14

neered features establishes a new state of the art for the Native15

Reader classification task and outperforms the neural feature16

representations in all settings. In summary, for two out of four17

downstream tasks, a model using synthetic data generated by18

SP-EyeGAN establishes a new state-of-the-art. For one down-19

stream task (Text Difficulty), BEyeLSTM—that processes en-20

gineered features of the fixated text which our models have no21

access to—remains the state of the art.22

4.2.2. Biometric Verification23

This section reports on the results of biometric verification24

using two state-of-the-art models: EKYT and CLRGaze. To25

evaluate the models we resample five times from the complete26

dataset. In each iteration, a training population of 100 subjects27

is selected and the remaining subjects (222 for GazeBase, 5028

for JuDo1000) are used for evaluation. At application time, one29

Table 6: Equal error rates ± standard error for biometric verification on
JuDo1000. An asterisk (“*”) denotes models with a performance significantly
lower than 0.5 (α < 0.05).

Method EER
Without pre-training (EKYT) 0.112 ± 0.003*
Pre-training & fine-tuning (EKYT) 0.114 ± 0.003*
Zero-shot with pre-training (EKYT) 0.49 ± 0.002*
Without pre-training (CLRGaze) 0.109 ± 0.002*
Pre-training & fine-tuning (CLRGaze) 0.124 ± 0.004*
Zero-shot with pre-training (CLRGaze) 0.462 ± 0.002*

subject is enrolled by calculating and storing the mean embed- 30

ding of the input data (80 randomly selected training instances 31

per subject), taken from the first session. Each subject serves 32

as a test subject: a probe sequence of five seconds, taken from 33

another recording session, is compared against the enrollment 34

embedding. For each dataset, we compare a model without 35

pre-training with a fine-tuned model that was contrastively pre- 36

trained on data created by SP-EyeGAN, and a zero-shot model 37

without fine-tuning. This model uses the embeddings created 38

by the contrastively pre-trained model.6 39

On both datasets, we observe that models pre-trained on data 40

created by SP-EyeGAN perform worse than a model trained 41

from scratch on human data without pre-training (see Table 5- 42

5). For the GazeBase dataset, we observe that the zero-shot ver- 43

sion does not perform significantly better than random guess- 44

ing, whereas it performs significantly better for the JuDo1000 45

dataset. 46

4.2.3. Gender Classification 47

This section reports on the results for gender classification 48

on the Gaze on Faces dataset. Since there is no state-of-the- 49

art gender classification model that uses sequences of raw eye- 50

tracking data, we evaluate EKYT and CLRGaze using 5-fold 51

cross-validation splitting by subjects to make sure that the sub- 52

jects in the training and test data are different and compare it to 53

the random forest on engineered features. 54

According to the results presented in Table 7, models that 55

have been contrastively pre-trained on synthetic data do not 56

6We cannot apply the random forest because it is not possible to train a clas-
sifier to distinguish between classes (here: participant identities) not exposed to
during training.
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(b) CLRGaze mode.

Fig. 5: AUC ± standard error for gender classification over the numer of labeled training instances on the Gaze on Faces dataset. The x-axis shows the number of
instances of labeled human eye-tracking.

Table 7: AUC ± standard error for gender classificaton on the Gaze on Faces
dataset, model names in parentheses. An asterisk (“*”) denotes models with a
performance significantly better than random guessing (α < 0.05).

Method AUC
Random forest on engineered features 0.68 ± 0.02*
Without pre-training (EKYT) 0.68 ± 0.01*
Pre-training & fine-tuning (EKYT) 0.68 ± 0.01*
Random forest on feature embeddings (EKYT) 0.65 ± 0.01*
Without pre-training (CLRGaze) 0.66 ± 0.01*
Pre-training & fine-tuning (CLRGaze ) 0.6 ± 0.02*
Random forest on feature embeddings (CLRGaze) 0.66 ± 0.01*

have any advantage over models without pre-training. We1

observe that neural networks on raw eye-tracking data perform2

similarly well as a model using engineered features. All models3

perform significantly better than random guessing (α ≤ 0.05).4

The Gaze on Faces dataset is the largest dataset under inves-5

tigation in terms of training instances, allowing us to investigate6

the influence of the number of training instances used for train-7

ing. The results for different training set sizes are shown in8

Figure 5. We can conclude that for small training set sizes, the9

random forest that uses the pre-trained feature embeddings per-10

forms best. For 100 training instances with the EKYT model11

and for up to 1,000 instances with the CLRGaze model the12

random forest model performs significantly better than a fine-13

tuned neural network or a neural network that has not been pre-14

trained.15

4.2.4. ADHD Detection 16

This section reports on the results of ADHD detection on 17

the HBN dataset. We compare each model to the current state- 18

of-the-art model [6], denoted as SOTA CNN, that uses a CNN 19

architecture processing gaze events and saliency maps of the 20

videos, and a random forest on engineered features. In contrast 21

to the SOTA CNN, the models that we employ as the neural 22

network component (step 2 in Figure 2) only use the raw eye- 23

tracking data without any stimulus information. To compare to 24

the state-of-the-art model we follow the same evaluation pro- 25

tocol as described in Deng et al. [6]: We randomly resample 26

the data 10 times and in each iteration perform 10-fold cross- 27

validation along subjects, such that no individual occurs in both 28

the training and test data. 29

The results presented in Table 8 are inconclusive. The SOTA 30

CNN [6] with the stimulus video clip Fun with Fractals re- 31

mains the combination that allows for the most accurate de- 32

tection of ADHD. For Fun with Fractals, only the random for- 33

est on the pre-trained embedding of CLRGaze improves over 34

CLRGaze without pre-training. For Despicable Me, the random 35

forest on EKYT embeddings improves over EKYT without pre- 36

training and beats the SOTA CNN. For Diary of a Wimpy Kid, 37

pre-training on synthetic gaze data improves the results for 38

CLRGaze and the random forest on CLRGaze embeddings and 39

again outperforms the SOTA CNN. In other cases, pre-training 40
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Table 8: AUC ± standard error for ADHD detection with model names in parentheses. An asterisk (“*”) denotes models with a performance significantly better
than random guessing and a dagger (“†”) marks model that are significantly better than their variant without pre-training.

AUC
Method Fun with Fractals The Present Despicable me Diary of a Wimpy Kid
SOTA CNN [6] 0.646 ± 0.025* 0.554 ± 0.016* 0.544 ± 0.01* 0.503 ± 0.01
Random forest on engineered features 0.587 ± 0.026* 0.407 ± 0.014 0.541 ± 0.009* 0.485 ± 0.009
Without pre-training (EKYT) 0.552 ± 0.026* 0.49 ± 0.016 0.544 ± 0.011* 0.513 ± 0.01
Pre-training & fine-tuning (EKYT) 0.516 ± 0.028 0.43 ± 0.017 0.533 ± 0.012* 0.509 ± 0.01
Random forest on feature embeddings (EKYT) 0.606 ± 0.025* 0.375 ± 0.015 0.581 ± 0.01*† 0.467 ± 0.009
Without pre-training (CLRGaze) 0.49 ± 0.026 0.494 ± 0.017 0.549 ± 0.011* 0.494 ± 0.011
Pre-training & fine-tuning (CLRGaze) 0.514 ± 0.023 0.402 ± 0.016 0.541 ± 0.011* 0.528 ± 0.01*†
Random forest on feature embeddings (CLRGaze) 0.626 ± 0.024*† 0.368 ± 0.015 0.574 ± 0.011* 0.545 ± 0.01*†

does not improve the model’s accuracy. For three out of four1

videos, a random forest trained on a pre-trained embedding per-2

forms better than its counterpart trained on engineered features,3

highlighting the expressive power of the learned embeddings.4

5. Limitations5

Although SP-EyeGAN shows promising results in generating6

synthetic scan paths, there are still limitations to consider.7

In the current implementation, SP-EyeGAN is not able to8

process the viewed stimulus as input and hence does not take9

it into account for the generation of the scan path. However, we10

would like to emphasize that the statistical model that we use11

for the generation of fixation locations can be replaced by any12

other model that generates fixation locations, including models13

that do take into account the stimulus such as cognitive models14

of scene viewing or reading [42, 43, 15, 16, 17, 18, 19]. In order15

to achieve this interaction, the stimulus would need to be used16

as input to the FixGAN and SacGAN, which could be imple-17

mented as stimulus-conditioned GANs. Similarly, rather than18

simply sampling fixation and saccade durations from the train-19

ing data, one might consider estimating them relative to both20

the stimulus and the location of fixation.21

Hence our approach is limited to stimuli that do not evoke22

smooth pursuits, which are an important oculomotor event that23

occurs while following a slowly moving stimulus. Given train-24

ing data containing smooth pursuits, it is straightforward to ex-25

tend our model by a third GAN component to include smooth26

pursuit movements.27

Despite these limitations, our model represents a significant 28

step forward in using machine learning to generate synthetic 29

raw eye-tracking data. Future studies can build on our work to 30

address these limitations and further improve the accuracy and 31

generalizability of models generating eye movement data. 32

6. Discussion and Conclusion 33

We have introduced SP-EyeGAN, a method that generates 34

realistic raw eye-tracking data. We investigated the utility 35

of using synthetic data generated by SP-EyeGAN. Fixational 36

micro-movements can be generated around fixation locations 37

taken from any model of eye movement control—be it a sta- 38

tistical model, a machine-learning-based model, or a cognitive 39

model. SP-EyeGAN connects these fixations with realistic sac- 40

cadic movements. The synthetic raw eye gaze sequences can 41

be used to pre-train any neural network that is designed to pro- 42

cess raw eye movement data for any downstream task. In this 43

pre-training step, the neural network learns to compute infor- 44

mative neural representations of eye movement sequences, so- 45

called embeddings, independently of the downstream task. In 46

a final step, the neural network can be fine-tuned with human 47

eye-tracking data for any downstream task of the researcher’s 48

choice. 49

We also explored the possibility of using features generated 50

by the pre-trained model as input to a random forest. This 51

embedding-based workflow has the advantage that it can be 52

used in situations where only a little human data for the down- 53

stream task is available. 54
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We investigated the performance on seven downstream pre-1

diction tasks that have recently attracted attention in eye-2

tracking research. Although we used neural network archi-3

tectures that were originally developed for the task of biomet-4

ric verification, we found that pre-training on SP-EyeGAN-5

generated synthetic data improved their performance signifi-6

cantly in several of the investigated tasks and settings. For7

general reading comprehension, text comprehension, and detec-8

tion of native readers, pre-training on synthetic data improves9

the models’ performance. On the other hand, we also identi-10

fied downstream tasks for which SP-EyeGAN is not suitable.11

For biometric verification, the use of a pre-trained model de-12

teriorates the overall performance. We hypothesize that this13

might be due to the fact that during the pre-training, the model14

learns to extract generic, subject-independent patterns by ab-15

stracting away from idiosyncracies in the eye-tracking signal,16

which stands in contrast to learning behavioral biometric traits17

of the individual participants.18

To date, most research has been focusing on methods that19

operate on preprocessed scan paths of fixations and saccades,20

often using engineered fixational and saccadic features. To21

compare against a baseline operating on such features extracted22

from fixations and saccades, we used a random forest on engi-23

neered features. Recent research in eye-tracking-based biomet-24

rics [9], however, has shown that the raw eye-tracking signal25

contains valuable information that is lost when preprocessing26

the data. Since neural networks that are designed to process27

raw eye-tracking data have an even larger number of parame-28

ters than neural networks operating on preprocessed data, data29

scarcity is a major obstacle to the development of such mod-30

els. Our proposed approach opens the possibility of developing31

deep neural networks with large numbers of parameters since32

potentially infinite amounts of synthetic data are available for33

(pre)-training.34

Besides our approach’s advantages for training neural net-35

works, it has also important advantages for privacy. In recent36

years, it has been shown that in many cases, it is possible to37

reconstruct the training data from a neural network’s final pa-38

rameters [60], which can violate the privacy of donors of train- 39

ing data: it may be possible to infer the training users’ identity, 40

gender or other sensitive attributes [8, 7, 61]. The inclusion of 41

synthetic training data dilutes any potentially identifiable traits. 42
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